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Abstract 

Humans associate words remarkably easily and efficiently. Frequently the 

associations are formed incidentally and such associations provide a window into the 

cognitive structure of language networks and memory. How associations between 

words are formed, however, is not well understood. In a series of incidental 

associative learning experiments human participants associated semantically related 

but unassociated words easier than unrelated words. Furthermore, this advantage 

increased linearly as a function of the number of repeated co-occurrences of the word-

pairs, up to a ceiling. In order to understand the mechanism of the semantic influence 

on word association processes a computational model, SEMANT, was developed. In 

this model, episodic associations are implemented by lateral connections that are 

formed between nodes in an already existing self-organized semantic map. These 

lateral connections are strengthened by each concomitant activation of two nodes in 

direct proportion with the amount of overlapping activity. Simulating associative 

learning with SEMANT replicated the empirical findings and led to two testable 

predictions. First, it should be easier to associate a word with few semantic neighbors 

to a word with many semantic neighbors than vice versa.  Second, diffuse semantic 

activation, such as that characteristic to schizophrenic thought disorders, should 

reduce the advantage of associating semantically related pairs over unrelated pairs. 

The SEMANT model, therefore, suggests how the interaction of episodic and 

semantic memory can be understood in terms of specific neural computations. 
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1. Introduction 

Word associations are basic building blocks of human cognition in general and 

human learning in particular.  Understanding how such associations are formed can 

give us a fundamental insight into the cognitive structures underlying learning and 

memory. 

A viable association between words is demonstrated phenomenologically 

when the presentation of one word brings the second word to the perceiver's 

awareness. By definition, associations are based primarily on episodic learning. That 

is, words are associated if they co-occur in time and space, and the strength of an 

association is determined by the cumulative effect of such episodes. An important 

aspect of this definition is that associative learning is not necessarily intentional. 

Indeed, associations are often established incidentally, that is, without intention and 

without allocating attention to the learning process. 

Connections between words can also be based on a semantic relationship. For 

example, words can share common semantic features (e.g. when they belong to the 

same semantic category such as goat - lion), can maintain a part-whole relationship 

(e.g. wheel - car), a functional relationship (e.g. broom - floor) and more (Cruse, 

1986). Note that if words co-occur frequently they may become associated whether 

they are semantically related or not, but semantically related words are not always 

associated (Prior & Geffet, 2003; Neely, 1991). Indeed, episodic associations and 

semantic relationships are probably based on different properties. Yet, many 

semantically related word pairs are also episodically associated, which might suggest 

that the two types of relations, indeed, interact. 
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This paper focuses on understanding this interaction in detail.  Performance 

experiments with human participants were first performed to characterize the 

interaction between the categorical neighborhood organization of the semantic system 

and the episodic dynamics of associative learning. In these experiments the 

participants' ability to form associations between semantically related and unrelated 

words was compared. Semantic relations were found to facilitate forming new 

associations in a specific manner: They provide only a negligible initial advantage, 

but instead facilitate the process by which the episodic associations are strengthened 

over multiple repetitions, up to a ceiling.   

These performance patterns were then used as a starting point for developing a 

computational theory of word associations, expressed in the SEMANT computational 

model.  In SEMANT, semantic similarity is based on distributed representations (cf. 

HAL) and episodic associations are based on spreading activation, both represented 

together in a laterally connected semantic map.  The model was validated in simulated 

associative learning experiments, and then used to draw predictions for future human 

experiments on asymmetry of associations and potential causes of mediated 

associations in schizophrenia. In this manner, SEMANT expresses a computational 

theory of semantic and episodic effects in word associations, and serves to drive 

future research.  

2. Background 

There is considerable evidence that semantic and episodic memory systems 

interact.  Most of such studies (e.g. McKoon & Ratcliff, 1986; Neely & Durgunoglu, 

1985; Shelton & Martin, 1992) were based on the semantic priming paradigm and 

focused on examining existing structures.  In particular, several studies showed 

considerably larger semantic priming effects on performance if the prime and the 
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target are also episodically associated (Chiarello et al. 1990; McRae & Boisvert, 

1998); to some extent, these results generalize into newly formed associations as well 

(Dagenbach, Horst, & Car, 1990; Schrijnemakers & Raaijmakers, 1997). 

A converse influence of semantic relationship on associative learning has also 

been documented. For example, early studies reported more accurate cued recall for 

strongly related than for weakly related word pairs using the paired associate 

paradigm (e.g., McGuire, 1961; Underwood & Schultz, 1960; Wicklund, Palermo, & 

Jenkins, 1964). Supporting these earlier findings, Epstein, Phillips & Johnson (1975) 

suggested that semantically related words were more likely to be associated during an 

incidental learning procedure than unrelated pairs, even if the orientation task did not 

involve semantic processing. More recently, Guttentag (1995) reported similar 

findings in children.  Moreover, using sentential context rather than relatedness 

between words, Prior & Bentin (2003) found that associations between unrelated 

words are formed more easily when they are embedded in a sentence than when they 

are presented as isolated pairs. 

Although such studies suggest that semantic relationships between words 

affect how associations are formed between them, the data needs additional 

corroboration, primarily because the strength of pre-experimental associative links 

between semantically related words has not been sufficiently controlled. Hence, the 

reported advantage for associating semantically related over unrelated words could 

have been induced by associative connections that existed before the experiment 

rather than by an interaction between the two types of connections during associative 

learning.  Therefore, human experiments investigating the semantic influence on the 
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formation of new associations between words were performed as a starting point in 

the current study, as will be described in the next section. 

Given that empirical data exists, computational modeling is an ideal tool to 

make sense of it and to formulate specific theories about the process. The modeling 

can be done at several different levels of abstraction, depending on the level of 

explanation desired. At the highest level, the semantic and episodic interactions can 

be formalized in Bower's one-element model (Bower, 1961). For example, the 

semantic relationship advantage could be modeled so that in each trial there's a fixed 

chance that an association is learned between semantically related word pairs, and a 

smaller fixed chance that it is learned between semantically unrelated pairs. Such a 

model accounts for the interaction, but it does not explain how these learning patterns 

emerge from memory structures, and it is therefore limited in its predictive power. 

At a more detailed level, a popular approach to explaining the organization of 

semantic memory is representing concepts by distinguishable patterns of activity over 

a large number of nodes (Farah & McClelland, 1991; Hinton, 1990; Hinton & 

Shallice, 1991; Masson, 1995; Moss et al., 1994; Plaut, 1995; Plaut & Shallice, 1993). 

