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Abstract

A neural network model called LISSOM for the cooperative self-organization of
a�erent and lateral connections in cortical maps is applied to modeling cortical
plasticity. After self-organization, the LISSOM maps are in a dynamic equilib-
rium with the input, and reorganize like the cortex in response to simulated corti-
cal lesions and intracortical microstimulation. The model predicts that adapting
lateral interactions are fundamental to cortical reorganization, and suggests tech-
niques to hasten recovery following sensory cortical surgery.

1 INTRODUCTION

The organization of the cerebral cortex was for a long time believed to be highly
stable in adults. Much new evidence indicates that the adult cortex undergoes
signi�cant, often reversible, reorganization in response to various sensory and
cortical manipulations such as lesions in the receptive surface and the cortex (for
review see [1; 2]). The cortex appears to be a continuously adapting structure
in a dynamic equilibrium with both the external and intrinsic input. This equi-
librium is maintained by cooperative and competitive lateral interactions within
the cortex, mediated by lateral connections. This article shows that adapting lat-
eral interactions could be responsible for the experimentally observed plasticity
of cortical maps as well.

Several aspects of cortical plasticity can be explained based on self-organizing
neural network models of topographic maps [3; 5]. Such models assume predeter-
mined lateral interactions within the cortex, and focus on the reorganization of
the a�erent connection weights. They demonstrate that the self-organization of
a�erent synapses alone (by Hebbian adaptation) can account for (1) the remap-
ping of cortical topography following peripheral lesions, (2) the expansion of the
cortical representation of a repetitively stimulated area of skin, and (3) the inverse
relationship between cortical magni�cation (area of cortical map representing a
unit area of the receptive surface) and receptive �eld size (area of receptive surface
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(a) LISSOM architecture
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(b) Lateral interaction (c) Topographic map

Figure 1: Self-organization in a LISSOM network. The a�erent and lateral con-
nections of one neuron are shown in (a). All connection weights start out random, but
develop smooth pro�les in the self-organizing process. The combined lateral excitation
and inhibition of each neuron acquires a pro�le resembling a \Mexican hat" (b), and
a�erent weights organize across the network to form a topographic map (c). In (c),
the center of gravity of the a�erent weights of each neuron are plotted on the receptive
surface, and the points of the neighboring neurons are connected by lines. The resulting
smooth grid illustrates the topographic organization of the a�erent weights.

driving a cortical neuron). However, several other aspects of cortical plasticity,
such as the reorganization of the map in response to cortical lesions and intracor-
tical microstimulation seem to involve adaptation of lateral connections as well,
and cannot be explained by these models.

A new model of cortical self-organization called LISSOM (Laterally Intercon-
nected Synergetically Self-Organizing Map: [6; 7]) was developed to explain how
a�erent and lateral connections could self-organize cooperatively and simultane-
ously to form topographic maps. The maps formed by LISSOM are continuously
adapting structures in a dynamic equilibrium, and susceptible to changes in the
distribution of external and intrinsic inputs. As a result, the model can account
not only for the plasticity due to reorganizing a�erent synapses, but also plas-
ticity due to adapting lateral connections. This article demonstrates how the
self-organizing process can model the reorganization of the cortex after cortical
lesions and intracortical microstimulation.

2 THE LISSOM MODEL

The LISSOM network is a sheet of interconnected neurons (�gure 1a). Through
the a�erent connections, neurons receive input from a receptive surface. In ad-
dition, each neuron has reciprocal excitatory and inhibitory lateral connections
with other neurons. Lateral excitatory connections are short-range, connecting
only close neighbors, but lateral inhibitory connections run for long distances.
Initially, all connection weights are random. Each neuron develops an initial re-
sponse as a weighted sum of the activation in its a�erent input connections. The
lateral interactions between neurons then focus the initial activation pattern into
a localized response on the map (see appendix for the exact equations governing
the process). After the pattern has stabilized, all connection weights are modi-
�ed according to the same Hebbian rule, and normalized so that the sum of the
weights of each connection type (a�erent, lateral excitatory and lateral inhibitory)
are constant. The process is repeated for each input. As self-organization pro-
gresses, the a�erent connections develop smooth localized weight pro�les and



