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Abstract

Abstract

The goal of the present study was to explore factors that mfluence how new
episodic associations between words are formed and to characterize the dynamic
properties of this process. Of particular interest was the impact of semantic
knowledge on such associations. To achieve this goal, | combined psychological
experimental methods and computational techniques in a multidisciplinary
research approach. First, I tested human participants in a series of psychological
experiments and revealed several characteristics of how new associations between
words are learned. Second, I developed a computational model based on a neural
network constrained by the empirical results, and previously published knowledge
in the field. This model was validated by a computer simulation that replicated the
human performance. The model was then used to denve testable new predictions
about human associative learning. Third, some of these predictions were tested in

additional psychological experiments.

The working hypothesis was that the vast majority of the associations formed
outside the cognitive laboratory are established incidentally, that 1s, not as a
consequence of intentional learning and without allocating attention to the process
of forming association. Therefore, my rescarch focused on how incidental
associations are formed. The cxperimental paradigm in most of the psychological
experiments was similar, including an incidental study phase and a test phase,
During the incidental study phasc, the participants were engaged in an orientation
task, which required maintaining word-pairs repeatedly in working memory for
nearly a second. Following the study phase, the participants were unexpectedly
requested to take different types of memory tests that were aimed at assessing the

strength of the association formed between the words paired at study.

In a pilot experiment, fifty semantically unrelated and unassociated word-pairs
were presented in an orientation task that directed the participants' attention to the
letter-level of the stimuli, Each pair was repeated ten times during this incidental
study phase. Surprisingly, in an immediately following cued-recall test, no
evidence for incidental learning was found. Several factors that differentiate real-

life conditions from the laboratory conditions of the pilot experiment could
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explain why associations were not formed in these circumstances. These factors

were tested in a subsequent series of experiments.

First, assuming that in real life people are not required to form such a large
number of associations all at once (50 in the pilot experiment), I tested, in
Experiment 1, the influence of memory load. In this experiment, the same design
as in the pilot experiment was used, but with only 10 word-pairs, each repeated 20
times. The percentage of cued recall of incidentally formed associations in this
experiment was significant and considerably lugher than in the pilot expenment.
This result indicated that memory overload might have been one of the canses of

the pilot participants® failure to learn new associations.

Second, since in real life people attend by default to the meaning of the processed
words while the orientation task in the pilot study required letter-level processing,
I examined, in Experiment 2, the influence of the level of processing on how new
associations are formed. The design of Experiment 1 was replicated, with a single
change: the orientation tagk directed the participants' attention to the meaming of
the words rather than to the letters they are comprised of. The increment in cued
recall percentage compared with Experiment 1 was dramatic. Consequently, [
concluded that the activation of the semantic system during the process of
association formation, although not essential to forming episodic associations,

significantly contributes to its efficiency.

The influence of semantic factors on the episodic process of forming associations
was replicated and extended in a third experiment. In addition to using a semantic-
level orientation task, I compared, m Expenment 3, how new associations
between semantically related and semantically unrelated pairs are formed. In
addition, 1n the present expenment the strength of the incidental associations
formed during the study phase was tested indmrectly by assessing how much they
facilitate subsequent one-trial intentional associative learning of these pairs. Cued
recall following the intentional study phase was significantly better for pairs that
were associated during the incidental study phase compared to pairs that were not.
In both conditions, cued recall was better for semantically related than unrelated
pairs. Hence, this experiment revealed that semantically related words are

associated more efficiently both incidentally and intentionally. This outcome
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indicated that the existence of pre-experimental semantic relations between the to-

be-associated words contributes to the episodic associative process.

Two explanations for why semantically related pairs are learned casier, as was
observed in Experiment 3, are possible and were examined in additional
experiments. According to one explanation, weak associative links exist belween
semantically related words. By this account, these associations are too weak to be
detected in explicit free association questionnaires, but they provide an initial
advantage for the semantically related pairs. Hence, according to this account, it is
expected that the semantic relatedness advantage should be constant during the
learning process. The other possible cxplanation is that semantic relatedness
interacts with the episodic process, facilitating each associative learning episode.
If true, the advantage of episodically associating semantically related pairs should
increase with the number of co-occurrence episodes. Expenments 4 and 3 were
designed to distinguish between the above explanations, by comparing the slopes

of associative learning curves of related and unrelated words.

Both expenmments demonstrated that pre-existing semantic connections between
words boost the incidental formation of associations based on repeated co-
occurrence. In Experiment 4 I found that, up to about 10 repetitions of the words’
co-occurrence episodes, the advantage of related word-pairs increased linearly
with the number of repetitions. This interaction suggests that the structure of the
semantic system affects the very process of associative learning. In addition, this
experiment established the time course of this effect. A similar interaction
between the how much the associations are learned and whether the pairs were
semantically related was found mm Expenment 5 using a forced-choice cued
recognition test. Whereas the outcome of the cued recall test could, in principle,
reflect how retrieval strategies used to find semantically related and unrelated
associates differ, the forced choice paradigm significantly reduced this possibility.
Hence, the outcome of this experiment supported my hypothesis that the semantic
boost occurs at study rather than results from differences in retrieval strategies at
test. These charactenistics of the semantic/episodic interaction in the formation of
new associations between words determined and constrained my computational

model of forming associations.
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Most of the computational models of the semantic system that are relevant to the
current study did not address the actual process of forming associations. Rather,
they are models of the organization of the semantic system and explain the
dynamic aspects of semantic priming, which is the most prominent phenomenon
determined by this organization. Generally speaking, two different classes of
models have been suggested. One class was based on the localist approach
inspired by the theory of semantic networks (Collins & Loftus, 1975). In these
models, the semantic system was modeled by a network of nodes where concepts
are represented by modes in the network and relations among the concepts are
represented by the connections of the network. The other class of models used
distnbuted representations. Models in this class represent concepts not by smgle
units, but by distingnishable pattems of activity over a large number of units.
Each unit participating in the representation accounts for a specific semantic
micro-feature, and semantic similarity is thus expressed as an overlap mn activity

patterns over the set of micro-features.

The model developed in this dissertation, SEMANT (Semantic and Episodic
Memory of Associations using Neural neTworks), is a hybrid model in the sense
that it takes both a localist and a distributed approach. It assumes a network in
which semantically similar concepts are represented by nodes that are close to
each other on a fwo-dimensional semantic map based on high-dimensional
representations; episodic associations are represented on this map as direct
(lateral) commections between associated nodes. Activation among nodes in this
architecture spreads along both semantic and associative connections. Inspired by
the notion of Hebbian learning, the strength of an association between two
conjointly activated nodes 1s enhanced when the "wave" of activation spreading
from one node overlaps with the activation spreading from the second. Since
spreading activation decays with distance from its source, the closer two concepts
are on the semantic map, the greater the overlap between their activations is.
Consequently, when two semantically related words are conjointly activated, the
addition to the strength of the associative connection between them is relatively

large. Semantically unrelated words are, by definition, further apart on the
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semantic map and their activations less overlap. Therefore, a smaller strength is

added to the association with each repetition.

In Simulation 1, SEMANT successfully replicated the empirical results, those of
Experiment 4 in particular. Following the validation of SEMANT, three testable
predictions concerning human behavior were derived by analyzing its underlying
mechanisms and by manipulating computational parameters such that they would
mimic pathological behavior. The first prediction, "implicit asymmetry" was that
it should be easier to form an association from a word with few semantic
neighbors to a word with many semantic neighbors than vice versa. The second
prediction, "semantic mediation”, was based on the principles of the model. This
hypothesis predicts that it should be easicr to associate words from the semantic
neighborhoods of words that are already associated. Note that, for this prediction,
it is Irrelevant whether the associated words are semantically related or not. The
third prediction concerned hypothetical models of schizophrenics thought
disorder. In particular, diffuse semantic activation such as that implicated in
schizophrenic thought disorder should decrease the advantage of associating

semantically related pairs over unrelated pairs.

Within the framework of this dissertation, the first two predictions were tested
empirically. Experiment 6 was aimed at revealing the impheit asymmetry
predicted by the model. The pairs in the study list were constructed such that in
gach pair, one of the words had a significantly greater number of associated words
than the other word based on free-associations norms. The leamning of word-pairs
presented with the word with fewer neighbors first was compared to that of word-
pairs presented with the word with more neighbors first. As in the previous
behavioral expermments, incidental learning and unexpected cued-recall task were
employed. The results indicated, again, that semantically related word-pairs were
associated significantly better than semantically unrelated pairs. However, I did
not find the advantagc of pairs in the forward direction over pairs in the backward
direction that was predicated by SEMANT. The discrepancy between the results
of Experiment 6 and the computational prediction conld stem from the fact that
the density of the semantic neighborhood was defined differently in the
experimnent and in the model. In the study list of the behavioral experiment, the
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density of the semantic neighborhood of a word was defined based on the number
of associated words in free association norms (l.€., using episodic measures), In
conirast, the semantic neighborhood of a certain word in the model was defined
based on the number of words with numerical representation within a fixed high-
dimensional distance from the representation of that word (i.e., using purely
semantic factors). Consequently, further experimental work is required before the

model prediction and its dynamic principles should be modified.

Two experiments (7 and 8) demonstrated, as the model predicted, that strong
episodic associations between two semantically unrelated words facilitate the
incidental formation of new associative connections between semantic neighbors
of the strongly associated words. Experiment 7 demonstrated this effect by
showing better cued recall of weak associations when the target pairs represented
semantic categories that were already connected via a strong association between
other exemplars of thesc categories. Expertiment 8§ showed that the establishment
of strong episodic assoclations between exemplars of different semantic
categories facilitates the processing of other word-pairs from the same categories,
leading to faster decisions on whether the word-pairs are related or not, even if the

target pairs had not been presented at study.

Overall, the results of this study enrich our knowledge on the process of forming
associations between words. Although this process is episodic by nature, it
interacts with the semantic system. These theoretical and empirical findings
suggest that although the semantic and associative networks are based on different
principles, they are highly intertwined in human memory and interact during
leaming. On the basis of the strong support that it received from human
expenmeniation, SEMANT can provide a theoretical framework for many
additional studies aimed at understanding associate learning in particular and

human memory and cognition in general.




Background

1 Background

This chapter describes the theoretical background for the research described in
this dissertation. First, the motivation for the research is explained. Second, the
basic terminology which is used throughout the dissertation is defined. Thard, the
classical view on association, from Aristotle to the British emprricist school of
philosophers is reviewed. Forth, experimental results based on Behaviorist
paradigms and free associalions are given. Fifth, the cogmtive theones of
functional organization of memory are described in details and last, major

experimental results based on priming paradigm are outlined.

1.1 Moiivation

The fundamental question that this dissertation tries to shed light on is what the
organization of the human semantic system is. Numerous studies have addressed
this question from many different aspects. My research was focused on one of the
most basic abilities that humans have and what seems to be a general principle for
storing information in the brain: forming associations. As discussed m the
following section, associations are formed on the basis of several grounds. One of
these grounds, known from the earliest stages of exploration of human mind, is
that stimuli that are perceived in spatial and/or temporal proximity tend to be
associated. For example, in free association questionnaires, in which participants
are requested to reply with the first association to a given word, many participants
would reply the word SUBMARINE to the word YELLOW. This association would
have never been formed unless the famous Beatles' song had been written. This
dissertation is aimed at unveiling what are the mechanisms that allow humans to

do that.

Several cognitive theories which describe the organization of the human semantic
system have been suggested, as elaborated in this chapter. Most of them rely on
the existence of associations between concepts. Nevertheless, no model has been
focused at the actual associating process. In this study, cognitive experiments
were run to gain msight on the characteristics of how associations are formed.
Constrained by the findings of these experiments, a computational model,

SEMANT, was built. SEMANT was validated in computer simulations compared
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to the empirical findings and then was nsed to make predictions on human

behavior. Finally, these predictions were tested with novel cognitive experiments.

1.2 Basic Terminology

The term "association” does not have a single, precise, definition that could be
stated without qualifications (Voss, 1972). In the late '60, the question of what
constitutes an association has received considerable attention. Tulving (1968)
pointed out that the term association, used descriptively, means merely that one
event follows another with some regularity. Although more elaborated definitions
have been suggested (e.z., Postman, 1968), the term association, following
Tulving's approach, has been defined phenomenologically throughout this
research. Thus, two words are associated if the presentation of one brings the
second to the perceivers awareness. Commonly held theories ascribe the
formation of associations to the co-occurrence of words throughout one’s lifespan
(e.g., Spence and Owens, 1990). That is, words that co-occur frequently in
language will become associated and consequently will activate each other m the
lexicon. Such associations, which are based on subjective experience, are labeled
episodic associations (¢.g., Neely, 1991).

Another type of link among words is semantic relationship, which exists when
their meanings share common semantic features (for example, if they belong to
the same semantic category), or have other types of semantic relation such as
"part-whole" (e.g., WHEEL-CAR), a functional relationship (e.g., BROOM-FLOOR),
etc. Although associated words do not have to be semantically related, they might '
be so to various degrees. Conversely, semantically related words may or may not
be associated (e.g., CHAIR-TABLE Vs. CHAIR-SHELF). Assoclations between
semantically related words are called semantic associations. Note, however, that
the principle of association between two semantically related words is similar to
that described above for unrelated words. That is, frequent co-occurrence 1§ an
important factor underlying the formation of association between semantically
related words. In the following sections, I will present a synopsis of the relevant
research and scientific theories concerning the formation and the manifestation of

associations.
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1.3 Associations: The Classical View

Associations have been studied since the early days of the endeavor to understand
the human mind. The first to question the nature of associations were probably the
Greek philosophers. Anstotle, for example, identified three laws for association,
in effect, three laws of learning - similarity, contrast and contiguity, where

contiguity included both spatial and temporal adjacency (in Crowder, 1976).

The next major step in the journey to understand the principles of forming
associations was made only about 2,000 years later, by philosophers in the British
empiricist school, who have also examined the laws of associations. A radical
point of view of empiricism was presented by David Hume, who cssentially
reduced knowledge to the correlation of sensation. Hume expressed the view that
man is only capable of knowing that occurrence of sensation A is correlated with
the subsequent occurrence of sensation B (in Voss, 1972). Hume also proposed
three main principles of association: Contiguity (l.e., proximity in time and
space), Similarity (or Contrast), and Canse and Effect (e.g., Hume, 1738). Using
more modern terminology, we would refer to the first principle as an episodic
factor and to the two others as semantic factors. Fulfilling any of these conditions
should be sufficient to form an association between concepts. The strength of
episodic association is determined by the frequency at which the contiguity
condition is fulfilled. An additional important claim of this theory is that
intentionahty is not a necessary condition for the associative process to occur.
Rather, simple exposure to two cvents fulfilling the episodic condition should be
sufficient for an association to be established between them. Another empiricist,
James Mill, suggested that there are three criteria for the strength of association:
permanence, which we would now term resistance to forgetting; certainty, which
we would now call confidence and measure with rating scales; and spontaneity,

which might correspond to our own measure of reaction time (in Crowder, 1976).

The first attempt to study memory mechanisms empirically was made by
Ebbinghaus (1885) who studied the formation of associations between list items
in serial learning. The basic principle of serial leaming according to Ebbinghaus
was that cverything in the list becomes associated with everything else, subject to

two qualifications: First, the strength of an association between two list items
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varies inversely with their degree of remoteness, that 1s, with how far apart they
are in the series. Second, forward associations, for a particular remoteness degree,
are stronger than backward associations (in Crowder, 1976). Robinson (1932,
Baddeley, 1997) stated the law of contiguity as follows: "the fact that two
psychological processes occur together in time or in immediate succession
increases the probability that an associative connection between them will develop
— that one process will become the associative instigator of the other”. However,
Robinson also noted that "It should be kept in mind that mere concidence in time
or more immediacy of temporal succession will not msure the establishment of a
demonstrable association between two psychological processes. Thus, even 1f 1t
could be shown that there cannot be association without contiguity, the presence
of the factor of contiguity is not enough to insure association". The current
research is aimed at investigating the additional factors that influence the
formation of associations in general and the role of semantic information on this

episodic process in particular.

QOver the past 300 years, empirical and theoretical evidences for the primary role
of associations in human thinking and memory have been gathered. My study
incorporates to vast research that reveals that the classic prunciples of associations
as have been suggested by the empiricism, although generally true, cannot
account for the richness of the phenomena. We now know that other factors such
as the saliency of the stimuli, and whether atiention is directed at them, for
example, affect the formation of associations. Moreover, the classical factors, as
well as other factors, interact in a non-trivial manner. Hence, for a deeper
understanding of the phenomena, a more systematic way of investigation had to

be applied.

1.4 Results of Paired Associate Experiments (Behaviorist Paradigm)

The first to usec systematic experimental approach were the behaviorist
psychologists in the middle of the 20th century. Current knowledge about factors
influencing associative learning relies largely on studies designed within the
behaviorist conceptual framework. Such studies emphasize primarily the

phenomenological aspects of hurmnan behavior rather than exploring their cognitive
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mechanisms (e.g., Kimble, Mann, & Dufort, 1955). The studies focused, for
example, on the number of repetitions required to establish an association, on
influences of the list length, on the delay between repetitions, etc. (e.g., Rimm &
Biggs, 1967). Characteristic of many of these early studies is the extensive use of
meaningless stimuli such as letter trigrams and syllables (e.g., Berry & Cole,
1973) and the fact that the items were presented context free. The paradigmatic
name for this phenomenon is paired associate learning (Kausler, 1966). Based on
such studies, several investigators suggested that meaning and context are not
necessary to form associations between perceptual events. Voss (1972) notes:
"...it is quite likely that the two dissimilar items do not have similar encoding
attributes. Under such conditions, it would seem that associative acquisifion
would take place via explicit contiguity, that is, by repeated pairings...". In
contrast, other studies showed that the degree of meaningfulness of the to-be-
associated items posttively correlated with pair-associate leamning performance
(Mandler & Huttenlocher, 1956; Noble, 1952). Note, however, that in these early
studies meaningfulness was defined in terms of frequency and fluency of
associations, that 1s, nsing episodic measures. Moreover, the items used In many

of these studies were, indeed, nonsense syllables.

However, cvidence that semantic relationship between words facilitate their
association comes also from more recent studies. For example, semantically
related words were more likely to be associated during an incidental learmung
procedure, even if the orientation task did not involve semantic processing
(Epstein, Phillips, & Johnson, 1975). Furthermore, these authors also found that,
if attention is oriented to semantic attributes, mcidental paired associate learning
is even more effective than intentional learning. A probable cause for this
advantage is that during intentional learning the semantic features are mainly
activated implicitly.

Although suggestive, these data do not indicate directly on the role of semantic
(rather than episodic) links on the incidental formation of new associations
because, in Epstein et al.'s study, the strength of possible associative links
between related words was not controlled. The absence of such control raises the

caveat that the observed advantage for associating semantically related over
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unrelated words was induced by the existence of pre-experimental associative
links rather than by pure semantic relationship. Hence, the question of whether
pure semantic relationship mteracts with the co-occurrence of previously
unassociated items and, if such an interaction exists, how it affects the associative
process, requires additional research. The next section describes an alternative

common procedure for investigating the structure of associations.

1.5 Results of Free Association Experiments

In a free association task, the participant is given a trigger (for example a word)
and requested to produce as fast as possible the first word that "pops-out” in his
mind (or, altemnatively, a list of such words within a given time) in response to the
trigger. It is usually implied that the first, instinctive, response unveils the
strongest associate of the trigger. The results of such experiments are statistically
analyzed and the outcome of this analysis is called association norms. Varous
attempts have been made to investigate the mechanisms underlying the associative
structures that are expressed in free association norms. Even a cursory
examination of word-association norms revealed that similanty in meaning plays
an important role in determining the associative structure. Indeed, McDonald and
Lowe (1998) have found that word-pairs that are both associated and semantically
related are more similar (on a corpus-derived measure of semantic similarity) than
semantically related pairs that are not associated, though others have not found
such relation (Lund, Burgess, & Audet, 1996). Recent explorations of the putative
relation between semantic relationship and associative strength have utilized
currently available computing power and large language corpora. Co-occurrence
rates of words can be calculated from these corpora, and various measures of
similarity ¢an be developed. The working hypothesis was that words that are
similar in meaning appear in similar contexts (Miller & Charles, 1991), Thus,
representations of words based on their co-occurrence with other words can

capture the semantic similarity between words.

Using computational measures, several recent studies showed that association
strength is positively correlated with the frequency of co-occurrence (Plaut, 1995;

Spence & Owens, 1990). Further, words that were both semantically related and
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normatively associated were found to co-occur more frequently than words that
were only semantically related (McDonald & Lowe, 1998). Others, however, have
found co-occurrence to predict association strength only for pairs that were
semantically similar (Lund et al., 1996). Thus, 1t seems that the relations between
the cognitive factors (namely semantic similarity and association strength) and the
linguistic factor (namely textual co-occurrence) call for further investigation. The
cause-and-effect directionality between the two types of factors i1s yet to be

clarified and so is the proportion between the two cognitive factors.

1.6  Cognitive Theories of Functional Organization of Memory

1.6.1 Semantic vs. Episodic Memary

The major goal of my study was to explore how semantic relationship interacts
with episodic factors affecting the formation of new associations between words,
At the basis of this discussion there 1s a model of memory organization that
assurnes the existence of two phenomenologically distinct types of mformational
storage: cpisodic and semantic. The semantic / episodic memory dissociation was
originally proposed by Tulving (1972). According to Tulving's definitions,
episodic memory 1s the storage of specific events which occurred in a particular
place at a particular Ume durmg a person’s history (hence including
autobiographic elements); in contrast, semantic memory is the storage of our
conceptual knowledge, stripped of information congerning the time and location

of the episode during which this knowledge has been acquired.

In his original essay on the semantic vs. episodic memory dichotomy, Tulving
mentioned the difference between the following two possible response-types to
memory related tasks: A) "I know (that) the word that was paired with DAX n {lus
list was FRIGID" and B) "I think that the associations between TABLE and CHAIR is
stronger than that between the words TABLE and NOSE". Tulving suggested that the
first answer results from episodic retrieval and the second is based on information
retrieved from the semantic memory. Later, he argued that these different
procedures for testing memory actually mvoke the operation of functionally
distinet memory systems (Tulving, 1983; 1984; in Neely, 1989). However, in

addition to distinguishing episodic from semantic memory systems, Tulving also

Am
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indicated that "In experiments where the to-be-remembered units are meaningful
words that refer to concepts stored in semantic memory, the information m
semantic memory may be used at the time of the input of the information into the
episodic memory store". It appears, indeed, that the formation of episodic
associations is dependent on both episodic and semantic memory. Hence, in
addition to shedding additional light on how associations are formed, the
investigation of the putative influence of semantic relationships among words on
the formation of episodic associations should help understanding how episodic
and semantic memories interact. Furthermore, since the principles governing the
formation of associations are consequential in the formation of episodic traces in
memory in general (e.g., Mandler, 1980; Jacobi, Baker & Brooks, 1989), studying
how episodic associations are formed can unveil more general memory related

Processes.

1.6.2 Semantic Networks

Networks were used to model the organization of semantic memory since the days
of Aristotle. The Greek philosopher was concerned that words should be properly
and logically defined so as to avoid reasoning errors. The system that was

introduced by Aristotle is shown in Figure 1.

Living being

Animal Immortal

p Capable of learning grammar

Twao-footed
Slecps

Sitting posture

Figure 1: A semantic structure as presented by Aristotle (from Baddeley, 1999). Concepts
and propertics are linked on the basis of semantic. The notion of networks to illustrate the
organization of the semantic system is 2000 years old.
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The spotlight on the network approach to modeling semantic memory was
rekindled thousands of years later from a different discipline. In 1966, Ross
Quillian, a computer scientist, developed as part as his doctoral thesis a computer
program to understand text, which he called TLC. As part of the program, he
developed a model for semantic memory based on a network of concepts. In
collaboration with the psychologist Alan Collins, he suggested his network as a
model of the way in which people might actually comprehend text (in Baddeley,
1997) and tested the model's predictions examining human performance (e.g.,

Collins & Quullian, 1969).

Quillian's model is based on a hierarchically arranged network of links between
concepts (Figure 2). The concepts are represented as nodes in the network, with
each node being associated with a number of properties. A notable principle of
Quillian's model was the assumption of cognitive economy. This prnciple
suggested thal the properties that apply 1o a set of concepts are stored at the
highest level to which they are generally applicable (in Baddeley, 1997). This
model has been criticized on both theoretical and empinical grounds. For example,

Rips et al. (1973) and Smith et al. (1974) claimed that network models cannot

has skin

¢nn move avound
culs

breathes

Animal

Lias Ans
Can Swim.
hay gills

-has wings
can fly Fizh
has feathers

can ging has thin, carn is pink
long legs brie is edible
Cunary Qstrich s tall Shark Salmaon i ed
| s T .
is yellow 'L Ml L swITn
can L Ly dangerous upriver
Lo lay
LS

Figure 2: Hierarchical organization of concepts with inherited features as introduced by
Quillian (from Baddeley, 1999). Concepts are linked in a network and properties are
inherent, based on the hicrarchy.
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account for data that feature models can. In addition, Conrad (1972) rejected the

cognitive economy assumptior.

In response to the criticism of the Quillian model, Collins and Loftus (1975)
introduced a revised network model. This mode] differed from Quillian's in a
number of respects; most notably, it abandoned the assumption of hierarchically
organized semantic nodes, replacing it with a less ngidly structured network.
Secondly, in order to account for the many effects of semantic relatedness, Collins
and Loftus introduced the concept of semantic distance, by which strongly related
concepts are located "close" together and unrelated concepts are "far" from one
another. Indeed, the distance between two nodes is determined empirically
reflecting the ease with which excitation flows from one to the other (i.e., using
the notion of a weighted graph in computer science). A third major change in this
network comprised the introduction of a range of different types of links such as
super-ordinate and subordinate (chess is a game), modifier (a dog has a tail, a

kangaroo can jump), and so on. (in Baddeley, 1997; Figure 3). In addition to

Figure 3: A schematic representation of concept relatedness in a stereotypical fragment of
hurnan memory, where a shorter line represents greater relatedness (from Collins & Lofius,
1975). The semantic system can be represented as a weighted graph.

