
Accelerating Evolution Through Gene Masking
and Distributed Search

Hormoz Shahrzad
Cognizant AI Labs & UT Austin

San Francisco, USA
hormoz@cognizant.com

Risto Miikkulainen
UT Austin & Cognizant AI Labs
Austin & San Francisco, USA

risto@cognizant.com

ABSTRACT
In building practical applications of evolutionary computation (EC),
two optimizations are essential. First, the parameters of the search
method need to be tuned to the domain in order to balance ex-
ploration and exploitation effectively. Second, the search method
needs to be distributed to take advantage of parallel computing
resources. This paper presents BLADE (BLAnket Distributed Evolu-
tion) as an approach to achieving both goals simultaneously. BLADE
uses blankets (i.e., masks on the genetic representation) to tune
the evolutionary operators during the search, and implements the
search through hub-and-spoke distribution. In the paper, (1) the
blanket method is formalized for the (1 + 1)EA case as a Markov
chain process. Its effectiveness is then demonstrated by analyzing
dominant and subdominant eigenvalues of stochastic matrices, sug-
gesting a generalizable theory; (2) the fitness-level theory is used
to analyze the distribution method; and (3) these insights are veri-
fied experimentally on three benchmark problems, showing that
both blankets and distribution lead to accelerated evolution. More-
over, a surprising synergy emerges between them: When combined
with distribution, the blanket approach achieves more than 𝑛-fold
speedup with 𝑛 clients in some cases. The work thus highlights the
importance and potential of optimizing evolutionary computation
in practical applications.

CCS CONCEPTS
•Computingmethodologies→Genetic algorithms;Distributed
algorithms; • Theory of computation → Evolutionary algo-
rithms.

KEYWORDS
Evolutionary algorithms, genetic algorithms, distributed evolution,
adaptive evolution, fitness-level method, Markov chains, stochastic
matrices

ACM Reference Format:
Hormoz Shahrzad and Risto Miikkulainen. 2023. Accelerating Evolution
Through Gene Masking and Distributed Search. In Genetic and Evolutionary
Computation Conference (GECCO ’23), July 15–19, 2023, Lisbon, Portugal.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3583131.3590508

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO ’23, July 15–19, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0119-1/23/07. . . $15.00
https://doi.org/10.1145/3583131.3590508

1 INTRODUCTION
Automatic configuration, often called AutoML or meta-learning,
has recently emerged as an important topic in machine learning
[7, 15, 16]. Complex machine learning systems depend on several
hyperparameters that are difficult to set right by hand, and therefore
machine learning itself is harnessed to optimize them.

Similarly, the effectiveness of an evolutionary computationmethod
is often contingent on the proper tuning of its operators. This paper
proposes a new method for doing so automatically as part of the
evolutionary search itself. The idea is to use a mask, i.e. a blanket,
on the genotype to focus the search on specific parts of the prob-
lem. The masks are constructed dynamically throughout the search,
and help focus it on parts that are the most important. In a sense,
they play a role similar to attention heads in transformer neural
networks [32], but adapted to population-based search.

A related practical challenge in machine learning is paralleliza-
tion. As machine learning systems grow in size, there is a growing
need for distributing the computation across multiple computing
resources, including multiple cores on a single machine, multiple
nodes in a cluster, and multiple resources in the cloud. While evo-
lutionary computation generally parallelizes well, the method of
distribution of evaluations and evolutionary operations has a large
effect. The hub-and-spoke method is often preferable for maximum
scalability and flexibility.

Putting blankets and distribution together, this paper proposes
BLADE as an effective new method for accelerated evolution. Each
of its components is first formalized and characterized theoretically,
leading to predictions of possible speedups. These predictions are
then confirmed in practical experiments with the (1 + 1)𝐸𝐴 opti-
mization method on three optimization benchmarks, i.e. AllOnes,
OneMax, and LeadingOnes. The results reveal a surprising synergy
between blankets and distribution that allows more than 𝑛-fold
speedups with 𝑛 clients. In future work, the BLADE approach may
be extended to other algorithms and applications, and can thus
serve as a foundation for accelerated evolution in practice.

2 BACKGROUND
This section reviews prior work related to BLADE both in automatic
parameter tuning and in distributed evolutionary computation.

2.1 Parameter Optimization
All problem-solving methods rely on a number of parameters that
have to be set appropriately for the method to function properly.
In genetic algorithms, they include settings for the population size,
the mutation rate and extent, the type of crossover, the selection
method, the size of the elite set, the number of offspring, etc. They
can be set up by hand through a laborious trial and error process, or

https://doi.org/10.1145/3583131.3590508
https://doi.org/10.1145/3583131.3590508


GECCO ’23, July 15–19, 2023, Lisbon, Portugal Hormoz Shahrzad and Risto Miikkulainen

a learning method such as evolution itself can be used to discover
good settings.

For instance, in bilevel evolution, low-level evolution searches
for solutions while high-level evolution searches for the best pa-
rameters for low-level evolution [17, 27]. Bilevel evolution is ex-
pensive because it often requires running many low-level optimiza-
tions to evaluate the fitness of high-level individuals. Furthermore,
there is a growing body of evidence suggesting that operator set-
tings and other aspects of the configurations should be adapted
dynamically in response to changes in the fitness of the population
[1, 3, 5, 11, 22, 29, 31].

The blanket method establishes such a dynamic optimization
mechanism: The settings of the search operator are adjusted as part
of the search itself over the course of the run.

2.2 Distributed Evolution
There are several different methods for distributing an evolution-
ary process across multiple clients, and each method has its own
advantages and disadvantages.