(a) Activity before lesion (b) Immediately after (c) After 500 iterations

Figure 2: How response patterns change after a cortical lesion. The activity
of neurons across the network are shown for the same input before the lesion (a),
immediately after (b) and a few hundred adaptation steps later (c). The lesioned area
is seen as a white square with no activity in �gure (b). Immediately after the lesion,
the activity spreads out to neurons that were previously inactive and therefore, the
functional loss appears less severe than expected. As lateral connections reorganize
(�gure 3), the unmasked activity decreases because of increased lateral inhibition.

form a topographic map of the receptive surface (�gure 1c). At the same time,
the lateral connections develop smooth \Mexican hat" shaped pro�les (�gure 1b).

3 MODELING CORTICAL LESION PLASTICITY

To study the e�ects of cortical lesions, a small set of neurons in the organized
network are made unresponsive to input. Three phases of reorganization are
observed, like in the somatosensory cortex [2]. Immediately after the lesion, the
receptive �elds (RFs) of neurons in the perilesion zone enlarge. The lesion reduces
the inhibition of the perilesion neurons, and unmasks previously suppressed input
activation. In e�ect, the perilesion neurons immediately take over representing
part of the input to the lesioned region, and the apparent loss of receptive surface
representation is smaller than expected based on the prelesion map (�gure 2b).

The lesion disrupts the dynamic equilibrium of the network, and both lateral
and a�erent connections of the active neurons adapt to compensate for the lesion.
Neurons close to the lesion boundary encounter a large imbalance of lateral inter-
action in their neighborhood, with no lateral activation from inside the lesion and
normal activation from outside. As a result, the lateral connection weights to the
lesioned area decrease to zero, and by Hebbian adaptation and normalization, all
the lateral weights rapidly redistribute to the the lesion's periphery. Neurons at
the lesion boundary have the largest number of inhibitory connections from the
lesioned zone; therefore, the reorganization of inhibition is especially pronounced
at the boundary (�gure 3). As a result, in the second phase the lateral inhibition
very rapidly becomes strong outside the lesion, and the previously unmasked ac-
tivity is partly suppressed (�gure 2c). This produces an apparent outward shift
of perilesion receptive �elds.

Even after the lateral connections reorganize, the remaining unmasked input
activation causes an imbalance in the network. Such activation forces the a�erent
weights to reorganize and respond better to inputs that were previously stimu-
lating the lesioned zone. Gradually, the representation of the receptive surface
within the lesion zone is taken over by the neurons around it (�gure 4), and the
cortical lesion is partly compensated for.
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(a) Inhibition before lesion
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(b) After 500 steps

Figure 3: Reorganization of lateral inhibition at the lesion boundary. The
inhibitory connections of a neuron at the boundary of the lesion are shown. The neuron
has 40 � 40 connections, and the prelesion inhibition is circularly symmetric around
the neuron (a). Shortly after the lesion, the inhibitory weights from the lesioned neu-
rons decrease to zero. Because the total inhibitory weight is kept constant by weight
normalization, the inhibition concentrates in the connections outside the lesioned zone,
and the trough becomes deeper (b).

(a) Reorganized map (b) Final activity

Figure 4: Topography and activity in the reorganized network. Several thou-
sand adaptation steps after the lesion, a�erent weights of the perilesion neurons have
spread out into the area previously represented by the lesioned neurons. Though lateral
inhibition is still stronger in the perilesion area, the input activation after reorganiza-
tion overcomes the inhibition, and neurons at the boundary of the lesion become more
responsive to inputs previously stimulating lesioned neurons.

The LISSOM model suggests two techniques to accelerate recovery follow-
ing surgery in the sensory cortices. Normally, the recovery time after cortical
surgery would include an initial period of regression due to the reorganization
of inhibition, and gradual and slow compensation afterward. The �rst phase of
regression could be ameliorated if a transient blocker of inhibitory neurotransmit-
ters were applied locally around the surgical area. Neurons around the surgical
area would then �re intensively because of reduced inhibition, and a�erent con-
nections would adapt rapidly to compensate for the lesion. Though the inhibition
would strengthen when the blockade goes away, the pace of recovery would have
been hastened. Secondly, the topographic map could be shifted as in �gure 4
even before surgery. This preshifting could be achieved by intensive and repeti-
tive stimulation of the area expected to lose sensation and by sensory deprivation
of its surroundings. The receptive �elds would then have to move less to reach
the �nal state, and the recovery would be faster.