164
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revising the architecture of the network, Collins and Lofius also introduced the
term spreading activation. The basic assurnption of this term is that at each
moment in time, each node in the network is at some level of activation and that
activation spreads among nodes along the links. If the level of activation reaches a
high enough value in some portion of the network, that portion of the network is
accessible to conscious awareness (Collins & Loftus, 1975; Grébler, Marton, &
Erdi, 1991).

Most theories of semantic (or cognitive) activation that were based on this
approach assume two different activation processes (Posner & Snyder, 1975;
. Shiffrin & Schneider, 1977). Activation of the first type propagates automatically
from the node that is activated by an external input to (semantically) adjacent
nodes. Within each node the activation raises and decays as a wave. This
mechanism is spontaneous, is not related to any search strategy and does not
require processing resources. In other words this process is automatic and thus, by

definition, it acts fast and can oceur without intention or conscious awareness,

The second activation process reflects strategies for retrieving information from
semantic memory. It does require processing resources and intention. Thus, by
definition, it acts slow and requires attention. Due to the limited-capacity of the
attention system and the limited computational resources, this activation, as
opposed to the automatic process, inhibits activation in (semantically) unrelated
nodes. As described above, spreading activation over semantic networks can
account for various semantic relatedness and semantic priming effects. The next

section will review priming results that are specifically relevant for this research.

1.7 Resulis of Priming Experiments (Cognitive Paradigm)

A well-known interaction between semantic relationships and episodic
associations is demonstrated in the semantic priming effect (Meyer &
Schvaneveldt, 1971). The semantic priming effect is evident when the
presentation of a “prime” word that is semantically related to a “target” word,
(presented simultaneously with the prime, or immediately after it), facilitates the
processing of the target word, as is evident in tasks such as lexical decision or

naming. The facilitation is expressed both in enhanced performance accuracy and

- -
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m a reduction of the reaction time (RT) (for comprehensive review, see Neely,
1991). The interaction between the semantic and episodic/associative systems is
examined by comparing the semantic priming effect for prime and targets that are
semantically related but not associated, semantically related and associated, or
associated without a clear semantic relationship. An increasing number of studies
have been aimed at isolating the types of word relations that mediate this
phenomenon (e.g., Carroll & Kirsner, 1982; Durgunoglu & Neely, 1987; Fischler,
1977; McKoon & Ratcliff, 1979, 1986; Moss et al., 1995; Neely & Durgunoglu,
1985; Shelton & Martin, 1992). Fischler (1977) was the first to unconfound
semantic and associative relationships, by looking at priming for both associative
pairs and pairs that were semantically related but not associated. An overview of
the results does not present a consistent pattern (Lucas, 2000). Fischler (1977)
found that semantically related pairs that were not also associated did exhibit
priming. Shelton and Martin (1992), however, argued that automatic priming
comes about for associated words and not for words that have a semantic relation
but no association. Mckoon and Ratcliff (1979, 1986) found primmng for
episodically studied, semantically unrelated pairs, but other attempts to find
evidence for co-occurrence priming have failed (Carroll & Kirsner, 1982;
Durgunoglu & Neely, 1987; Neely & Durgunoglu, 1985). Although the debate
still continues, it is safe to say that both classes of relations may result mn priming

and that their combination may have an additive effect (Lucas, 2000).

1.8 Conclusion

Associating concepts 1s a fundamental property of human cognition and
understanding the mechanisms by which it occurs may shed light on human
thinking and memory in general. Concepts may be semantically related or
associatively linked. The classical laws of associations assume that concepts
would become associated if they are semantically related or if they are perceived
m temporal or spatial proximity. However, modern research shows that other
cognitive factors may be involved in the process of forming associations. Most
theories on the orgamzation of the semantic system use the notion of networks
where related concepts are linked using weighted connections, which represent

the strength of the connection between the concepts. Nevertheless, no model has

1@
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been suggested to describe how concepts are being associated and how the
organization of the semantic system nteracts with this process. This dissertation is

aimed at suggesting such a model.

1.2 Dissertation Qutline

Chapter 2 describes a series of behavioral experiments aimed at gaining insights
on the process of associations, In Chapter 3, the details of SEMANT, the
computational model for word associations which I developed and the predictions
on human behavior which were derived from it are detailed. Chapter 4 describes
additional novel behavioral experiments, aimed at testing the predictions of the
computational model. In Chapter 5, both the computational and experimental
aspects of this dissertation are discussed and further research directions are

suggested. Last, in chapter 6, the conclusions and summary are given.

1Q
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2 Behavioral Experiments

In this chapter, a review on incidental learning is given. Then, a series of
behavioral experiments aimed at examining the characteristics of assoclation
formation process and at setting constraints for a computational model, are

detailed.

2.1 Incidental Learning

Although incidental learning of associations between words has been the
investigated in many studies, the necessary and sufficient conditions for learming
without intention and the parameters that modulate the efficiency of this process
are not fully understood. However, the fact that participants are able, under certain
conditions, to associate words, even if they are not explicitly instructed to learn
the pairing is clear (Underwood & Lund, 1980; Mayes & Mclvor, 1980; Clark,
1995).

For example, in an attempt to reveal the conditions for incidentally forming new
associations, Nairne (1983) investigated whether associations are formed between
items rehearsed together, without explicit associative learming instructions. The
results showed that the word-pairing was substantially remembered during
rehearsal. However, the number of repetitions of rehearsal did not affect the
strength of the associations. Note, however, that in this experiment, each word-
pair was presented to the pm‘tic_ipants only in the first two rehearsals, while the
parlicipant was instructed to read the words aloud, regardless of the overall
number of rehearsals (4, 8, or 16). This result suggests that although substantial
associative learning may occwr during the two perceived rehearsals, little
additional associative processing seems to occur once the presentation of the

stimuli during rehearsal has stopped.

Most of the studies have found intentional leamning to be stronger than incidental
lcarning. Nevertheless, Yarmey and Ure (1971) found that when the instructions
guided the participants to use imagery during the onentation task, the performance
for incidental learning was similar to that of intentional learning. In the same

study, Yarmey and Ure also addressed the question of association symmetry and
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found that directionality, i.e., presentation of the left or the right item as the cue in
the recall test had no effect. This finding was supported by Epsiein et al. (1977)
who found that asymmetry favoring forward associations resulted from intentional

learning instructions, while incidental learning instructions resulted in symmetry.

In other studies of incidental learning, concrete items have been found to associate
more effectively than abstract items (Gumemk, 1976; Yarmey & Ure, 1971).
Weingartner, Walker, Eich, and Murphy (1976) used both incidental and
intentional learning tasks to train to associate pairs of highly imageable stimuli,
presented either as words or pictures. In later testing, when the stimulus
presentation mode (pictures or words) was congruent to the traming, associate
pairs of items were recomstructed more accurately than in disparate recall
conditions. They have found the effect particularly marked for incidentally

learned pairs of items.

Guttentag (1995) investigated such learning with 10-11-year old c¢hildren who
were shown semantically related and unrelated words under deliberate
memorization and incidental learning conditions. In this study, cued recall
performance with related pairs was superior to performance with unrelated pairs

in both conditions.

To conclude, several studies have shown a substantial level of incidental learning
of word-pairs associations and this leaming was found to be sensitive to several
factors. A few studies express the importance of perception in the associative
process (Gumenik, 1976; Nairme, 1983; Yarmey & Ure, 1971). Based on the
evidence for incidental learning, it was used in the series of experiments described
in this chapter as well. However, the design of all of the above-mentioned
experiments, however, was different [rom thc present experiments in several
aspects. First, the exposure time to the stimuli was much longer (in the early
studies, even seconds). Second, although the orientation task was different in each
experiment, the task that has been used in most of the experiments in this study,
namely letter search, was not used. Third, in most of the experiments the words
were presented simullaneously as opposed to one after the other. One of the goals

of the pilot experiment, detailed below, was to explore incidental learning of
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associations between words using a paradigm that served us in the following

research.
2.2  General Paradigm and Rationale

2.2.1 Participants

In all the experiments the participants were undergraduate students who were paid
a nominal fee or received course credit for their participation. They were all native
Hebrew speakers with normal or cotrected to normal vision. Gender and dominant
hand were not conirolled. In each experiment, a new group of students

participated such that no participant took part in more that one experiment.

2.2.2  Association Questionnaires

In most of the experiments, word-pairs were required to be unassociated prior to
the experiment. In such cases, a pilot study minimized the possibility that the pairs
included words associated a priori. In this pilot study, 50 participants were asked
to write the first 3 associates to each of the 20 words that formed the 10 related
pairs. In half of the questionnatres, the first word in each pair was listed first and
in the other questionnaires the second word in each pair was listed first. Each
questionnaire was presented to different 25 participants. The nouns paired in all
the experiments did not elicit one another among the first three associates in any

of the pilot survey participants.

2.2.3  General Procedure

Unless otherwise specified, each experiment consisted of an incidental study
phase and one or two subsequent test phases, one explicit (cued recall) and one
implicit (free association).

In most of the experiments, a letter search task was adopted for the incidental
study phase. In each trial, two nouns were presented sequentially followed by a
letter, about which the participant had to decide whether it was comprised by
either of the two words or not. A "shallow" orientation task was chosen in order to
minimize semantic activity and the activation of "natural" semantic associates. A

right-hand button was used for “yes” responses, and a left-hand button for “no™

S L
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responses. The accuracy of the responses in this phase was monitored. Each trial
in the study phase started with a rectangle frame appearing at the center of the
screen. 700 ms after the onset of the frame, the two words were presented
sequentially at the center of the rectangle frame for 150 ms each, and with an
SOA of 700 ms between them. The target letter was presented 650 ms after the
offset of the second word and remained on the screen for 1500 ms, during which
time a tesponse was expected. Hence, because the participant could not know in
advance which letter would be probed, both words had to be conjointly kept active
in working memory for at least 800 ms (Figure 4). Each pair was randomly
repeated during the study phase. The number of repetitions was assumed to
determine the strength of the episodic association formed between the two words.

Thus, it was a major factor manipulated across and within experiments.

Experimental Trial Time Course
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Figure 4: The time course of each trial in the study phase. Each trial started with a rectangle
frame appearing at the center of the scrcen. 700 ms after the onset of the frame, the two
words were presented sequentially at the center of the rectangle frame for 150 ms each, and
with an SOA of 700 ms between them. The target letter was presented 650 ms after the
offset of the second word and remained on the screen for 1500 ms, during which time a
response was expected. Both words had to be conjointly kept active in working memory for
at least 800 ms,

The test phase immediately and unexpectedly followed the study phase, starting
with a cued recall test. In this test, the first nouns that occurred in half of the pairs
were presented consecutively and the participants were instructed to respond by

providing the second member of each pair. Following cued recall, a free
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association test was administered. The participants were presented with the first
nouns from the other half of the studied pairs and were asked to respond as
quickly as possible with the first word that comes to mind. They were explicatly
instructed to ignore the study phase during the free association test. Within the
context of the present study, responding with a studied paired word in the free
association test was labeled “correct” in our reports. No time constraints were

imposed on either test.

2.2.4 Experimental Set-Up

All the psychological experiments were run in the Cognitive Electrophysiology
Laboratory at the Department of Psychology, the Hebrew University of Jerusalem.
The participants were tested in secloded, dedicated experimental rooms, keeping
exterior noise to minimum. The experiments were controlled by PCs using
dedicated software packages, MEL 2.1 and E-Prime, on Microsoft Wmdows 98
and Windows 2000 workstations. Statistical analysis of the results was performed
with SYSTAT 10, under Windows 2000.

2.3 Pilot Experiment

This experiment was run as part of a parallel series of studies at the Cognitive
Electrophysiology Laboratory at the Department of Psychology with a goal of
exploring the effects of attention on forming associations. It included collection of
ERPs as well as performance data. Here [ will report only those aspects of the
pilot experiment that were directly relevant to this dissertation and limit myself

only to the description and analysis of performance measures.

The participants acquired new associations between unrelated words in an
incidental or an intentional learming condition. The working hypothesis was that
frequent episodic proximity between words should result in their association even
if learning was not intended. To this end, the aim of the pilot experiment was to
asscss the formation of incidental associations and compare this performance with
the result of intentional learning. A cued recall test was used as a measure of

associative learning.
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2.3.1 Methods

Participants

Thirteen different participants were tested in the intentional and incidental study

condition.

Stimuli

The stimuli were 50 pairs of three-letter unrelated nouns' each repeated 10 times.
Repetitions were randomly scattered in the hst. See Appendix A — Stimuli, below

for stimuli list.

Procedure

In the incidental leaming condition, a letter search task was employed, followed
unexpectedly by a cued recall test and a free association test (for details, see
section 2.2.3). In the intentional learning condition, identical study and test
procedures were applied, except that the participants were informed about the

forthcoming memory test and encouraged to learn the associations.

2.3.2 Results

As evident in Table 1, 10 repetitions of unrelated words in proximity were
insufficient for episodic associations to be formed incidentally between them.
Indeed, across participants, only one pair out of the 50 was recalled. This outcome
suggests that, at least under the circumstances of this experiment, participants had
to allocate attention to the study process. These observations were corroborated by
a mixed-model ANOVA with type of study as the "between groups" factor and
type of study as the "within subjects" factor. This analysis showed that associative
memory was better in the intentional than in the incidental condition and better in

the cued recall than in the free association test.

! Notice that because Hebrew is usually written withour vowels, a three-letter printed word in

Hebrew is equivalent to a 4-5-letter word in English.
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Table 1

Percentages of comect esponse in cued recall and free associates wests, by stady condition,
Negligible incidental learning was achieved.

Incidental Intentional

Cued recall 2.2% 27.4%

Free association 0.3% 57%

2.3.3 Discussion

The absence of incidental learning was unexpected. Several reasons can account
for this result. One obvious reason is that, whereas associations are usually formed
individually in real life, in the pilol experiment the participants were required to
form 50 different associations during a relative short period of time. Tt is
conceivable that the excessive memory load prevented the incidental formation of
reliable associations, hence reducing the cued recall performance. A related
reason could have been that the relatively small number of repetitions may also
have contributed to the poor incidental learning. As reviewed in the general
introduction, episodic associations result from frequent repetition of comjoint
processing episodes. Admittedly, we have no real account of the mumber of
repeated episodes needed to form an association in real life. Indeed, it is possible
that real-life associations might result from only a few conjoint encounters of two
events, provided that other factors such as semantic and episodic context, which
will be discussed below, are active. However, in the artificial experimental
circumstances, it would not be surprising to find that a considerable number of

repetitions need to occur before a psychologically real association is established.

Another reason that could have accounted for the poor cued recall performance
was that outside the psychological laboratory, the episode during which an
association is formed is rich in information. That is, words that become associated
are usually not encountered as an isolated pair out-of-context but within
sentences, discourse, text — in other words, within a meaningful context.
Furthermore, unless prevented by the task, the meaning of encountered words is
processed by default (Smith, Bentin, & Spalek, 2001). In contrast, the letter search

paradigm which was used as orientation task during the incidental study phase
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directed the participants’ attention to the letter-level instead of the word level. In
fact, this task could have been successfully performed without even processing the

stimulus words meaning.

To conclude, several factors differentiate real life scenario from the lab setting of
the pilot experiment and these factors could have Iead to the negligible incidental
learning of new associations. In the following experiments, I have investigated the
contribution of each of these factors and determined the constraints of the

computational model.

2.4 Experiment 1: The Effect of Memory Load

The poor recall performance in the incidental study condition of the pilot
experiment was unexpected because mere observation would reveal that in real
life, most associations are, indeed, formed incidentally. In an attempt to analyze
how the experimental circumstances differed from real life, I 1solated several
factors. In this experiment, I examined the role of memory Joad and the number of
repetitions by reducing the number of pairs presented at study and increasing the

number of repetitions of each pair.

2.4.1 Methods

Participants

Thirty-two undcrgraduates participated in this experiment. They were all native

Hebrew speakcers and did not participate in the pilot experiment.

Stimuli

The stimuli were 10 out of the 50 pairs that werc used in the pilot experiment.
Note that the number of pairs used in this experiment is not outstandingly small
compared to paired associales experiments (cf. Murdock, 1970; See Appendix A —

Stimuli).

Procedure

Since the study focused on the processes that take place during incidental learning

and, mdeed, the problems raised by the pilot experiment centered around the

T
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incidental learning condition, in this and the forthcoming experiments only the
incidental condition is explored. A second change from the procedure of the pilot
experiment was that the number of repetitions of each pair was increased to 20
(i.e., doubled). Repetitions were scattered randomly in the list. Performance in this
condition was compared to the performance in the incidental condition in the pilot
experiment in order to assess the affect of significantly reducing the number of

pairs and doubling the number of repetitions in the study phase.

2.4.2 Resulis and Discussion

The percentage of cued recall of incidentally formed associations in Experiment 1
was considerably higher than in the Pilol Experiment (Figure 5). Implicit evidence
for experimentally induced new associations emerged also in the free association
test. Although the free associations performance was lower than the explicit cued
recall (1.3% vs. 17.5%, respectively), any influence on free associations 1s
remarkable, because not only such influence must overcome Iife-long
associations, but (as described in section 2.2) none of the paired words elicited the

other within the first three free associations.

20% 1 17.5%
15% -

10% -
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Figure 5: Cued recall (Explicit) and free association (Implicit) performance after incidental
learning of 10 pairs compared to 50 pairs. Reducing the number of pairs and increasing the
nutnber of repetitions improved both explicit and implicit performance.

The results of Experiment 1 demonstrated that reducing the number of pairs and
doubling the number of repetitions led to incidental learning of associations.
Whereas the absolute percentage of accuracy was still small, it was significant and
considerably higher than in the pilot expermment. This pattemn indicates that

memory overload might have been a (non-interesting) cause of the imtial failure
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to learn new associations. This factor, however, could not be the only one
determining the low cued recall performance in the pilot experiment. The main
reason is that despite the improvement, the performance in Expenment 1 was still
lower than expected. Furthermore, because in most cases participants used words
from the set, but not the correct pairing, the probability for a random correct
pairing was higher in the 10 than in the 50-pairs conditions. Hence, some of the
observed improvement could be accounted for by chance. Therefore, in the next
experiment, I examined the relevance of the second factor mentioned m the
discussion of the pilot experiment, namely, the depth of processing the words

requesied by the orientation task.

2.5 Experiment 2: The Effect of the Level Of Processing
The effect of Level Of Processing (LOP; Craik & Lockbart, 1972) is well

documented. Since the first demonstration, many studies have showed that both
recognition and recall are better if the orientation task is deep (i.e., directs the
participant’s attention to the meaning of the word) than if it is shallow (1.€., directs
the participant's attention to the physical aspects of the word).? Within this
context, the letter search task could have, in fact, prevented the processing of the
meaning because directing the attention to the letter-level might have mmpaired the
processing of the word as a whole. This factor that clearly affects memory for
single items, might, as well, affect memory for pairing. In Experiment 2, I
examined the contribution of the shallow level of processing to the low
performance in the pilot experiment by comparing cued recall followmg

incidental study using a shallow and a deep level orientation task.

% Other authors have emphasized how important is the transfer of appropriate processing from
study to test (e.g., Morris, Bransford, & Franks, 1977), but this caveat does not reduce the

robustness of the level of processing effect on recall and recognition.
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251 Methods

Participants

Sixteen undergraduates, none of whom was tested in the previous experiments,

participated in this experiment.

Stimuli

A new list of pairs was prepared. The stimuli consisted of 10 pairs of three-letter
unrelated nouns. Qceasionally, relatively big object such as CAMEL was paired
with an even bigger object such as RIVER to prevent the participants from
performing a size judgment based only on the first word. (Appendix A — Stimuli,

for stimuli list).

Procedure

The design of this experiment was identical to Experiment 1, except that the
orientation task directed attention to a deeper level of processing. This task was to
make a decision of whether the object denoted by the first word was bigger (m
size) or smaller than that denoted by the second word. As in the previous
expenments, the question determining the response-type (Bigger? Smaller?) was
presented only 800 ms after the offset of the second word. The major difference
between this task and the one used in the previous experiments was that in
Experiment 2, the participants’ attention was directed to the word level rather than

to the letter-level.

252 Results and Discussion

The results showed a dramatic effect. Both the cued recall accuracy and the use of
incidental studied words as free associations after deep incidental study was high,
almost 4 times higher than in Experiment 1, which was based on letter search
(Figure 6). The reliability of the LOP effect was established by t-tests comparing
performance between the participants tested in Experiment 1 and those tested in
Experiment 2. These analyses showed that in both the explicil cued recall and the

implicit free association tests, the level of processing effect was significant.
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Figure 6: Cued recall (Explicit) and free association (Implicit) perfermance after incidental
learning during a letter search task (Shallow) compared to incidental learning during a size
comparison task (Deep). Deep processing improved both cxplicit and implicit performance.

Performing the deep task, all participants reached a very high level of association
recall. Finding a LOP effect in the cued recall test extends, indeed, the well
known effect of level of processing on item memory that was cited in the
introduction. The present data suggest that the level of processing dunng
incidental study of pairs affects memory for association as well as item memory.
Note that, although cued recall might have been, in prneiple, affected by item
memmory, recently published data from our laboratory demonstrate that
manipulations of the incidental study circumstances affect cued recall

independently of item memory (Prior & Bentin, 2003).

The LOP effect on free associations is also not self-evident. Note that in some
studies, no such effect was found in other implicit tasks such as stem completion
(Graf & Schacter, 1985; 1987). This result 15, however, in agreement with at least
one other study in which LOP effects were found in an implicit test (Bentin,
Moscovitch, & Nirhod, 1999).

Another important difference between the orientation tasks used in Experiment 1
and Experiment 2 was that in the deep level orientation task the participants were
asked to perform a comparison between the two words while in the letter search
tagk no such comparison was needed. This relational processing of the two words
may have caused greater imteraction between the two active representations in
working memory during the period in which the participants waited for the
question and therefore may have been a factor that contributed to the enhanced

associative performance, which is not related to the LOP itself.
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To conclude, Experiment 2 suggests that although intentional learing might not
be necessary for forming episodic associations, semantic factors may facilitate

this process. This hypothesis was directly tested in the next Experiment.

2.6 Experiment 3: The Effect of Semantic Relatedness

In the previous experiment, I found that orienting the participants to a semantic
level of processing during the incidental study phase significantly enhanced the
cued recall performance. This ouicome suggests that conjoint activation of two
nodes in the semantic network may facilitate forming associations. Another
approach to investigate possible iteractions between the semantic and the
episodic systems is taken in Experiment 3. In this experiment, I compared how
associations are formed between words that are semantically related but not
associated (e.g., CHAIR-SHELF or COW-CAMEL) and words that are not semantically
related (e.g., CHATR-CAMEL and COW-SHELF). Based on the assumption that the
formation of episodic associations is based on conjoint activation of the two
events in memory and on the indication that the semantic factors contribute to the
efficiency of this proccss, it is conceivable that conjoint activation of semantically
related nodes would be more consequential for the associative process than the

conjoint activation of unrelated nodes.

2.6.1 Methods

Participants

Twenty-nine undergraduates, none of whom was tested in the previous

experiments, participated in this experiment.

Stimuli and Design

The experimental list was based on 144 pairs of nouns formed such that the words
in each pair belonged to the samc semantic category and were not the most typical
exemplars of that category. The words in each pair were not associated to each
other, as established empirically using questionnaires (section 2.2.2). These pairs

were used to form four stimmlus-types conditions:

-
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A. Related — Repeated: Thirty-six semantically related (but not associated)
pairs were included in this condition. Words in each pair belonged to the same

semantic category, and each pair was repeated 5 times at study.

B. Unrelated — Repeated: Thirty-six semantically unrelated and not associated

words (formed by re-matching related pairs) were included mn this condition.

C. Unrelated — Non-Repeated: This condition consisted of 36 target words,
gach paired with 5 different prime words. All the resulting 180 pairs in this
condition included semantically unrelated and not associated words.

D. Related — Non-Repeated: A different group of 36 semantically related (but
not associated) pairs were included. In this condition, pairs did not repeat,
The list is presented m Appendix A — Stimuli.

Procedure
The experimental procedure was modified to include three phases:

1. Incidental learning: Two words forming a pair were presented one after the
other in a trial. At 800 ms after the onset of the second word, one of two deep
level questions randomly appeared: “Bigger?” or “Prefer?” If the question was
“Bigger?” the participant’s task was to press one bulton if the object denoted by
the first word 18 bigger (in size) than the object denoted by the second word, and
another button if the object denoted by the second word is bigger. If the question
was “Prefer?” the participant’s task was to press one button if he/she prefers the
object denoted by the first word (based on subjective judgment) compared with
the object denoted by the second word, and another button if he/she prefers the
object denoted by the second word. As in the previous experiments, episodic
proximity was achieved by having the participants store the two words together in
working memory for 800 ms. Total number of trials in this phase was
(5 repetitions x 36 different pairs) x 3 conditions + 36 different pairs in
condition I} = 576.

2. Intentional learning: Bach different word-pair of conditions A, B and D, and
one word-pair for each target word from condition C was presented once, and the
participant was explicitly asked to learn the pairing, expecting a cued recall test.

The total number of trials in the phase was 36 different pairs x 4 conditions = 144.
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3. Test phase — As in the previous experiments, associative memory was tested
by cued recall. The prime word in each of the 144 pairs that were memorized in
phase 2 was presented and the participant was asked to provide the target word.

