
Estimating the Advantage of Age-Layering
in Evolutionary Algorithms

Hormoz Shahrzad1, Babak Hodjat1, and Risto Miikkulainen1,2

1Sentient Technologies, Inc.
2The University of Texas at Austin

babak,hormoz,risto.miikkulainen@sentient.ai

ABSTRACT
In an age-layered evolutionary algorithm, candidates are
evaluated on a small number of samples first; if they seem
promising, they are evaluated with more samples, up to the
entire training set. In this manner, weak candidates can be
eliminated quickly, and evolution can proceed faster. In this
paper, the fitness-level method is used to derive a theoreti-
cal upper bound for the runtime of (k + 1) age-layered evo-
lutionary strategy, showing a significant potential speedup
compared to a non-layered counterpart. The parameters of
the upper bound are estimated experimentally in the 11-
Multiplexer problem, verifying that the theory can be use-
ful in configuring age layering for maximum advantage. The
predictions are validated in a practical implementation of
age layering, confirming that 60-fold speedups are possible
with this technique.

Keywords
Fitness approximation; Performance Analysis; Age Layering

1. INTRODUCTION
The most computationally expensive part of running an

evolutionary algorithm is the fitness evaluation. In many do-
mains it requires extensive computations, perhaps running
a simulation, or even interacting with a physical system.
Moreover, most of such evaluations are spent on candidates
that will be promptly discarded. In order for the evolution-
ary operators to be creative, i.e. to discover unexpected and
novel solutions, they will have to generate many candidates
that turn out to be evolutionary dead ends [23, 26]. If it was
possible to identify and discard such candidates quickly, evo-
lutionary algorithms could be much more efficient.

Many methods have been developed with this goal in mind.
Most of them are based on approximating the fitness of a
candidate quickly, and spending full fitness evaluations only
on a few selected candidates (see [11] for a review). Age lay-
ering [8, 9] is a particularly simple and general such method

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’16, July 20-24, 2016, Denver, CO, USA
© 2016 ACM. ISBN 978-1-4503-4206-3/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2908812.2908911

that has been shown effective in particular in domains where
fitness approximation is possible through an increasing num-
ber of samples. Each new candidate is first evaluated with
a small set of samples. If its performance is good on that
set, it will be evaluated on a further set of samples in the
next layer; if not, it will be discarded. In this manner, bad
candidates are eliminated quickly, speeding up evolution.

Age-layering has been found to work well experimentally
[8, 21]. However, in order to build practical applications us-
ing it, and to improve it further, it is helpful to understand
how and why it works, how its parameters affect its perfor-
mance, and what its expected speedup would be on a given
problem. Providing such guidelines for age layering is the
goal of this paper.

First, an upper bound for the runtime of an age-layered
evolutionary strategy will be derived theoretically, using the
well-known fitness-level method of analysis [14, 25]. Second,
the parameters of this bound will be approximated experi-
mentally on an example problem: the 11-Multiplexer. The
idea is that the theory can then inform how age-layering
should be set up to obtain maximum benefit. This approach
indeed leads to insights: Age-layering balances the savings
of discarding bad candidates early with the cost of having
to generate more good candidates (because sometimes good
candidates are discarded prematurely). Furthermore, there
is a sweet spot where these two factors are balanced and
where the benefit from age layering is the greatest.

Third, these conclusions are validated empirically on a
practical implementation of an age-layered evolutionary strat-
egy [21]. The empirical results are consistent with the the-
ory, confirming both the upper bound and the sweet spot,
and suggesting that the theoretical results can be used as
a guideline to get maximum benefit from age layering in
practice. The paper thus confirms age layering as a robust
and effective fitness-estimation technique, suggesting that
60-fold speedups are possible in practice.

Below, related work in fitness estimation methods is first
briefly discussed. The fitness-level method for theoretical
runtime analysis of evolutionary algorithms is reviewed, and
the age-layering method defined. A theoretical runtime up-
per bound for (k + 1) age-layered evolutionary strategy is
derived, and then approximated in order to make it possible
to instantiate it with empirical parameter estimates from
the 11-Multiplexer domain. The conclusions are then vali-
dated in a practical implementation of evolutionary strategy
in this domain.

http://dx.doi.org/10.1145/2908812.2908911

2. BACKGROUND
Related work on efficient fitness estimation is first dis-

cussed and the fitness-level method of analyzing evolution-
ary algorithms reviewed, The age-layered algorithm is then
outlined and the terminology and notation used throughout
the paper presented.