Each node participating in a representation accounts for a specific semantic micro-

feature, and semantic similarity is expressed as an overlap in activity patterns over the 

set of micro-features. Activity propagates through recurrent connections until the 

network settles to a stable state (an attractor), representing the semantically related 

items. Such a model matches much of the same data but allows more detailed 

explanations and predictions to be drawn. For example, Plaut's (1995) model suggests 

a distinction between the way by which semantic and episodic relations are formed: 

Whereas semantic relations are encoded in the micro-features, episodic relations 
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between word pairs are based on co-occurrence information throughout the learning 

history.  On the other hand, the attractor models are rather difficult to interpret, and it 

is difficult to separate the different factors contributing to their behavior. In particular, 

Plaut's (1995) model does not specify what mechanisms underlie the process of 

forming episodic associations and how the strength of existing semantic connections 

among other factors affects this process. 

The goal of computational modeling, however, is not just to model the data, 

but to be able to draw predictions that can be verified in future empirical experiments. 

The SEMANT model is a principled model specifically designed to suggest and test 

such a mechanism. SEMANT is not an attractor network, but is instead based on three 

well-known principles that make its processing and learning transparent: map-like 

memory organization, spreading activation, and Hebbian adaptation. Its core process 

is Spreading-Activation over Semantic Networks, which is a well-established theory 

of semantic memory organization (Collins & Loftus, 1975; Cottrell & Small, 1983; 

Quillian, 1966; Waltz & Pollack, 1985). According to this theory, each concept is 

represented by a node in a semantic network, and semantically related nodes are 

connected with weighted links. When a concept is processed, the appropriate node is 

activated and the activation spreads along the network connections in a manner 

proportional to the connection weights, gradually decreasing in strength over time. In 

order to bring a word to awareness, its activation must exceed a threshold. Thus, the 

spreading activation model provides a simple, transparent process that can be readily 

matched with experimental data. 

Before describing the details of SEMANT and its predictions, in the following 

sections the empirical data on which it is based will be reviewed. 



Silberman, Bentin and Miikkulainen 8 

 

3. Human Performance Experiments 

Two experiments were performed on human participants, in order to 

characterize the interactions between episodic and semantic memory systems in some 

detail. The first experiment showed that it is easier to form new episodic associations 

between semantically related words compared with unrelated words. During an 

incidental study phase, 10 randomly ordered Hebrew word pairs were repeated 20 

times. In each trial, two words were displayed sequentially for 350 ms each and a 

Stimulus Onset Asynchrony (SOA) of 700 ms. After an additional SOA of 800 ms 

(relative to the onset of the second word), a single letter was presented and the 

participant was requested to determine (pressing an alternative button) whether this 

letter was or was not included in either of the preceding words (Kutas & Hillyard, 

1988; Smith, Bentin & Spalek, 2001). Hence, episodic proximity was established by 

having the participants store the two words together in working memory for 800 

milliseconds. The shallow processing orientation task was selected in order to avoid 

task-biased semantic activity at study and depth of processing effects for single words 

(cf. Craik and colleagues, e.g., Craik & Lockheart, 1972; Craik & Tulving, 1975).  

Following the study session in which the participants performed with an 

accuracy of over 90%, the strength of the association between the words in each pair 

was unexpectedly tested using a cued recall test and a free association test. In the cued 

recall test, the first words of half of the studied pairs were presented as cues, and the 

participants were requested to respond with the cue's associate. In the free association 

test, the participants were presented with the first words of the other half of the pairs, 

and the participants were asked to respond with a first free-associate. Correct cued 

recall performance and responding with the episodically paired word in the free 
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association tests were considered evidence that an association between the two words 

was incidentally formed during study. The effect of semantic relationship was tested 

between subjects. One group of 32 participants was tested with semantically related 

but not associated pairs (e.g. MILK-SOUP)1 and another equally sized group was tested 

with semantically unrelated words (e.g. PAINT-FOREST). The performance of the 64 

subjects is presented in Table 1. 

Table 1: Percentage of cued recall and free association for pairs of semantically related and 
unrelated words. 

Relatedness Cued Recall Free Associations 

Related 38.8% 7.5% 

Unrelated 19.4% 1.3%1 

 

1 Based on 16 participants. 
 

Both cued recall and free association revealed stronger associations between 

semantically related pairs than for unrelated pairs [t(62)=2.8, p<0.01 and t(46)=2.36, 

p<0.025 for cued recall and free associations, respectively). These results support 

earlier studies such as that of Epstein et al. (1975) reporting that semantically related 

words are easier to associate than unrelated words. 

There are at least two possible explanations for this effect. One is that the 

probability of encountering two related words in real life episodes is higher than 

encountering two unrelated words.  Hence, although not evident while testing word 

associations explicitly (in our pilot survey), weak episodic associations may have 

existed between semantically related words, and those could have facilitated 

associative learning. Another possible explanation is that activation spreads more 

efficiently among semantically related than unrelated words in the semantic system. 

                                                      
1 Importantly, the absence of associations between the words in semantically related as well as 
unrelated words was tested in a pilot survey requesting 50 participants from the same pool to 
provide the first 3 associates to each of the words used. In no case a pair included words that were 
mentioned by a participant among these first associates.  
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This effect makes it easier to form associative connections during each new episode of 

concomitant activation. Although the two accounts are not mutually exclusive, they 

should affect cued recall performance in distinguishable ways. Pre-existent (weak) 

associations should enhance associative strength at the very beginning of the episodic 

associative learning process. Following this initial boost, however, pre-existent 

association should not influence the learning curve. In contrast, facilitated associative 

learning should be evident (at least up to a ceiling) at each recurrent learning episode. 

Consequently, the effect of efficient spread of activation should manifest as a steeper 

learning function for related than unrelated pairs. 

In order to test the relative contribution of each of these two factors, in a 

subsequent experiment the semantic relationship between the words in each pair 

(within-subject factor) and the number of repetitions during the incidental learning 

phase (between-subjects factor) were manipulated. Twenty-four pairs of exemplars 

representing 24 semantic categories were selected. As in the previous experiment, the 

words in each pair did not elicit one another in free association questionnaire in which 

participants were requested to provide the first three associates in response to a cue 

word. From the list of 24 related pairs, two study lists were prepared. Each list 

comprised of 12 related pairs form the list above, and 12 unrelated pairs. The 

unrelated pairs were scrambled pairings of the other 12 pairs. The related pairs in list 

A were scrambled in list B and the unrelated pairs in list A were reorganized to form 

the related set in list B. Four different groups of 24 participants were assigned to one 

presentation (i.e., no repetition), 5, 10 or 20 presentations during an incidental 

learning phase, during which they performed the letter search task. Following study, 

the participants were unexpectedly presented with a cued recall test in which the first 
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word of all 24 pairs were presented as cues and the participants were requested to 

respond with the paired associated word from the study phase. 