Total number of trials was 36 different pairs x 4 conditions = 144.

Note that although in this experiment an intentional leaming phase was included,
pairs from each condition in this phase appeared only once, regardless of the
condition which they belonged to in the incidental leamning phase. Hence, by
comparing the participants’ performance in the explicit test between pairs from
the 4 different conditions, it was possible to assess (implicitly) the contributing of
the incidental learning that oecurred in phase 1. In particular, the comparison of
the performance between pairs from conditions A and B, which differed only in
the semantic relatedness of the pairs, enabled to evaluate the contribution of the
semantic relationship factor to the incidental learning. The same is true for pairs
from conditions C and D. Furthermorc, conditions A and B differed {rom
conditions C and D by the fact that in the former, each pair was repeated five
times during the in¢idental learning phasc while in the latter each pair appeared
only once. Hence, if a significant interaction between the relatedness factor and
the repetition factor is to be found, it would suggest that the contribution of the

semantic knowledge is on-going even in latter repetitions.

2.6.2 Results and Discussion

Both main effects, that is, that of prior semantic relationship (relatedness) and that
of mumber of repetitions in the incidental learmng phase (repetition) were
statisticaily significant (F(1,28)=297.3, P<0.001, and F(1,28)=199.9, P=<0.001,
respectively; Figure 7). The interaction between the relatedness and repetition
conditions was also significant (F(1,28)=4.5, P<0.05), suggesting that the
contribution of the semantic knowledge is on-going even beyond the first

presentation.
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Figure 7: Cued recall performance after I and 5 incidental learmning repetitions [or pairs
with and without prior semantic relationship. Performance is higher for semantically related
pairs and the mumber of repetitions interacts with the relatedness condition, suggesting a
contribution of semantic knowledge to forming associations, which lasts even beyond the
first presentation.

2.7 Experiment 4: A Semantic Boost for Episodic Association’

The major goal of the present experiment was to explore possible mechanisms for
the influence of semantic relatedness on the formation of associative links
between words. A possible account for the semantic relatedness effect is that this
advantage is caused by pre-existent, weak, associative links between semantically
related words. Another possible mechanism is that the formation of the new
episodic.links is facilitated by semantic information recurrently, at each episode.
According to the latter account, common semantic attributes interact with, and

facilitate the associative process at each episode of co-occurrence.

The above two accounts imply different predictions regarding the dynamics of
associative learning. As mentioned above, it 18 possible that scmantic information
15 Irrelevant (o the process of learning a new association, and that the relative
advantage of related pairs reflects primarily an initially higher level of association
between semantically related words. If so, the learning curve for the semantically
related pairs (as reflected by cued-recall performance) should start at a higher

level of memory, but progress in parallel with the learning curve of the unrelated

* Experiments 4 and 5 were submitted to the Quarterly Journal of Experimental Psychology titled

"A Sermantic Boost for Episodic Association between Words: A Search for the Mechanism”.
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pairs, Alternatively, if semantic knowledge interacts with the on-line learning
process, each presentation should yield more strength to the associations formed
between semantically related pairs compared to those formed between unrelated
pairs. Consequently, the slope of the learning curve should be steeper for
semantically related than for unrelated words reflecting this curnulative influence
(Figure 8). In order to examine which of these two predictions is valid, I
compared cued recall of semantically related and unrelated pairs, following 1, 5,

10, or 20 presentations of each pair during incidental study.

Performanca
FPerformance

Number of Number of
Prasantations Presentations
= Related A B
"""" Unrelatad

Figure 8. Performance in the cued recall test predicted by two possible accounts for the
semantic relaiedness advantage: A) Prediction based on the hypothesis that the semantic
relatedness advantage iz solely based on pre-existent associations between semantically
rclated words. B) Prediction based on the hypothesis that semantic relatedness facilitates
agsociative learning ar each episode of co-occurrence.

2.7.1 Methods

Participanis

The participants were 96 undergraduates who were paid a nominal fee or received
course credit for their participation. They were all native Hebrew speakers with
normal or corrected to normal vision. None had participated m the previous

experiments.
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Stimmuli

Twenty-four pairs of Hebrew nouns were selected such that the two words
belonged to the same semantic category but were not associated (Appendix A -
Stimuli). Two lists of 24 pairs each were assembled. Each list was comprised of
12 semantically related word-pairs and 12 unrelated pairs. The unrelated pairs
were created by shuffling the words of the 12 pairs that were not presented in the
related condition. The semantically related pairs in one list were unrelated in the

second list and vice versa,

Design and Procedure

In order to avoid overloading the participants' memory, the effect of the number of
presentations had to be tested between-subjects, with a different group of 24
participants examined at each level (1, 5, 10 and 20 prescntations). In each group,
12 participants were assigned to each of the two lists. Consequently, the main
effect of semantic relatedness was tested within-subject with different pairs, but
across participants the same¢ words were used in the related and unrelated
conditions. The experiment consisted of an incidental study and a test phase. A
letter search task was again adopted for the incidental study phase. Immediately
after the study phase, associative learning was tested by a cued recall test, which

was admimstered unexpectedly.

2,72 Results and Discussion

Cued recall was better for semantically rclated than for unrelated pairs.
Furthermore, the size of the relatedness effect increased with the number of
presentations (Table 2 and Figure 9).

Table 2
Mean percentage of the improvement in cued recall induced per repetition during incidental
study of semantically related and unrelated pairs of words. The curve of the semantically
related pairs is nearly linear until 10 repetitions and the curve of the semantically unrelated
pairs is nearly linear from the second repetition.

Number of presentations (from — to) 1 2-5 610 11-20

Related 6.3% 4.3% 42% 14%

Unrelated 00% 11% 08% 0.7%

e 2 4
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Figure 9: Percentape of comrect cued rccall for semantically related and unrelated pairs of
words following various mumbers of incidental co-occurrences at stady. Semantically
related pairs are learned faster in each of the first 10 iterations.

The statistical reliability of these observations was tested by a mixed-model, two-
way ANOVA. The between-subjects factor was the number of presentations (1, 3,
10, 20) and the within-subjects factor was semantic relatedness (related,
unrelated). The ANOVA* showed that both main effects were significant
(F(1,92)=204, P<0.0001 and F(3,92)=25, P<0.0001, for semantic relatedness and
number of presentations, respectively). More importantly, however, the
interaction between the two factors was highly significant (F(3,92)=19,
P<0.0001), suggesting that each repetition contributed more to related pairs than it
contributed to unrelated pairs. Furthermore, calculating the percentage of cued
recall that was added by each presentation revealed that the study rate remained
relatively stable for both relatedness conditions up to 10 presentations. For
unrelated pairs, performance improved at a steady rate of 1% per repetition, across
{he entire range examined. In contrast, for related pairs, a slope of about 4% was
steady up to 10 presentations, following which it was reduced to 1.6%, simular to

the slope of unrelated pairs (Table 2). Post hoc analyses showed that the

4 Here and in all the following statistical analyses, the p-value i3 based on the Greenhouse-Geisser

correction for sphericity due to multiple levels within factor.
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interaction between the semantic relatedness and number of presentations factors
held until 10 presentations; from 10 to 20 presentations the interaction between
the two factors was insignificant (i.e., above 9 presentations, increasing the

number of presentations is equally effective for related and unxelated pairs).

The results of Experiment 4 showed that even with one presentation, cued recall
was better for semantically related than unrelated pairs. This difference suggests
that some mitial weak association could have, indeed, existed between
semantically related nouns. Such associative links might have been too weak to be
revealed in our pilot survey, but still exerted consequential influence implicitly
(Nelson, McEvoy, & Dennis, 2000). However, although memory improved with
the number of repetitions for umrelated as well as for related pairs, the
significantly steeper slope of cued recall for related pairs up to 10 presentations
reveals that, at least during that dynamic range, semantic relations between pairs
facilitated the incidental formation of episodic associations cumulatively. With
more than 10 presentations learning continued to improve, but the additional
episodic learning was equal for related and unrelated pairs. This change was
caused by a significant decrease of the cued-recall slope for related pairs,
suggesting that semantic relatedness helps associating events only as long as the

association is relatively weak.

The main cffect of semantic relatedness 1o this experiment provides additional
support to the hypothesis that semantic relatedness per se facilitates the formation
of episodic associations. Such a conclusion, however, is qualified by the
possibility that the better recall of the related words may have resulted from a
more constrained retrieval process at test, rather than from more efficient
formation of associations at study. According lo this inlerpretation, participants
became aware during the study phase that half of the pairs on the list were
semantically related and, therefore, adopted a strategy to scarch first for a
semantically related associate to the cue within a limited-size semantic
neighborhood (cf. Baddeley, 1972). This strategy was obviously efficient for
related but not for unrelated pairs. Morcover, the likelihood of noticing the
semanhic relatedness of some pairs might have increased with the absolute number

of presentations of related pairs in the study list. Since 1n the present expenment I
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aimed at exploring the time course of the semantic relatedness effect at four
levels, different participants had to be tested at each level of the number of
presentations factor. Consequently, it is possible that participants tested with
many presentations were more prone to use the semantic search strategy than
participants tested with only a few presentalions. Hence, cucd recall strategies
could not only explain the advantage of related over unrelated pairs, but also the

interaction between this advantage and the number of presentations.

These caveats, however, were less relevant in the next experiment, in which I used
a complete within-subject design and a forced-choice recognition task to assess

agsociative learning.

2.8 Experiment 5; A Semantic Boost — Forced Choice Paradigm

This experiment was aimed at expanding the exploration of the semantic
relatedness influence on the formation of new associations and, at the same time,
reduce to some extent some of the caveats regarding the interpretation of
Experiment 4. Thus, Expeniment 5 was different from Experiment 4 in several
important aspects. First, associative memory was tested using forced-choice
recognition rather than cued recall. Seéond, in the design of Experiment 5, I
excluded the 20 presentations condition, which enabled us to manipulate both the

number of presentations and the semantic relatedness factors within-subject.

Using a forced-choice recognition paradigm, I ensured that the search and
selection of the correct answer for related and unrelated pairs was based on equal
sets of potential candidates, namely those presented as options to the participant.
Furthermore, in order to discourage using semantic relatedness as a cue for
selecting the correct answer even further, all alternative choices were members of
the same semantic category as the correct answer, that is, they were all related
among themselves. In addition, the forced choice design enabled us to perform an
error analysis by which the strategic tendencies in the participants' performance
could be assessed (albeit post hoc).

The within-subject manipulation of the number of presentations ensured that all

participants were exposed to the same number of trials and were equally likely to

notice the fact that the study list included both related and unrelated word-patrs.

AN
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Therefore, any retrieval or search-based strategies should have had an equal effect

across the number of presentations.

Additionally, in the Experiment 5, I substituted a deep processing level (semantic)
task for the shallow letter search task used in the previous experiment. This was
done since relative to cued recall, recognition involves data driven processing to a
larger extent (Roediger, Weldon, & Challis, 1989). Therefore, [ was concemed
that by using a data driven task at test combined with a shallow level task at study,

I might eradicate any possible influence of semantic factors.

Finally, in Expeniment 4, we learned that semantic relatedness is consequential
particularly at low levels of associative memory. It was expected that the
combination of a deep-level orientation task at study and a recogmition (rather
than ¢ned recall) task at test would lead to hugh levels of memory performance. In
order to ensure our ability to observe the semantic effects of interest, a delay of 24
hours was introduced between the incidental associative learning phase and the
assessment of associative memory.

Hcence, while the present experiment expanded the exploration of semantic factors
on the formation of new associations using a different level of incidental learning
and a different method of assessing associative memory, it was also instrumental
in addressing the major caveats that constrained interpreting the outcome of

Experiment 4.

2.8.1 Methods

Participants

The participants were 36 undergraduates who were sampled from the same
population as the participants in Experiment 4. They were paid a nominal fee or
received course credit for participation. None had participated in the previous

experiments.

Stimuli

Ninety-six pairs of concrete Hebrew nouns were selected such that they would
belong to 24 different semantic categones (4 pairs per category). T ensured that the

words of each pair were not associated to each other prior to the experiment, by
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using Hebrew free association norms (Henik, Rubinstein, & Anaki, unpublished).
According to these norms (which were unavailable when the previous
experiments were run), the two words did not elicit one another while testing free
associations in 100 students either as a first response or as one of the responses
elicited during a mimute following the presentation of the cue. Two lists of 96
pairs were assembled, each comprising of 48 semantically related pairs and 48
unrelated pairs, in which the related words were shuffled. The semantically
related pairs in one list were unrelated in the second list and vice versa

(Appendix A).

Design and Frocedure

The effect of semantic relatedness and the effect of number of presentations were
tested within-subject. In each of the two study-lists, 32 pairs, 16 related and 16
unrelated, were agsigned to each of the three levels of number of presentations (1,
5, and 10). These levels cover the dynamic range of the learning curve observed in
Experiment 4. Across participants, the pairs assigned within each list to each
number of presentations were rotated. Half of the participants were tested with
List A and the other half with List B. Consequently, across participants, the same

words were used in all six relatedness by repetition conditions.

As in the prior experiment, the present experiment consisted of an incidental study
phase and a test phase. Participants were exposed to 512 study trials (32 pairs %
10 presentations + 32 pamrs % 5 presentations + 32 pairs % 1 presentation). Each
study trial started with a fixation mark exposed for 200 ms. The paired words
were simultaneously presented for 500 ms immediately following the offset of the
fixation mark, centered to the right and left of its location. Following the
presentation of the pair, one of four single word questions of a subjective nature
was presented (Impressive?; Beautiful?; Preferred?; Famibar?). The question was
randomly selected on each trial. Participants were told that in a previous survey, a
different group of participants compared the two nouns presented on the screen
and selected the one better fittmg the feature denoted by the probe word. In effect,
no such previous survey was conducted. The orientation task required the

participants to guess how the previous fictitious participants replied to these same

A
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probe words. I chose this indirect semantic task to ensure that participants
remained engaged in the task thronghout the study phase, notwithstanding the lack
of an objective criterion by which their performance could be assessed. To
enhance their motivation even further, a monetary bonus was promised to
participants who guessed within one 8D from the "true" mean. In reality, all
participants received this bonus. The question word was presented 300 ms
following the offset of the pair, and remained on the screen for 1500 ms, during
which time a response was expected. Since the participants could not know in
advance which question would be asked, they had to keep both words conjointly

active in working memeory for at least 800 ms.

Following the study phase, the participants were requested 1o return the following
day, at which time they completed the test phase. They received no information
that the second part would include any form of memory test. In the test phase,
forced choice recognition memory test was administered. The first word of each
of the 96 pairs was presented as a cue, and the participants were instructed to
select its pair as it appeared in the study list, out of five possible answers exposed

undemmeath.

As described above, in the study phase, half of the pairs were related and half
were unrelated. When the cue word had been studied in the related condition, all
five alternative responses belonged to the same category as the cue, and
consequently were all related to each other. When the cue word had been studied
in the unrelated condition, once again all five possible responses belonged to the
category of the correct answer, and therefore none of them were related to the cue
word. In both cases, of the five alternative responses, one was the correct answer,
two were new items, not previously encountered during the incidental study phase
(New), and two were words that had appeared in the study list paired with
different items. These latter two studied words had always appeared on the left in
the study displays, and both belonged to the same number of presentations level as

the pair probed. Of thege two studied distracters, one had appeared at study in the

" Since Hebrew is written from right to left, the lefi-hand word is the second word of the pair, the
so-called "target”.
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same relatedness condition (SRC) as the probed pair, that 1s, if the probed pair
was related, the SRC distracter had also been studied m a related pair, The second
studied distracter had appeared at study in the opposile relatedness condition
(ORC), i.e., if the probed pair, once again, was related, the ORC distracter had
been studied in an unrelated pair.

The five possible responses were presented in two lines beneath the cue, and their
positions were fully randomized. No time limits were imposed during the test
phase. Hence, as in the previous experiment, accuracy was the only dependent

variable.

2.8.2 Resulis and Discussion

As m Expenment 4, performance was better for semantically related than for
unrelated pairs, across all three presentation conditions. Furthermore, the effect of
semantic relatedness was different across different presentation numbers,

replicating the interaction found in Experiment 4 (Figure 10).
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Figure 10; Percentage of cormrect forced choice cued recognition for semantically related
and unrelated pairs of words following various numbers incidental co-occurrences at study.
Semantically related pairs are learned faster in each of the first 5 iterations.

The statistical reliability of these observations was tested by a within-subject
ANOVA. The two factors were the number of presentations (1, 5, 10) and

semantic relatedness (related, worelated). This analysis showed that both main
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effects were significant (F(2,70)=121.0, P<0.001; F(1,35)=18.5, P<(.001 for
number of presentations and semantic relatedness, respectively). More
importantly, however, the interaction was sigmficant as well (F(2,70)=6.3,
P<0.005). In other words, the number of presentations influenced the semantic
relatedness effect.

Since the total percentage of errors mirrored, in fact, the percentage of correct
responses, 1n the error analysis, I was interested only in the mam effect of error
type and its possible interactions with semantic relatedness and number of

presentation factors, As evident i Figure 11, there were more SRC than ORC and

New errors.
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Figure 11: Number of false recognitions of distracters that were not presented at study
(New), of distracters that were presented at study in the same relatedness condition as the
target (SRC), and of distracters that were presented at study in the opposite relatedness
condition (S8RC). The errors are presented separately for the related and unrclated study
conditionz. There were more SRC than ORC and New errors.

The statistical evaluation of the pattern of errors was based on a within-subject,
three-way ANOVA. The mdependent variables were error type (SRC, ORC,
New), number of presentations (1, 5, 10), and semantic relatedness (related,
unrelated). All three main effects were significant (F(2,70)=77.2, P<.0001,
F(2,70) 72.5, P<.0001, and F(1,35)=7.4, P<.01, for the error type, number of
presentations and relatedness effect, respectively). Post hoc Univariate contrasts

showed that fewer false alarms were made for New distracters (1.3) than for ORC

ALs
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distracters (2.3; F(1,35)=39.4), while the SRC distracters elicited most false
alarms (3.4; F(1,35)=56.4). More errors were made following 1 study prescntation
(3.1) than following 5 presentations (2.1; F(1,35)=69.8), least errors were made
following 10 presentations (1.8; F(1,35)=9.8). The interaction between
Relatedness and number of presentations was significant (F(2,70)=7.0, P<.01), as
was the interaction between error type and number of presentations (F(4,140)=4.6,
P<.01). Both interactions were qualified, however, by a significant second order
interaction between the three factors (F(4,140)=2.9, P<.025).

The source of the second order interaction was examined by separate number of
presentations * Relatedness ANOVAs for each error type, and by error type >
number of presentations for each relatedness condition. These analyses showed
that, whereas the first order interactions were slightly different at each level of the
third factor, they all pointed in the same direction: The difference between error
types was more conspicuous with 5 and 10 presentations (particularly for
unrelated pairs) than with 1 presentation, and the relatedness effect was less

pronounced for New distracters.

Despite the 24 hours delay between study and test for both related and unrelated
pairs, associative memory was well above chance even for pairs presented only
once during the study phase. Compared to Experiment 4, the elevated level of
performance and an increased slope of the learning curve were conspicuous
primarily for unrelated pairs. However, notwithstanding the level of performance,
the present findings also showed the semantic relatedness advantage, namely,
associations formed between related words were betier remembered than those
formed between unrelated words. Moreover, relative to cued recall, retmeval
strategies could hardly account for the relatedness effect in the present design. In
the forced-choice recognition paradigm, the search set was explicitly defined, and
was of equal size for related and unrelated pairs. Further, since all alternative
choices were semantically related among themselves for both pair types, the

response could not have been guided by semantic relatedness.
The overall recognition memory performance in Experiment 5 was high. Thus,
compared with cued recall, fewer presentations were required to reach a plateau.

This finding 15 not surprising, given that in Experiment 4 the study task was

A
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shallow (letter search) and the memory task was conceptually driven (cued recall),
while the present experiment made use of a deep study task (semantic decision)
and a more data-driven memory task (forced choice recognition). Deep processing
is kmown to lead to better memory performance than shallow processing (Craik &
Lockhart, 1972), at least if the transfer of appropriate processes between study and
test are comparable across processing levels (cf. Morris, Bransford, & Franks,

1977).

The analysis of errors revealed a complex, but informative pattern. The basic
findings were that, regardless of whether the tested association was between two
related or between two unrelated words, participants selected New words
considerably less often than words that were presented at study. Moreover, they
were more inclined to make SRC errors, that is, to choose altematives that were
studied in the same relatedness condition as the tested pair. Hence, it is evident
that, at least when the participants had no explicit recollection of the paired
associate to a cue, they chose alternatives that were episodically familiar.
Furthermore, since the comrect responses and the four distracters were
semantically related among themselves, the relatedness condition was evident in
gach trial. Hence, the significantly higher frequency of SRC errors indicates that
participants had (at least implicit) knowledge about the relatedness condition m
which the familiar alternatives were studied. This knowledge was obviously
acquired at study and, as revealed by the reduced effect of error type following
one repetition, its consequence on the forced-choice performance depended on the
strength of the studied association. Finally, the absence of an interaction between
error type and semantic relatedness suggests that similar selection strategies were

used at test for related and unrelated pairs.

2.9 Conclusion

The experiments described in this chapter showed that associations can be formed
incidentally between unrelated words. Occasionally, these newly learned
associations can be sufficiently strong to (temporarily) replace the natural
associations. More importantly, this first series of expenments showed that

semantic relatedness facilitates association formation. Moreover, the semantic
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contribution continues through learning implying that the semantic system
influences the episodic process. These conclusions may serve as guidelines for
developing a computational model to describe the process of forming association
which can explain the interaction with the existent lmowledge in the semantic
system. Once such a model would be verified, it may lead to extracting further
predictions on human behavior. The computational model is described in the next

chapter.
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3 Computational Model - SEMANT

Constrained by the results of the behavioral experiments (chapter 2) and based on
common theories of semantic and episodic memory (section 1.6), I developed a
biologically-motivated artificial neural network model to suggest a computational
mechanism for the formation of episodic associations between words. In this
chapter, this model, called SEMANT (Semantic and FEpisodic Memory of
Associations using Neural neTworks) is presented. The network architecture, the
semantic word representations and the simulations aimed at validaling the model

are described in detail.

3.1 Background

The following section describes the computational background for SEMANT.
Following an overview of related models, Self Organizing Maps and Semantic

Maps are described in detail and motivation for their use is given.

3.1.1 Related Models

As was reviewed in section 1.6.2, Ross Quillian (1966) first developed a computer
program with the goal of understanding text. As part of the program, he developed
what could be considered the first computational model for semantic memory.
Quillian's model is based on a hierarchically arranged network of links between
concepts. In response to the criticism of the Quillian model, Collins and Loftus
(1975) introduced their Semantic Network model and the notion of Spreading
Activation. As descrnibed in section 1.6.2, spreading activation over semantic
network models can account for various semantic relatedness and semantic

priming effects.

Recently, an alternative modeling approach has been proposed to explain
semantic priming. Models in this class represent concepts not by single units, but
by distinguishable patterns of activity over a large number of units (Hinton, 1990;
Masson, 1995; Moss et al., 1994; Plaut, 1995). Each unit participating in the
representation accounts for a specific scmantic microfeature. Thus, semantic
similarity is expressed as an overlap in activity pattemms over the set of

microfeatures. Activity propagates through recurrent commections until the
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network settles to a stable state (an attractor). Semantic priming is explained by
the fact that after settling to the priming concept, fewer modifications in the nodes’
state should take place when settling to the target concept, thereby making the

response faster.

Although several computational models of semantic priming have been proposed,
all have focused on the processes based on already established associations
(Masson, 1995; Moss et al., 1994; Plaut, 1995). Plaut's (1995) model, however,
suggests a distinction between the way by which semantic and episodic relations
could be formed. As in other distnbuted models, similar representations represent
semantic relations. Howevcer, according to his model, episodic relations between
word-pairs are formed based on co-occurrence information throughout the
learning history. Nonetheless, there is no computational understanding theory of
the process of forming associations and of how the strength of existing semantic

connections among other factors affects this process.

3.1.2 Self-Organizing Maps

The architecture of SEMANT is bascd on a laterally connected self-organizing
map. The Self-Organizing Topographic Feature Maps (SOM) learning algorithm
(Kohonen, 1982, 1990) 1s an Artificial Neural Network (ANN) model for
generation of spatial maps (most commonly: two-dimensional layers), which
classify data and represent features of the input as topographic qualities on the
map. The algorithm has two different manners of implementation. One version is
biologically motivated and, therefore, includcs computations that are biologically
plausible. The other version is more abstract in nature, i.e., less biologically
plausible, and the equations that govern 1t are abstractions of the computations in
the biological version. In both versions the architecture of the model is a two-
layered neural network, where the input is presented on the first layer and the map
is organized on the second. In addition, in the biologically motivated version, the
neurons of the oulput layer are interconnected with all-to-all lateral connections
that are used to implement a winner-takes-all computation. According to the SOM
algorithm, inputs that are sigmficantly different in their features are mapped onto

distinct locations in the output space and vice versa. The learning of the inputs, by
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an iterative process, is unsupervised and the map is organized according to the
statistics of the input’s features, without any direct instructions or prior knowledge
coded in the algorithm.

In both versions of the algorithm, each iterative step consists of two stages:

1. Selecting the most responsive node in the output layer to the input vector.

2. Modifying the weight vectors of the most responsive node and

neighboring nodes to become more similar to the input vector.

In the abstract version, the selection of the most responsive node is done gimply
by selecting the node with the minimal distance (usually by a Euclidean metric
function) between its weight vector and the input vector. The neighborhood in
which weight vectors will be modified is then defined around the most responsive
node, with a radius that decreases with the iterations, from nearly the size of the
entire map down to zero. The weight vectors of nodes in the neighborhood are

changed to become closer to the input vector according to the following equation:

wy (t+1) = w, (1) + (0 )ile) ~w, ()] 1)

where wy(f) 15 the map's weight vector for neuron (i/) at time ¢, () is the input
vector at time £, and £ (¢) is the adaptation rate, which decreases to zero with 2.