Synchronous distribution [12, 24, 30, 34]: The evolution engine
partitions the population, assigns each partition to an external
worker to evaluate, and waits for all the evaluations to return before
forming the population for the next generation. This method is
simple, but it only scales well when the worker clients are machines
with similar speed and connectivity; otherwise, time is wasted
waiting for the slowest clients to finish their work. This approach
can also be slow for large populations because there is a high
communication overhead for distributing individuals.

Asynchronous population evaluation [12, 24, 30, 34] starts like
the synchronous method, but the engine only waits until a part
of the population has been evaluated before generating the next
population. This method improves efficiency but may lose diversity.

Island model [33]: While the above methods rely on the star
topology of distribution, the island model applies to a variety of
topologies such as a ring or hypercube. The evolution engines
themselves are distributed, and they migrate good solution can-
didates between themselves using peer-to-peer connections. This
method is asynchronous and can generate a lot of diversity at scale.
On the other hand, decentralization of evolution engines makes
harvesting the best candidates difficult, and the peer-to-peer con-
nections may become an overhead, especially when using highly
connected topologies on different physical machines. Therefore,
the island model is most suitable for parallel evolution on a single
machine with many cores rather than distributing it over a network
of machines.

Hub and spoke model [21]: This model also uses the star topology,
but the clients (spokes) are full evolution engines. They evaluate
candidates asynchronously on different partitions of the data and
the results are aggregated in a centralized server (hub). The main
advantage of this method is that it can be easily distributed over
a very large network of diverse computing resources. Also, each
client has only one external connection to the hub, and therefore it
is possible to add or remove clients in an asynchronous manner. On
the other hand, the hubmay become overwhelmed with a very large
number of clients. In such a situation, a method of load-balancing
can be implemented.

In sum, the choice of distribution method depends on the specific
requirements of the evolutionary algorithm and the computational
resources available. For many evolutionary computation implemen-
tations, the hub-and-spoke model offers the best advantages, and
will thus be used for BLADE as well.

3 METHOD
This section presents the details of the BLADE method. Intuition
and theoretical formulation are first given for blankets and distri-
bution separately, and these methods are then brought together to
full BLADE. The discussion focuses on the optimization of binary
strings with (1 + 1)𝐸𝐴. Possibilities for extending BLADE to other
representations and search methods will be discussed in Section 5.

3.1 Blanket-based Search
The blanket method refers to the process of masking parts of a can-
didate solution so that they cannot be modified by the evolutionary
operators such as mutation for (1 + 1)𝐸𝐴. It is a way to focus the
search on those solution elements that make progress most likely.

3.1.1 Method Description. The blanket method involves modifying
the mutation rate of bits in a binary string of length 𝑁 according to
another binary string, i.e. the blanket, which can be any one of the
2𝑁 such strings except all zeros and all ones. The mutation rate 𝜇
is modified by the factor of 𝑁

𝑁−len(blanket) .
For example, if 𝑁 = 5, 𝜇 = 1/4, and the blanket is "01011",

then len(blanket) = 3, and the second, fourth, and fifth bits are
preserved, and the first and third bits are mutated independently
with the modified mutation probability 𝜇b = 1

4 ∗
5

5−3 = 5
8 . If 𝜇b

exceeds 1.0, it is clipped to 1.0, meaning that all bits not under the
blanket are flipped deterministically. Algorithm 1 shows a modified
version of (1 + 1)𝐸𝐴 that incorporates the blanket method.

Algorithm 1 Blankets only (non-distributed BLADE)

Initialization:
Sample 𝑥 ∈ {0, 1}𝑁 uniformly at random and evaluate 𝑓 (𝑥)

Optimization:
for 𝑡 = 1, 2, 3, ... do

Offspring generation with blanket:
Calculate mutation rate 𝜇
Sample blanketLength from [1, 𝑁 − 1] randomly
Set blanket← flip blanketLength random bits in {0}𝑁
Set 𝜇b ← min(1, 𝜇 ( 𝑁

𝑁−blanketLength ))
Sample 𝑦 ∈ {0, 1}𝑁 at random with 𝑝 (1) = 𝜇b
Set blanket← blanket ∧ 𝑦 (∧ is bitwise AND)
Create 𝑥∗ ← 𝑥⊕ blanket (⊕ is bitwise XOR)

Selection:
if 𝑓 (𝑥∗) ≥ 𝑓 (𝑥) then

𝑥 ← 𝑥∗

end if
end for

3.1.2 Theoretical Formulation. The blanket method may initially
seem counterintuitive: It may help search if it masks those parts
of the string that are indeed part of the solution, but it may also



Accelerating Evolution Through Gene Masking
and Distributed Search GECCO ’23, July 15–19, 2023, Lisbon, Portugal

(a) Example transition matrix without blankets (b) Example transition matrix with blankets

. . .

(c) Convergence without blankets

. . .

(d) Convergence with blankets

Figure 1: A convergence comparison without and with blankets on 2-bit AllOnes. The transition matrices are shown in (a) and
(b). For each state in (a) there are two possible blankets in (b), and therefore twice as many states. The subdominant eigenvalue
is 0.75 for the matrix without blankets and 0.71 for the matrix with blankets, and the Markov chain with blankets should
therefore converge faster theoretically. The convergence process is shown in (c) and (d). The initial state 𝑆0 is chosen randomly
with a uniform probability. The first three and the last three transitions are shown. Without blankets, the process takes 26
transitions to converge, and with blankets, 19. The results thus confirm the theoretical advantage of using blankets during the
search.

hinder search if it masks parts where further mutations are needed.
Without further knowledge of the problem domain or a method
for dynamically constructing blankets, its potential benefits and
drawbacks may cancel out. A simple formalization is helpful in
showing why this is not a problem, and blankets can indeed speed
up the search process.