All participants performed the letter search task at study with accuracy above 

85%, suggesting that they paid attention to the words. Cued recall was better for 

semantically related than unrelated words for all groups, and the semantic advantage 

increased with increased repetition (Figure 1). Mixed-model ANOVA showed that 

both main effects were significant [F(1,92)=204, p<0.0001, and F(3,92)=25 p<0.0001, 

for semantic relationship and number of repetition factors, respectively]. More 

revealing, however, was the significant interaction between the two factors 

[F(3,92)=19, p<0.0001], which showed that each repetition contributed more to 

related than to unrelated pairs. These results suggest that semantic information does 

not only provide an initial advantage, but enhances the process of forming episodic 

associations (at least if they are formed incidentally). The effect of the interaction, 

however, has a ceiling, above which additional repetition contributes equally to 

forming both related and unrelated associations. Any further learning is based on co-

occurrence only. 
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Figure 1: Average percentages of correct recall for the related and unrelated word pairs 
over increasing number of learning repetitions. Semantic information enhances the 
process of forming associations, up to a ceiling effect. 
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The second experiment, therefore, extended the results of the first experiment, 

distinguishing between semantic and episodic contributions to the associative process. 

Together, the results describe in detail how semantic relatedness facilitates forming 

incidental episodic associations between words. Next, a computational model for this 

process is presented, and predictions for further experiments derived. 

4. Computational Model - SEMANT 

The computational simulations were based on SEMANT (Semantic and 

Episodic Memory of Associations using Neural neTworks), a biologically-motivated 

and psychologically real neural network model of the semantic system. Following an 

overview of SEMANT, the semantic representations, the network architecture, and the 

model dynamics will be described in this section. 

4.1 Overview 

SEMANT is a two-dimensional self-organizing map network where 

semantically related concepts are represented by nodes that are closer to each other 

than semantically unrelated nodes. Episodic associations are represented on this map 

as direct connections among the nodes. Activation among nodes spreads along both 

semantic and associative connections. Inspired by the notion of Hebbian learning, the 

strength of an association between two conjointly activated nodes is enhanced when 

the "wave" of activation spreading from one node overlaps with the activation 

spreading from another node. Since spreading activation decays with distance from 

the source, the closer the two concepts are on the semantic map, the greater the 

overlap between their activations. Hence, when two semantically related words are 

conjointly activated, the associative connection strength between them increases by a 

large amount. On the other hand, because semantically unrelated words are further 
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apart on the semantic map, their concomitant activations overlap less and 

consequently their associative connection strength increases by a smaller amount. 

4.2 Input Representations 

Word semantics was based on lexical co-occurrence analysis according to the 

Hyperspace Analogue to Language (HAL) model of Burgess and Lund (1997). In this 

model, high-dimensional numeric representations for words are formed based on the 

context in which they occur in large text corpora. A moving window of several words 

is placed around each word in the text. A co-occurrence matrix is calculated according 

to how often each word occurs in the different positions in the window. The rows and 

columns of this matrix are high-dimensional vector representations for each word. To 

make them computationally tractable, the 100 dimensions with the highest variance 

are used for the final representations. As has been shown in a number of studies, the 

resulting HAL vectors capture the semantic of words fairly well: Semantically related 

words have similar, closer, representations (Burgess & Lund, 1997; Li, 1999; 2000; 

Li, Burgess & Lund, 2000; Lund, Burgess & Atchley, 1995; Lund, Burgess & Audet, 

1996).   

In the present study, HAL representations were 100 dimensions long and formed 

based on the 3.8-million-word CHILDES database (Li, 1999; MacWhinney, 2000). 

Forty-eight nouns were selected from this database to form 24 pairs of words. The 

words in each pair were exemplars from the same semantic category. The words were 

the English translation of the 48 Hebrew words used in the second of the human 

experiments described above. In some cases, if a direct translation did not exist or the 

translated word did not appear in the set of HAL representations, a similar English 

word was chosen. Another 202 nouns were selected randomly from the same set of 
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representations in order to create a richer semantic neighborhood for the 48 words of 

interest. The words are listed in the appendix. 

4.3 Self-Organizing Maps 

The SEMANT architecture is based on a Self-Organizing Semantic Map with 

lateral connections (Miikkulainen, 1992; Miikkulainen, Bednar, Choe, and Sirosh, 

2005; Ritter & Kohonen, 1989). The Self- Organizing Feature Map (SOM) is an 

Artificial Neural Network (ANN) that classifies high-dimensional data and represents 

their topological structure in a two-dimensional map (Kohonen, 1990). The algorithm 

has two different versions of implementation.  One version is biologically motivated 

and, therefore, includes computations that are biologically plausible. The other 

version is oriented towards practical applications, and the equations that govern it are 

abstractions of the computations in the biological version. SEMANT is based on a 

hybrid implementation that retains the computational efficiency of the abstract model 

but includes psychologically verified mechanisms when they are crucial for the 

performance of the model. 

The SOM architecture is a feed-forward, two-layered neural network. The 

input is presented on the first layer, while the second layer, consisting of a 2-D array 

of nodes, self-organizes to represent the topology of the input space. In SEMANT, the 

nodes of the output layer are interconnected with all-to-all lateral connections. Inputs 

that are significantly different in their semantic features are mapped onto distinct 

locations in the output space; similarly, inputs with many overlapping semantic 

features are mapped onto nearby locations. The organization of the map, i.e. the 

assignment of weight vectors to the nodes in the second layer, is formed in an 

unsupervised, iterative process, driven by the statistics of the input's features. 
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The map's response to the input vector is determined by calculating the scalar 

product of the weight vectors of each node and the input vector: 

 

  

where sij is the response of node (i,j) in a two-dimensional map, x is the input vector 

and wij,k is the weight between component k of the input vector on node (i,j). Each 

iterative adaptation step consists of two stages: First, the node in the output layer that 

responds most strongly to the current input vector is found. Second, the weight 

vectors of the most responsive node and neighboring nodes are modified to become 

more similar to the input vector. The neighborhood in which weight vectors will be 

modified is defined around the most responsive node, with a radius that decreases 

from nearly the size of the entire map down to zero as the self-organization 

progresses. The weight vectors of nodes in the neighborhood are changed to become 

closer to the input vector according to 

 

where wij(t) is the weight vector of node (i,j) at time t, x(t) is the input vector at time 

t, and ε(t) is the adaptation rate, which is usually decreased to zero with t. In this 

process, the weight vectors of the map nodes become approximations for the input 

vectors and the weight vectors of neighboring nodes become similar, which results in 

an ordered map of the input space. 