2.1 Fitness Estimation
Several techniques have been developed to make fitness

evaluation more efficient. Most of these are based on some
way of approximating fitness in a more efficient manner [11].
Perhaps the most versatile of these, if knowledge intensive, is
surrogate optimization: Instead of evaluating candidates on
the actual fitness function, a surrogate function is used that
is faster to compute [12]. The crucial candidates are then
tested periodically for their actual fitness. Optimization of
physical systems can often be done in this manner [5, 6, 24],
and it is a crucial component of bilevel optimization as well
[15, 22].

However, surrogate fitness functions may not always be
available, or they may not be fast or accurate enough. A
more general approach is to use the parent’s performance
as a surrogate: It is always available, fast, and usually a
good model (since only the best candidates are selected as
parents). A good strategy therefore is to generate many off-
spring and evaluate fully only those that behave similarly to
their parents [16]. An obvious disadvantage is that some-
times also good candidates, which may be more innovative
and thereby different from the parents, are thrown away
prematurely.

A third approach is to estimate the fitness of a candidate
based on fitnesses around it, that is, the fitness of its par-
ents, associated candidates, or a small sample population
[1, 17, 20]. It may also be possible to predict fitness based
on fitness history and types of evolutionary operations used
[7, 13]. While these methods are helpful in many cases, in
more complex problems it is difficult to predict fitness in
this manner [4].

This paper focuses on age layering [8, 9], a simple yet effec-
tive method where fitness estimation is based on partial com-
putation of the fitness function itself. It is most appropriate
where the fitness calculation is based on a number of sam-
ples, so that it can be estimated with few samples quickly.
Age layers are thus defined on the number of samples over
which the candidate has been evaluated. Note that this
technique is distinctly different from similarly named Age-
Layered Population Structure (ALPS) method [10]. ALPS
partitions populations into layers according to generations,
with the main goal of maintaining diversity. Age layering
in this paper is more closely related to the Early Stopping
method in evolutionary robotics, where a complex evalua-
tion is terminated if it is guaranteed not to produce offspring
even if evaluated fully [3, 18]. However, early stopping meth-
ods are specifically designed for a particular robot and eval-
uation task. Of the fitness estimation methods, age layering
is therefore arguably the most straightforward and general:
It is based simply on reliability of the fitness estimates, i.e.
the number of samples used to evaluate the candidates. It
will therefore be the focus of the analysis in this paper.

2.2 Fitness-Level Method
The fitness-level method [14, 25] for analyzing the runtime

of evolutionary algorithms splits the search space of a given

problem into m partitions P1, P2, . . . , Pm such that Pi <f

Pi+1,∀i ∈ [1;m − 1], and Pm contains the global optima of
the problem. That is, the fitness of the elements in Pi is
lower than the fitness of all the elements belonging to the
partitions Pi+1, . . . , Pm.

Let us assume that the probability of generating an im-
provement from an element in partition Pi (that is, of gen-
erating an element in a partition Ph where h ∈ [i+1..m]), is
bound from below by si > 0. Then, an upper bound on the
expected number of evaluations required to reach a global
optimum can be obtained [14, 25] as:

n =

m−1∑
i=1

1

si
. (1)

Note that the number of evaluations is used as proxy for the
running time of the algorithm.

For simplicity, the fitness-level method is usually formu-
lated for the (1 + 1) Evolutionary Strategy [14, 25]. This
way, the number of evaluations equals the number of gener-
ations. However, the same analysis extends to populations
as well, and parallel islands of populations, as long as the
strategy is elitist, i.e. the best fitness value in the population
can only increase because the best candidates are retained
in the population. In the following, such an extension is in-
troduced where the population consists of a maximum of k
elite candidates organized into age layers.