In the biologically motivated version, the map's response to the mput vector is
determined by calculating the scalar product of the weight vectors of each node

and the input vector:

Sy =2 Wyale 2)
k

where sy is the response of node (7,/) at time # (in a two-dimensional map).

Once the map's response 1s calculated, the selection of the most responsive node is
done by an iterative process of a winner-tukes-all computation, according to the
following equation:

77!7 (r'+]') = D_[Sff + Z yuu,ynuv (t')] E (3)
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where 7,(¢') is the response of node (Z,/) at time ¢/, %, are the lateral copnections
which, for the purpose of implementing the winner-takes-all, have the form of a

Mexican Hat or a difference of Gaussians, and

U‘G‘Fm , (4)

is the sigmoid function (for a comprehensive review of both versions of the

algorithm, see Mitkkulainen, 1993, chapter 7).

3.1.3 Semantic Maps

A common use of the SOM algorithm is mapping inputs with inherent metric
properties (Kohonen 1990; 2000). Such inputs are typical in lower-level
perception. However, when dealing with high-level processing such as language
and memory, the input is often discrete and does not necessarily convey obvious

metric features.

In order to cope with mapping of symbols, Ritter and Kohonen (1989)
implemented the SOM algorithm on words that were represented in two
alternative ways. In the first, the representation of the word was a feature vector,
where hits represented a set of fixed properties (big/small, has 2 legs/4 legs, etc.).
In the other, the context of the word, i.e., the representation of the word and the
predecessor and successor words, were used as the input. In both cases,
meamngful maps were created and expressed grammatical and semantic
relationships between the words. Figure 12 shows the semantic map that was
formed based on the latter representation method. They coined the term Semantic
Maps for these structures. As a follow-up, the latter methodology was
implemented on a larger corpus, the entire text of the Grimm fairytales, with

significant success (Honkela, Pullkld, & Kohonen, 1995).

It is important to mention that in the ‘context’ approach, the coding of the words
themselves was random. Hence, the organization of the maps was enabled by
information that was implicit in the context. This approach has been used in
several other studies as well, in which meaningful representations for words were
generated based on the context in which they appear in a large corpora, suggesting

that the meaning of a word can be extracted from the various contexts in which it
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appears (e.g., Miikkulainen, 1993; Lund, Burgess, & Atchley, 1995; Landauer, &
Dumais, 1997; Wettler & Rapp, 1991).

Walsr . Meat . . . . Do Horse
Bceer . . . . Bread
Cart
Linla
Tast . . . . . Zeldom . . Bob
Much . . . Jim
Slowly . Often
Eals . . Mary
Well . . . Waorls
Paorly . . Speaks . . . . . Phones
Buys . . Vigil
Setls
Rz
Drinks . . . Walks . . Flates . Likes

Figure 12 (from Ritter and Kohonen, 1989): Example of a map organized in the ‘context’
approach. Words with similar meanings are represcnted by nearby locations over the map.

3.1.4 Use of Semantic Maps in Related Models

Miikkulainen (1997) suggested a model of the human lexicon as part of
DISCERN, a sub-symbolic Natural Language Processing (NLP) integrated model
of Scripts, Lexicon and Memory (Miiklculainen, 1993). This model 1s based on
two Kohonen maps, one that represents semantic features of concepts and one that
represents orthographic properties of words, which are linked together in a many-
to-many fashion by across-maps connections. The model explains human reading
errors as well as other phenomena and demonstrates how useful it is to use such

maps with regard to words and concepts.

Semantic maps have been successfully used in varous other studies of the
semantic system as well such as language acquisition (Li, 1999, 2000), sentence
processing (Mayberry & Miikkulainen, 2002), semantic priming (Lowe, 1997),

and document representation and retrieval (Kohonen et al., 2000; Scholtes, 1991).
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3.1.5 Motivation for Using Semantic Maps

Smee self-organizing maps arc based on biologically plausible unsupervised
Hebbian learning, and maps in general are cornmon in many parts of the cortex
(Knudsen, Lac, & Esterly, 1987), self-organizing maps are most appealing as a

biologically plausible analogue of classic semantic networks (Spitzer, 1997).

A strong motivation for using maps for modeling associations between words
comes from several observations that may indicate the actual cxistence of physical
maps of concepts in the human brain. There are reports about patients with brain
damage that have lost only a portion of the semantic memory (Farah & Wallace,
1992; Caramazza et al., 1994), These patients show deficit in the use of sub-sets
of words such as inanimate versus animate, or even more category-specific such

as body parts or fruits and vegetables.

Moreover, semantic category specificity in the brain is supported also by non-
invasive research using Functional Magnetic Resonance Imaging (fMRI1). These
studies revealed separate areas of activation while naming amimals versus
fumiture (Spitzer, 1997; Pulvermiiller, Assadollahi, & Elbert, 2001). Lowe et al.
(2003) have also found evidence for semantic categorization in the brain and a
map-like organization of magnetic brain waves using Magnetoencephalograph
(MEG). Spitzer also found supporting evidence for the idea of spreading
activation over semantic maps in s research with schizophrenic patients. Both
their type of mistakes and their performance in semantic priming tests could be

interpreted along this view.

The computational model of episodic association formation that is suggested in
this research is based on a semantic map, namely, a map of concepts map, as a

computational, biologically plausible model of the semantic system.

3.1.6 Laterally Connected Semantic Maps

Recall that in the more biologically plausible version of the SOM algorithm
(section 3.1.2) the winner-takes-all section of the algorithm 1s implemented using
lateral inhibitory connections between each of the nodes in the map, in addition to
the feed-forward commection from the input layer. These lateral connections are

used in another part of DISCERN, where the SOM is used as a base for episodic
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memory. In order to enable fast (single-presentation) imprinting of memory
traces, as opposed to the gradual iterative process of maps’ organization, the
lateral inhibitory connections are changed towards excitation, to direct the
convergence process towards nodes that have been presented in the past
(Miikkulainen, 1992; 1993). In SEMANT these lateral connections within the
map are used to represent episodic associations between words that are

represented on the nodes of the map.

3.2 Model Description

In this section, the technical details of the computational model will be described.
The numerical representations for the words, the semantic map organization
procedure and its correspondence to simulating different computational

participants, the network architecture and dynamics are explained in detail.

3.2.1 Word Representations

In order to organize the semantic map, I used numeric representations based on
the lexical co-occurrence analysis in the Hyperspace Analogue o Language
(HAL) model of Burgess and Lund (1997). In this model, high-dimensional
numeric representations for words are formed based on the context in which they
oceur in large text corpora. A moving window of several words 1s placed around
each word in the text. A co-occurrence matrix is calculated according to how
often each word occurs in the different positions in the window. The rows and
columms of this matrix are high-dimensional vector representations for each word.
To make them practical, the 100 dimensions with the highest variance are used for
the final representations. HAL vectors have been shown to capture the semantics
of words well (Burgess & Lund, 1997; Lund, Burgess, & Atchley, 1995; Lund,
Burgess, & Audet, 1996) and have been successfully used m creating sensible
Self-Organized Semantic Maps (Li, Burgess, & Lund, 2000; Li, 1999, 2000).

In this dissertation, HAL representations were based on the 3.8-million-word
CHILDES database, a corpus with particularly clearly defined word semantics.
Out of the 4,300 words with numerical representations that are available in
CHILDES, the semantic map of SEMANT consisted of 250 nouns, selected
randomly and orgamized on a 40 by 40 gnd I selected 48 nouns that formed 24
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pairs of words such that the words in each pair belonged to the same semantic
category. The words were English translations of the 48 Hebrew words used m
Experiment 4 (Appendix A — Stimuli). In some cases, where a direct translation
did not exist or the translated word did not appear in our set of HAL
representations, a similar English word was selected. Another 202 nouns were
selected randomly from the set of representations as fillers in the map in order to
create a richer semantic neighborhood in which the 48 words of interest could

organize.

3.2.2 Map Organization

The model is based on a SOM with lateral connections as described 1n section
3.1.6 (Miikkulainen, 1992; Ritter, & Kohonen, 1989). The map 18 formed mn an
unsupervised leaming process where words that are close in their meaning
become represented by nearby nodes in the map. Hence, distance on the map
represents how closely related words are. For a pseudo-code description of the

algorithm, see Appendix B — MatLab Code.

3.2.3 Simulated Participants

In the experiments, 12 different participants were generated by self-organizing the
semantic map from different random mmtial starting points. In each case, a random
gequence of input words was used. The maps learned to represent the similarities
of the data, but differed in the details of how they were orgamzed. For example, 1n
the map of Figure 13, foods are clustered in the botiom and body parts on top.
These clusters were prominent on other maps as well, but were shaped slightly
differently and located in different regions of the map. In this sense, they can be
seen as different individuals with roughly equivalent representations of semantic
relatedness. Simulated psychological experiments were then conducted in this
group of computational participants in order to explain the behavior observed in

human behavioral studies.

[ 5



Computational Model - SEMANT

e emi—

wiool Brgwer  wasle Lhroal addreas [ neck chin leans hed sEhool
pEED lna slaAp
quees sunalasses
Ine balance iy Ewaaler gwamlshity, hand  gar
whigpar plteh ] pajamas cabbage rake
gaddla camal roal
cowhcywellcopter collaglion  panda blrtday prizg
Lo Uekat dad eon vanila halrcut WeE
fireman  pawer maurtaln
fowel prince cube pun  washelolh Job nall
sign irea bandaid tourse  malerlal beard
slrap mane guitar police monstar shape papher
doll  coderse  searl lelly follipop steam lick
lall  rack factory rase  violin
downtowrequin alep drill parade frain dlce sacond hump s5Um
glap  drop caslla roadnicrophona dallar carrol yawm
flm Mag  kay racesan band Bulledhy
pay rahin siring wire  flaur gown  Growm squyHpopolamus popslcla lemparalure
wash fall paker plpe whal hul nap
bend  hamsler priee  plafrmernaching tuwa hath
e Knoth ball collon  racing Qush warm Grass
lambehop copy doclor sack van hammebracolet PausD
crach aquarurm tricycia slgna sallogmackiace
glalre oo eleclricly fam pll ghosl
pask jake boom
maang glevalor  slora picnlc lener
markla offlcq pary aong pear
bln whoal balhroom Elraw
refriperalar deserl letluce lcetcreamyrup hazeball
&row trashdireclon  blendar wadding coke kil [r=11) namn
hag garkage rhegr fnging
basemonkragilub doar war lee
sunzhine mall [ungle trauble alé popeam malh painling
dish
puree parking siew sguash Iraning
truth Eirawhamy lzhla page lasagna SALP palm
pineapple raaf toflae
clay glide reliroad  bosrd £haaca wina
wall cards soga
playrdough  dreseer earh  branch aquipmanl counlar saapjcoliage  chocolale pudding parl

—

Figure 13: The self-organized semantic map. Semantically related words such as those
denoting body parts and foods are mapped to adjacent nodes.

3.2.4 Network Architecture

Building on a semantic map, I included all-to-all unidirectional lateral connections
{o represent the potential associations between two words. The strength of each

such connection 18 composed of semantic and episodic components:

L,.=8 .,+E,; (5)

if v v i

where Ly, 1s the connection weight from node (i) to node (x,v). The semantic

component represents the distance on the map and is given by the equation:

1
S = :
i uv (1 N elﬁ"(f_w""| ] (6)

where W; is the map's weight vector for neuron (/). Therefore, the strength of

each lateral connection is inversely proportional to the 100-dimensional distance
between the iwo corresponding weight vectors of the map. Initially, the episodic

part of all the lateral connections was sct to zero. Hence, prior to any learning of
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associations, the lateral links only capture the topographic organization of the

map, i.e., the semantic relatedness of words.

3.2.5 Dvynamics

When a word is presented to the model, an activity bubble is generated
surrounding the node representing it, by caleulating the map's response to the

stinmmulus word:
0 - -
Ay. = C.T(Wy- -x) , (7

where A'g is the activity of neuron (i) at time # X is the HAL numerical

representation vector of the stimulus word, and

ff(@)?(ﬁ) ) (8

is a sigmoid function, which 1s used io sharpen the activity bubble around winning

node (Figure 14). The activity wave then spreads through lateral connections
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TFigure 14: The four sigmoid functions that are used in the model. A) Semantic relatedness
values as a function of the distance between the nodes' weight vectors (nommal condition in
solid line, pathological conditions in dashed lines — see sections 3.4.3 and 3.4.4). B) Global
inhibition as a function of time-steps in the trial. C) Narrowing the initial activity bubble
over the map as a function of the map's response to the external input. D) The neuron's
transfer function: The neuron output as a function of the sum of the weighted inputs. The
sigmoids that describe different aspects of the model are different.
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according to synchronized recurrent dynamics. At each time-step, the input to
each neuron is the sum of the activities of all neurons in the previous time-step,
weighted by the lateral connections. Then, the neuron's activity is limited between

the values 0 and 1 and is set according to a sigmoid function
A'.:' =g [ZLﬁ,uv‘ii;l] . (9)

When two words are presented to the model (as in the study phase of
Simulation 1), both activities spread independently over the map. The
intersection, namely the smaller value between these two activations, is summed
over all the map's neurons and over all time-steps and added to the episodic
component of the lateral connection between these two words. When the distance
between the two words is smaller (indicating stronger semantic relatedness), the
resulting activity waves overlap more, amphfying the connection between them.
Thus, it is easier for the model to associate related words than unrelated words.
Conceptually, this method is an abstraction of Hebbian learning of episodic links,
since the resulting connection sirength depends on the intersection of both words'
activation waves. Figure 15 shows two snapshots of the simulation, demonstrating

activations spreading from two different word-pairs.

3.3 Validating the Model

In order to use the computational model to derive predictions on human behavior
and to suggest further psychological experiments, it needs to be vahdated by
matching it with human performance. In this section, the first simulation, aimed at
replicating the empirical results of Experiment 4 and 5 which demonstrated
semantic facilitation on forming associations, is described in detail. Comparing
the simulated performance of the model to those of human participants allows
validating the model's assumptions and calibrating its parameters. Furthermore,
the model's resistance to noise, applied at different levels can be estimated. Once
the model replicates human behavior satisfactorily, we can enrich our
understanding of related phenomena by modifying it and examimng its emerging

predictions, as elaborated in section 3.4,
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Figure 15: Two simnlation snapshots. A) Semantically related but not associzted word-pair
trial (<POPCORN>-<CHQCQLATE>). B) Unrelated word-pair trial (<POPCORN:>-
<CHIN=). Each figure displays three snapshots of the semantic map. On the upper map, the
activation wave generated by the first word is presented, shown in color scale. The middle
mmap Tepresents the activation wave generated by the second word. The lower map shows
the intersection of the two activity waves. A stronger intersection of activity waves results
from the semantically related pair.

3.3.1 Simulation 1: Replicating the Semantic Boost Effect

Recall that in the behavioral experiments, even the words within the semantically
related pairs were not associated prior to the experiment even though they
belonged to the same semantic category. That is, the presentation of the first word
did not elicit a significant activation of the second word. The reason for it is that
the activation from the first word probably spread to closer, i.e., more strongly
semantically related, words within the category than the second word I chose.
However, the computational model's lexicon has only 250 words compared to tens
of thousands in the average human lexicon. Therefore, there are usually no more
than two words within a semantic category. Thus, selecting the second word of
the semantically related pairs from the same semantic category of the first word
would necessarily mean that it would also be the closest word to it among the

entire lexicon and therefore would be its first associate.
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In order to avoid this problem, out of the 24 semantically related pairs that were
embedded in the semantic map (section 3.2.1 - Word Representations, above), 12
pairs with a Euclidean distance between HAL representations shorter than the
average distance over the map (0.88) but larger than a thresbold (0.35) were
selected. This way I made sure that the words were semantically related, but not

strongly enough to be always recalled, regardless of any episodic associations.

To create the semantically unrelated pairs, the other 12 semantically related pairs
were randomly re-matched to form 12 semantically unrelated pairs (the average
Euclidean distance between HAL representations is 0.91) as was done with the
stimull of the behavioral experiments. The simulation procedure was replicated 12
times, each time using a different map, and statistical analysis was performed on

the data.

Procedure

During the study phase, two words were presented to the model with an
appropriate temporal delay (SOA) in each trial. The absolute time scale of the
.network is arbitrary and was adjusted to fit the data. Consequently, the temporal
delay was determined experimentally such that the second word would be
presented shortly alter the activation wave of the first word had significantly
gpread (3 time-steps). Each of the 24 pairs (12 related and 12 unrelated) was
presented once. Because the episodic information does not affect the spreading
activation process durtng the study phase, the episodic association resulting from
multiple presentations was calculated by multiplying the result of a single
presentation by the number of repetitions which was vaned from 1 to 30. During
the testing phase, only one word was presented to the model. The resulting
activation wave spread based on the same dynamics, except that in this phase,
both the semantic and the episodic components of the lateral connections were
taken into account. The activity continued to spread until the first neuron reached
an activity threshold (0.98). The word represented by this node was then taken as
the output of the model. In case a fixed number of time-steps (chosen to be &,
when the activation wave had usually decayed to a negligible level) had elapsed

and no such neuron had been found, SEMANT was programmed to ouiput the
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word represented by the neuron with the highest activation level. This scenario
simulated the situation in which the subject could not recall any word and would
answer with the word that first comes to mind. In practice, this scenario never

oceurred,

Results and Discussion

In Figure 16, the model results that correspond to the number of repetitions in the
behavioral experiment (1, 5, 10 and 20) are presented. The percentages of correct
recall for the related and unrelated pairs, averaged over 12 simulations each, are
shown for each case. SEMANT successfully replicates the results from the
behavioral experiment. In the early stages, the slope of the leaming curve of the
related pairs is steeper than the slope of the leamning curve of the unrelated pars.
At about 10 repetitions, a ceiling effect reduces the slope of the learning curve of
the related pairs such that the advantage of these pairs over the unrelated pairs is
abolished. In addition, the slope of the learning curve of the unrelaied pairs is
relatively constant, as was found in human participants. Statistical analysis of the
data revealed that both main effects, i.e., the effect of semantic relatedness and of
number of repetitions, as well as the interaction between them, were reliable
(F(1,11)=104.4, P<0.001, F(3,33)=352.4, P<0.001 and F(3,33)=35.2, P<0.001,
respectively). It 1§ important to note that although each repetition in the study
phase contributes an equal amount to the episodic component of the lateral

conneclions between the words, the recurrent dynamics of the model introduce
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Fipure 16: Average percentages of correct recall demonstrated by the model, after 1, 5, 10
and 20 repetitions at the study phase, for semantically related and unrelated pairs. A steeper
learning curve is demonstrated for the semantically related pairs in the first 10 repetitions.
This effect is diminished after 10 repetitions. The pattern of the simulation’s results is
similar to the one obtained in the behavioral experiments (Experiment 4).
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non-linearity to the testing phase (section 3.2.5). Hence, the linsar way in which
multiple repetitions were modeled does not impose a linear learning curve.
Instead, 1t emerges as a result of the timing in which the accumulative activation

levels in the neuron, representing the target word, cross the threshold

3.3.2 Resistance to Noise

After validating the performance of SEMANT in comparison with results of
human participants using deterministic dynamic equations, its resistance to noise
had to be tested. That is, I needed to venfy that the success of the model in
replicating human data is not related to a particular set of parameters and that it
can resist a certain level of statistical noise in its equations. Therefore, I
introduced noise to the equations in two different ways. In both cases, a Ganssian
noise with varying amplitude was added. In one case, the noise was added to the
neuron's transfer function, i.e., to the output of the neuron as a function of the
weighted inputs. In the other case, the noise was added to the value of the lateral
connections. In both cases, no dramatic changes in the model behavior were
observed. The leaming curve of both semantically related and unrelated pairs
became slightly steeper as the noise's amplitude was gradnally incremented and
the difference between the learning curves of related and unrelated pairs bleared.
However, the general pattern of the results remained as in the deterministic care

until large noise amplitudes.

3.4 Predictions of the Model

After validating the model by accurately simulating the empirically observed
human performance (Simulation 1) further simulations were run m order o
explore predictions regarding principles in human associative leaming. In the
following sections, I describe three such simulations. The behavioral trends
predicted by these simulations were explored in new psychological experiments

that will conclude the dissertation.

The prediction explored in each of the three simulations is based on different
conceptualizations. First, the Implicitly Mediated Associations prediction (section
3.4.1), stems from theoretical analysis of the concept behind the model. Therefore,

it was not based on the results of a sinmlation, Second, the Implicit Asymmetry
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prediction (section 3.4.2) anses from observation in a non-trivial behavior of the
model. In order to explore this behavior, a dedicated simulation was designed,
which yielded a testable prediction on human behavior. Third, the prediction on
modeling STD (sections 3.4.3 and 3.4.4) was denved by implementing a
theoretical hypothesis regarding human pathological memory processes in the
model. The parameters of the model were modified to reflect pathological
spreading activation, which was suggested to cause STD, and simulations were
run in order to yield testable predictions on the behavior of human patients. Each

prediction will be described in detail below.

3.4.1 Tmplicitly Mediated Associations

The main prnciple that governs the model dynamics is that activation spreads
over the semantic map, based on the weights of the lateral connections between
the nodes. These lateral comnections are comprised of semantic and episodic
components (Equation 5). However, the proportional contribution of the two
componcnts, semantic and episodic, to the strength of the lateral connection, 13
irrelevant to the activation dynamics. Hence, already existing semantic and
episodic information may interchangeably influence how new episodic association
are formed. The first prediction of SEMANT is about the combined influence of

prior semantic and episodic information on the formation of new episodic links.

According to the model, episodic associations are formed based on how the
activation waves spreading from the activated words over the map are
intersecting. This mechanism predicts that conjoint activation of two unrelated
words (e.g., DOG-TABLE) can implicitly facilitate the formation of episodic
connections between other words, if these other words are semantically related to
the presented words (e.g., CAT-CHAIR). When the first word (CAT) is presented,
activation automatically spreads to nearby, semantically related, nodes. One of
these nodes (DOG) 15 assocratively connected, due to a prior co-activation, to a
node (TABLE) in the semantic neighborhood of the second word (CHAIR).
Consequently, activation spreads from the first semantic neighborhood to the
second, and there, it intersects with the activation elicited by the second word.

According to the model, a stronger new episodic association is formed, due to the

- KA.
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greater intersection surrounding the second semantic neighborhood (Figure 17).
This effect is a novel prediction and will be tested in human participants for the

first time in section 4.2.

Semantic Memory
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Figure 17: An illustration of the mechanism underlying implicitly mediated associations:
(A) The activation spreading from CAT to its scmantic neighbora reaches DOG, (B) Since
a strong episodic association between DOG and TABLE exists, activation spreads
efficicntly to TABLE. (C) Activation spreads from TABLE to its semantic neighbors, thus
inereasing the amount of overlapping activation suwrrounding CHATR. The model assumcs
that the strength of the formed association is proportional to the amount of overlapping
activation spreading from the two words. Thus, it explains the mechanism by which an
existing strong association between DOG and TABLE reinforces forming a new
association from CAT to CHAIR.

3.4.2 Simulation 2: Implicit Asymmetry

Associations between word-pairs are directional. In free association
questionnaires, participants reply, for most pairs, with word B after A with a
different probability than with word A after B (Koriat, 1981). In SEMANT, such
an explicit asymmetry results from the unidirectional lateral connections, which
represent the association between two words in the map. However, SEMANT
predicts an additional asymmetry, which I call implicit asymmetry: it should be
easier to form an association between two words m one direction than in the
opposite direction even before episodic information is taken into account. Before
any episodic co-occurrence, all the lateral connections are equal in strength and
hence symmetric (equations 5 and 6). Thus, the only possiblc source for such an
implicit asymmetry is the non-homogeneous distribution of words and unassigned

nodes of the semantic map, within the multidimensional semantic space, and the
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local densities surrounding the words to be associated. Simulation 2 was aimed at

validating this hypothesis and quantifying the phenomenon.

Simulation Setup

First, the density of the semantic neighborhoods of the words that were used in
section 3.3.1 was calculated as follows: For cach of the 48 words of interest, [
counted how many of the 250 total words in the model's semantic system were
within a fixed 100-dimensional distance (0.4) in their HAL representations. The
number of such words defined the semantic neighborhood density. For each of the
previously used 24 pairs (12 semantically related and 12 unrelated), T calculated
the difference m the densities of the semantic neighborhoods of the two
constituent words and selected 3 related and 3 unrelated pairs with the greatest

difference between them.

Procedure

The procedure of Simulation 1 was then replicated with the six selected pairs.
First, the pairs were presented in the forward direction, from sparse semantic
neighborhood to dense. Then, the network was reset to its original state and the
entire procedure repeated with the pairs presented in the opposite order. The cued
recall performance in the two simulations was then compared. The simulation
procedure was replicated 12 times using a different map each time and statistical

analysis was performed on the data.