4.4 Semantic Maps 

The SOM algorithm is commonly used to visualize high-dimensional inputs 

with inherent metric properties (Kohonen 1990; 2000). Such inputs are typical to low-
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level perception. However, when dealing with high-level processing such as 

semantics in language and memory, the inputs are often discrete and not necessarily 

metric. There are two major ways to represent semantics (Ritter and Kohonen, 1989). 

According to the first, the representation is a feature vector, where bits represent a set 

of fixed properties (big/small, has 2 legs/4 legs, etc.). According to the other, the 

context of the word, e.g. the random representation of the word and its predecessor 

and successor words, is used as the input. In both cases, Semantic Maps are created, 

that is, meaningful maps of word semantics that express grammatical and semantic 

relationships between words. Because the latter methodology can be automated, it can 

be applied to large corpora such as the entire text of the Grimm fairy-tales (Honkela, 

Pulkki and Kohonen, 1995). Therefore it was also adopted for SEMANT, using the 

HAL approach for creating the representations. 

Semantic maps have been successfully used in various investigations of the 

semantic system addressing issues such as language acquisition, semantic priming, 

semantic and episodic memory, and were used to document representation and 

retrieval (Kohonen et al., 2000; Li, Farkas & MacWhinney, 2004; Lowe, 1997; 

Mayberry, 2004; Miikkulainen, 1993; Scholtes, 1991). Because self-organizing maps 

are based on Hebbian learning and maps in general are common in many parts of the 

cortex (Knudsen, Lac & Esterly, 1987), self-organizing maps are most appealing as a 

biologically plausible analogue of classic semantic networks (Spitzer, 1997). 

4.5 SEMANT architecture 

The core of the SEMANT model is a semantic map consisting of 250 nouns 

organized in a 40 by 40 grid. The semantic map is extended to include all-to-all 

unidirectional lateral connections. These connections represent potential associations 
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between two words. The strength of each connection is composed of semantic and 

episodic components: 

 
where Latij,uv is the connection weight from node (i,j) to node (u,v). The semantic 

component represents the distance on the map, given by 

where wij is the map's weight vector for node (i,j) and AMP, SLP, and SFT are free 

parameters. 2The equation describes a reverse sigmoid with AMP defining its height, 

SLP its slope and SFT its offset. Therefore, the strength of each lateral connection is 

inversely proportional to the 100-dimensional distance between the nodes' weight 

vectors. Initially, the episodic part of all lateral connections is zero. Hence, prior to 

any learning of new associations, the lateral connections capture only the topographic 

organization of the map, that is, the words' semantic relations. 

 The semantic map was organized in two phases. In the first phase, aimed 

at producing a gross organization, the neighborhood size was decreased from 40 to 3 

over 10,000 iterative adaptation step. In the second organization phase, aimed at fine 

tuning the map's representations, the neighborhood size was decreased from 3 to 0 

over additional 20,000 iterations. The adaptation rate (ε) was 0.5 throughout the 

organization process but decreased linearly as a function of the Euclidian distance 

square between the updated node and the most responsive node at each iteration. 

                                                      
2  There are a total of 19 free parameters in this model. 

,,,, uvijuvijuvij EpiSemLat +=(3) 

(4) 
,

1
2,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
⎟
⎠
⎞⎜

⎝
⎛ −− SLPSFTww

uvij
uvije

AMPSem



Silberman, Bentin and Miikkulainen 18 

4.6 SEMANT Dynamics 

When a word is presented to SEMANT, an activity "bubble" develops 

surrounding the node that represents the word in the network. The generated activity 

wave spreads from the activated node according to synchronized recurrent dynamics. 

At each time step, the input to each node is the sum of the activities of all nodes in the 

previous time step, weighted by the lateral connections. The node's activity is limited 

between the values 0 and 1 according to a sigmoid function  

where 

and ( )tSij  is the activity of node (i,j) at time t. 

When two words are presented to SEMANT during the same learning trial (τ), 

the episodic weights adapt to encode a lateral connection (i.e., an association) between 

them. Both activities spread independently over the map and the intersection of these 

activations is summed over all the map's nodes and over all time steps. This sum is 

added to the episodic component of the lateral connection between these words (only 

in the direction that corresponds to the order of presentation) according to 

where ( )tsPRM
mn  is the activation of node (m,n) at time t resulting from the presentation 

of the prime word, which is represented in node (iPRM,jPRM), and ( )ts PRM
mn  is the 

activation of node (m,n) at time t resulting from the presentation of the target word, 

which is represented in node (iTGT,jTGT). 
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When the distance between the words is small (indicating that the words are 

strongly semantically related), the resulting activity waves overlap significantly and the 

connection between them is considerably amplified at each co-occurrence. Thus, it is 

easier for SEMANT to associate related words than unrelated words. Conceptually, this 

method is an abstraction of Hebbian learning of episodic links, since the resulting 

connection strength depends on the intersection of the activation waves of both words. 

4.7 Computational Participants 

In the simulation experiments, 12 different computational participants were 

generated by self-organizing the semantic map each time from different random initial 

starting points. The same sequence of input words was used for each participant (see 

appendix for detailed simulation parameters). 

 The resulting maps learned to represent the semantic similarities in the data, but 

differed in the details of how they were organized. For example, in the map of Figure 2, 

food-related concepts are clustered in the bottom and body parts on top. The food and 

body part clusters were prominent on other maps as well, but were shaped differently and 

located in different regions of the map. In this sense, the 12 maps can be seen as different 

individuals with roughly equivalent semantic systems. Simulated psychological 

Figure 2: A self-organized semantic map. Semantically related words, such as those 
denoting body parts and foods, are mapped to adjacent nodes. Twelve different maps were 
organized from different random initial values, and were used to simulate different 
participants. 
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experiments were conducted in this group of computational participants in order to 

explain the performance observed in human studies. 

5. Validating SEMANT as a Model of Human Learning 

The first simulation was aimed at verifying the psychological validity of 

SEMANT, by replicating the human performance in the second experiment described 

above. Again, this experiment demonstrated that it is easier to form associations 

between semantically related than unrelated words, and that this advantage increases 

with repetitive presentation. 

5.1 Simulation 1 

5.1.1 Experimental Setup 

Out of the 24 semantically related pairs on the semantic map 12 pairs were 

chosen with a Euclidean distance between HAL representations shorter than average 

(0.88) but larger then a pre-determined threshold (0.35). This selection insured that 

the words in each pair were semantically related, but not strongly enough to be always 

recalled regardless of any episodic associations. In addition, the other 12 pairs were 

randomly re-matched to form 12 pairs of semantically unrelated words. The 

simulation procedure was replicated 12 times using a different map each time and 

statistical analysis was performed on the data. 