2.3 Age-Layering Method
The age-layering method maintains layers with candidates

evaluated on different numbers of samples. The general idea
is to evaluate only promising candidates on all the available
training data, and to discard poorly performing candidates
early on. This way, these bad candidates are discarded after
a few partial evaluations, and the total number of fitness
evaluations is reduced.

Let us define age as the number of fitness samples upon
which a candidate has been validated. The population is
structured into layers that correspond to different discrete
ages. The result is a layered population in which candidates
are sorted by the amount of data used for their evaluation.
More specifically, the minimum number of samples for esti-
mating fitness is a, also called the maturity age (note that
generally a > 30 in order to obtain statistically reliable es-
timates). A candidate in layer k has thus been evaluated on
k × a samples.

Figure 1 illustrates the simplest layered algorithm, a (k+1)
Layered Evolutionary Strategy, or (k+1) LES, where a max-
imum of k candidates of the population are distributed into
k layers. Informally, the process is initialized by setting the
current population fitness to 0, generating the first candi-
date randomly, and placing it in the first age layer. In every
generation thereafter, three steps take place:

Aging of the current population: Each candidate cur-
rently in the population in layers 1..j − 1 is evaluated
with a new samples and its fitness is updated. If this
fitness is worse than the current population fitness, the
candidate is discarded; otherwise it is advanced to the
next age layer.

Updating the population fitness: If there is a candi-
date at layer k and its fitness is greater than the cur-
rent population fitness i, the population fitness is up-
dated; if further that fitness is the optimal fitness, the

(a) (k + 1) LES Schematic Diagram

1. Set current population fitness level i = 0
2. Create initial candidate randomly and place in age layer 1
3. For age layers j = 1 to k − 1

If there is a previous candidate in layer j
Evaluate it with a samples
If candidate’s fitness level ≥ i

Advance candidate from layer j to j + 1
else

Remove the candidate

4. If a candidate was promoted to layer k

Remove the previous candidate in layer k
Update i := candidate’s fitness level
If i = m

Return the candidate in layer k as the solution

5. Create new candidate from population and place in layer 1
6. Go to 3.

(b) (k + 1) LES Pseudocode

Figure 1: An illustration of the (k + 1) Layered Evolutionary Strategy (LES). In this minimal form of age
layering, a maximum of k candidates in the population are divided into k age layers. At each generation, a
single offspring is generated from the current population and entered in the first age layer. As candidates are
evaluated with more samples, more confidence is gained in their fitness estimate, and they move up in layers,
If a candidate reaches the top layer, we have its true fitness, which is then used to discard candidates whose
estimate falls below the top fitness (like the hypothetical 2nd candidate in subfigure a). In this manner, bad
candidates can be eliminated without spending much time evaluating them, speeding up evolution in general.

algorithm returns that candidate as the solution.
Generation of a new candidate: One new candidate is

generated from the entire population and placed in the
first age layer.

The set of a samples is chosen randomly among those that
the candidate has not seen before. Thus, as candidates
are promoted to upper layers, further partial evaluations
are performed and, as a consequence, the fitness estimation
noise is reduced. At layer k, the candidate has been evalu-
ated on all samples and its fitness is the true fitness. A new
candidate can be generated from the current population by
any of the usual selection, crossover, and mutation meth-
ods. The population always has at least one member and
can have as many as k members.

This algorithm can be extended to consider several can-
didates per layer and to distributed islands of populations.
The following analysis, however, focuses on the (k + 1) LES
for simplicity.

2.4 Terminology
The following terminology will be used throughout the

paper:

• Fitness level : one of the buckets in the partitioning of
fitness values into discrete ranges.
• Population fitness: fitness level of the current candi-

date in the top age layer k.
• Sample: a subset of the dataset (X1, Y 1), . . . , (XN , Y N),

where Y is the correct output for the input X.
• Partial evaluation: a fitness evaluation based on a set

of samples smaller than the entire dataset.
• Estimated fitness: the fitness assigned to an candidate

as a result of a partial evaluation.
• True fitness: the fitness of an candidate evaluated on

all available samples.
• Age: number of data subsets upon which a given can-

didate has been evaluated.
• Age layer : set of candidates with the same age.