Results and Discussion

Figure 18 shows the percentages of correct recall, averaged over 12 simulations
each, as demonstrated by the model for related and unrelated pairs in the forward
and backward direction in each presentation condition. Word-pairs in the forward
direction (sparse neighborhood — dense neighborhood) were learned faster.
ANOVA showed that the advantage is statistically reliable (F(1,11)=24.8,
P<0.001). However, the entire direction effect stemmed from the related pairs:
The related word-pairs m the forward direction were leamed faster (F(1,11)=46.6,
P<0.001), while no significant direction effect was found for the unrelated word-
pairs (F(1,11)=0.03, P>0.8).

oy =
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Figure 18: Average percentages over 12 simulations each of comrect recall demonstrated by
the model for related and unrelated word pairs in forward (spare to dense) and bacloward
directions. The model predicts that lcarning is easier from sparse to dense neighborhoods.
This prediction will be verified cxperimentally in section 4.1,

The reason for this implicit asymumetry is that activation spreads over a non-
uniformly distributed high-dimensional space (as elaborated in chapter 5).
Consequently, each word has a unique pattemn of activation over the map as a
function of time. Recall that the episodic component of the lateral connection is
strengthened on the basis of the intersection of the two activations. Due to the
unique pattern of activation caused by each word and since the word-pair is not
presented simultaneously, the intersection pattern of the two activation waves is
different when the word presentation order is reversed, favoring the presentation
of the word with sparse neighborhood first. This difference in intersection patterns
vields a difference in the amount added to the weight of the relevant lateral
cormection. For unrelated word-pairs, the difference in the intersection pattems is
inconsequential due to the negligible overlapping activation. Prior to SEMANT,
such an implicit asymmetry has not yet been demonstrated in humans. A
behavioral experiment that was aimed directly at verifying this prediction is

presented in section 4.1.

343 Simulation 3A: Modeling STD by Flevated Activation

Disrupted thought processes have long been described in terms of asgsociation
psychology terms and studied by using free associations and semantic priming.
Schizophrenia patients have been found to produce fewer close associates m word

association tests than normals, generating more indirect, or mediated associations
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(e.g., BULL — MILK i a mediated association via cow; Kent & Rosanoff, 1910).
Increased semantic priming effect was discovered in schizophrenia patients who
suffered from formal thought disorder (STD), as compared with non-thought-
disordered schizophrenia patients and normal control participants (Maher et al.,
1995; Manschreck et al., 1988, Spitzer, 1997). In general, schizophrenic thinking
is characterized by loose, mediated, indirect or oblique associations, that 1s, by

dysfunctional associative processes.

To account for this pattern of resuits, a model of STD, based on the Collins and
Loftus’s (1975) theory of spreading activation, was suggested by Spitzer (1997).
The model suggests that the activity wave over the semantic network of STD
patients spreads faster and farther than that of normal participants. This unfocused
activation can explain experimental results in STD patients, who show stronger
direct (e.g., between the words cow and MiLK) and indirect, mediated semantic
priming (e.g., between the words BULL and MILK, which 1s mediated by the word
cow) compared to normal participants. It may also explain the clinical
phenomenon of loose, oblique and derailed associations. My hypothesis is that if,
indeed, one canse for STD is a broader and farther-spreading activation wave, it
would reflect in their ability to form episodic associations. Recall that according
to the agsumptions of SEMANT, associations are formed when the spreading
activation waves of the two words intersect. Thus, according to the model, it
should be easier for STD patients to form episodic associations compared to
normal participants.

In simulation 3, thus hypothesis 1s tested computationally. The shape of the
activation wave of 8TD patients is modeled in two different ways. In the first, the
farther spreading activation was assumed o be the result of elevated activation
wave, Tepresenting stronger semantic activity. In the second, the farther spreading
activation was assumed to be the result of a broader activation wave, representing
an unfocused and diffused semantic activity (Figure 19). Based on the results of

the simulations, predictions regarding the behavior of STD patients are derived.

1
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Fipure 19: Nlustration of three different activation waves over the semantic map, The
curves represent the shape of the activation waves in: 1) Normal participants, STD patients
(modeled by broader activation) and 3) STD patients (modeled by clevated activation).
Dilferent activation waves yield different performance,

Simulation Setup and Procedure

The stmulation setup and procedure of Simulation 1 were again used here, with
only one change. Recall that the distance between the word representations
contributes to the strength of the lateral connection between them according to a
reversed sigmoid function (Equation 6, section 3.2.4). To establish a less focused,
farther spreading activation wave, this sigmoid was elevated by shifting the offset
of the sigmoid by a factor of 2 (Figure 20). As a result, the area
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Figure 20: Semantic relationship value as a function of the distance between word
representations in normal (continuous line) and in STD (dashed line) simmlations. An
elevated curve is used for modeling the semantic connections in STD patients, representing
higher energy in activation wave,
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underneath the curve also increased, but the overall shape of the sigmoid
remained as in the normal condition. The psychological interpretation of this
change is that the unfocused activation wave results from a higher “energy” in the
system or, in other words, a higher overall activation in the semantic system. The
simulation procedure was replicated 12 timcs using a different map each time and

statistical analysis was performed on the data.

Results and Discussion

Figure 21 shows the percentages of correct cued recall demonstrated by the model
for normal participants and STD patients, averaged over 12 simulations each. The
association recall performance of STD patients in both related and unrelated
conditions is better than of normal participants, up to a relatively large number of
repetitions (F(1,11)=58.9, P<0.001). Because cued-recall and priming paradigms,
despite clear distinction between them, are both used as indicators for memory
organization, this pattern is in agreement with the findings of increased semantic
priming in schizophrenic patients. Computationally, this imcrement is cansed by
the elevated sigmoid, which generates an overall greater activity. In addition, it i3
clear that the relatedness advantage in the slope of the learning curve is
diminished (significant three-way interaction F(3,33)=13.4, P<0.001). This result
corresponds to the finding that STD patients show more mediated associations in

the sense that in both cases they associate distinct words more easily than normals
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Figure 21: Average percentages (over 12 simulations) of correct recall demonstrated by the
model for normal and STD participants with elevated activity. Performance in the STD
condition is elevated for both related and unrelated pairs and the difference between the
two conditions is diminished.
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do. Nevertheless, such an clevated performance is intriguing. Despite the fact that
STD patients show stronger semantic priming, they would be unlikely to perform
better in memory tests, especially those measuring learned associations. Hence, an
alternative way to model the unfocused activation wave should be found. The

alternative suggestion is described and mmplemented i Simulation 3B.

3.4.4 Simulation 3B: Modeling STD by Broader Activation

In the previous simulation, the loose associations resulted from a stronger
activation wave, caused by the elevated graph that defines the semantic lateral
connections. A similar effect can also be achieved with a more diffuse and
broader wave, that is, with a graph that is shallower rather than elevated. Thus,
although the activation wave is broader, the total amount of semaniic connection

weights in the system is the same as in the normal case.

Simulation Setup and Procedure

The setup and procedurs was similar (o that of Smmulation 3A, except that the
sigmoid was normalized such that the sum of the semantic components of all the
lateral connections over each of the semantic maps was identical to that in the
Simulation 1 (Figure 22). Hence, the energy of the activation wave was not
stronger due to enhanced semantic connections. The simulation procedure was
replicated 12 times using a different map and a slightly different sigmoid each
time, due to the slightly different normalization factors, and statistical analysis

was performed on the data.
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Figure 22: Semantic rclationship valuc as a function of the distance between word
representations in normal (continuous ling) and in 3TD (dashed line) sinmlations. A
shallower curve is used for modeling the semantic conmections in STD patients,
representing a shallower activation wave with identical energy.
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Results and Discussion

Figure 23 shows the percentages of correct cued recall in the model for normal
and STD simulations, assuming equal total semantic weights in both cases, but
more diffusely distributed in the latter. The simulations showed reduced
performance with related pairs while the performance with unrelated pairs was
better than in the normal condition. ANOVA did not indicate that there was a
reliable difference between noomal and STD participants (F(1,11)=0.09, P>0.75).
The effect between related and unrelated pairs was significant (F(1,11)=193.893,
P<0.001) as was the interaction between the relatedness and pathology conditions
(F(1,11)=26.6, P<0.001), which indicates that the semantic relatedness has a
different effect in the normal and m the STD conditions. Moreover, as in
Simulation 3A. (section 3.4.3), the gualitative difference in the rate of leaming is
decreased (significant three-way interaction F(3,33)=15.6, P<0.001).
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Figure 23; Average percentages over 12 simulations each of correct recall in the model for
normal and STD participants with normalized semantic connections, Compared to normals,
performance under STD is degraded for related pairs, elevatcd for unrelated pairs, and the
difference between the two conditions is diminished.

In sum, the different versions of the model lead to different testable hypotheses
about associative impairments i STD patients. The model's parameters were
modified so that they would reflect a farther spreading activation wave in two
different ways: through elevated and through shallower activation. The cognitive
interpretation of these two ways of implementation are different and may lead to
different assumptions regarding the physiological causes for STD. Should one of
the predictions be validated experimentally in human participants, it would enrich

our understanding of the cognitive and physiological mechanisms of STD.
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3.5 Conclusion

This chapter described the computational model, SEMANT, and simulations
carried out as part of this study. Based on empirical results suggesting that
gemantic information facilitates (up to a ceiling) the process of forming new
episodic associations throughout leaming, an artificial neural network model was
developed. This model was based on spreading activation along laterally
connected nodes in a self-organizing map. Simulating associative learning with
this model replicated the empirical results and lead to further predictions into how
such assoclations can be asymmetric, why it is easier to learn some associations
than others, and how the associative process can be impaired in STD patients. In
the next chapter, cognitive experiments aimed at validating two of the predictions

are described.
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4 Model Derived Experiments

In this chapter, a series of behavioral experiments aimed at validating two of
SEMANT’s prediction on human behavior are described. First, an experiment that
tested the Implicit Asymmetry prediction in humans is presented. Second, two
experiments that validated the implicit asymunetry prediction are detailed. In the
following chapter, the implications of this validation on our understanding of the

structure of the human semantic system are discussed.

4.1 Experiment 6: Implicit Asymmetry

Experiment 6 was intended to test the prediction that it is easier to associate a
word with only a few lexical neighbors to a semantically related word with many
lexical neighbors, than vice versa (3.4.2, above). Based on the analysis of
SEMANT’s behavior, a possible source for such an impheit asymmetry was
found; when there is a large difference in the "local densities” of the semantic
neighborhoods of the two words, semantic activation would not flow in both
directions in an equal efficiency. Consequently, when the twe words are
semantically related and their activations interact substantially, it would not be
equally easy to form both directions of the associations between the two words.
Hence, in the following experiment, both semantically related and semantically
unrelated pairs in which the two words significantly differ in their lexical
neighborhood were used. The incidental learning of these pairs in both

presentation directions was compared.

4.1.1 Methods

Farticipants

Forty-eightl students, none of whom was tested in the previous experiments,
participated in this experiment for nominal payment or for course credit. They

were all native Hebrew speakers with normal or corrected to normal eyesight.
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Stimuli

Twenty-four semantically related but unassociated word-pairs were selected from
the Beer-5heva norms of word association (Rubenstein et al., in preparation). In
each pair one word had a nich lexical neighborhood and the other had a poor one.
The neighborhood of each word in that corpus was determined empirically by
testing fTee associations to it in a group of 100 participants. Based on the free
assoclations, three parameters have been calculated. The first, m, was defined as
the total number of different associates produced within one minute by all
participants. The second, #, was defined as the number of the different first free
asgociates produced by the participants. In addition, from the same corpus, I used
the mean RT (that is, the average reaction time until the first association was
given by each participant) in order to determine the efficiency of exploring a

neighborhood.,

The pairs were selected such that in each pair one word had a higher m (by at least
25 associations), and a higher » than the other word. Across the 24 pairs, this
difference in the two parameters was statistically significant. While the semantic
ncighborhoods of the two words in each pair differed in size, their ranked
familiarity, ranked concreteness, and mean_RT were similar (statistically
confrolled across the 24 pairs). Forward direction was defined from words with
small ng1ghborhoods to words with large neighborhoods; backward direction was

defined in the opposite direction. (Appendix A — Stimuli for the list of pairs).

Design and Procedure

As in the general paradigm, the experiment consisted of an incidental study phase
and an unexpected, exphecit, cued recall test. In the study phase, the 24 pairs
appeared once in random order, presented one word after the other. The
orientation task at study required "deep" processing. After each pair, one of five
questions: "which was bigger?", "which one do you prefer?”, "which is more
expensive?", "which is softer?", or "which is more useful?" appeared randomly®.

Each trial in the study phase started with a 500 ms blank screen with a rectangle

® In Hebrew, these are all one-word questions,
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frame at the center of the screen. After 200 ms, the first word was presented at the
center of the frame for 150 ms. Following an SQA of 700 ms, the second word
was presented for 150 ms. The question word was presented 650 ms after the
offset of the second word and remained on the screen for 1500 ms, during which

time a response was expected.

Two stimulus lists were prepared, In each list, 12 pairs were presented in the
forward direction and the other twelve in the backward direction. Across lists, the
pairs were counterbalanced so thal each pair appeared m both forward and
backward order. Half of the participants studied one list and the other half the

other list.

After the study phase, an unexpected cued recall test was done. The participants
were presented with the first word of each pair and were asked to respond with the

second.

4.1.2 Results and Discussion

As described in section 3.4.2, associations in SEMANT are easier to form in the
forward than in the backward direction. Consequently, I predicted that cued recall
would be more accurate for pairs presented in the forward than for pairs presented
in the backward direction. The actual performance of human participants in the

cued recall test on pairs is presented in Figure 24.
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Figure 24: Cued recall performance after incidental learning of 24 semantically related
pairs and 24 semantically unrelated pairs in the forward and bacloward conditions. No
statistically reliable difference between the conditions was found. Experiment 6 did not
support the model's prediction that associations are easier to form from words with low
density neighborhoods to related words with high density neighborhoods, than vice versa.
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As was in all the behavioral experments m chapter 2, there was again a
statistically reliable advantage in cued recall for related pairs (55%) over
unrelated pairs (7%; F(1,46) = §7.3, P < 0.001). However, as can be seen in
Figure 24, the predicted difference in the backward or forward direction was not
statistically significant (F(1,23)=0.9, P>0.3 and F(1,23)=0.6, P=0.4 for related
pairs and unrelated pairs, respectively). Nor was the interaction between the
relatedness and the direction factors significant (F(1,46)=0.1, P=0.7).

The most straightforward interpretation of these resulis 13 that the model does not
accurately represent human performance. However, before rushing to change the

basic principles of the model, other accounts should be considered.

For example, in the behavioral expenment, I may not have controlled the
parameters that determine the "density of the SEMANTIC neighborhood”. In fact,
the n and m parameters that were used in the Rubenstein et al's corpus were based
on free associations rather than on pure semantic criteria. It 13 possible that, if the
participants had been asked to respond with "semantic associates" rather than

"first associates”, different values for these variables had been obtained.

To conclude, Experiment 6 did not support the model's prediction that
associations are eagier to form from words with low density neighborhoods to
related words with high density neighborhoods, than vice versa. However, caveats
regarding the validity of these data were raised, suggesting that additional work 15

necessary before rejecting (or accepting) this dynamic panciple of the model.

4.2 Experiment 7: Implicitly Mediated Associations — Cued Recall’

The prediction of the computational model conceming implicitly mediated
associations (section 3.4.1) was validated in two experiments with human
participants. Both experiments included a study phase in whach pairs of unrelated
words were repeatedly presented while an orientation task required to compare the
meaning of the words in each pair along different dimensions. The repeated

comjoint activation instigated the formation of associations between the words in

! Experiments 7 and & will appear in Psychological Science titled "associaling unseen events:

semantically mediated formation of episodic associations”.
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each pair, as evidenced by cued recall. In an mmmediately following test phase, the
impact of these incidentally formed associations on associating their semantic
neighbors was tested explicitly by cued recall (Experiment 7) or implicitly, using

a semantic decision task (Experiment 8).

4.2.1 Methods

Farticipanis

The participants consisted of 33 undergraduates who were paid a nominal fee or
who received course credit for their participation. They were all native Hebrew

speakers with normal or corrected to normal vision.

Stimuli and Design

The stimuli in the first experiment consisted of 48 Hebrew nouns, exemplars of 24
well-defined base-level semantic categories (2 words per category). These nouns
were used to form a study list of 24 semantically unrelated and unassociated
word-pairs. Twelve of the 24 pairs were randomly repeated 30 times during the
study phase in order to establish strong episodic associations between the words in
each pair. The other 12 pairs were randomly repeated only 3 times in order to
establish weak episodic associations between the words in each pair. All 24
semantic categories were represented by one exemplar in the strongly associated
pairs and one exemplar in the weakly associated pairs. Thus, each word included
in a weakly associated pair had a semantically related correspondent included in a
strongly associated pair. Based on this semantic relationship, the weakly
associated pairs were equally distributed between two conditions: Tn the "same"
condition, the words of each weakly associated pair were exemplars of the same
semantic categories that were represented by one of the strongly associated pairs,
and in the same order of presentation. For example, on the basis of the strongly
assoctated pair DOG-TABLE, a corresponding weakly associated pair in the "same"
condition would be CAT-CHAIR. In the "different" condition, the weakly associated
pairs were formed by recombining the semantic categories represented by the
words in strongly associated pairs. For example, for the weakly associated pair

CAT-CHAIR, the corresponding strongly associated pairs were DOG-SUN and
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DAISY-TABLE. The pairs tested in the “same" and "different” conditions were
counterbalanced across two lists, so that, with half of the participants assigned to

each list, all 12 pairs were presented an equal number of times in each condition.

Procedure

As in the general paradigm, the experiment consisted of an incidental study phase
and an unexpected, explicit, cued recall test, The 36 trials, in which the 12 weakly
associated pairs were repeated, followed immediately the prescntation of the 360
trials during which the 12 strong associations were formed. There was no marked

distinction between the two types of tnals.

Each trial in the study phase started with a fixation mark exposed for 200 ms. The
paired words were simultaneously presented for 500 ms immediately following
the offset of the fixation mark, centered to the right and left of its location. A
question word was presented 300 ms following the words' offset, and remained on
the screen for 1500 ms, during which time a response was expected. Six single-
word questions (e.g., "Bigger?"; "Softer?") were randomly presented across trials
and the participants had to answer relating the right word to the left word®. Since
the participants could not know in advance which question would be asked, they

had to keep both words conjointly active in working memory for at least 800 ms.

Immediately following the study phase, a cued recall test was unexpectedly
administered. Note that, according to the model, an advantage in associative
learning of "same" over "different” pairs should occur only if a strong association
exists between the other exemplars of the same semantic categories. Therefore,
we analyzed separately the performance of 18 participants who successfully
recalled at least 80% of the strongly associated pairs and distinguished it from the

analysis of the entire group.

4.2.2 Results and Discussion

As expected, cued recall was considerably more accurate for strongly than for

weakly associated pairs. Furthermore, cued recall of strongly associated words,

® Hebrew is read from right-to-left.
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that their respective weakly associated pairs belonged to the same condition, was
practically identical to that of strongly associated words that their respective
weakly associated pairs belonged to the different condition (Figure 25). However,
the most important result was that cued-recall accuracy for weakly associated
pairs was significantly higher in the same than in the different condition
(t(32)=1.7, P<0.05). Moreover, as the computational model predicted, this effect
was more conspicuous when the 18 participants who passed the a priori criterion

for strong associations were analyzed separately (t(17)=2.1, P<0.025).

100% - 94% 93%
90% -
80% -
70% -
60% -
50% -
40% -
30% -
20% -

m Al Participants
Selected Participants

% Correct Cued Recall

DIFFERENT =
DIFFERENT =

30 REPETITIONS 3 REPETITIONS
STUDY CONDITION

Figure 25: Percentage of correct cued recall for strongly and weakly formed aszociations
{SEM). As predicted by the compurtational model, cued reeall is better in the S4mE than in
the DIFFERENT target-palr condition.

The high cued recall accuracy for pairs that were repeated 30 times (79% for the
entire sample and 93.5% for the selected participants) and the considerably lower
accuracy for pairs that were repeated only 3 times (32% for the entire sample and
42.5% for the selected participants), indicated that, mdeed, strong and weak
associations were formed during 30 and 3 repetitions, respectively. This pattern
conforms (o the associative learning mechanism implemented in SEMANT
(Chapter 3). Recall that, according to SEMANT, the strength of an association is
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determined by the sum of overlapping activity spreading from each node across
time. The significantly higher cued recall accuracy for weakly associated pairs in
the same than in the different condition, which occurred despite an equal mumber
of repetitions, suggests that the amount of overlapping activation during conjoint
processing of the two words was larger in the former than in the latter condition.
The spreading of activation between the conjointly activated unrelated words was
probably facilitated in the same condition, by the pre-existent lateral connections
between other words in the respective semantic neighborhoods. In the different
condition, no such associations pre-existed, hence, many more episodes of

conjoint activation were necessary to establish an association (Figure 25).

Although the outcome of this experiment was predicted by SEMANT, there are
altemnative accounts that should be considered. One is that the pre-existing
associations influence cued recall performance at the retrieval rather than at the
incidental study stage. When a weakly associated cue is presented, the
corresponding semantically close neighbor is activated, pointing to its strongly
associated pair, which then hints the correct response. Another altermative account
15 that when weakly associated pairs were presented during the study phase, the
participants noted the resemblance of the same pairs to the previously (strongly)
associated corresponding pairs. This exira attentional boost might have given
those pairs the cued recall advantage over the different pairs. Whereas the latter
account is similar to our account in assuming that the source of the effect is a
more efficient process of forming new associations (rather than affecting the

retrieval stage), a different mechanism produces the two accounts.

Note that the retrieval-based alternative account is valid only as long as
associative learning is tested by cued rccall, and the attention-based account
requires that the weakly associated pairs be presented at study. If performance
differences between “same" and "different" weakly associated pairs persist when
these pairs are not studied and no explicit retricval is required, both alternative
accounts can be discarded. To this end, in Experiment 8, I used a semantic
decision task, instead of cued recall, to test whether forming strong associations
between words could implicitly induce associative connections between their

gemantic neighbors that were not presented at all during the study phase.
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4.3 Experiment 8: Implicitly Mediated Associations — Reaction Time

Experiment & differed from Experiment 7 in two important aspects. First, the
tarpet pairs (formally coined “weakly associated pairs”) were not presented during
the incidental study phase. Thus, evidence for an incidentally formed association
between the unrelated words composing a target-pair could only result from the
association formed between the other two exemplars of their semantic categories.
Second, the "same/different” effect was assessed by requesting the participants to
determine as quickly as possible whether two words presented in a trial were
semantically related. Hence, whereas conjoint processing of the target-pair at test
was necessary, the task did not require retrieving one word when cued by the

other.

431 Methods

Participants

The participants were 20 undergraduates, all native Hebrew speakers with normal
or corrected to normal vision’. Neither of them parficipated in the previous

experiments. They were either paid or recerved course credit for participation.

Stimuli and Design

The relevant stimuli consisted of 96 Hebrew nouns from 32 base-level categories
(3 words per category). Thirty-two words (one per category) were used to form a
study list of 16 unrelated word-pairs (one word from each category). Those pairs
were randomly repeated 30 times during the incidemtal study phase. The
remaining 64 words were used to form a test list of 32 semantically unrelated
target-pairs, equally sub-divided between a "same" and a "different” condition.
Each of the studied categories was represented once in each of the test conditions
(by different exemplars). In the "same" condition, the pairing of the categones
represented by the studied pairs was preserved at test, For example, following the
study pair DOG-TABLE, the "same” target pair was CAT-CHAIR. In the "different”

condition the categories were recombined. For example, followmg the study pairs

¥ One participant was discarded due to chance performanee in the semantic relatedness decision.
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DOG-TABLE and SUN-TULTP, the "different" target pairs were HAMSTER-DAISY and
MOON-BED. The pairs used to induce each test condition were counterbalanced
between two study lists, so that over all participants, each pair appeared an equal
number of times in both experimental conditions. Note that regardless of
condition, all the relevant pairs were comprised of semantically unrelated words.
Therefore, 32 additional semantic categories were used to compose filler pairs of

semantically related words, making each choice equally likely.

Procedure

The incidental study phase was similar to that described in the previous
experiment. The test phase followed the study unexpectedly and immediately. A
pair of words was presented in each inal and the participants were instructed to
respond by pressing a button indicating whether the words were semantically
related or not. Speed and accuracy were equally emphasized by the instructions.
The instructions made no reference to the previously presented pairs and, indeed,
post-experimental debriefing revealed that all participants considered the two
phases to be independent.

A test trial began with a fixation mark followed 200 ms later by the pair of words
presented simultaneously, centered right and left of fixation, until a response was
given. An inter-trial interval of 1500 ms separated the response from the onset of
the next trial. Reaction times (RT) were measured at 1 ms accuracy. Following the
semantic decision test, the associations formed between the words presented as

pairs in the study phase were tested by cued recall.

4.3.2 Results and Dhscussion

The discrimination between related and unrelated pairs was almost perfect, and
equal for the same and different pairs (95%). However, the participants' mean RT
to pairs in the same condition was significantly shorter than the RT to pairs in the
different condition [958 ms (sd = 33) and 937 (sd = 31), respectively; t(18) = 1.9,
P < 0.05)]. The mean cued recall performance for the presented pairs was 86%,
suggesting that reliable associations were formed between the words in each pair

during the incidental study phase.
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The stgnificant difference between the RT in the two conditions confirmed that
processing a pair of unrelated words is facilitated by the existence of a strong
association between other exemplars of their respective semantic neighborhoods.
Furthermore, the design of this experiment helped reject the retrieval-based and
attentional-based accounts for this effect, thus supporting the mechamsm for
forming associations implemented in SEMANT. Recall that the target pairs were
not presented during the study phase. Furthermore, the semantic decision did not
require explicit retrieval of cued words from memory. Hence, the obtained
difference between the "same” and "different" pairs cannot be explained by either
attention modulation at study or by retrieval-dependent processes. Finally, since
the studied categories were represented equally in both conditions, single-item
category repetition effects (cf. semantic priming) cannot account for the observed
effect either. Therefore, SEMANT's account for the semantic-mediation of
associative learning, based on conjoint processing of exemplars of the same
semantic categories during a previous study phase, is the most reasonable

explanation,

4.4 Conclusion

In conclusion, Expeniment ¢ failed to validate the computational prediction that in
some cases it would be casier to form associations between to words in one
direction than in the other. However, the results of Experiments 7 and & validate
an a prnionn prediction of SEMANT. Thus, they provide a strong empirical
evidence for the mechanism, suggested by SEMANT, of formation of

semantically mediated association.
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5 General Discussion and Future Work

5.1 Experimental Contributions and Limitations

The goal of the present study was to explore the 1mpact of semantic knowledge on
the cpisodic formation of new associations between words and to reveal the
dynamic characteristics of the episodic associative learning mechanism and its
interaction with the semantic system. In a series of experiments, I have
demonstrated that previous semantic links belween words boost the formation of
new associative connections based on frequent co-occurrence. Furthermore, newly
formed associations between semantically related words mught be strong enough
to supersede, at least temporarily, free associations thal were established naturally
during life experience. Associative leaming was assessed by cued recall in
Experiments 1-4 and by forced-choice recognition in Experiment 5. While
controlling for pre-experimental associative connections between related (as well
as unrelated) words, all experiments support previous suggestions that pure
semantic links between words boost the mecidental formation of associations -
during frequent co-occurrence. More importantly, the results shed light on the
mechanism of the pure semantic facilitation of forming new associations between
words and revealed some of its constraints. Experiment 1 showed that the number
of simuitaneously learned associations is limited. Experiment 2 showed that
semantic claboration of the stimuli facilitates forming associations between them.
Experiment 3 showed that previous semantic relations between the to-be-
associated words contribute to forming associations between them. Together,
Experiments 2 and 3 showed that the semantic system is involved in the episodic

proccss of forming associations.