(a) Activity before ICMS (b) After ICMS removal

Figure 5: How activity patterns change after ICMS. Activity patterns in the
network are shown in the vicinity of the ICMS region before (a) and immediately after
the stimulation (b), for the same input. After training with ICMS, activity is enhanced
and sharpened within the ICMS region (the square area outlined by the activity) because
of the reorganized lateral connections. With time, the e�ects of ICMS get reversed as
connections adapted back to the original state.

The e�ects of simulated cortical lesions are reversible, and the original topo-
graphic representation would be regained if the lesioned neurons were restored
to normal. Thus the topographic map is dynamic and maintained in a dynamic
equilibriumwith external and internal inputs. To illustrate how the equilibrium is
altered when the internal inputs change, we simulated the e�ects of intracortical
microstimulation (ICMS).

4 MODELING ICMS PLASTICITY

Intracortical microstimulation involves applying a high-frequency electrical cur-
rent to a small region of the cortex using a microelectrode. In the somatosen-
sory cortex, after a few hours of ICMS stimulation, the receptive �elds of the
stimulated neurons became clustered and overlapping [4]. Because there is no
peripheral stimulation, such clustering must be solely due to the adaptation of
intrinsic connections.

To simulate the e�ect of ICMS, a restricted region of the organized network
was set to maximum activity for several steps. Because there was no a�erent
input, a�erent connections remained unchanged (equation 2), and only the lateral
connections in the ICMS region adapted. Neurons at the boundaries of the ICMS
region developed asymmetric lateral interaction pro�les, with strong excitation
and inhibition towards the center of the region. Therefore, activity patterns were
enhanced and sharpened within the ICMS region even when the original center of
activity was outside the zone (�gure 5). As a result, the receptive �elds of neurons
in the close vicinity of the ICMS region appeared to shift into the region, as was
observed in the somatosensory cortex [4].

5 CONCLUSION

The LISSOM model demonstrates that not only the self-organization of topo-
graphic maps, but also many aspects of cortical plasticity can be explained based
on the simultaneous adaptation of a�erent and lateral connections. The sim-
ulated reorganizations are reversible, and demonstrate how a topographic map
can be maintained in a dynamic equilibrium with extrinsic and intrinsic inputs.



The model suggests that functional recovery after cortical surgery may be has-
tened by blocking lateral inhibition locally in the cortex and by forced presurgical
reorganization of cortical topographic maps.

APPENDIX: ACTIVATION AND ADAPTATION MECHANISMS

The neural activation is calculated from the sum of external, lateral excitatory and
lateral inhibitory input:

�ij(t) = �

 X
r1 ;r2

�r1;r2�ij;r1r2 + e
X
k;l

Eij;kl�kl(t� �t)� i
X
k;l

Iij;kl�kl(t� �t)

!
; (1)

where �ij(t) is the activity of neuron (i; j) at time step t, � is a piecewise linear ap-
proximation to the sigmoidal activation function, �r1 ;r2 is the activation of a retinal
receptor (r1; r2), �ij;r1r2 is the a�erent weight of neuron (i; j) from (r1; r2), Eij;kl is
the excitatory lateral connection weight from neuron (k; l) to neuron (i; j), Iij;kl is the
inhibitory lateral connection weight and e, i are scaling factors on the excitatory and
inhibitory weights.

Connection weights are adapted according to the normalized Hebbian rule:

wij;mn(t+ 1) =
wij;mn(t) + ��ijXmnP

mn
[wij;mn(t) + ��ijXmn]

; (2)

where wij;mn is the a�erent or lateral connection weight (�ij;r1r2 , Eij;kl or Iij;kl), � is
the learning rate for each type of connection (�a for a�erent, �E for excitatory, and �I

for inhibitory) and Xmn is the presynaptic activity (�r1 ;r2 for a�erent, �kl for lateral).
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