 
5.1.2 Procedure 

In each trial during the simulated study phase, SEMANT was given two 

words one after the other at an appropriate SOA (i.e., the first word was given at 

time step 0 and the second word only at time step 3). The absolute time scale of 

the network is arbitrary and was adjusted to fit the data. Each of the 24 pairs (12 

related and 12 unrelated) was presented once. Because episodic factors do not 
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affect how activation spreads in the modeled semantic network during the learning 

phase, the episodic associative strength resulting from multiple presentations was 

calculated by multiplying the result of a single presentation by the number of 

repetitions, which varied from 1 to 30.  

In each trial during the test phase, the first word in each of the studied pairs 

was presented again to SEMANT. The resulting activation  wave spread based on the 

same dynamics as during the study phase,  except that both semantic and episodic 

components of the lateral  connections now affected propagation. The activity 

continued to spread until one of the nodes representing a word reached a pre-

determined activity threshold (0.98). This word was then emitted as output. If no 

word-node reached the threshold within eight time steps (at which time the activation 

wave had usually decayed to a negligible level), the word with the highest activation 

was emitted as an answer. The latter scenario simulated the situation in which the 

participant could not recall any word and would answer with the word that first came 

to mind. 

  5.1.3 Results and Discussion   

As evident in Figure 3, SEMANT successfully replicated the pattern of results 

found in human subjects. At early stages, the semantically related pairs were 

associated faster than unrelated pairs. After about 10 repetitions, a ceiling effect 

reduced this pace, such that their advantage over the unrelated pairs stops growing. In 

contrast, the pace of learning unrelated pairs was relatively constant throughout the 

repetitions. 

It is important to emphasize that due to the sigmoid transfer function 

(Equations 5 and 6) as well as the recurrent dynamics, SEMANT's response changes 

nonlinearly with increasing repetitions. Moreover, the performance in the simulated 
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cued-recall test depends nonlinearly on the lateral connection strengths. Hence, the 

nearly linear learning curves in SEMANT (until the ceiling effect) cannot stem merely 

from the linear way in which multiple repetitions were modeled (Section 4.1.2). 

Instead, they accurately represent an equal contribution of each learning trial to the 

correct cued-recall performance.   

 

Statistical analysis of the data revealed that both main effects, i.e. the effect of 

semantic relatedness and the effect of number of repetitions, as well as the interaction 

between them were reliable [F(1,11)=104.4 P<0.001, F(3,33)=352.4 P<0.001 and 

F(3,33)=35.2 P<0.001, respectively]. This result demonstrated that SEMANT is a 

psychologically valid model; it further suggests that the observed human associative 

learning and cued recall performance could arise from computations involving a 

laterally connected semantic map. In two subsequent simulations, SEMANT was used 

to derive predictions that characterize these processes in more detail. 
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Figure 3: Average percentages of correct recall in the model over increasing 
repetitions. The performance of the model matches that of the behavioral experiments 
(Figure 1), suggesting that word recall could be due to computations in a laterally 
connected semantic map. 
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6. Implicit Asymmetry in Forming Associations 

Unlike semantic relationships, associations between words are directional. In 

free association questionnaires, for most pairs the participants would reply with word 

B after A with a different probability than the other way around (Koriat, 1981). In 

SEMANT, explicit asymmetry is achieved by the unidirectional lateral connections, 

which represent the association between two words in the map. However, SEMANT 

demonstrates an additional asymmetry that is implicit: It is sometimes easier to form 

an association between two words in one direction than in the opposite direction even 

before any episodic information is taken into account. Simulation 2 was aimed at 

quantifying this phenomenon. 

6.1 Simulation 2 

6.1.1 Experimental Setup 

The density of the semantic neighborhoods of the words used in Simulation 1 

was determined by counting the number of words (out of the 250 total words in 

SEMANT's lexicon) that were within a fixed 100-dimensional distance (0.4) in their 

HAL representations. Based on this count 3 related and 3 unrelated pairs were 

selected in which the difference in the semantic densities of the two words in a pair 

was the greatest. These 6 pairs were used in this simulation. As before, the simulation 

procedure was replicated 12 times using a different map each time and statistical 

analysis was performed on the data. 

6.1.2 Procedure 

As in Simulation 1, the six pairs were presented one word at a time. First, the 

pairs were presented in the forward direction, from the word with the sparse semantic 

neighborhood to the word with the dense semantic neighborhood in each pair. Then, 
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the network was reset to its original state and the entire procedure was repeated with 

the pairs presented in the opposite order (from dense to sparse). The "cued-recall" 

performance of the two directions was compared statistically. 

6.1.3 Results and Discussion 

As shown in Figure 4, when the pairs were presented in the forward direction 

(sparse neighborhood → dense neighborhood) associations were learned faster than 

when the order of presentation was reversed [F(1,11)=24.8 p<0.001]. However, a 

significant interaction between direction of presentation and semantic relationship 

effects [F(3,33)=3.9 p<0.05] revealed that the order of presentation influenced only 

the semantically related words. Post hoc analysis of the order effect showed that 

whereas the related word pairs were learned faster in the forward than backward 

direction [F(1,11)=46.6 p<0.001], order had no effect on unrelated word pairs 

[F(1,11) < 1.00]. 

The reason for this implicit asymmetry is that activation spreads over a non-

uniformly distributed high-dimensional space (as will be elaborated in the General 

Discussion). Consequently, each word results in a unique pattern of activation over 

the map over time. In particular, spreading the activation from a sparse neighborhood 

to a dense one takes longer than the other way around. Therefore, for semantically 

related pairs, the intersection of the two activation waves is larger and persists longer 

when the first word is in a sparse neighborhood than when it is in a dense 

neighborhood. For unrelated word pairs, the difference is inconsequential because the 

activation waves do not overlap significantly. 

Although implicit asymmetry has not yet been observed in human 

performance, indirect evidence suggests that it might be psychologically real. For 

example, Dagenbach, Horst and Carr (1990) found that it is easier to add a new word 
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to semantic memory than to establish a link between two formerly unconnected words 

already existing in semantic memory. This result is consistent with the asymmetrical 

directionality prediction of SEMANT if newly learned words are assumed to be 

poorly embedded into their semantic neighborhood and, therefore, to have a sparser 

semantic neighborhood than familiar words do. 