Consider (1 + 1)𝐸𝐴 on a 2-bit version of the AllOnes problem:
Starting from random bits, each bit gets independently mutated
at each iteration with the probability of 1

2 until both bits are one.
This process can be formalized as a Markov chain, i.e. a random
process in which the future state of the system depends only on its
current state and not its past history [8]. A transition matrix stores
the probabilities of the system moving from one state to another,
with zero indicating that a transition is not possible. An absorbing
state is a state that cannot be left once it has been entered; it is
represented by a row with a single non-zero element of 1.

Since there are 22 = 4 different combinations of two bits, the
transition matrix is of size 4× 4. A possible such matrix is shown in
Figure 1(a). The rows represent the current states, the columns the
possible next states, and each cell the probability of the correspond-
ing transition. Once the system gets to the state in the bottom row
it stays there forever; otherwise, it can transition from any state to
any other state with a probability of 0.25.

With two bits, there are two possible blankets "[0,1]" and "[1,0]".
Thus the number of states doubles, and the transition matrix ex-
pands to 8 × 8, as shown in Figure 1(b). For instance, from the state
(0,0) with the blanket of (0,1), i.e. the top left cell, the system cannot
go to state (0,0): By masking the second bit, the 1

2 baseline probabil-
ity of mutation increases by the factor of 𝑁

𝑁−len(blanket) =
2

2−1 = 2

and thus becomes 1. Therefore, the system can only transition to
the state (1,0); since there are two possibilities for the blankets in
that state, their probabilities are both 0.5.

Note that an 𝑛 × 𝑛 entrywise nonnegative matrix 𝑃 is considered
to be stochastic if the sum of its every row is equal to 1, i.e. 𝑃1 = 1,
where 1 is an all-ones column vector of size 𝑛. Transition matrices
such as those in Figure 1 above are thus stochastic matrices. Further,
from the definition of eigenvalue and eigenvector (i.e., 𝑃x = 𝜆x),
it is clear that 1 is an eigenvalue of 𝑃 . According to the Perron-
Frobenius theorem [26], the dominant eigenvalue 𝜆1 of 𝑃 is always
1, and its ordered eigenvalues 𝜆𝑖 (𝑃) satisfy

1 = |𝜆1 (𝑃) | ≥ |𝜆2 (𝑃) | ≥ ... ≥ |𝜆𝑛 (𝑃) |. (1)

Importantly, when the absolute value of the subdominant eigen-
value 𝜆2 (𝑃) < 1, the Markov chain converges; further, it converges
faster with smaller |𝜆2 (𝑃) | [13].

It turns out that the subdominant eigenvalues for the matrices in
Figure 1 are both less than one. However, without blankets 𝜆2 = 0.75,
and with blankets 𝜆2 = 0.71, suggesting that the blanket method
should converge faster. Figures 1(c,d) show the actual convergence
of the transitions in these two cases, confirming the theory: While
without blankets the process takes 10 steps to converge, only six
are required with blankets.

Thus the formalization in terms of Markov chains leads to a
powerful conclusion in 2-bit AllOnes. The experimental results in
Section 4 further suggest that the same conclusion should apply
to larger 𝑁 and to other problems. A challenge for the future is to
extend the theory to the general case, as outlined in Section 5.



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Hormoz Shahrzad and Risto Miikkulainen

3.2 Distributed Evolution
As described in the Background section, although a variety of meth-
ods exist for distributed computing, the hub and spoke model is
a particularly effective approach for evolutionary computation.
Through distribution, it is possible to take advantage of modern
computing resources, including multiple cores on a single machine,
several machines in a LAN (i.e., Local Area Network), or machines
in the cloud. In this section, this method of distribution is first
instantiated in the (1 + 1)𝐸𝐴 algorithm. The approach is then for-
malized and an upper bound is derived for the speedup it offers
compared to the non-distributed version.

3.2.1 Method Description. With (1 + 1)𝐸𝐴, the hub is a node that
stores only a global variable that maintains the best candidate
solution so far. The spokes, or clients, are nodes running (1 + 1)𝐸𝐴.
They regularly communicate with the hub to possibly obtain a
better candidate, or to inform the hub that they have found such a
candidate. Algorithm 2 specifies these exchanges in detail.

Algorithm 2 Hub-and-Spoke distribution (without blankets)

Initialization:
Sample 𝑥 ∈ {0, 1}𝑁 uniformly at random and evaluate 𝑓 (𝑥)

Optimization:
for 𝑡 = 1, 2, 3, ... do

Hub interaction:
Get the hub’s candidate 𝑧
if 𝑓 (𝑥) ≥ 𝑓 (𝑧) then

Put 𝑥 as the new hub’s candidate
else

𝑥 ← 𝑧

end if
Offspring generation:

Calculate mutation rate 𝜇
𝑥∗ ← flip each bit of 𝑥 independently with probability 𝜇

Selection:
if 𝑓 (𝑥∗) ≥ 𝑓 (𝑥) then

𝑥 ← 𝑥∗

end if
end for

3.2.2 Theoretical Formulation. Fitness-level theory, also called the
fitness-based partitions method, is widely used for analyzing the
runtime of evolutionary algorithms [6]. In this subsection, it is
adapted to determining the upper bound of the computational effort
required by the distribution model compared to a non-distributed
evolution.