• Good candidate: one with true fitness at or above the
current population fitness, i.e. one that should be ad-
vanced to the next age layer.
• Bad candidate: one with true fitness below the current

population fitness, i.e. one that should be discarded.

The notation used in the analysis is adopted from earlier
work [14], and augmented with age-layering parameters:

• m is the number of partitions or fitness levels.
• si is the lower-bound probability of finding an improve-

ment from a candidate in partition Pi.
• n is the number of fitness evaluations required to reach

a global optimum of the problem.
• N is the number of samples in the dataset.
• k is the number of age layers in which the population

of the algorithm is divided.
• a is the number of samples used at each partial evalu-

ation, i.e. the maturity age.
• p is the upper bound of the probability of a partially

evaluated bad candidate advancing to the next age
layer.
• c is the upper bound of the probability of a partially

evaluated good candidate advancing to the next age
layer.

3. ANALYSIS OF AGE LAYERING
In this section, a theoretical upper bound for the runtime

of (k + 1) LES is derived. Conclusions about how, why, and
when it works well are then drawn in the 11-Multiplexer
domain. The results are validated in comparison with ex-
perimental runs of a practical implementation of LES on this
domain.

3.1 An Upper Bound for (k+1) LES
First, let us count how many evaluations are needed with-

out age layering, or equivalently, when each candidate is
evaluated at all k layers. At each layer, each candidate is

evaluated with a samples (called maturity age), and thus
all N = ak fitness samples in total. At each fitness level,
1/si − 1 bad candidates need to be generated in average to
find one good candidate that advances to a higher level. The
number of evaluations is therefore bound by

n <

m−1∑
i=1

ak

si
. (2)

This is an upper bound estimate of the number of evalu-
ations needed to advance the first candidate into the top
fitness level in an evolutionary process that does not take
advantage of age-layering.

In the age-layered algorithm, however, the candidates are
not always evaluated with all ak examples: if a partial eval-
uation suggests that a candidate has a low fitness, it is not
evaluated further. Discarding bad candidates early is de-
sirable because it saves evaluations. On the other hand, a
small number of good candidates are also likely to be dis-
carded in this manner because they look bad (so they could
be called “ugly” candidates). Therefore, in order to detect
one good candidate, on average it is necessary to generate

gi =
1

cisi
(3)

candidates, where ci is the probability that an actual good
candidate will advance to the next level. It is a product of
probabilities that a good candidate advances through all age
layers, i.e.

ci = ci,1ci,2...ci,k−1. (4)

Let pi,j be the probability that a bad candidate at level i
is advanced from layer j to layer j+1. The expected number
of evaluations spent on this candidate is

nib = a+api,1 +api,1pi,2 + ...+api,1pi,2...pi,k−1 = ak̂ib. (5)

Similarly, the number of evaluations spent on a good candi-
date is

nig = a+aci,1 +aci,1ci,2 + ...+aci,1ci,2...ci,k−1 = ak̂ig. (6)

The ratio of good/bad candidates is at least si/(1 − si),
so the number of evaluations at level i is

ni <
ak̂ib(1− si) + ak̂igsi

cisi
, (7)

and the total number of evaluations is bound by

n <

m−1∑
i=1

ak̂ib(1− si) + ak̂igsi
cisi

=

m−1∑
i=1

ak̂ib(1− si)

cisi
+

m−1∑
i=1

ak̂ig
ci

. (8)

Thus, the number of evaluations spent to find a good can-
didate is the sum of those for the bad and the ugly.