7. Modeling Associative Learning in Schizophrenia 

Based on Collins and Loftus’s (1975) theory of spreading activation, Spitzer 

(1997) suggested a model of schizophrenic thought disorder (STD) where the 

activation wave over the semantic network of STD patients spreads faster and farther 

away from origin than that of normal participants. Such atypical activation may 

explain experimental results in STD patients, who show stronger direct priming (e.g. 

between the words COW and MILK) as well as more indirect, mediated semantic 

priming (e.g. between the words BULL and MILK, mediated by the word COW) than 

normal subjects. It may also explain the clinical phenomenon of loose, oblique and 

derailed associations. There are at least two possible accounts for the aberrant 

spreading of activation in the STD semantic system: (1) the total amount of activation 
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Figure 4: Average percentages of correct recall demonstrated by the model for related and 
unrelated word pairs in forward (sparse to dense) and backward (dense to sparse) directions. 
The model predicts that learning is easier from sparse to dense neighborhoods. 
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may be higher in STD patients than in typical population, and (2) the activation may 

be shallower in STD patients but more widespread. In Simulations 3A and 3B these 

two possible accounts are tested in SEMANT. By comparing the performance in each 

of the simulations with those of human participants it is possible to obtain insight into 

what might be causing semantic disorders in STD patients. 

7.1 Simulation 3A 

7.1.1 Experimental Setup and Procedure 

This simulation tested the effect of increasing the overall amount of activation 

on associative learning. The experimental setup and procedures of Simulation 1 were 

replicated, except that the amplitude of the spreading activation wave was relatively 

elevated. As described above (Equation 4), the distance between the word 

representations (nodes) determines how strongly they are linked according to a 

reverse sigmoid function (Equation 4). This sigmoid was elevated by multiplying the 

SFT parameter of Equation 4 by a factor of two. As a result, the area underneath the 

curve increased but the shape of the sigmoid remained similar to that used in 

Simulation 1 (Figure 5). The psychological interpretation of this change is that the 

stronger and unfocused activation wave results from a higher level of excitability in 

the system. As in Simulation 1, the simulation procedure was replicated 12 times 

using a different map each time and statistical analysis was performed on the data. 
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7.1.2 Results and Discussion 

As shown in Figure 6, running the simulation, SEMANT predicted that the 

associative recall performance of STD patients in both related and unrelated 

conditions would improve, at least up to about 10 repetitions [F(1,11)=58.9 P<0.001]. 

Since both cued-recall and priming depend on memory organization, this finding is 

consistent with the increased semantic priming reported in schizophrenic patients. 

Computationally, the improvement in performance was caused by the elevated 

sigmoid, which generated a greater activity overall. Interestingly, unlike modeling 

typical performance, when STD constraints are imposed on the simulation the 

associations between unrelated words were formed as fast as between related words. 

This pattern was verified by a Relatedness × Number of repetitions × Model (typical, 

STD) ANOVA showing a significant three-way interaction F(3,33)=13.4 P<0.001. 

This result corresponds to the finding that STD patients show more mediated 

Figure 5: Semantic relatedness as a function of the distance between word 
representations in normal participants (continuous line) and in STD patients 
(dashed line) modeled by an elevated curve. Such a curve corresponds to a 
higher level of excitability in the system. 



Silberman, Bentin and Miikkulainen 28 

associations, in the sense that semantically unrelated words are easier for STD 

patients to associate than for matched control participants. 
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Nevertheless, the superior associative recall performance of STD patients 

predicted by simulation 3A for both related and unrelated pairs is intriguing. 

Notwithstanding the stronger semantic priming effect, STD patients do not usually 

succeed in memory tests better than normal participants, especially with incidentally 

learned associations. Note that the better cued-recall for STD patients resulting from 

Simulation 3A is a result of higher activation levels in general. To address this 

problem and explore the second account for the unusual priming effects observed in 

STD patients, in Simulation 3B a shallower but broader sigmoid was used. Such a 

sigmoid generates unfocused activation without increasing its overall amount. The 

goal was to see whether more loose associations would result without a significant 

increase in overall recall performance. 

Figure 6: Averaged percentages of correct recall demonstrated by SEMANT for 
normal participants and for STD patients with elevated activity. Performance for 
STD patients is elevated for both related and unrelated pairs and the difference 
between the two conditions is diminished, suggesting that mediated associations in 
STD may result from enhanced semantic connections. 
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7.2 Simulation 3B 

7.2.1 Experimental Setup and Procedure 

The setup and procedures of this simulation were similar to that of Simulation 

3A except that the sigmoid was normalized such that the sum of the semantic 

components of the lateral connections was identical to that used in Simulation 1 

(Figure 7). Thus, the total strength of the lateral connections in the simulated STD 

was the same as in the normal case; keeping the overall activation at the same level in 

both groups. However, the connection profile was much wider, representing an 

unfocused association system. As in all our previous simulations, the simulation 

procedure was replicated on 12 different maps and analyzed statistically. 

 

7.2.2 Results and Discussion 

Unfocused activation was implemented in SEMANT by making the sum of the 

semantic components of the lateral connections the same in STD and in the typical 

case. As can be seen in Figure 8, this simulation resulted in lower percentage of cued 

recall in related pairs while the performance of unrelated pairs was higher than in the 

Figure 7: Semantic relatedness as a function of the distance between word 
representations in normal participants (solid line) and in STD patients (dashed line), 
modeled by a shallower and wider curve. Such a curve corresponds to higher 
unfocused associations.
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normal case. Statistical analysis (ANOVA) did not show a statistically reliable 

difference between normal and STD conditions [F(1,11)=0.086 P>0.75], but resulted 

in a significant relatedness effect [F(1,11)=193.893 P<0.001] and a significant 

interaction between the relatedness and STD conditions [F(1,11)=26.620 P<0.001]. 

This interaction indicates that the semantic relatedness had a larger effect in the 

normal than in the STD case. Moreover, as in Simulation 3A, the qualitative 

difference in the rate of learning related versus unrelated words was decreased in STD 

relative to normal [significant three-way interaction F(3,33)=15.6 P<0.001]. 