To begin, the search space is divided into sets 𝐴1, ..., 𝐴𝑚 , or-
dered based on their fitness values. Each set has a lower bound for
the probability of improvement 𝑠𝑖 , i.e. the chance that the search
advances to the next set, i.e. to a higher fitness level. Note that
there is no 𝑠𝑚 because the global optimum 𝐴𝑚 has no room for
improvement.

In elitist evolutionary algorithms such as (1 + 1)𝐸𝐴 (where the
individual with the highest fitness value is always selected for
survival), the best fitness value in the population can only increase.
The set 𝑠1, ..., 𝑠𝑚−1 can thus be used to calculate an upper bound

on the running time 𝑇 of the algorithm. In the case of (1 + 1)𝐸𝐴 it
is equal to the expected number of fitness evaluations:

𝑇 ≤
𝑚−1∑︁
𝑖=1

1
𝑠𝑖
. (2)

Algorithm 2 specifies that all clients are at the same fitness level
almost always (i.e. within two hub interactions). Each client might
jump from fitness level 𝐴𝑖 to a higher level with probability 𝑠𝑖 , i.e.
each client fails to find an improvement with a probability of (1−𝑠𝑖 ).
Because clients are independent, the probability that all of them fail
is (1 − 𝑠𝑖 )𝑐 . Thus, the probability of leaving 𝐴𝑖 is 𝑑𝑖 = 1 − (1 − 𝑠𝑖 )𝑐 .
The upper bound for the running time of Algorithm 2 with 𝑐 clients
is then

𝑇 ≤
𝑚−1∑︁
𝑖=1

1
1 − (1 − 𝑠𝑖 )𝑐

. (3)

Note that for any 0 ≤ 𝑥 ≤ 1, and any 𝑛 > 0,

(1 − 𝑥)𝑛 ≤ 1
1 + 𝑛𝑥 . (4)

This inequality [25] can be used to simplify Equation 3 and thus
get a better sense of the expected amount of speedup:

𝑇 ≤
𝑚−1∑︁
𝑖=1

[
1 + 1

𝑐.𝑠𝑖

]
,

or simply

𝑇 ≤ (𝑚 − 1) + 1
𝑐

𝑚−1∑︁
𝑖=1

1
𝑠𝑖
.

This result means that the speedup is linear with more clients.
The (𝑚 − 1) offset becomes negligible for harder problems that
have smaller 𝑠𝑖 or a smaller number of fitness levels. Note, however,
that this𝑇 is an upper bound. It is therefore possible that in special
cases the speedup can be higher than the number of clients, as will
be seen later.

3.3 BLADE
The blanket and distribution methods can be combined seamlessly
into full BLADE, as described in Algorithm 3. This combination
is straightforward to implement, and also leads to a surprising
synergy, as seen in Section 4.4.

Although BLADE in this paper is implemented for (1 + 1)𝐸𝐴 on
binary strings, it can be applied to other population-based evolu-
tionary methods and other representations. Some opportunities are
outlined further in Section 5.

4 EXPERIMENTAL ANALYSIS
BLADE was evaluated in three benchmark problems, selected to
cover domains with a variety of different fitness landscapes. Ex-
periments were performed on each to evaluate the contribution of
masking and distribution separately and then together.

4.1 Experimental Setup
The first problem, AllOnes, is an optimization problem where the
goal is to find a binary string of length 𝑁 that consists of all ones.
The fitness landscape is a needle in a haystack: While it is easy
to identify the global optimum, it is hard to find it among all the



Accelerating Evolution Through Gene Masking
and Distributed Search GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Algorithm 3 BLADE (blankets & hub-and-spoke distribution)

Initialization:
Sample 𝑥 ∈ {0, 1}𝑁 uniformly at random and evaluate 𝑓 (𝑥)

Optimization:
for 𝑡 = 1, 2, 3, ... do

Hub interaction:
Get the hub’s candidate 𝑧
if 𝑓 (𝑥) ≥ 𝑓 (𝑧) then

Put 𝑥 as the new hub’s candidate
else

𝑥 ← 𝑧

end if
Offspring generation with blanket:

Calculate mutation rate 𝜇
Sample blanketLength from [1, 𝑁 − 1] randomly
Set blanket← flip blanketLength random bits in {0}𝑁
Set 𝜇b ← min(1, 𝜇 ( 𝑁

𝑁−blanketLength ))
Sample 𝑦 ∈ {0, 1}𝑁 at random with 𝑝 (1) = 𝜇b
Set blanket← blanket ∧ 𝑦 (∧ is bitwise AND)
Create 𝑥∗ ← 𝑥⊕ blanket (⊕ is bitwise XOR)

Selection:
if 𝑓 (𝑥∗) ≥ 𝑓 (𝑥) then

𝑥 ← 𝑥∗

end if
end for

solutions. There is only one combination of the 𝑁 bits that has the
fitness of one and all the remaining (2𝑁 −1) combinations have the
fitness of zero. Solving AllOnes is analogous to searching through
the 2𝑁 possibilities to open a binary combination lock.

The second problem, OneMax (or Hamming distance)[3], is a
classic problem in evolutionary computation, and is widely used to
evaluate the performance of optimization algorithms. In OneMax,
the goal is also to find a binary string where all the bits are one, but
the fitness of a candidate solution is equal to the number of ones in
the string. OneMax is a relatively easy problem for evolutionary
computation, however, it is a useful baseline often referred to as
the “drosophila of evolutionary computation” [4]

The third problem, LeadingOnes, is another classical problem
widely used to evaluate the performance of optimization algorithms.
The goal is, again, to find a binary string where all the bits are one,
but in this case, the fitness of a candidate solution is equal to the
number of ones at the beginning of the string. An advantage of
using this problem for benchmarking evolutionary computation
methods is that its theoretical convergence bounds for both static
and adaptive mutation rates are known for (1+1)𝐸𝐴 [22]. Therefore,
it is possible to compare empirical results against them to establish
the baseline.