3.2 Theoretical Advantage
In order to validate the bound it needs to be turned into

a form where its parameters pi,j , ci,j , and si can be esti-
mated experimentally. The first insight is that pi,j and ci,j
derive from the accuracy of estimation, and therefore they
can be assumed to be the same at all levels i. Thereby the
first subscript can be dropped, and pj and cj estimated in a

Monte Carlo simulation instead of having to run evolution
to create fitness levels. That is,

ĉ = c1c2...ck−1, (9)

k̂b = 1 + p1 + p1p2 + ...p1p2...pk−1, (10)

k̂g = 1 + c1 + c1c2 + ...c1c2...ck−1. (11)

In such a simulation, first a large number of candidates
are generated randomly; then, for different values of k, the
probability that candidate fitness is overestimated at differ-
ent age layers is measured as pj . Assuming fitness is scaled
between [0..1], overestimation occurs when

bkfEc > bkfTc, (12)

where fE is the estimated fitness and fT the true fitness of
the candidate. Note that estimating pj in this manner gives
us an upper bound: It is based on overestimation of at least
one level, whereas in actual evolution, candidates generated
at level i may have fitness lower than i, requiring overes-
timation of more than one level. Similarly, the probability
that a candidate fitness is underestimated is 1− cj , and an
upper bound for it obtained analogously to Equation 12.

In general it is difficult to estimate the si. However (after
first applying equations 9, 10, and 11), equation 8 can be
rewritten as

n <
ak̂b
ĉ

m−1∑
i=1

1

si
+ (m− 1)

a(k̂g − k̂b)

ĉ
. (13)

The
∑m−1

i=1
1
si

can then be estimated from converged non-

layered evolutionary runs by

m−1∑
i=1

1

si
< gn/N, (14)

where gn is the number of candidates generated in that run,
and N is the number of fitness levels (which is equivalent to
the number of samples).

To test these ideas, the 11-Multiplexer problem was used
as the test domain. Multiplexer functions have long been
used to evaluate machine-learning methods because they are
difficult to learn but easy to check. In general, the input to
the multiplexer function consists of u address bits Av and 2u

data bits Dv, i.e. it is a string of length u + 2u of the form
Au−1...A1A0D2u−1 ...D1D0. The value of the multiplexer
function is the value (0 or 1) of the particular data bit that
is singled out by the u address bits. For example, for the 11-
Multiplexer, where u = 3, if the three address bits A2A1A0

are 110, then the multiplexer singles out data bit number 6
(i.e. D6) to be its output.

A Boolean function with u+2u arguments has 2u+2u rows
in its truth table. Thus, the sample space for the Boolean
multiplexer is of size 2u+2u . When u = 3, the search space

is of size 2211 = 22048 u 10616. However, since evolution can
also generate redundant expressions that are all logically
equal, the real size of the search space can be much larger,
depending on the representation.

Following prior work on the 11-Multiplexer problem [21],
a rule-based representation was used where each candidate
specifies a set of rules of the type

< rule > ::= < conditions > → < action > .

The conditions specify values on the bit string and the action
identifies the index of the bit whose value is then output. For

Figure 2: Monte Carlo estimation of pj and cj with
a = 32 and k = 64 in the 11-Multiplexer problem, at
different age layers; the number of samples in each
layer is shown in the x-axis. Over- and underesti-
mation is likely in the early age layers, but becomes
negligible at higher layers.

instance, the following rule outputs the value of data bit 6
when the first three bits are 110:

< A0 = 0 & A1 = 1 & !A2 = 0 > → D6.

These rules are evolved through the usual genetic operators
in genetic programming [2].

To estimate the parameters of equation 13, 4000 indepen-
dent candidates were created for the 11-Multiplexer prob-
lem. Their fitness was estimated at different layers (with
N = 2048, a = 32 and k = 64) by drawing independent
samples with replacement among the 2048 different cases
and seeing how often they gave the correct value as output.
The resulting estimates of pj and cj at different age layers
are shown in Figure 2. They are midrange with a small
number of samples, but become more extreme very quickly,
and are near zero and one at the highest layers. Similarly,∑m−1

i=1
1
si

was estimated by averaging equation 14 over 10

successful non-layered evolutionary runs, obtaining an esti-
mate of 255,200.

Figure 3 shows (in red bars) the theoretical upper bound
thus estimated for different values of a. These bounds are
much lower than the corresponding upper bound for non-
layered evolution with the same si, which (following equa-
tion 2) is 2048 × 255,200 = 522,649,600. The best advantage
occurs in the midrange of a, i.e. at 128. This result suggest
that if a is chosen properly, significant speedups are possible
in theory. The next question is: Does this prediction hold
in practice?