 

 

The conclusion from both simulations 3A and 3B is that the difference 

between associating related and unrelated words is diminished in STD relative to 

normal conditions. However, the pace of learning new associations and the final 

plateau was determined by the type of model: Assuming higher overall semantic 

activation in STD (simulated by higher amplitude sigmoid, Figure 5) resulted in more 

efficient learning of both related and unrelated pairs, even higher than in the control 
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Figure 8: Average percentages of correct recall demonstrated by SEMANT for normal 
participants and STD patients with widespread activity. Performance for STD patients is 
degraded for related pairs, elevated for unrelated pairs, and the difference between the 
two conditions is diminished, suggesting that mediated associations may result from 
unfocused associations. 
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condition. In contrast, assuming equal excitability in both groups, but spread more 

diffusely in the STD participants (simulated by a sigmoid with lower amplitude but 

further reaching influence, Figure 7) resulted in better associative learning of 

unrelated pairs but reduced associative learning of related pairs. This result can be 

useful in uncovering the source of thought disorders in schizophrenic patients. Indeed, 

preliminary data from an ongoing study in human STD patients and normal 

individuals suggests that the second model is better supported by real data (Bentin et 

al., in progress). 

8. General Discussion 

The goal of the present study was to determine how semantic and episodic 

factors interact in learning new incidental associations between words. Empirical 

studies with human participants showed that semantically related words are associated 

more easily than unrelated words, and that this difference is primarily due to higher 

associative strength added by each episode of co-occurrence. A computational model, 

SEMANT, was developed to account for this phenomenon and to suggest a more 

general mechanism for word association. An initial simulation demonstrated that the 

model is psychologically valid: The computational process of forming new 

associations between related and unrelated words accurately replicated human 

performance. Subsequent simulations generated predictions about associative learning 

between different types of words and modeled different accounts for the peculiar 

associative learning in schizophrenic patients with thought disorders. These model-

derived predictions (as well as others) can be tested empirically in future experiments 

with human subjects. The model has also broader implications for the study of 

memory, as will be discussed in this section. 
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SEMANT suggests that both semantic relationship and episodic associations 

can be implemented in a single network structure using two types of representations.  

Semantic relationship is expressed as proximity in a high-dimensional features' space 

spanned by the numerical representations of the concepts. Episodic associations are 

represented by arbitrary "physical" connections between the nodes that represent the 

words. Both types of relations are implemented simultaneously in a self-organizing 

semantic map with lateral connections. Based on such structure, SEMANT showed 

that semantic relationship facilitates learning new associations.  This facilitation 

emerges in a natural, mechanistic manner, without involving top-down intentional 

processes. It is achieved through a process similar to Hebbian learning, where 

connections are strengthened based on intersections of spreading activation waves 

over a semantic map. 

In SEMANT, the episodic connections do not affect the organization of the 

semantic map. This modeling approach reflects the assumption that different rules 

govern the organization of the semantic and episodic memories: The semantic map is 

organized according to outside (possibly sensory) information and is not affected by 

the episodic connections. Indeed preliminary experiments show that newly formed 

episodic associations do not affect the semantic memory, i.e. they do not bring entire 

neighborhoods closer together (Silberman et al. 2005). Such effects may be possible 

at very long time scales, which are currently outside the scope of the model. 

The basic principles underlying SEMANT (map-like memory organization, 

spreading activation, and Hebbian adaptation) are well established in the literature and 

have been used to model several other phenomena. The fact that these principles can 

also account for word associations suggests that they may, indeed, represent general 

mechanisms of cognition. The predictive power in the model was demonstrated in a 
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number of cases.  One prediction was that it is easier to form associations for  sparse 

to dense semantic neighborhoods than the other way around; another was that 

excessive mediated associations in STD could be due to elevated or diffuse spreading 

activation process, and these mechanisms can be distinguished in the data. A third 

prediction is that a strong association between semantically unrelated words (e.g. 

BEER - DAISY) facilitates forming new associations between other words from the 

same semantic neighborhoods (e.g. WINE - TULIP). This is because each of the new (to 

be associated) words activates its own semantic neighborhood, including the previously 

associated words. The pre-existent episodic association mediates the spread of activation 

between the new conjointly presented exemplars, thus enhancing the overlap of their 

activations This prediction has already been validated empirically in human 

(Silberman, et al., 2005). 

The asymmetric nature of word associations is difficult to explain with 

computational models that rely on distances between high-dimensional numeric 

representations. One atypical example is Plaut's (1995) model, which can, in 

principle, capture asymmetric associations between word pairs based on the relative 

frequency of the two directions of presentation (although such behavior has not yet 

been demonstrated in that model). Similarly, SEMANT is based on perfectly 

symmetric foundations such as high-dimensional vectors and the self- organization 

algorithm that establishes the semantic map. Nonetheless, SEMANT demonstrates 

two kinds of asymmetries (as was discussed in section 6). The first asymmetry is 

explicit; it is achieved by unidirectional lateral connections that are implemented on 

top of the symmetric organization of the semantic map. These connections make it 

possible to have asymmetric associations between two words, based on different 

episodic experiences in the two directions. The second asymmetry is implicit 

emerging from the non-uniform distribution of concepts in the high-dimensional 
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space. This distribution makes spreading activation asymmetric between two points 

that would otherwise be equidistant in the semantic space. By doing so, SEMANT 

suggests a mechanism based on which asymmetric behavioral phenomena can emerge 

from seemingly symmetric building blocks. 

SEMANT demonstrates implicit asymmetry because the weight vectors in the 

semantic map are distributed non-homogeneously in the 100-dimensional space. 

However, factors other than semantics may influence this distribution and 

consequently influence the implicit asymmetry as well. As described in section 4, the 

density of the weight vectors in the semantic map is determined during the self-

organization process and reflects how the numerical HAL representations of the 250 

words are distributed.  Lund et al. (1995, 1996) argued that HAL representations 

reflect primarily the semantic features of the words. Therefore the semantic map in 

SEMANT is likely to reflect primarily the semantic relationships between words prior 

to the episodic learning.  However, other factors such as word frequency and word 

familiarity may be confounded in HAL representations as well, and therefore may 

affect the semantic density and implicit asymmetry in SEMANT.  Additional studies 

are necessary to disentangle the putative contribution of such factors. 

SEMANT also suggests that the nodes unassigned with words in the semantic 

map are important, since they serve as a mediating substrate for spreading activation. 

Any system organized in an unsupervised fashion to accommodate an unknown 

number of items (such as the human semantic system) should be expected to have a 

much larger capacity than is usually needed. In semantic maps, the number of nodes 

in the map is much larger than the number of represented words (e.g. in SEMANT, 

250 nodes are embedded in 402 nodes, resulting in 6.4 nodes per word on average). 

However, due to the self-organization algorithm, these unassigned nodes are not 
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distributed uniformly in the high-dimensional space, but rather represent the densest 

areas of the input space. Consequently, they help magnify the effects that are due to 

the statistical properties of the input. An example of such an effect is the asymmetry 

in the learning efficiency between two directions of word pairs, as demonstrated in 

Simulation 2. 