Each optimization problem was run a thousand times; the re-
ported convergence numbers are the averages for those runs. Fur-
ther, 95% confidence bounds were calculated to measure the sta-
tistical significance of the results. In AllOnes, convergence time
increases exponentially with the size of the problem, and there-
fore the string lengths of 2 to 16 bits were used. In OneMax and
LeadingOnes, experiments were run from 2 to 32 bits.

The samemutation rates were used as a basis for all runs; BLADE
modifies it on the fly based on the length of its random blanket
(according to Algorithms 1 and 3). In AllOnes and OneMax, the
static rate of 1

𝑁
was used. In LeadingOnes, there were two cases:

1.5936
𝑁

was used in the static case, and 1
1+LO(𝑥 ) , where LO(𝑥) is

the fitness of the candidate 𝑥 , in the adaptive case. These are the
theoretical optimum rates for this domain [4, 22].

The results for the masking component alone, i.e. BLADE on
a single client, are described in the next subsection, followed by
experiments on evaluating the effect of distributing BLADE over
two to eight clients. The final subsection analyzes the speedups re-
sulting from distribution, identifying a surprising synergy between
blankets and distribution

4.2 Experiments With Blankets
The blanket technique was first implemented and evaluated on
a single client, without distribution. A summary of the results is
shown in Figure 2; a detailed discussion follows for each benchmark
problem.

4.2.1 AllOnes. Figure 2(a) illustrates the advantage of using blan-
kets on AllOnes. Given that this is a needle-in-a-haystack problem,
and the search space grows exponentially with string length, it is
no surprise that the convergence time increases exponentially as
well. However, BLADE converges slightly faster than the baseline,
presumably due to the subdominant eigenvalues of the correspond-
ing transition matrices. Further, as the problem size increase, the
advantage of blankets becomes more pronounced.

4.2.2 OneMax. Figure 2(b) shows the advantage of using blankets
on OneMax. BLADE converges significantly faster than the baseline,
as indicated by a wide separation of the 95% confidence bounds,
and the difference increases with problem size.

4.2.3 LeadingOnes. Figure 2(c) compares BLADE with the static
mutation baseline and Figure 2(d) with the adaptive mutation base-
line on LeadingOnes. Again, BLADE converges significantly faster
than the baseline in both cases, and the advantage increases with
problem size.

With the theoretically optimal mutation rate, the convergence
rate with static mutation is 0.77𝑁 2, and with adaptive mutation
is 0.68𝑁 2 [4, 22]. These rates are plotted as continuous lines in
Figures 2(c,d). As expected, they match the experimental results
well.

4.3 Experiments With Distribution
The aim of these experiments is to study the contrast between
just distributing the problem set and utilizing both blanket and
distribution as BLADE does. Experiments were conducted for two,
four, and eight clients and the results are depicted in Figure 3. A
thorough discussion for each problem set is provided. In addition, a
complete collection of these graphs can be found in A.1 for further
examination.

4.3.1 AllOnes. Figure 3(a) shows the advantage of using BLADE
(combining distribution and masking) on AllOnes. The results are
similar to the single client case: Both are exponential and BLADE



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Hormoz Shahrzad and Risto Miikkulainen

Figure 2: A comparison between the blanket method (i.e. BLADE on a single host) and the baseline method (i.e. standard
evolution without blankets) across four benchmark problems: (a) AllOnes, (b) OneMax, and LeadingOnes with (c) static mutation
and (d) adaptive mutation. The mutation rate for AllOnes and OneMax was 𝜇= 1

𝑁
. For LeadingOnes, the theoretically optimal

mutation rates were used, i.e. 𝜇 = 1.5936
𝑁

in the static case and 𝜇 = 1
LO(𝑥 )+1 in the adaptive case. The blanket method modifies

these mutation rates by a factor of 𝑁
𝑁−len(blanket) and clips them to one. The 𝑥-axis denotes the problem size 𝑁 (i.e. the length of

the binary string) and the 𝑦-axis the average number of generations to converge, averaged over 1000 runs. The shaded areas
indicate 95% confidence intervals. The results show that blankets improve convergence significantly on all problems.

is slightly better, with an increasing difference. Similar results were
obtained in the four and eight-client cases.

4.3.2 OneMax. Figure 3(b) shows the advantage of BLADE on
OneMax with distribution over four clients. Again, the results are
similar to the single-client case, with BLADE converging signif-
icantly and increasingly faster than the baseline. Similar results
were obtained in the two and eight-client cases.

4.3.3 LeadingOnes. Figures 3(c,d) compares BLADE with base-
line on LeadingOnes distributed over eight clients. Again, BLADE
converges significantly and increasingly faster than the baseline.
Similar results were obtained in the two and four-client cases.

4.4 Synergy of Blankets and Distribution
Previous sections demonstrated that using blankets improves search
performance over baseline both when it is run on a single client and
when it is distributed over several clients. An interesting question

is: Is there a synergy between blankets and distribution? That is,
does distribution offer a larger speedup with BLADE than it does
with the baseline?

To answer this question, the ratios of total evaluations in single-
client and multi-client runs are plotted in Figure 4 for representative
cases in each benchmark. A ratio of 1.0 means that the speedup is
perfectly efficient, e.g. a run distributed over two clients converges
twice as fast as a run on a single client. A ratio above one means
that the threads provide additional information that the distribution
algorithm can utilize to speed up the search even more.