Two alternative mechanisms were suggested for the contribution of the semantic
systernt 1o the association formation process (section 2.7), and Experiments 4 and
5 were aimed at distinguishing between them. In Experiment 4, [ found that, in the
early stages of association formation, the advantage of the related pairs increased
with the number of presentations. This interaction suggests that the structure of
the semantic system affects the very process of associative learning and

established the time ¢ourse of this effect. In Experiment 5, retrieval strategies used
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by the participants were better controlled by using a forced-choice cued-
recognition test. Although the procedural difference between Expeniments 4 and 5
do not allow a direct straightforward comparison, the outcome of Experiment 5
supported my hypothesis that the semantic boost occurs at study and is not the
result of differences m retrnieval strategies for related and unrelated pairs, In
concert, the results of these two experiments demonstrate that semantic
relatedness boosts the incidental formation of episodic associations between
words by facilitating associative leamning at each co-occurrence. Although in
Experiments 4 and 5 this trend was sampled at only a few points, a similar trend
was found in Simulation I, in which the effect of the semantic relationship was

examined consecutively between 1 and 30 presentations (section 3.3.1).

The pattern of the results of Experiments 4 and 5 was observed using both shallow
and deep processing during the incidental learning phase and testing memory by
both cued recall and forced-choice cued-recognition. Furthermore, the priming
effects in Experiment 8 were obtained without exposing the target-pairs at study at
all. Thus, I showed that the dynamic effects reported in Chapter 2 are not peculiar
lo a particular level of processing at study or to a particular form of testing
memory. Note that, using a shallow task, Goshen-Gottstein and Moscovitch
(1993) found no explicit evidence for associative learning. Yet, their methods are
too different from rune (determined by different goals) to allow direct
comparison. For example, they tested associative leaming using the priming
paradigm, which is a perceptnal, data driven task. In this dissertation, associative
learning was tested mostly using cued recall, which is a more conceptual task,
Overall, the results mn this dissertation suggest that their conclusion, namely, that

associative learning is perceptual based only, is inaccurate,

A close examination of the time course of the semantic boost of associative
learning in Experiments 4 and 5 reveals that this effect is limited to weak
association. Although the upper limit of the interaction effect shifted from 10 to 5
co-occurrences of the paired words when using forced-choice delayed recognition,
once this lirmt was reached, the interaction ceased in both experiments. The limit
on the semantic boost can be explained assuming that the amount of semantic

activation elicited by a word decreases and sharpens with repetition, and
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consequently the advantage of concurrent activation of closely related words is
reduced. Evidence for the plausibility of this assumption is provided by functional
neurophysiological and neurcimaging studies, where a repetitive activation of
stimuli yields less activation (e.g., Baylis & Rolls, 1987, Schacter & Buckner,
1998; Ringo, 1996; for a review, see Wiggs & Martin, 1998).

Note, however, that the percentage of cued recall continned to increase at a
relatively steady ratc cven when semantic knowledge ceased to make a significant
contribution to learning. This residual learning can be attributed primarily to
episodic co-occurrence, Thig trend is, of course, congruent with ample evidence
provided by the paired-associate paradigm used extensively in the late fifties and
early sixties (see, for example Crowder, 1976, Chapter 9). Interestingly, cued
recall continued to improve for both related and wnrelated pairs with additional
training, while delayed recognition continued to improve only for unrelated pairs.
This pattern suggests that, at least in laboratory experimental conditions,
associative learming is limited by vanous factors that prevent it from reaching the
ceiling. In real life, the semantic context in which incidental associations are
formed is richer and more complex than simple categoncal relatedness and,
therefore, more conducive to forming strong associations. The dissociation
between the aftenuating effect of repetition on semantic activation and its
facilitatory effect on associative learning suggests that semantic and episodic

processes, although interactive, are separate.

The goal of Experiments 7 and § was to provide empirical evidence for
gemantically mediated contributions of existing associations to the formation of
new episodic associations, as predicted by SEMANT. The two experiments have
demonstrated that strong episodic associations between itwo unrelated words
facilitate the incidental formation of mew associative connections between
semantic neighbors of the strongly associated words. Experiment 7 suggested this
effect by showing better cued recall of weak associations when these pairs
represented semantic categories that were already connected via a strong
association between other exemplars. Experiment 8 showed that the establishment
of strong episodic associations between exemplars of different semantic

categories facilitates the conjoint processing of other word-pairs from the same
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categories, leading to faster semantic decisions even if the target pairs had not
been presented at study. Hence, Experiment 8 demonstrated that the semantic
mediation effect on forming new episodic associations 1s not confined to retrieval
processes and does not result from differential allocation of attention between the
two pair-types. Rather, SEMANT accounts for these effects assuming that an
existent episodic comnection between exemplars of two (unrelated) semantic
categories provides an efficient channel via which activation can spread from one
category to the other. Hence, when the two previously associated words are
activated (by within-category spreading of activation among semantic neighbors),
the amount of overlapping activity during conjoint activation generated by a new

pair of unrelated words is larger than if no such channels exist (Figure 17).

The unexpected direction of the observed difference in Experiment 8 provides an
additional interesting insight into the associative process and, at the same time,
points to a more general functional organization of semantic and associative
(episodic) connections in memory. Counter-intuitively, the existence of an
episodic association between unrelated exemplars of two semantic categories
facilitated (rather than inhibited) subsequent decisions that exemplars of these two
categories are not related. This result indicates that the formation of episodic
connections linking two specific words does not directly influence the
organization of the semantic map, at least in short time scales. Nevertheless, it 13
not unreasonable to hypothesize that the organization of the semantic system is
affected, or even determined by solid episodic information, which is established
over long period during one's life span. Such 1ssues are very difficult to address
through experimental by laboratory experimental setups and hence are appropriate
for computational-model-based research. Such reciprocal influence between
episodic information and the organization of the semantic system is further

discussed below (section 5.4.8).

Two possible mechanisms could account for the pattern observed in Experiment
8, both based on the model's assumption that the repeated conjoint activation of
the two semantic neighborhoods during the learning phase facilitated the conjoint
processing of their target exemplars. One of these accounts is that although the

target-pair had not been presented at study, pairs of words in the same condition
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were implicitly activated together and this implicit conjoint acttvation facilitated
the conjoint perception of the two words. As explained above, fhe implicit
conjoint activation could have been mediated by automatic spreading of activation
among semantic neighbors while the strong association between other exemplars
was formed. Note that it is the conjoint (rather than mdividual) activation that
matters, because, indeed, words forming pairs in the different condition had also

been activated by spreading of activation, but not together.

The second account is similar in essence but focuses more on decision processes.
According to this account, when a target pair was presented and the participant
had to make a decision regarding its semantic relatedness, the respective semantic
neighborhoods were activated and compared. For pairs which their neighborhoods
were already conjointly activated during the intensive learning, a decision that
ihey are different was easier and resulted in a shorter RT. The observed
facilitation in RT is similar in nature to association-specific repetition priming
(Goshen-Gotistein & Moscovitch, 1995), but in Experiment §, it is the repetition
of the specific semantic categories (rather than specific pair of words) that

facilitates the performance of the task at test.

5.2 Experimental Future Work

Following the experimental work completed in this dissertation and based on the
results of the computational model that was built and simulated, several possible
directions for expanding the experimental work can be proposed in order to gain a
broader experimental basis for the relevant phenomena and to determine
additional and more accurate constraints for the computational model. There are
three major directions for potential experimental work. The first consists of re-
addressing experiments and methodologies whose results were difficult to
interpret and hence did not lead to clear theoretical insights such as the Implicit
Asymmetry experiment. The second direction of future work consists of further
theoretical study ol issues such as how other parts of speech are orgamized in the
semantic system in relation to nouns. The third direction consists of

experimentally testing these predictions of SEMANT that were not validated
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within this study, such as the diffuse activation as the cause of Schizophrenic

Thought Disorder.

5.2.1 Tmplicit Asymmetry

One of the predictions of SEMANT was that sometimes it would be easier to form
an association between two semantically and associatively unrelated words in one
direction than in the opposite direction (section 3.4.2). This prediction, termed as
implicit asymmetry, emerged from the simulation and was not based on prior
theory. An examination of the results suggested that this asymmetry stems from
the inhomogeneous distribution of the concepts in the high-dimensional metric
space. According to the results, I predicted that it should be easier to form an
asgociation from a word with a spare semantic neighborhood to a word with a
dense semantic neighborhood. In an experiment aimed at testing this prediction
directly (section 4.1), the demsity of the semantic neighborhood was defined
according to several parameters based on free association questionnaires, and the
existence of an association at the end of the study phase was tested in a cued recall
test, as 1 most of the other experiments in this research. The results did not

support the prediction.

Despite the fact that the experiment did not support the model prediction, it would
be premature to conclude that the prediction is mvalid. One possible reason may
be that the density of the semantic neighborhood was determined based on
averaged results of free association questionnaires. According to SEMANT, free
associations are Influenced by cpisodic factors in addition to semantic
organization. Hence, the parameters obtained from free associations do not
accurately reflect the density of the semantic neighborhood as required by the

prediction.

A second difference from the conditions of the prediction emerges from the fact
that the organization of the semantic memory varies between participants. This
factor is especially important if the assumption that it reflects also episodic factors
is correct. The parameters' values were averaged across participants and, more
importantly, the group of participants that took part in the experiment was

different from the group of participants that answered the free association
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questionnaires. Hence, it could very well be that delicate effect such as the

implicit asymmetry wonld be lost due to between-subjects variance.

The analysis that was performed on the computational model is a third potential
factor. Recall that the effect that was first detected was the asymmetry in the
strength of the formed associations between two words. A significant correlation
was later found between the difference of densities of the two to-be-associated
words on one hand and the association strength differences between the two
directions on the other. The difference of densities was therefore suggested as a
potential cause for the implicit asymmetry. Nonetheless, other factors, possibly
more significant, such as word famiharity cannot be ruled out as potential cause of
this asymmetry. Joint computational and experimental work is required in order to

evaluate these factors.

If these factors will be modified in future experiments, empirical evidence to
support the model predichon may be found. Such result would be very interesting
for two reasons. First, it would tell us what are the factors dominating the
propagation of semantic activation. Second, it would prove the usefulness of
computational studies for studying cognitive phenomena: without the model, there

is very little chance that this effect would have been found.

5.2.2  Qther Parls of Speech

In the series of behavioral experiments that were performed so far, as well as in
the computational model, all the words were nouns. Obviously, our gemantic
memory contains other linguistic categories such as verbs, adjectives, etc. The
semantic links between words from different linguistic categories are apparently
more diverse in real life. For example, it is reasonable to assume that nouns (e.g.,
CAR) have primarily functional semantic links to verbs (e.g., DRIVE). In addition, it
is far less likely to find semantic relatedness based on belonging to semantic
categories between words from different lingnistic categonies. Recall that in the
work throughout this dissertation, both experimental and computational semantic
relatedness was defined as belonging to the same semantic category. Hence,
paradigmatically, involving other linguistic categonies would force us to modify

the definition of semantic relatedness and harden the control on the strength of the
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pre-experimental links. Nonetheless, the information that could be gained by
including other linguistic categories and additional types of semantic links 15
valuable since it would enable us to analyze the process of sentence
comprehension and generation. Doing so would also be likely to raise new
theoretical and computational issues that would challenge the computational

model.

5.2.3 Schizophreni¢c Thought Disorder

As was described in detail in sections 3.4.3 and 3.4.4, a possible cause for 5TD,
namely a faster and farther-spreading activation wave was implemented in
SEMANT in two alternative manners. The two different implementations yielded
two different predictions about performance of STD patients in experiments
similar to Experiment 4. Performing a similar experiment on STD population and
comparing the results to those of the normal population may allow us to
distinguish between the two optional implementations and consequently converge

on one of the two potential theorctical explanations for STD.

Due to the involvement of an abnormal population, a special attention should be
paid while designing the expeniment to fitting the experimental paradigm to the
disabilities of the patients. First, the number of available participants would
probably be mch smaller than in the normal population. Second, simce the ages
and 1.Q. of some of the patients that will participate will probably be different
from those in the normal population that participated in Experiment 4 (20-30-year
old), a different control group will have to be run. Third, memory performance in
general 18 lower in STD patients (Aleman et al., 1999). Hence, an index to assess
the degraded performance of STD patients, to allow comparing their performance

to those of the normal population, would have to be developed.

Nevertheless, since the two predictions of the computational model differ mainly
in the pattern of interaction between the performance in the related and unrelated
conditions, a general degradation in performance should not prevent determining
which one of them reflects the actual results more accurately. Fourth, due to
limited concentration and other physical disabilities of the patients, the overall

duration of the experiment should be rather limited. Despite these expected
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difficulties, running such an experiment would be worthwhile and evidence to
support one of the possible theoretical variations regarding the nature of the
pathology would certainly be beneficial in the endeavor for finding a cure for the

disease.

5.2.4 Conclusion of Expenmental Future Work

As elaborated m this section, many further behavioral questions arise directly
from the experiments in this study and from the computational model that was
developed based on it. The suggested experimental work may allow us to better
understand the basic process of human associations, to provide further constraints
for computational simulations of related phenomena, and to ennch our grasp of

the human memory and thinking in general.

5.3 Computational Contributions and Limitations

Following the first series of psychological experiments, which investigated how
semantic factors affect the process of forming associations between words, as was
described in Chapter 2, my goal was to develop and evaluate a computational
model that could account for these results, and to produce further predictions on
how words are associated. The model described in Chapter 3, SEMANT, shows
how both semantic relatedness and episodic associations can be implemented in a
single structure using two types of representations. Semantic relatedness was
expressed as proximity in a high-dimensional feature space, spanned by the 100-
dimensional numerical representations of the concepts. Episodic associations, in
contrast, were represented by arbitrary "physical” connections between the units
that represent the words. Both types of relations were implemented

simultaneously in a self-organizing semantic map with lateral connections.

Like human participants, SEMANT showed that semantic information facilitates
learning new associations. This facilitation emerged in a natural, mechanistic
manmer, without involving top-down intentional processes. It was achieved by
Hebbian link-strengthening, based on intersections of spreading activation waves
over a semantic map. Based on SEMANT's success m rephicating certain aspects

of human behavior, it was used to examine other aspects of it as well.
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One such known aspect of human behavior is the asymmetric natare of word
associations, which is difficult to explain with computational models that rely on
distances between high-dimensional numeric representations. One atypical
example is Plaut's (1995) model, which can potentially capture asymmetrical
associations between word-pairs based on the relative frequency of the two
directions of presentation, termed explicit asymmeiry in section 3.4.2. Similarly,
SEMANT is based on perfectly symmetric foundations such as high-dimensional
vectors and the self-organization algorithm that establishes the semantic map.
Nonetheless, SEMANT demonstrates two kinds of asymmetries. The first, explicit
asymmetry, is achieved by unidirectional lateral connections that are implemented
on top of the symmetric organization of the semantic map. These connections
enable asymmetric associations between two words, based on different episodic
experiences in the two directions. The second, implicit asymmmetry, emerges from
the non-uniform distribution of concepts in the high-dimensional space. This
distribution makes spreading activation asymmetric between two points in the

semantic space thal would otherwise be cquidistant.

The model suggests that the unassigned units in the high-dimensional space are
significant, since they serve as a mediating substrate for spreading activation. Any
gystern orgamized in an unsupervised fashion to accommodate an unknown
number of items, such as our semantic system, would be expected to have a much
larger capacity than is usually needed. In semantic maps, this property 1s
expressed by the number of nodes in the gnd, which is much larger than the
number of represented words (in the case of the current model, which includes 40
nodes in which only 250 words are embedded, there are 6.4 nodes per word on
average). However, due to the self-organization algorithm, these unassigned units
are not distributed uniformly in the high-dimensional space, but rather represent
the densest areas of the input space. Consequently, they help magnify the effects
that are due to the statistical properties of the input. An example of such an effect
is the asymmetry in the learning efficiency between two directions of word-pairs.

In the current version of SEMANT, the episodic information is added, as learning
continues. The model does not forget anything (see section 5.4.7 for suggestions

on how a forgetting mechanism could be implemented in the future).
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Consequently, the lateral connections keep getting stronger without limit. Such an
unconstrained process may lead to two undesired results. First, the episodic
components of the lateral connections may become much stronger than the
semantic component. Thus, the semantic information would be practically
eliminated and the activation would spread, based only on the episodic
connections. Second, if the lateral connections become too strong, the dynamic
process would "explode”, namely, the activation values would reach ceiling very
quickly in large areas of the semantic map. Not only are these two consequences
computationally undesirable, they also have no possible equivalence in human
behavior. Thus, the conclusion from these computational and cognitive
considerations is that a forgetting mechamism 1s important for stabilizing the
dynamic system and keeping it functioning efficiently for long time (human's life
time). Another suggestion on how episodic connections may eventually assimlate

into the semantic map is discussed in section 5.4.8.

In sections 3.4.3 and 3.4.4, SEMANT was used to gain insight into one of the
theories of Schizophrenic Thought Disorder (STD) as suggested by Spitzer
(1997). According to this theory, the activation over the semantic network of STD
patients spreads faster and farther than that of normal subjects. The results of STD
simulations (sections 3.4.3 and 3.4.4) show that if a stronger wave were the cause
for this difference, STD patients would perform better in both the related and
unrelated conditions. On the other hand, if the organization of the semantic system
of STD patients is less focnsed but the sum of the weights is not greater than that
of normal participants, they would perform better only in the unrelated condition,
in the related condition, their performance should be impaired. Consequently, by
replicating Experiment 4 on STD patients and companing the results to those
predicted by the model, it would be possible to determine which version of the
model iz likely to be correct, thereby gaining insight into the causes of the

impaired performance of STD patients.

54 Computational Future Work

Based on the computational model that was developed in this dissertation, several

possible directions for future work can be undertaken to achieve a more accurate
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and comprehensive simulation of human behavior, There are three major such
directions; The first consists of extending SEMANT to extract additional and
more accurate predictions based on more plausible computations. Possible such
extensions include: improving semantic representations, scaling up the lexicon,
and modeling interaction between the activation waves. The second direction of
future work consists of expanding the model to cover further aspects of human
behavior, including modeling: semantic and phonetic maps, the effect of attention,
episodic vs. semantic recall, and forgetting. The third direction involves
developing an additional version to the model, based on an altemative
assumption, namely, that episodic assogiations assimilate into semantic

information over time. This direction is discussed in scction 5.4.8.

54.1 Improved Semaniic Representations

As detailed in section 3.2.1, the numerical repregentations used in the current
version of SEMANT are based on the HAL algorithm, which was implemented on
the CHILDES data base. Dunng this research, I attempted to use HAL
representations that were derived based on larger and more general databases
(USENET, REUTERS) but they did not yield semantic maps where semantically
related words, according to my subjective judgment, were clustered properly on
the map. A closer examination at those HAL representations revealed a rather
puzzling phenomenon. The high-dimensional distance between semantically
rclated words was in some cases much larger than that between completely
unrelated words. Such discrepancies are problematic to SEMANT since the
semantic maps are organized based on these representations, and the performance
of the entire model depends on them. This phenomenon raises doubts concerning
whether HAIL representations in general are capable of capturing semantic
properties of words. Hence, using alternative numerical representations might
improve the performance of SEMANT. Such representations could be based on
already existing algonthms such as LSI (Landauer & Dumais, 1997) or FGREP
(Miikkulainen, 1993; Miikkulainen & Dyer, 1991), or on completely new
algorithms. Furthermore, since the current version of SEMANT was successful in
replicating human performance, the use of numerical representation based on

various sources while running identical simulations may serve as a benchmark
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task, allowing us to compare and quantify the success of the various

representations in captuning the semantic of words.

5.4.2 Scaling Up the Lexicon

Recall that the lexicon of SEMANT consists of only 250 nouns (section 3.2.1).
Using alternative representations, as discussed in the previous section, which
might better capture the semantic content of the words, should allow scaling up
SEMANT more casily. Note, however, that the ratio between nodes in the map
that are assigned to words and "empty" nodes that do not represent any word
should remain approximately as it is in the current version of SEMANT (6.4

nodes per word on average, section 5.3). Therefore, larger maps should be used.

5.4.3 Interaction between Activation Waves

Recall that in the learning phase simulation of SEMANT (section 3.3.1), two
words are first presented to the model with a certain SOA and two activation
waves then spread independently. Such independence is a severe deficit of the
current version of SEMANT as a biologically plausible model, In order for two
(or more) waves to spread in the same system without interaction, the waves
should be somehow '“labeled" (or “"colored") to carry the information that
identifies their source throughout their propagation. Moreover, in the current
version of SEMANT, the association strength between the two concepts is
determined based on the sum of the intersections of the activation wave
throughout the trial and, hence, only after the trial is ended. Again, in order for
such mechanism to take place, the wave should be labeled and should carry the
information regarding their source throughout the trial. Note, however, that such
labeling scheme can be avoided if the ephancement of the association strength
between the two words based on the summation of waves' intersection 1s done in
"real-time", while the waves are propagating and while the sensory input (or
echoic input) that originated the activation 1s still valid. Nevertheless, in order to

prevent the waves from interacting, some labeling scheme seems inevitable.

A possible justification for labeling comes from the spreading activation theory of
Collins and Loftus. According to their theory, activation spreads from the two

concepts along the commection of the semantic network until the two activations
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meet. At that point, an association 1s formed between the two concepts. The
waves, therefore, should be labeled to carry the information regarding their source

throughout the propagation.

Collins and Loftus's semantic network theory is a cogmitively driven theory for
semantic memory. However, SEMANT is intended to be more biologically
plausible (although still at the conceptual level, as opposed to suggest a direct
implementation in the brain hardware). Since such a labeling mechanism is not
likely to exist in reality, it is less suitable to be implemented in SEMANT.
Moreover, it is also less likely that two (or more) activation waves would
propagate through the same system (semantic memory) without interacting.
Hence, the more plausible assumption is that the waves that originate from
different sources interact in some manner, and that the propagation of one wave
affects the propagation of the other during the tral. Changing SEMANT to
support unlabeled interacting activation and still replicating human behavior is a

challenging future computational research direction.

5.4.4 Semantic and Phonetic Maps

Words that rthyme are associated more easily regardless of their semantic distance
(Baddeley, 1999). SEMANT suggests an architecture that supports the facilitation
of association formation based on a measurable relative property of the words,
namely, their semantic distance. In an analogy to the role of semantic distance in
SEMANT, a phonetic distance measure can be defined such that a model similar
to SEMANT with self-organizing feature maps based on phonetic distance will be

successful in replicating experimental results on rhyming words.

Miikkulainen (1991, 1993) suggested a simple encoding scheme for building
distributed representations for words that would reflect their phonetic distance. In
his encoding scheme, each letter of the alphabet was given a value between 0.0
and 1.0 according to its darkness, measured by counting the black pixels in its
bitmap representations. The darkness values of each word's letters were then
concatenated into a representation vector. In effect, the representation is an
extremely blurred bitmap of the words. This encoding scheme grounds the

representation into the sensory experience and safisfies the requirements for
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modeling the phonetic map. Each written word has a unique representation and

words that are similar in their phonetics have similar representations.

In a natural next step, in addition to a phonetic model, the two models could be
combined to form a more comprehensive model of the human lexicon.
Miikkulainen (1993) suggested such a model, DISLEX, which consists of two
separate maps: semantic and phonetic, which are inter-linked with all-to-all bi-
directional commections. The activation of a node in one map causes an activation
of the relevant node (and its neighborhood) in the other map. Using activation
waves that spread separately on the two maps, a much nicher range of phenomena
of the facilitation of association formation based on both semantic and phonetic
relatedness could be addressed (Figure 26).
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Figure 26: An illustration of lexical and semantic maps with many-to-many inter-
commections. SEMANT could be expanded to include a phonetic map in addition to the
semantic map (from Miikkulainen, 1993).

Assume, for example, that the strength of the association that is formed between
two concepts that are activated sequentially depends not only on the intersection

of the two activation waves that spreads over the semantic map, but also on the
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intersection of the two activation waves that spread over the phonetic map. In
such a case, 1t should be easier to form an association between LEG and BEG
(based on phonetic similarity) than between LEG and COWw, as it is easier fo form
an association between LEG and EAR (based on semantic similarity) than between

LEG and COW (section 2.7).