While the similarity between human performance and the computer 

simulations suggest that SEMANT is a valid psychological model, it is still a high- 

level abstraction of the underlying biological mechanisms. For example, recall that 

during the simulation of the learning phase, two words are presented to SEMANT 

with a certain SOA and the two activation waves spread independently. The lack of 

interaction between the two spreading waves is a computational abstraction that could 

be elaborated in a more biologically plausible model. More specifically, in order for 

two (or more) waves to spread without interaction within the same system, the waves 

can be labeled, or marked, to carry the information to identify their source throughout 

their propagation. Such a mechanism is central in the marker-passing extensions to 

spreading activation (Charniak, 1983; Hendler, 1988).  One biologically plausible 

marker passing mechanism is the synchronized spiking model (Choe & Miikkulainen, 

1998; Miikkulainen et al., 2005; Shastri and Ajjanagadde, 1993; von der Malsburg, 

1986). If two activations spike at different phases, the information regarding their 

source is preserved.  On the other hand, if the enhancement of the association strength 

between the two words is done in real-time during the propagation of the waves, and 

if the sensory input that created the activation is accessible throughout the 

propagation, a marking scheme may not be needed: The nodes where the waves 

originated can be identified because they respond maximally to the sensory input. 

However, it may not be realistic to assume that two (or more) activation waves may 
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propagate through the same system (semantic memory) without interaction. Hence, a 

more plausible assumption would be that waves that originate from different sources 

interact in some manner and that the propagation of one affects the propagation of the 

others. Changing SEMANT to support unlabeled interacting activation and still 

replicating human behavior is an interesting future research line. 

9. Conclusion 

Based on detailed studies with human participants, a computational model of 

forming incidental associations between words was developed. The model suggests 

that this process could be based on spreading activation on a laterally connected self-

organizing map that combines episodic and semantic factors. It also demonstrates how 

such associations could be asymmetric and how the associative process can be 

impaired in STD patients. These results constitute a promising first step towards a 

computational theory of associative thinking in human. 
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Appendix 

Entire lexicon: 

1. address 

2. ale 

3. answer 

4. aquarium 

5. back 

6. bag 

7. baker 

8. balance 

9. ball 

10. band 

11. band-aid 

12. baseball 

13. basement 

14. bath 

15. bathroom 

16. bathtub 

17. beard 

18. bed 

19. bee 

20. bend 

21. bin 

22. birthday 

23. blender 

24. board 

25. boom 

26. bracelet 

27. branch 

28. bump 

29. bush 

30. butterfly 

31. cabbage 

32. camel 

33. cards 

34. carriage 

35. carrot 

36. castle 

37. cheese 

38. chin 

39. chocolate 

40. clay 

41. coat 

42. coffee 

43. coke 

44. collection 

45. copy 

46. cottage 

47. cotton 

48. counter 

49. course 

50. cow 

51. cowboy 

52. crack 

53. crown 

54. cube 

55. dad 

56. desert 

57. dice 

58. direction 

59. dish 

60. doctor 

61. doll 

62. dollar 

63. door 

64. downtown 

65. dress 

66. dresser 

67. drill 

68. drop 

69. ear 

70. earth 

71. electricity 

72. elevator 

73. equipment 

74. eye 

75. factory 

76. fall 

77. farm 

78. farmer 

79. film 

80. fireman 

81. flag 

82. flour 

83. fly 

84. fruit 

85. game 

86. garbage 

87. gasp 
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88. ghost 

89. gown 

90. group 

91. guess 

92. guitar 

93. gun 

94. haircut 

95. hammer 

96. hamster 

97. hand 

98. helicopter 

99. hippopotamus 

100. horse 

101. hut 

102. ice 

103. ice-cream 

104. iris 

105. ironing 

106. jeans 

107. jelly 

108. job 

109. joke 

110. jungle 

111. key 

112. kiss 

113. kit 

114. knock 

115. lamb-chop 

116. lasagna 

117. letter 

118. lettuce 

119. lie 

120. lollipop 

121. machine 

122. mail 

123. mane 

124. marble 

125. material 

126. math 

127. means 

128. microphone 

129. monster 

130. mountain 

131. nail 

132. nap 

133. neck 

134. necklace 

135. office 

136. oil 

137. pack 

138. page 

139. painting 

140. pajamas 

141. palm 

142. panda 

143. parade 

144. parking 

145. part 

146. party 

147. pause 

148. pay 

149. pear 

150. pepper 

151. piano 

152. picnic 

153. pill 

154. pineapple 

155. pipe 

156. pitch 

157. play-dough 

158. police 

159. popcorn 

160. popsicle 

161. potato 

162. power 

163. price 

164. prince 

165. prize 

166. pudding 

167. purse 

168. raccoon 

169. racing 

170. railroad 

171. rake 

172. refrigerator 

173. ringing 

174. river 

175. road 

176. robin 

177. rock 

178. roof 

179. rose 

180. sack 

181. saddle 

182. sailor 

183. salad 
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184. scarf 

185. school 

186. second 

187. shape 

188. sign 

189. slap 

190. sleep 

191. slide 

192. snow 

193. soap 

194. soda 

195. son 

196. song 

197. soup 

198. squash 

199. squirrel 

200. squirt 

201. stairs 

202. steam 

203. step 

204. stew 

205. stone 

206. store 

207. strap 

208. straw 

209. strawberry 

210. string 

211. sum 

212. sunglasses 

213. sunshine 

214. sweater 

215. sweatshirt 

216. syrup 

217. table 

218. tail 

219. temperature 

220. throat 

221. tick 

222. ticket 

223. toe 

224. towel 

225. train 

226. trash 

227. tree 

228. tricycle 

229. trouble 

230. truth 

231. tuba 

232. tuna 

233. van 

234. vanilla 

235. violin 

236. wall 

237. war 

238. wash 

239. washcloth 

240. waste 

241. wedding 

242. whale 

243. wheat 

244. whisper 

245. wine 

246. wire 

247. wool 

248. worm 

249. yawn 

250. zoo 
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Word pairs used in the simulations: 

Semantically unrelated: 

1. necklace - vanilla 

2. painting - train 

3. van - store 

4. guitar - cabbage 

5. pear - electricity 

6. pepper - song 

7. coat - violin 

8. office - dress 

9. camel - roof 

10. oil - cow 

11. wall - strawberry 

12. carrot - bracelet 

 

Semantically related: 

1. bag - purse 

2. eye - chin 

3. butterfly - bee 

4. gun - stone 

5. lettuce - chocolate 

6. snow - sunshine 

7. doctor - baker 

8. dice - cards 

9. coffee - soda 

10. bandage - pill 

11. ball - doll 

12. desert - river 
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