A summary of these results is given below, and the comprehen-
sive set of plots is included in Appendix A.2.

4.4.1 AllOnes. Figure 4(a) shows the improvement ratios in Al-
lOnes when the runs are distributed over eight clients. When 𝑁 is
small, there is a non-negligible chance that some of the clients have
high-fitness individuals in their initial population, resulting in the
high ratios up to 𝑁 = 8. With larger 𝑁 , the ratios are close to one,



Accelerating Evolution Through Gene Masking
and Distributed Search GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Figure 3: A comparison between full BLADE (including both blankets and distribution methods) and the baseline across the
four benchmark problems. Representative results with two, four, and eight clients are shown; the complete set is included
in Appendix A.1. The experimental and display details are the same as in Figure 2. The advantage of blankets extends to
distribution across several clients: BLADE converges significantly faster than the baseline in all cases.

suggesting that the distribution is efficient, and both the baseline
and BLADE benefit from it equally. Similar results were obtained
in the two and four-client cases.

4.4.2 OneMax. Figure 4(b) illustrates the improvement ratios in
OneMax with a four-client distribution. The chance of having high-
fitness individuals in the initial population is higher in this problem,
and has a significant effect up to 𝑁 = 20. With larger 𝑁 , the ratios
are again close to one for both the baseline and BLADE, as in
AllOnes. Similar results were obtained in the two and eight-client
cases.

4.4.3 LeadingOnes. Figures 4(c,d) plots the improvement ratios in
LeadingOnes with static and adaptive mutation with a two-client
distribution. In this benchmark, the effect of lucky initialization is
again small, and negligible after about 𝑁 = 8. With larger 𝑁 , an
interesting observation can be made: The improvement is signifi-
cantly greater than one for BLADE in the static case, and for both
the baseline and BLADE in the adaptive case. Similar results were
obtained in the four and eight-client cases.

Apparently, in LeadingOnes there is information in the two
threads that can be utilized to improve the search. This information
can be captured to an extent through adaptive mutation; however,
even when the mutation is static (as in Figure 4(c)), BLADE can still
capture it. BLADE adjusts its mutation based on the blankets, and
therefore establishes a version of the adaptive mutation process.
This process allows it to take advantage of the synergy between
threads more effectively than the baseline. Characterizing and op-
timizing this mechanism is a most exciting direction for future
work.

5 DISCUSSION AND FUTUREWORK
BLADE can potentially be used to accelerate evolutionary algo-
rithms by utilizing blanket-based tuning of search and by distribut-
ing the search. The experiments covered a wide range of fitness
landscapes representative of many practical problems. The method
is easily integrated as a plug-in into any preferred evolutionary
method.

In order to put these conclusions into practice, there are two
immediate directions for future work. The first is to extend the



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Hormoz Shahrzad and Risto Miikkulainen

Figure 4: A comparison of the speedup ratio of BLADE vs. the baseline on the four benchmark problems. Similarly to Figure 3,
representative results with two, four, and eight clients are shown; the complete set is included in Appendix A.2. A ratio of
1.0 indicates that the distribution is perfectly efficient, i.e. the total number of evaluations across all clients is the same as
the number of evaluations on a single client. As the problem size grows, the ratio approaches 1.0 for AllOnes and OneMax.
Remarkably, for LeadingOnes the ratio is above 1.0 for both the baseline and BLADE with adaptive mutation (d), and for BLADE
only with static mutation (c). The results thus suggest that there is a synergy between adaptive mutation and distribution, and
that BLADE provides the crucial adaptation in the otherwise static mutation case.

method from a (1+1)𝐸𝐴 to a population-based approach; the second
is to generalize blankets to other evolutionary representations such
as multi-dimensional vectors and trees. Once the BLADE method is
extended in this manner, it can be tested in real-world applications.
The goal will be to verify that more than 𝑛-fold speedup can be
obtained with 𝑛 clients, taking advantage of the synergy between
its two components.

Future theoretical research may seek to generalize the Markov
chain approach to other problems and sizes. A particularly interest-
ing challenge is to identify the conditions under which the synergy
can emerge, and derive bounds for it. Such an understanding could
be instrumental in developing faster evolutionary computation
implementations in the future.

6 CONCLUSION
BLADEwas demonstrated to accelerate a fundamental evolutionary
algorithm in several benchmark problems. It can be easily integrated
into other existing algorithms, making it possible to take advantage
of it in practical applications. Its potential for providing more than
𝑛-fold speedup with 𝑛 clients is particularly intriguing and worthy
of further study.



Accelerating Evolution Through Gene Masking
and Distributed Search GECCO ’23, July 15–19, 2023, Lisbon, Portugal

REFERENCES
[1] Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney. 2009. A gender-based

genetic algorithm for the automatic configuration of algorithms. In Principles and
Practice of Constraint Programming-CP 2009: 15th International Conference, CP
2009 Lisbon, Portugal, September 20-24, 2009 Proceedings 15. Springer, 142–157.

[2] Abraham Berman and Robert J Plemmons. 1994. Nonnegative matrices in the
mathematical sciences. SIAM.