5.4.5 The Effect of Attention

The research in this dissertation was focused on incidental learning. Therefore, the
effect of attention on learning was not studied experimentally and was not
modeled. However, in the Pilot Experiment (section 2.3) a clear advantage for
mtentional learming was demonstrated. As discussed in the introduction chapter,
most of the studies on association learning are based on intentional learning
(section 1.4). It can be safely concluded that allocating attention to the lsamung
process, either explicitly (i.e., intentional learning) or implicitly (i.e., priming)
significantly improves the learning performance.

The most common theory of attention is based on the spotlight metaphor (Eriksen,
1990; Juola, 1991). At each given moment, our attention 1s directed to a certain
process or area in the memory and shifting the attention is done serially in time as
if a spotlight was pointing at only one target at each moment in time. This
spotlight metaphor can be easily implemented in SEMANT to support the
enhancement of leaming by attention. At each moment in time, a certain limited
area of the map can be activated by an outside source, i.e., the attention spotlight,
such that the nodes in this area are partially activated regardless of the activation
waves caused by the learming process. Consequently, should the items to be
learned be localized in the spotlighted area, their activation should be stronger.
Since the model suggests that episodic learning is achieved through the
intersection of activation waves, it should be stronger when it happens in an
attention-activated arga. The spotlighted area over the map can be manipulated
regardless of the learning procedure, as is done in experiments with human. Thus,
further predictions on how attention and episodic learning processes interact can
be derived. Moreover, extending the model in this manner makes it possible to

compare intentional learning in a computational model with that in humans.
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Confirming the predictions of such a model would provide computational support
for the spotlight theory, as well as establish a more comprehensive model of

agsociative learning,.

5.4.0 Episodic vs. Semantic Recall

Recall that in the first behavioral experiments in this research (section 2.2.1) the
participants were tested in two types of tests. The first, explicit, was a cued recall
test, where the participants were presented with the first words i the pairs from
the study phase and had to reply with the corresponding second word. The second
test, implicit, was a free association test. In the simulations, however, only the

first, explicit test was simulated (section 3.3.1).

The activation waves spread according to the same equations in two different
manners: (1) 1gnoring the episodic components of the lateral connections, and (2)
combining the full level of the episodic components of the lateral connections
with the semantic component. The parameter T implements the choice between the

two processes:

+7-F
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(section 3.2.5). During the learning phasc, T is set to 0 such that the activation
propagates based only on the semantic components of the lateral connections.
During testing, T 1§ set to 1 such that the activation propagates based both on the
semantic and the episodic components of the lateral connections. In this way, cued
recall 1s simulated since the simulated-participant takes into account the episodic
information from the learming phase while trying to recall the answer. This
parameter did not play a major role in the model thus far, but it could be used to

simulate additional implicit tests in the future.

The additional testing phase in the Pilot Experiment (section 2.3), i.e., the implicit
free associations test, could be simulated by selecting a muddle value between
zero and one for the © parameter, ¢.g., 0.1, In this case, even in the testing phase,
the simulated-participant will "try to ignore" the study phase and consequently
will teply with his first, natural, association. However, as happens with real

participants, the episodic components of the lateral connection affect the
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propagation of the activation wave to some extent, and sometimes the episodic
pair word will be output as the first natural association. Such a mechanism would
allow SEMANT to be compared to mmmerons free-association studies in humans
(e.g., Palermo & Jenkins, 1964) and would allow scaling the computational
parameters more accurately than is currently possible. Additionally, it will be
possible to use SEMANT to model a variety of effects in free-associations tests
(e.g., Postman & Phillips, 1965) and to predict others, thus contributing to our

understanding of the fundamental process of free associations.

5.4.7 Forgetting

The dissertation did not address question concermng memory decay in general
and forgetting episodic mformation in particular. Accordingly, no implementation
for a forgetting mechanism was implemented in SEMANT. Such a mechanism
can be added in various ways and the performance of the model could than better
fit human data. One simple approach is to reduce the strength of ail episodic
connections in some small fixed quantity at the end of each learning trial. Thus,
associations that will be learned later in time would have an advantage n being
recalled. Using this implementation, the model would demonstrate the well known
recency effect (Postman & Phillips, 1965). Note, however, that such a simple
implementation would not support the primacy effect (in Baddeley, 1999).
Extending SEMANT to demonstrate normal and pathological memory loss may
turn 1t 1mto a useful tool for investigating this less examined aspect of leaming
process and might even be useful in studying cognitive pathologies related to
forgetfulness.

5.4.8 Map Organization with Episodic Associations

SEMANT is based on an already organized semantic map, modeling the human
semantic mcmory. A fundamental question in cognitive psychology is how the
semantic memory gets organized in the first place. The psychological
experimental research described above does not address this question and, hence,
the computational model it includes does not aim at solving it either. Several
researchers have suggested that the sensory input that 15 related with each concept

in the semantic memory serves as a feature vector. This vector enables the
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semantic memory to become organized such that semantic relatedness is reflected
in the organization as illustrated in Figure 27 (Allen, 1990; Feldman et al., 1990;
Harnad, 1990, 1992; Nenov, 1991; Regier, 1991a, 1991b, 1992; Sopena, 1988).
Others proposed that all semantic knowledge is based on episodic leaming
(Postman, 1972). These researchers suggest that the organization of the semantic
memory and the structure of episodic connection are differentiated omly by the
time scale in which they are established. Episodic connections are established
quickly, sometimes even based on a single presentation, and the semantic
organization develops slowly and gradually with time and 15 determimed by the

cpisodic connections.
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Figure 27: An illustration of a conceptual map with reciprocal commection with sensory
maps. The sensory input serves as a feature vector, enabling a meaningful organization of
the conceptual map (from Miikkulainen, 1993).

In the current version of SEMANT, the episodic connections do not affect the
organization of the semantic map. However, activation flows through both
semantic and episodic connections such that the outside observer cannot isolate
the influence of the two types of commections. This modeling approach better
reflects the feature veetor assumption, as the semantic map is organized according
to outside (possibly sensory) information and is not affected by the episodic
comnections. Another version of the model could be designed such that the
episodic conneclions in long time scales affect the orgamzation of the semantic
map. This alternative design better reflects the idea that semantic knowledge is

actnally episodic information over long time scales. Comparison of predictions of
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human behavior of the two alternative designs with actual human performance

may supply evidence to support one approach or the other.

549 Conclusion of Computational Future Work

Ag elaborated in this section, there are many interesting directions for expanding
and modifying SEMANT to overcome its limitations and to expand it to further
aspects of human behavior. Implementing the extensions suggested above and
other possible modifications and additions should allow us to better understand
the basic process of human associations in particular and the nature of the human

memory and thinking in general.
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6 Conclusion

The empirical findings in this study demonstrate that an interaction between the
organization of the human semantic system and the formation of new episodic
associations between words exists. Furthermore, the experiments unveiled several
characteristics of the process association formation, focusing on the contribution

of the semantic memory organization to this process:

a. Human capacity to simultaneously form ncw associations is limited. An
attempt to incidentally form an overwhelming number of new episodic
associations simultaneously, would fal.

b. Deep processing of word stimuli, by activating their meanings,
dramatically increases the probability that new incidental associations

would be formed between them.

¢. Prior semantic relations between the to-be-associated stimuali facilitate the
process of the association formation between them, regardless of whether

attention is directed to the words' meanings.

d. Semantic relatedness facilitates each association learning episode. Hence,
the orgamization of the semantic system influences the actual dynamics of

the association formation process.

Based on existing theories and constrained by the empirical findings stated above,
I developed a computational, neural-nelwork based model, SEMANT, which
suggests a plausible mechanism for the process of forming associations and
demonstrates in detail a possible dynamics of the above interaction. The
psychological plausibility of this model was demonstrated by simulations which
accurately rephcated the empinical results. Furthermore, the model predicted a set

of testable patterns of associative learning:

a. It should be easier to form an association from a word with few semantic

neighbors to a word with many semantic neighbors than vice versa.

b. It should be easier to associate words that are semantically related to other

words that are already associated.
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c. A less focused activation wave such as that implicated in schizophrenic
thought disorder should decrease the advantage of associating semantically

related pairg over unrelated pairs.

In further behavioral experiments, the first two of these predictions were validated
with human participants.

Together, these theoretical and empirical findings suggest that, while the semantic
and episodic memories are based on different principles, they are highly
intertwined and interact during learning. Furthermore, the current work strongly
supports the idea that forming associations is not a purely episodic process but

relies heavily on semantic memory organization.

On the basis of the strong support that it received from human experimentation,
the SEMANT model can provide a theoretical framework for many additional
studies aimed at understanding associative learning. As such, the present study is
a successtul demonstration of a multidisciplinary approach to studying human
cognition, Nevertheless, there are several open questions that await empirically
based answers. Among those are:

a. Do the same rules that govern the process of association formation
between nouns apply to other parts of speech, whose semantic
representation might be differently orgamized?

b. Is SEMANT prediction concerning STD patients valid, and what can we
leamn from the behavior of STD patients in similar experiments about the
nature of schizophrenia?

c. Is an interaction similar to the one found between the episodic formation
of associations and semantic information found with other types of
information (e.g., morpho-phonological)?

d. What is the effect of attention on the process of forming new associations
and how does it interact with the mechanisms discussed in this
dissertation?

€. What rules govern the decay and forgetting of associations?

f. How do episodic associations affect the organization of the semantic

system over large time scales?

ANAT:S
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Answering these questions would lead us further towards understanding the
organization of human semantic system, and human memory and thinking in

general.
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Appendix A — Stimuli

Experiment 1: The Effect of Memory Load
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Experiment 2: The Effect of the Level Of Processing
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Experiment 3: The Effect of Semantic Relatedness
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Experiment 4;: A Semantic Boost for Episodic Association
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Experiment 5: A Semantic Boost — Forced Choice Paradigm
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12. nun - San
Semantically related pairs:
1 T - Y
2 niRs - mn
3 Saenm - PR
4 no- P
5. M - TR
6 W - A
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4 brn kb SR Ry Trumpet - Guitar
5 mn - o ' Pear - Strawberry
0. Ton - TVER March - Parade
7 WA - v Mint - Oregano
3 PR - eOn Bag - Wallet
9 amw - vn Coat - Dress
10. Wwhoo- e Wool - S8ilk
1. "s7e - e Mosquito - Butterfly
12, mn - Twn Office - Store

Experiment 6: Implicit Asymmetry

Semantically unrelated pairs:

Forward:
1. MY - 7uN Lobe - Pipe
2. nrswn - RUNER Broom - Kerchief
3. YR - PN Trunk - Thumb
4, ar - ¥ Joke - Tail
A, ey - 1IMYD Bell - Pencil
6. TR - W Puddle - hoe
7. AT - % Chalk - Ice-cream
8. Py e v R | aa Spunkler - Wmk
9. by vk SR | w g Necklace - Porridge
10. anT - AT Bee - aunt
11.  11P771pR - AR Loathing - Accordion
12. 9aTE - T Grandson - Siren
Backward:
1. & oo - m Scorn - Candy
2. My - X Lake - Grammar
3. e G Ty i T Bold - Sausage
4, PTI00 - T1awn Arithmetic - Shoemaker
5. avrabx - o Mosquito - Alumimim
6. ovnEn - navy Kitchen - Drums
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12. T - et Mosquito - Bee

Experiment 7: Implicitly Mediated Associations — Cued Recall

List A:
Intensive:
Same:
1. |90 - ™0 Pot - Book
2. % - W Song - Dog
3. it R bl Snow - Lion
4. M - 3 Shirt - Television
5. waw - §ap Coffee - Sun
6. - nFT Door - Mountain
IDhfferent:
1. Y - IR Boat - Tomato
2 wy - wwe Hammer - Pen
3. o -7 Hand - Sea
4 - oy Bread - Gold
5 Jamn - W Table - Rifle
6. 77 - T Football - Boy
Target
Same
1 niamA - name Pan - Notebook
2 nn - Mo Story - Cat
3. < B ] Hail - Tiger
4 T - O™RIan Pants - Radio
5 mr - an Tea - Moon
6. oy - 7 Window - Hill
Different:
1. 77 - a0 Boat - Girl
2. poatn - nod Nail - Cucuomber
3. ey - Leg - Pencil
4. 7™M - wan Butter - Pool
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5. qo2 ]
6. R[S 20T
List B (Counter-Balanced):
Intensive:
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1. 3173 0
2. IR Y
3. T bl
4. irgaliny YoM
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6. 1o ne?T
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1 77 TR
2 Py b\ irgv]
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4 o oY
5 ahi] iF2i"
6. 7amn 257770
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6. v 11
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Experiment 8: Implicitly Mediated Associations — Reaction Time

Study:
List A:
1. "D - 7E0
2. Ty - an
3 B - W
4, T - T
5. aep - whw
6. n71 -
7. IR - RaW
8. 7l B e b 7
9. ™ - W
10. na?y - oo
11. e - o
12. AT - aan
13. By - YD
14, T - T
15. D70 - W
16. oAy - en
List B (Counter-Balanced):
1 Tomw - 79D
2 T - ane
3 Y- TR
4, - b
5. oM - wnw
6 oeR - T
7 n%y - R
8 P o G il
9 wwE - Wy

Book
Bread
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Appendix B — MatLab Code

The Function Organize

$function [output] = organize ()
close all;
clear all;
output=1;

rand ('state', sum{i100*clock))

I e General Documentation ---------=
% Organizing 50M in 2 stages.

pack

load kid sub

¥ —---m - Parameters ----------

semantic_map_size = 40 % pize of the sguare semantic map
dieplay step = B*num_words; % VISUALIZATION: after how
many steps to update the figure on the screen

t_maxl = semantic_map_size*num_words; % # of iterations in 1st

organization stage
t_max2 = 3*semantic_map_size*num_words; % # of over all iterations

neighb sizel i = gemantic map size; % initial "radius" of
neighborhood

neighty_sizel f = 3;% final "radius" of neighborhood for 1lst stage
neighb sizez i1 = neighb sizel f; % initial "radius" of
neighborhood for the second stage

neighb_size2 f = 0; % fimal "radius" of neighborhood
epsilon = 0.5; % base learning rate

init w = 0.2; % initial maximal size of the weights
F - Data ----------

w = init w.*rand(semantic_map size, semantic_map size,
sizef{attributes,1)); % the initial random weights of the SOM

% VISUALIZATION: Prepare the figure
figure(1);
set (1, 'Units’, 'normalized’);
set (1, 'Position',[0.1 0.1 0.8 0.8]);
set(l, 'color','w');
colormap (white) ;
image (ones (eemantic map size,semantic map size,3));
axis off;
title('Semantic Map'};
hnd t =
text (0.25,0.25, num2=str (0) , 'HorizontalAligoment ', "canter!', 'color!', !
b', 'fontsize’, 10, 'EraseMode!, 'xor');
% Calculate the semantic map
for word = l:num_words, % for each item find which i3 the most
regpongive node (MAX of dot product of Wij and input vector)
input = attributes(:,word);
for i = l:gize{input),
input_mat(:,:,i) = input(i)*ones(semantic_map_size);
and
[y, row]l = max(sum{input mat.*w,3), [1,1};
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[y,coll = max(y);

row=row (col) ;

hnd (word) =
text (col, row, char {words (word) ) , '"HorizontalAlignment', 'center', 'col
or','h', 'fontsize’, B8, 'EraseModea ', 'Xor') ;

end
drawnow;
% == Self-Organizing Learning - Phase I - Gross QOrganization----
for £ = 1:t_mazxil,
t
input = attributes(:,ceil (rand*num words)); % take as the

current input one column from the input matrix randomly

% create a matrix of the size of w where each column containsg the

input vector that was selected, to make the w.x more elegant
input_mat = shiftdim(input®,-1};

input mat =
input_mat (ones (1, semantic map_csize) ,ones (1, semantic _map size), :);
[y, row] = max(sum(input_mat.*w,3),[],1); * perform the

dot matrix for each node and find the maximal respcnse
fy,col]l = max(y);
row=row(cal) ;
neighb = round(neighb_sizel_i - (neighb_sizel_i -
neighb sizel f)*t/t _maxi);
for 1 = max(l,row-neighb) :min(semantic map size, row+neighb), %
for each node in the neighborhood do...
for j = max(1l,col-neighb) imin(semantic_map_size, col+neighb),
d2 = {(i-row)"2+{j-col)"2; % compute the
distance between current neode and the winner node
h = 1-d2/(2¥neighb”2}; % compute the
neighborhood function
w(i,j,:) = squeeze((l-epsilon*h)*w(i,j,:)) +
epsilon*h* (input); % Kohonen learning rule
end
and
%%%% USE FOR LONG PROCESS

4 if mod(t,display step)==0

% gave big map t num _words semantic map size words w;

% save big mapCPY t num words semantic map size words w;
%  end

% VISUALIZATION: Calculate the semantic map

if mod (t,display step)==0
set (hnd_t, 'string ', numZstr (t));
for word = 1:num words,
input = attributes (:,woxrd) :

for i = l:size{input),

input mat{:,:,i) = input (i} *ones (semantic map size);
end
[y, row] = max(sum(input mat.*w,3}, [],1);

[y,ecol] = max(y);
row=row(col} ;
et (hnd (word) , 'position', [col rowl);
end
drawnow;
end

¥ ————m—mm== Self-Organizing Learning - Phase II - Fine Tunning --
for t = t_maxl+l:t max2,
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t

input = attributes(:,ceil (rand+*num words)); % take as the
current input one column from the input matrix randomly
% create a matrix of the size of w where each column contains the
input wvector that was selected, to make the w.x more elegant

input mat = shiftdim(input’,-1);

input_mat =
input_mat (onee (1, semantic_map_size) ,cones (1, =emantic_map_size), :};

[y, row] = max(sum(input mat.*w,3),[],1); % perform the
dot matrix for each node and find the maximal response

[v,col] = max({y);

row=row({col) ;

neighb = round(neighb size2 i - (neighb_size2_ i -
neighb size2 f)+*{t-t_maxl)/(t_max2-t_maxl));

for i = max{(1l,row-neighb) :min (gsemantic map size,row+neighb), %
for each node in the neighborhood do...

for j = max(1l,col-neighb) :min(eemantic map size,col+neighb),

d2 = {i-row)"2+(j-col)"2; ¥ compute the
distance bhetween current neode and the winner node
h = 1-dz2/ (2¥neighb™2+0.0000000000001) ; % compute the

neighborhood function (the small constant is added to prevent
divigion by zero)
w{i,j,:) = squeeze{(l-epzilonvh}*w(i,j,:)) +
epsilon*h#* (input); % Kohonen learning rule
erd
end
%%%% USE FOR LONG PRQCESS
if mod(t, display step)==0
% save big_map t num_words semantic_map_size words w;
% save big mapCPY t num words semantic map size words w;
% end
% VISUALILZATIQON: Calculate the semantic map
if mod(t, display_step)==
set (hnd_t, 'string’, num2str(e)};
for word = l:num words,
input = attributes(:,woxrd);
for i = l:size(input),
input_mat(:,:,1i) = input(i)*ones (semantic_map_size);
end
[y.row] = max(sum(input mat.*w,3),[],1);
[y,col]l = max(y): :
row=row(cal) ;
set (hnd (word) , 'position', [col rowl);
end
drawnow;
end
end

<

F ommmmmmm—- VISUALIZATION: Digplay of Results ----------
set (hnd t, 'string',num2str(t));
for word = 1:num words,

input = attributes (:,word);

for i m l:size(input),

input mat(:,:,1) = input(i)*ones (semantic_map_ size);

end

[y, row] = max(sum(input_mat.*w,3), [1,1);

[y,col] = max(y);

rowsrowf{col);

gemantic map (row,ceol) = words (word) ;




Appendix B — MatLab Code

set (hnd (word)} , 'position', [col rTowl};
end
drawnow;
semantic map

words_not mapped = 0§;
if num words -= size(semantic map (find(1-
cellfun('isempty',semantic_map)})',2)
words_not_mapped = 1;
fprintf (" \nSOME WORDS WERE NOT MAPPED !!!\n\n');
for i=l:num_words
wordlpos = get (hnd (i), 'position');
for j=1:i-1
word2peos = get {hnd{j}, 'position’};
if wordlpos{l,1:2,1)==wordepos(1,1:2,61)
fprintf ('Both word #%.0f %s and word #%.0f %= are
located at (%.0f,%.0f) .\n',...

i,upper (char(words (1))),3,upper (char (words (j)) ), wordlpos (1,2,1) ,wo
rdlpos (1,1,1));
end
end
end
end
new_words = semantic_map (find (1-

cellfun('isempty', semantie_map))) ';
num_words = size(new words,2);
new att = zeros(size (attributes,l1),num words);
for i=l:num words
new att(:,i) = attributes(:, find{stromp (new words(i},words)));
end

words = new_words;
attributes = new att;

gave big map t num words semantic_map words w attributes
words_not_mapped;

save big mapCPY¥ t num words semantic map words w attributes
words_not_mapped;

% Zoom in

¥init_axis = axis;

$button = guestdlg({'Would you like to rescale the map or
exit?!', 'EpiSim', 'Rescale', 'Exit’', 'Rescale’) ;

%while strcmp (button, 'Regcale’),

% waitforbuttonpress;

% finalRect = rbbox;

¥ xmin = floor(finalRect(l) .* semantic map size) + 0.5;

% xmax = ceil {(finalRect (1) + finalRect(3)) .#*
semantic map size) + 0.5;
2 vmin = floor(({(l1-finalRect(2)) - fimalRect{4)) .%

semantic_map_size) + 0.5;
% ymax = ¢eil{(1-finalRect(2)) .* semantic_map_size) + 0.5;
axig ( [xmin xmax ymin ymax]);

%

%

% waitforbuttonpress;
% axis (init_axis);

%
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% button = questdlg ('Would you like to rescale the map again or
exit?', '"EpiSim', 'Rescale’, 'Exit ', 'Rescale’');

Yend

The Function Learning

$function [output] = learning()

clear all;

pack:

output=1;

¥ —-----—--- General Documentatlion -----===-=--

$Thiz program simulates the spreading activation from two words
%and the formation of episcdic associations between them as the
Fsum of overlapping activity.