[3] Nathan Buskulic and Carola Doerr. 2019. Maximizing Drift is Not Optimal for
Solving OneMax. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion (Prague, Czech Republic) (GECCO ’19). Association for
Computing Machinery, New York, NY, USA, 425–426. https://doi.org/10.1145/
3319619.3321952

[4] Maxim Buzdalov and Carola Doerr. 2020. Optimal Mutation Rates for the EA on
OneMax. In Parallel Problem Solving from Nature – PPSN XVI: 16th International
Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings,
Part II (Leiden, The Netherlands). Springer-Verlag, Berlin, Heidelberg, 574–587.
https://doi.org/10.1007/978-3-030-58115-2_40

[5] Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M. Shir, and Thomas
Bäck. 2019. Benchmarking Discrete Optimization Heuristics with IOHprofiler. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion
(Prague, Czech Republic) (GECCO ’19). Association for Computing Machinery,
New York, NY, USA, 1798–1806. https://doi.org/10.1145/3319619.3326810

[6] Stefan Droste, T. Jansen, and Ingo Wegener. 2002. On the analysis of the (1+1)
evolutionary algorithm. Theor. Comput. Sci. 276 (2002), 51–81.

[7] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural Architecture
Search: A Survey. Journal of Machine Learning Research 20 (2019), 1–21. http:
//www.jmlr.org/papers/volume20/18-598/18-598.pdf

[8] Paul A. Gagniuc. 2017. Markov Chains: From Theory to Implementation and
Experimentation.

[9] G. Gerules and C. Janikow. 2016. A survey of modularity in genetic programming.
In 2016 IEEE Congress on Evolutionary Computation (CEC). 5034–5043.

[10] Faustino Gomez, Jürgen Schmidhuber, and Risto Miikkulainen. 2008. Acceler-
ated Neural Evolution Through Cooperatively Coevolved Synapses. Journal of
Machine Learning Research 9 (2008), 937–965.

[11] Ahmad Hassanat, Khalid Almohammadi, Esra’a Alkafaween, Eman Abunawas,
Awni Hammouri, and V. B. Surya Prasath. 2019. ChoosingMutation and Crossover
Ratios for Genetic Algorithms—A Review with a New Dynamic Approach. Infor-
mation 10, 12 (2019). https://doi.org/10.3390/info10120390

[12] Abtin Hassani and Jonatan Treijs. 2009. An Overview of Standard and Parallel
Genetic Algorithms.

[13] Steve Kirkland. 2009. Subdominant Eigenvalues for Stochastic Matrices with
Given Column Sums. Electronic Journal of Linear Algebra 18 (2009), 57.

[14] Jörg Lässig and Dirk Sudholt. 2014. General Upper Bounds on the Runtime of
Parallel Evolutionary Algorithms*. Evolutionary Computation 22 (2014), 405–437.

[15] Jason Liang, Santiago Gonzalez, Hormoz Shahrzad, and Risto Miikkulainen. 2021.
Regularized Evolutionary Population-Based Training. In Proceedings of the Genetic
and Evolutionary Computation Conference. http://nn.cs.utexas.edu/?liang:gecco21

[16] Jason Liang, Elliot Meyerson, Babak Hodjat, Dan Fink, Karl Mutch, and Risto
Miikkulainen. 2019. Evolutionary Neural AutoML for Deep Learning. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (GECCO-2019).
http://nn.cs.utexas.edu/?liang:gecco19

[17] Jason Zhi Liang and Risto Miikkulainen. 2015. Evolutionary Bilevel Optimization
for Complex Control Tasks. In Proceedings of the Genetic and Evolutionary Com-
putation Conference (GECCO 2015). Madrid, Spain. http://nn.cs.utexas.edu/?liang:
gecco2015

[18] Ruben Martinez, J. C. Puche, Frank Delgado, and J. Finat. 2019. Evolutionary
Algorithms: Multimodal Problems and Spatial Distribution.

[19] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink, Olivier
Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, and Babak
Hodjat. 2020. Evolving Deep Neural Networks. In Artificial Intelligence in the
Age of Neural Networks and Brain Computing, C. F. Morabito, C. Alippi, Y. Choe,
and R. Kozma (Eds.). Elsevier, New York.

[20] David E. Moriarty and Risto Miikkulainen. 1997. Forming Neural Networks
Through Efficient and Adaptive Co-Evolution. Evolutionary Computation 5 (1997),
373–399.

[21] Una-May O’Reilly, Mark Wagy, and Babak Hodjat. 2013. EC-Star: A Massive-Scale,
Hub and Spoke, Distributed Genetic Programming System. Springer New York,
New York, NY, 73–85. https://doi.org/10.1007/978-1-4614-6846-2_6

[22] Gregor Papa and Carola Doerr. 2020. Dynamic control parameter choices in
evolutionary computation: GECCO 2020 tutorial. 927–956. https://doi.org/10.
1145/3377929.3389876

[23] Mitchell A. Potter and Kenneth A. De Jong. 2000. Cooperative Coevolution: An
Architecture for Evolving Coadapted Subcomponents. Evolutionary Computation
8 (2000), 1–29.

[24] S. Raghul and G. Jeyakumar. 2021. Parallel and Distributed Computing Ap-
proaches for Evolutionary Algorithms—A Review. Advances in Intelligent Systems
and Computing (2021).

[25] Jonathan E. Rowe and Dirk Sudholt. 2012. The choice of the offspring popu-
lation size in the (1,𝜆) EA. In Annual Conference on Genetic and Evolutionary
Computation.

[26] Eugene Seneta. 2008. Non-negative Matrices and Markov Chains.
[27] Ankur Sinha, Pekka Malo, Peng Xu, and Kalyanmoy Deb. 2014. A bilevel opti-

mization approach to automated parameter tuning. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2014). Vancouver, BC, Canada.

[28] Shane Strasser, JohnW. Sheppard, Nathan Fortier, and Rollie Goodman. 2017. Fac-
tored Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation
21 (2017), 281–293.

[29] Thomas Stützle, Manuel López-Ibáñez, and Leslie Pérez-Cáceres. 2022. Automated
Algorithm Configuration and Design. In Proceedings of the Genetic and Evolu-
tionary Computation Conference Companion (Boston, Massachusetts) (GECCO
’22). Association for Computing Machinery, New York, NY, USA, 997–1019.
https://doi.org/10.1145/3520304.3533663

[30] Dirk Sudholt. 2015. Parallel Evolutionary Algorithms. In Handbook of Computa-
tional Intelligence.

[31] Andrew Tuson and Peter Ross. 1998. Adapting Operator Settings in Genetic
Algorithms. Evolutionary Computation 6, 2 (06 1998), 161–184. https:
//doi.org/10.1162/evco.1998.6.2.161 arXiv:https://direct.mit.edu/evco/article-
pdf/6/2/161/1493027/evco.1998.6.2.161.pdf

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc.

[33] Darrell Whitley, Soraya Rana, and Robert Heckendorn. 1998. The Island Model
Genetic Algorithm: On Separability, Population Size and Convergence. Journal
of Computing and Information Technology 7 (12 1998).

[34] Peng Yang, Ke Tang, and Xin Yao. 2019. A Parallel Divide-and-Conquer-Based
Evolutionary Algorithm for Large-Scale Optimization. IEEE Access 7 (2019),
163105–163118. https://doi.org/10.1109/ACCESS.2019.2938765

https://doi.org/10.1145/3319619.3321952
https://doi.org/10.1145/3319619.3321952
https://doi.org/10.1007/978-3-030-58115-2_40
https://doi.org/10.1145/3319619.3326810
http://www.jmlr.org/papers/volume20/18-598/18-598.pdf
http://www.jmlr.org/papers/volume20/18-598/18-598.pdf
https://doi.org/10.3390/info10120390
http://nn.cs.utexas.edu/?liang:gecco21
http://nn.cs.utexas.edu/?liang:gecco19
http://nn.cs.utexas.edu/?liang:gecco2015
http://nn.cs.utexas.edu/?liang:gecco2015
https://doi.org/10.1007/978-1-4614-6846-2_6
https://doi.org/10.1145/3377929.3389876
https://doi.org/10.1145/3377929.3389876
https://doi.org/10.1145/3520304.3533663
https://doi.org/10.1162/evco.1998.6.2.161
https://doi.org/10.1162/evco.1998.6.2.161
https://arxiv.org/abs/https://direct.mit.edu/evco/article-pdf/6/2/161/1493027/evco.1998.6.2.161.pdf
https://arxiv.org/abs/https://direct.mit.edu/evco/article-pdf/6/2/161/1493027/evco.1998.6.2.161.pdf
https://doi.org/10.1109/ACCESS.2019.2938765


GECCO ’23, July 15–19, 2023, Lisbon, Portugal Hormoz Shahrzad and Risto Miikkulainen

A APPENDIX: COMPREHENSIVE SETS OF GRAPHS
A.1 Distribution Graphs
Figures 5, 6, and 7 show the results of the comparisons between BLADE and the baseline on the four benchmark problems with two, four,
and eight clients, respectively.

Figure 5: A comparison between BLADE and the baseline across the four benchmark problems with distribution over two
clients; the experimental and display details are the same as in Figure 3. BLADE converges significantly faster than the baseline.



Accelerating Evolution Through Gene Masking
and Distributed Search GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Figure 6: A comparison between BLADE and the baseline across the four benchmark problems with distribution over four
clients; the experimental and display details are the same as in Figure 3. BLADE converges significantly faster than the baseline.



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Hormoz Shahrzad and Risto Miikkulainen

Figure 7: A comparison between BLADE and the baseline across the four benchmark problems with distribution over eight
clients; the experimental and display details are the same as in Figure 3. BLADE converges significantly faster than the baseline.



Accelerating Evolution Through Gene Masking
and Distributed Search GECCO ’23, July 15–19, 2023, Lisbon, Portugal

A.2 Synergy Graphs
Figures 8, 9, and 10 compare the improvement ratios of BLADE and the baseline on the four benchmark problems with two, four, and eight
clients, respectively.

Figure 8: A comparison of the speedup ratio of BLADE vs. the baseline on the four benchmark problems with distribution over
two clients; the experimental and display details and conclusions are similar to those in Figure 4.



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Hormoz Shahrzad and Risto Miikkulainen

Figure 9: A comparison of the speedup ratio of BLADE vs. the baseline on the four benchmark problems with distribution over
four clients; the experimental and display details and conclusions are similar to those in Figure 4.



Accelerating Evolution Through Gene Masking
and Distributed Search GECCO ’23, July 15–19, 2023, Lisbon, Portugal

Figure 10: A comparison of the speedup ratio of BLADE vs. the baseline on the four benchmark problems with distribution
over eight clients; the experimental and display details and conclusions are similar to those in Figure 4.


	Abstract
	1 Introduction
	2 Background
	2.1 Parameter Optimization
	2.2 Distributed Evolution

	3 Method
	3.1 Blanket-based Search
	3.2 Distributed Evolution
	3.3 BLADE

	4 Experimental Analysis
	4.1 Experimental Setup
	4.2 Experiments With Blankets
	4.3 Experiments With Distribution
	4.4 Synergy of Blankets and Distribution

	5 Discussion and Future Work
	6 Conclusion
	References
	A Appendix: Comprehensive sets of graphs
	A.1 Distribution Graphs
	A.2 Synergy Graphs