B ommmmmeeme- Parameters ----------

fgem sft = 0.02; %NORMALS
sem sft = 0.04 ¥5CHIZO El

gem _glp = 100 $NORMALS
¥sem_slp = 7 ¥SCHIZO SHAL
gem_amp = 1 FNORMALS

¥sem_amp = 1.2048 %¥SCHIZO El

¥sem_amp = 0.0721 %SCHIZO Sh #1 7
¥cem amp = 0.0836 %SCHIZO Sh #2 7
¥sem amp = 0.0821 %SCHIZO Sh #3 7
¥sem_amp = 0.086 3%ECHIZO EBh #& 7
fgem amp = 0.0838 HSCHIZO Sh #5 7
Fgem amp = 0.0843 %SCHIZO Sh #6 7
¥sem amp = 0.069 %8CHIZO Sh #7 7
%gem amp = 0.0728 %5CHIZO Sh #§ 7
kgem amp = 0.0758 ESCHIZO Sh #5 7
¥sem_amp = 0.0742 %8SCHIZO Sh #10 7
¥sem amp = 0.0743 %SCHIZO sSh #11 7
%¥sem amp = 0.0891 ¥SCHIZO Sh #1z2 7
bub rad = 928;

bub_zlp = 70;

bub amp = 0.2;

epis_factor = 0.005;
think epis = 0;

dist2Dwght = Q;

F mmmmmmmm-- Data =-==-==-==~~--

fid = fopen('insert-lrn.txt'};

num_of_pairs = fscanf (£id,'%1i',1);

num of reps = fscanf(fid,'%i',1);

num of trials = num of pairs*num_of_reps;

fprintf ('\n%.0f pairs x %.0f repetitions = %.0f trials. 50A =
%.0f.\n",num_of_pairs,num of reps,num of_trials, SOA);

%fpeak (Fid, 2, 0);

load big map semantic_map w num_words words attributes;
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semantic map size = size(semantic map,l};

episodic =

zeros (semantic_map_size, semantic_map_size, eemantic_map_size, semant
ic_map_size);

sem empty=cellfun('isempty', semantic map);

sem _ind = find({sem_empty==0);

[sem dbl_indl,sem_dbl_ind2] = find(sem empty==0);

ghrt sem map = char(semantic_map (sem_ind)]);

ghrt sem map = cellstr{shrt sem map{:,1:5));

% caloculate the all-to-all semantic distances between the nodes of
the map

% 100D distance - All vectorized version

$templ = shiftdim(w, -2);

¥tempz =

templ (ones (1, semantic_map_size),ones(l, semantic_map size), :,:,:);
¥templd =

permute (templ (ones (1, semantic map size),ones(l,semantic_map_size),
r,z,:3,[3 41 2 8)]);

$dist100D = sgueeze (sum{ ( (temp2-temp3) . *2),5));

% 100D distance - Semi-vectorized version
fprintf ('\nPrepaxing Data... %3.0£%%',0);
digt100D = :
zeros (semantic_map_size, semantic_map_size, semantic_map_ size, semant
ie¢ map size);
for i = l:semantic map size
for j = l:semantic_map_size

temp =
w({i*ones (1, semantic map size) ,j*ones(l,semantic map size),:);
digtl100D(i,j,:,:) = squeeze (sum{(temp-w)."2,3));
% fprintf ("\b\b\b\b¥3.0f%%"',100* ({i-
1) *cemantic map size+j)/ (semantic map size™2});
end
end

fprintf ('\b\b\b\bDone\n') ;

% 2D distance

$tempd = [l:semantic_map sizel;

temp5 = temp4’;

Ftempl =

temps (:,ones (1, semantic_map_size},ones{(1,semantic_map_size),ones (1

,demantic map size));

Ftempu = shiftdim(tempi, 2};

%¥tempj =

temp4 (ones (1, semantic map size), :,ones (1, semantic map size) ,ones(l
,semantic map size));

$tempv = shiftdim{tempj,2);

$digt2D = (tempi-tempu) .2+ (tempj-tempv)."2;
5dist2D = dist2D./max{max (max{max{dist2D))));
fclear temp*;

*cemantic = sem_amp/(1+exp(( dist2Dwght*dist2D+ (1-
dist2Dwght) *disgtl100D - sem sft) *sem_slp));

semantic = sem;amp/(1+exp((disthOD—sem_sft)*sem_slp));

clear temp* diest*
pack;




Appendix B — MatLab Code

% locate the word-pairs
for trial = l:num of pairs
1_prm{trial) = cellstr(fscanf (fid, '%s8',1)):
tmp = facanf (fid, '%1lc',1);
1 tgt(trial) = cellstr(fgetl(fid)};
[1_prm loc{trial,1),l_prm loc(trial,2}]
find (stremp (1_prm(trial)},semantic map));
[1_tgt_loc{trial,l),l_tgt_lec(trial,2)}]
find (stremp (1_tgt (trial), semantic map));
(1_prm ind{trial,1),l_prm ind({trial,2}]
find(strocmp(l_prm(trial},words)) ;
[1_tgt_ind(trial,1),1_tgt_ind(trial,2}]
find (stremp {1 tgt(trial),words)):
end
save loc 1_prm_loc 1_tgt_loc
% replicate pairs for number of repetitions
1l prm = 1 prm(:,cnes (1,num of reps)'*[l:num of pairs]);
1_tgt = 1_tgt(:,ones(l,num of reps)'*[l:num of pairs]);
1 prm leoc = 1_prm loc{ones{l,num of reps)'+*[l:num of pairs],:
1 tgt loc 1 tgt loc(ones(l,num of reps)'*[l:num of pairs],:
1 prm_ind = l_Prm_ind(ones(l,num;of_reps)‘*[1:num_Df_Pair5],:
1 tgt_ind = 1_tgt_ind(ones(1,num_of reps) '*[1l:num of pairs],:

L I Ir
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% randemize the trials

fperm = randperm{num of_trials);

51 prm = 1 prm(perm) ;

%¥1_tgt = 1_tgt (perm);

51 prm log = 1 prm loc(perm,:)

%1 tgt loc = 1 _tgt loc(perm,:):
i)
:)

-~ m

%1 prm_ind = 1_prm_ind(perm,
%1 tgt _ind = 1 tgt ind(perm,

F
B
¥ VISUALIZATION: prepare the 3 activation images

figHND = figure;

set (EigHND, 'unitse', 'normalized’, 'position', [0.3 0.07 0.4 0.851);
splHND = subplet{(3,1,1);

imlHND = image (zeros (semantic_map_size)) ;

text (semantic_map size+2, -

4,'Time', 'HorizeontalAlignment', 'center!', 'color!, 'k', 'fontsize’', s,
EraseMode', "xor');

text{-1, -

4, '"Trial', 'HorizontalAlignment', 'center’, 'color', 'k!', 'fontsize', &,
'Era=seMode’, 'xor');

tHND = text(semantic map size+2, -

2, num2etr(0), "HorizontalAlignment', 'center', 'color’, 'k', 'fontaize’
.6, 'ExraseMode', 'Xor');

trHND = text (-1, -

2, num2str(0), 'HorizontalAligonment', 'center', 'celor’, 'k', 'fontsize’
.6, 'EraseMode’, 'Xor') ;
tx1HND =

text (sem dbl_ind2,sem_dbl_indl, shrt_sem map, 'HorizcntalaAligonment',
'canter', 'color', 'w', 'fontsize',5, 'EraseMode’, 'niona ') ;

axiz off;

t11HND = title{'','fontsize’',7);

set (Im1HND, 'erasemode’, 'none'} ;

SP2HND = subplot(3,1,2};

im2HND image (zeros (semantic map size));

Ir
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tmp = prm_act({:,:,t);
bub_sft = pretile{tmp(:), bub_rad};
prm act{:,:.t) = bub amp./(l+exp{-{(prm_act{:,:,t)-
bub sft)*bub slp))); % Use logsig to narrew the activity bubble
alse

% for each node make cne step of the prime activation and
one step for the target activation
prm act(:, :,£) =
act_step (prm_act,t,t,semantic, episodic, think epis);
tgt_act({:,:,t) = act step(tgt_ackt,t,t-
SOA+1,semantic,episodic,think_epis);
end
1f t==50a
input = attributes(:,1 tgt ind(trial,2));
input mat = shiftdim{input',6-1); % create a matrix of the
gize of w where each column contains "input"™, to vectorize the w.x

input_mat =

input_mat (ones (1, semantic_map eize),ones(l,semantic map_size),:);
tgt act{:,:,t) = sum{input mat.=*w,63);

% perform the dot matrix for each node

% bub_sft = (1-bub_rad) *max(max (tgt_act(:,:,t)));
tmp = tat aect{:,:,t);

bub sft = pretile(tmp(:) ,bub_rad);
tgt_act{:,:,t) = bub_amp./{l+exp(-{(tgt_act(:,:,.t)-
bub sft)*bub slp))); % Use logeig to narrow the activity bubble
end
% add the sum of mutual activation to the episodic agsoc of
this pair

episodic (]l _prm loc(trial,l),l_prm loec(trial,2),l_tgt_leoc(trial,l1),
1_tgt_loc(trial,2)} =...

episodic{l prm loc(trial,1),l prm loc(trial,2),l_tat_leoc (trial,l),
1 tgt loc(trial,2)) +
epis factor *

sum (sum (min(prm_act {:, :, ), cgt_act(:,:,£)))};

% VISUALIZATION: update the activation images

set (tHND, 'string',num2str(t));

set (tx1HND, 'visible', 'off'};

et (imlHND, 'cdata',prm act (:, 1, t) *63+1) ;

set (fx1HND, 'visible', 'on');

set (tx2HND, 'visible:', 'aff');

get (im2HND, 'cdata',tgt_act(:,:,t)*63+1};

get (LX2HND, 'vigible','on');

set (tx3HND, 'visible', 'off');

set (im3H#ND, 'edata’ ,min{prm act(:,:,t) ,tgt_act(:,:,t}) .*63+1);
set (Lx3HND, 'visible ', 'on') ;
drawnow;
end
episodic = episcodic* (1-forget);
end

save eplis episcodic semantic
close all;

% VISUALIZATION: Display the episodic map
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¥ calculate the episcdic map
¥for i = l:num_words
% for j = 1:num words

% [i_loc(l),i_loc(2)] = find(strcmp (words(i),semantic map));
7 [j_loc({l),j_loc(2)] = find{strcmp(words{j),semantic_map)) ;
% epioodic map(i,j) =

round (episodic (i loc(1),i leoc(2),j loc(l}),j lec(2)))};
¥ end
Yend

%% display the episodic map

$FigHEND = figure;

get (figHND, '"units', 'normalized’, 'position’', [0.3 0.3 0.4 0.4]);
¥image (zeros (size (episodic _map)));

¥title('Episodic Map');

%axis off;

Ftext (-2,-1,'PRIME', 'HorizcontalAlignment', 'right', ‘'eoler', 'k',
tfontaizer, 7);

%for i = 1:gize (words,2),

% text (-2,1i,char (words (1)), 'HorizomtalAlignment', 'right',
‘eolor', 'k', 'fontsize', 7);

tend

¥text (size(words, 2)+1, 5ize(words, 2) +2, 'TARGET',
'HorizontalAligoment', 'left', 'color’', 'k', 'fontsize', 7);

5for 1 = 1:size(words,2),

5 text (i,size (words,2)+1, char (words(i)), 'HorizontalAlignment!',
"left', 'color', 'k', 'fontsize', 7, 'rotatigon', 270Q);

Fend

$for i = l:gize (woxrds,2)

% for j = l:size(words,2)

% if eplsodic map(i,j)=0

% text (j,1i,num2str (episodic map (i,1)),
'Horizontalalignment', 'center’, ‘color', 'w', 'fontsize’, 7);
% end

% end

Yend
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The Function Testing

ffunction [output] = testing()
clear all;

pack;

output=1;

Hommmm - General Documentation ----------

$This program simulates the spreading activation from a prime word
which

takes into account both cemantic and episodic associations and
search

%for the first association which is the first word that

%reach some activation level.

T Parameters ----------
num of assoc = 5;
t max = B;

recall thresh = 0.598§;

bub rad = 98;
bub_slp = 70;
bub amp = 0.2;

think epis = 1;
repetitions = 20

8 e Data ----------

fid = fopen{'insert-lrn.txt');

num_of_pairs = fscanf (fid,'%i',1)

num of reps = fscanf (fid,'%ir,1);

$feek (fid, 2, 0);

load big_map semantic_map w attributes words;

load epis episodic semantic;

episodic=episodic.*repetitions;

semantie map size = size(semantic_map,1);

sem_empty = cellfun('isempty’',semantic_map);

sem_ind = £ind(sem_empty==0);

[sem dbl_indl,sem dbl_ind2] = find(sem smpty==0};

recall_rel=0; recall_unrel=0;

fwid = fopen('testing-res.txt','w');

$fwid = 1;

% loacte the word-pairs

for trial = 1l:num of pairs
t prm(trial) = cellstr{fscanf (fid, '%s',1));
tmp = fscanf({fid, '%1lec',1);
t_tgt{trial) = cellstr(fgetl(fid})};
[t_prm loc(trial,1),t prm_loe({trial,2)]

find (stremp {t_prmitrial),gemantic map));
[t _tgt_loci{trial,l),t_tgt_locitrial,2)]

find (stremp (t_tgt(trial),semantic_map));
[t_prm ind(trial,1),t_prm ind(trial,2)]

find(etromp (t_prm(trial),worda));
[t_tgt_ind(trial,1),t_tgt_ind(trial,2)]

find (stremp (& tgt (trial) ,words));

end

1l
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% VISUALIZATION: prepare the activation image

figHND = fiqure;

set (figHND, 'unitse’, 'normalized', 'position', [¢.3 0.3 0.4 0.5]);
Eb1HND = subplet('pesitioen', [0.1 0.2 0.8 0.7]);

imAND = image (zeros (semantic map size));

text (semantic _map size+z, -

4, "Time', 'HorizontalAlignment', 'center’', 'color’', 'k', 'fontsize’, 6, !
ErazseMode', 'xor') ;

text (-1, -

4,'Trial', '"HorizontalAlignment ', 'center', 'color', 'k', "fontsize', q,

'EraseMode, 'xor') ;

tHND = text(semantic map size+2, -

2,num2str(Q), 'HorizontalAlignment', 'center!, 'coleor’, 'k', 'fontsize!
, 6, 'EraseMode’, "xoxr') ;

trHND = text (-1, -

2, mum2str (Q) , 'HorizontalAlignment', 'centex!', 'colox', 'k, 'fontsize!
, 6, 'BErageMode’', "xor'") ;

LxXHND =

text (sem_dbl ind2,sem dbl indil,semantic_map (sem_ind), 'Horizontalkl
ignment ', 'center’, 'color', 'w', 'fontsize’, 5, 'EraseMode ', 'none ') ;
axig off;

t11HND = title('', 'FontSize',7);

get (imMHND, 'erasemode’, 'none '} ;

sb2HND = subplot{'position', [0.1 0.1 0.8 0.05]);

im2HND = image ([0:0.01:1], 'CDataMapping', 'scaled!) ;

get (sb2HND, 'YTick', [], 'XTick', [1:10:101], "XTickLabel', ([1:10:101] -

1}/100):

t12HND = title('Legend’', 'FontSize',7);
drawnow;

Y Agzociative Testing ----------

for trial = l:num of_pairs

prm_act = zZeros (eemantic _map eize, semantic_map size,t_max);
assoc_selected = zeros (semantic_map size);
assoc_selected (t_prm loc(trial, 1), t_prm loc(trial,2}) = 1;
fprintf (fwid, '\nTrial = %.0f Prime:
#s\n',trial, char(t prm({trial)));
% VISUALIZATION: add titles to the images
get (tTHND, 'string’,num2str (trial));
set (t11HND, 'Btring’,strcat ("Activation of Prime Word:
"1, upper (t_prm(trial)),'" Over the Semantic Map')):

% spreading activation

t = 0;

tgt found = 0;

tgt found flg = 0;

while (tgt found < num of assoc) & (t < t£_max)

t =t 4+ 1;
tgt_found_ flg = 1;
if £ ==

input = attributes(:,t prm ind(trial,2));
input_mat = ghiftdim(input';-1); % create a matrix of the
size of w where each column contains "input", to vectorize the w.x

input mat =
input_mat (ones (1,semantic map size),ones(l,semantic map size),:);
prm_act(:,:,t) = sum(input_mat.*w,3); % perform the dot

matrix for each node
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tmp = prm act{:,:,t);
bub_sft = prctile (tmp(:),bub rad);

prm act(:,:,t) = bub amp./(l+exp (- ((prm act(:,:,t}-
bub_sft)*bub slp))); % Use logsig to narrow the activity bubble
else

Prm_aCt(=r 1, ) =
act step(prm_act,t,t,semantic,episedie, think epis);
end
while tgt_found =« num of assoc & tgt_found flg == 1
tgt found flg = 0;

tgt_i = 1;

tgt § = 1;

for i = l:semantic_map_size
for j = l:isemantic_map_size

% if {there is a word in (i,j)} and {this word was
not selected already) and {activation(i,j)»thresh} and
% {lactivation(i,j)=activation(previous target)]
or
) [activation(i,j)=activation (previous target)
and assoc of prm and(i,j) » assoc of prm and previcus target]}
% then new target is (i,7)
if (eem empty(i.j) -= 1) & assoc selected(l,j)==0 &
prm act(i,j,t) » recall thresh &...
{({prm_act(i,j,t} = prm_act(tgt_i,tgt”j,t))|...
(prm_act(i,j.t) == prm act(tgt i.tgt j.t) &...

C (semantic(t prm loc(trial,l),t prm loc(trial,2},i,j)+think epis+*ep
iseodic{t_prm_loc({trial,1l),t_prm_loc(trial,2),1,j}) =...

{eemantic(t_prm loc(trial,l),t prm loc(trial,2},i,j)+think epis*ep
igodic(t_prm loc(trial,l),t prm lec(trial,2),tgt_i,tgt j))))
tgt_found flg = 1;
tgt 1 = iy
tgt_j = j:
end
end
end
if tgt_found flg ma 1
tgt_found = tgt found + 1;
tgt_row(tgt found) = tgt i;
tgt_col(tgt found) = tgt j;
assoc_selected (tgt_1i,tgt_j} = 1;
fprintf {fwid, 't = %.0f Association:
%8',t,char (semantic map (tgt i,tat 3)));
if stromp(semantic map{tgt i, tgt j),t tgt{trial)) == 1
fprintf (fwid, ' *\n');
if tgt_found ==
if trial = num of pairs/=z
recall rel = regall rel + 1;

alee
recall unrel = recall unrel + 1;
end
end
elce
fprintf (fwid, '\n');
end
end

end
set ({HND, 'string',num2str (t}) ;
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set (ExHND, 'visible', 'off') ;
get (ImHND, 'cdata',prm_act(:,:,E}*&3+1);
get (CXHND, 'visikle’, "on') ;
drawnow;
end

% if number of assoc found is too small, output those with the
highest activity
while tat found <« num of assoc
max_act_found = 0;
tgt_found = tgt found + 1;
for i = l:semantic map size
for j = l:semantic map size
if prm_act(i,j,t} » max_act found & sem_empty(i,j) -=
1 & assoc_selected(i,j) ==
max_act_found = prm_act{i,j,t):
tgt_row{tgt_found) i;
tgt col (tgt found) i:
end
end
end
assoc_selected (tgt_row(tgt_found), tagt_col{tgt_found)) = 1;
fprintf {(fwid, 't = %.0f Aspociation:
%s',t,char (semantic map (tgt_row{tgt found),tgt_col (tgt_found))));
if
stromp (semantic_map (tgt_row (bgt_found}, tat_cel (tgt_found)) , t_tgt(t
rial)) ==
fprintf (fwid,' *\n');
if tgt found == 1
if trial » num of paire/2
recall rel = recall rel + 1;

else
recall unrel = recall unrel + 1;
end
end
alse
fprintf (fwid, '\n');
end
end
end

fprintf (fwid, '\nRecalled Related: %.0f Unrelated:
%.of\n',recall_rel,recall_unrel);

recall rel

recall unrel

% dizplay activity levels over time

$LigHND = figure;

gzet (figHND, 'units', 'normalized', 'position’, [0.3 0.3 0.4 0.4]);:
%¥hold omn;

$for i=1:semantic map size,

% for j=l:semantic map size,

% plot (squeeze (prm_act (i,]j,:)));

% end

Fend

%plot {squeeze {mean (mean (prm_act})}, 'r'};

% display the asseociative distances
% Calculate distances from target word over the sematic map

170N
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%dist_map =

squeeze (semantic (t prm loc(l) ,t prm loc(2),:, ) +episodic(t prm loc
(1), t_prm_loc{2),:,:)};

tdist map = squeeze (gemantic (t_prm loc(1}),t_prm loc(2),:,:));

$figHND = figure;

%pet (figHND, 'unite', 'normalized’', '‘position', [0.3 0.3 0.4 0.5]);
%sb1HND = subplot ('position', [0.1 0.2 0.8 0.7]);
Yimage (dist map*63+1);

%title('Associative Distances from the Prime Word Over the
Semantic Map'};

¥axig off;

$text (sem_dbl_ind2, sem_dbl_indl, semantic_map (sem_ind) , 'HorizontalAa
lignment', "center’, 'eolor', 'w', 'fonteize', 2, 'ErasgeMode ', 'none’) ;
ftext (t_prm_loc(2),t_prm loc(l),semantic_map(t_prm loc(l).t_prm lo
¢(2)), '"HorizontalAlignment', 'center', 'color', 'r’,
tfontsizer,9);

%sbh2HND = gubplot ('position', [0.1 0.1 0.8 0.05]);

%im2HND = image ([0:0.01:1]);

$set (sb2HND, 'YTickMede', 'manual ', 'CLim', [0 11} ;

Foet (im2HND, '¢DataMapping', 'scaled’) ;

%¥set (gca, 'XTickLabel', [0.2:0.1:1])

$title ('Legend');

felose all;
cloge all;
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The Function Act_Step

function [cutput]l =
act_step(act, t,elapsed, semantic, episedic, think epis)

¥ - - Parameters ----------

rfret _strt = 3;

rfret dur = 3;

rfrct_factor = 5;

decay sit = 6;

decay slp = 1.5;

sig_ saft = 0.5;

sig slp = 8;

noise = 0;

§ —-------—- cne step of spreading activation for one node -------

in_act = zeros (size (semantic,1));

mint = max(l,t-rfrct_stri-rfret_dur+l);
= t-rfret_stre;

g
]
o
)
|

if maxtw=mint

in_act = in act - sum(act(:,:,mint:maxt),3).*rfrct factor;
end
templ = shiftdim(aet(:,:, t-1),-2);
tempz =
ghiftdim(templ (ones {1, size (semantic, 1)) ,ones(l, size (semantic, 1)), :
r:}iz)F

fnoisy links

%in act = in_act +

squeeze (sum{sum(temp?. * (Bemantic+think epis*episcdic+noise*randn(s
ize (semantic))) ...

% / (1+exp ((elapsed-decay_sft) *decay_slp))))};

$not-noigy links
in act = in_act +
squeeze (sum{sum{temp2. * (semantic+think epis*episodic)...
[/ (1+exp ((elapsed-decay sit)*decay slp)))));

% implement the neurcn's activation function on the output

$linear transfer function
Foutput = max (0, min{l,in act));

%sigmoid transfer function (no noise)
output = 1./{l+exp(-(in act-sig sft) *sig slp));

$noisy sigmoid transfer funstion
foutput = max(0, noise*trandn(l) + 1./ (l+exp(-{in_act-
sig sft) *sig_slp}));
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The File INSERT-LRN.TXT

24

1

necklace vanilla
painting train
van store

guitar cabbage
pear electricity
pepper song

coat violin
office dress
camel roof

o1l cow

wall strawbarry
carrot bracelet
hag purse

eye chin
butterfly bee
gun stone
lettuce chocolate
gsnow sunshine
doctor baker
dice cards
coffee soda
bandaid pill
bhall doll

desert river

ORIGINAL
necklace vamnilla
painting train
van store

guitar cabbage
pear electricity
BEPRPer SOng

coat vielin
office dress
camel roof

0il cow

wall strawberry
carrol bracelet
bag purse

eye chin
butterfly bee
gun stone
lettuce chocolate
snow sunshine
doctor baker
dice cards
voffee soda
bandaid pill
hall deoll

desert river

REVERESED ORDER
vanilla necklace
train painting
store van
cabbage guitar
electricity pear

143
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ECNg PEPREer
violin coat

dress office
roof camel

cow oil
strawberry wall
bracelet carrot
purse bag

chin eye

bee butterfly
stone gun
chocolate lettuce
sunshine snow
baker doctor
cards dice

soda coffee
pill bandaid
doll ball

river desert

ASYMMETRY FORWARD
painting train
0il cow

bracelet carrot
sunshine snow
doctor kaker
desert river

ASYMMETERY BACEWARD
train painting
cow oil

carrot bracelet
snow sunshine
baker doctor
river desert

RELATED PAIRS
necklace bracelet
painting song
van train
guitar violin
pear strawberry
pepper vanilla
coat dress
office store
camel cow

o0il electricity
wall roof
carrot cabbage
bag purse

eye chin
butterfly bee
gun stone
lettuce chocolate
=now sunshine
doctor haker
dice cards
coffee soda
bandaid pill
ball dell
desert river
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Appendix C — Model’s Word List

Entire lexicon:
1.  address
2. ale

3.  answer

4.  aquarium
5. back

6. bag

7.  baker

8.  balance
9.  ball

10.  band

11.  band-aid
12. baseball
13, basement
14. bath

15. bathroom
16. bathtub
17. beard

18. bed

19. bee

20. bend

21. bin

22, birthday
23.  blender
24. board

25. boom

26. bracelet
27. ‘branch
28. bump

29. bush

30.
31,
32.
33.
34.
35.
36.
37.
38.
39.
40.
41,
42,
43.
44,
43.
46.
47.
48,
49.
50.
51,
52.
53.
54.
55.
56.
57.
58.

butterfly
cabbage
camel
cards
carriage
carrot
castle
cheese
chin
chocolate
clay
coat
coffee
coke
collection
copy
cotlage
cotton
counter
course
COW
cowboy
crack
Crown
cube
dad
desert
dice

direction

38,
60,
61.
62.
63.
64.
65.
00.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83,
84.
85.
30.
87.

dish
doctor
doll
dollar
door
downtown
dress
dresser
drill

drop

ear

eatth
electricity
elevator
equipment
eye
factory
fall

farm
farmer
film
firerman
flag

flour

fly

fruit
game
garbage
gasp
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88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.
108.
109,
110.
111.
112,
113.
114.
115.
116.
117.
118.
115.
120.

ghost
ZOWI
group
guess
guitar
gun
haircut
hammer
hamster
hand
helicopter

hippopotatnus

horse

hut

ice
ice-cream
iris
iromng
jeans
jelly

job

joke
jungle
key

kiss

kit

knock
lamb-chop
lasagna
letter
lettuce

lie

lollipop

121.
122.
123.
124,
125.
126.
127.
128,
129.
130.
131.
132.
133.
134,
135.
136.
137.
138.
139.
140.
141,
142.
143,
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.

machine
mail
mane
marble
material
math
means
microphone
monster
mountain
nail

nap
neck
necklace
office
oil

pack
page
painting
pajamas
palm
panda
parade
parking
part
party
pause
pay
pear
pepper
piano
picnic

pill

154.
155.
156.
157.
158.
159,
160.
161.
162,
163.
164,
165.
166.
167.
168.
169,
170.
171.
172.
173.
174.
175.
176.
177.
178.
179,
180.
181.
182.
183.
184.
-185.
186.

pineapple
pipe
pitch
play-dough
police
popcorn
popsicle
potato
power
pricc
prince
poze
pudding
purse
TACCOON
racing
railroad
rake
refrigerator
ringing
river
road
robin
rock
Toof
Tose
sack
saddle
sailor
salad
scarf
school

second
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187.
188.
189.
190.
191.
192.
193.
154,
195.
196.
197.
193,
199.
200,
201.
202,
203,
204.
205.
206.
207.
208.

shape
sign
slap
sleep
slide
snow
soap
soda
son
song
soup
squash
squirrel
squrt
stairs
steam
step
stew
stone
store
strap

straw

209,
210.
211.
212,
213.
214.
215.
216.
217.
218,
219.
220.
221,
222,
223,
224,
225.
226.
227.
228
229.
230.

strawberry
siring

gurm
sunglasses
sunshine
sweater
sweatshirt
syrup
table

tail
temperature
throat

tick

ticket

toe

towel
train

trash

free
tricycle
trouble
truth

231.
232
233.
234,
235.
236.
237.
238.
230.
240.
241,
242,
243.
244,
245.
246.
247,
248,
249,
250.

tuba
tuna

van
vanilla
violin
wall
war
wash
washcloth
waste
wedding
whale
wheat
whisper
wine
wire
wool
WOTTI
yawn

Z00
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Word-pairs used in the simulations:

—_ =
bR o= O

e L T A

Semantically related:

necklace
painting
van
guitar
pear
pepper
coat
office
camel

ail

. wall

. carrot

vanilla
train

store
cabbage
electricity
SOnNg
violin
dress
roof

cow
strawberry

bracelet

—
e

e AT R T B

Semantically unrelated:

bag

eye
butterfly
gun
lettuce
SIOW
doctor
dice
coffee
bandage
ball
desert

1

purse
chin

bee

stone
chocolate
sunshine
baker
cards
soda

pill

doll

nver

1070
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