3.3 Empirical Advantage
An interesting validation of the theory is to compare its

predictions with results with a practical implementation of
LES, such as the EC-Star platform for evolutionary com-
putation [9, 19, 21]). In its most general form, EC-Star
implements a distributed version of LES on multiple popu-
lation islands. For this comparison, a single-population ver-
sion of LES was created in it. This algorithm differs from
the theoretical (k + 1) LES in three ways: First, it utilizes

Figure 3: Number of evaluations needed to solve the
11-Multiplexer problem using LES, estimated both
theoretically and empirically. The experimental re-
sults are averages over 10 runs; the number of sam-
ples in each age layer is shown in the x-axis. A non-
age-layered ES (not shown) requires over 522, 649, 600
evaluations; age layering is thus a significant ad-
vantage in all cases. The best theoretical value,
8, 804, 207 is obtained when a = 128, resulting in a 60-
fold speedup. The experimental results are based on
a practical implementation of LES; the upper bound
is still valid (and tight), and the same a = 128 re-
sults in best performance of 8, 294, 400 and a 63-fold
speedup. These results suggest that the theory is
indeed useful in configuring LES in practice.

a larger population of candidates: Instead of one offspring,
q1 offspring are generated for Layer 1 in Steps 2 and 5 of
the algorithm (Figure 1b), and instead of one candidate in
each age layer, an elite population of q2 < q1 candidates
are maintained in total over all layers. Second, instead of
aging candidates using a previously unseen samples, those
samples are selected randomly (with replacement) from the
entire dataset for each generation. Third, instead of a global
fitness level i, separate fitness levels are maintained for each
age layer; the process stops when fitness for layer k = m.
These three features were found experimentally to be useful
in EC-Star and were thus retained in the comparison. An
interesting question is: Does the upper bound still hold, and
can it be used to determine good settings for the parameters
such as a (or equivalently, k)?

In the experiments, this practical implementation of LES
was run with parameters found to be effective in prior work
with EC-Star [21]: The population size was 4000. In each
generation, the top 8% of the population (based on esti-
mated fitness in all age layers) was passed on to the next
generation. The top 20% of the population was used to
generate 89% of the offspring, with 11% of it generated ran-
domly. The population was aged once in each such genera-
tion.

Figure 3 shows (in blue bars) the number of evaluations
for such evolutionary runs on the 11-Multiplexer problem,
averaged over 10 runs. These experimental results validate
the theory: The upper bound applies to the experimental
runs and is quite tight. The best performance is obtained

with a = 128, resulting in a 60-fold speedup over non-age-
layered evolution, as predicted by the theory. The results
thus suggest that the theory is useful in configuring practical
implementations of LES, and that the EC-Star platform is
a good way to implement it.

4. FUTURE WORK
It is possible to extend this work in several ways. First,

it may be possible to extend the theory to take more of the
practical constraints into account. For instance, population
size limitations make it more difficult for new candidates
to enter the population. Evolutionary selection biases new
candidates towards higher fitness, which should be taken
into account in the Monte Carlo estimates. Such extensions
should make the bounds even more tight, but they should
also lead to practical guidelines on how those parameters
should be set for best performance.

Another interesting direction is to extend the theory to
distributed implementations of evolutionary computation such
as the distributed version of EC-Star [19]. Based on the
fitness-level method, upper bounds have been derived to sev-
eral problems and parallel topologies [14]; the age-layered
extension could be applied to those as well. Assuming a
fully connected topology, the idealized version developed in
this paper is straightforward to extend, but the practical
constraints of managing the layers in the server are more
challenging.

Third, it would be interesting to apply the techniques de-
veloped in this paper to other problems. They should work
as is on many problems where fitness is based on sampling,
such as the medical informatics task where age-layering was
first developed [8, 9]. An interesting issue is how well the
Monte Carlo simulation will work on problems with much
larger and more structured search space. If such a simula-
tion is available, the payoffs can be significant.

5. CONCLUSION
Age layering is a simple and general method for improving

the runtime of evolutionary algorithms. It allows allocating
evaluation cycles where it matters, by making it possible
to identify and discard bad candidates quickly. This paper
gives theoretical insight into this process, showing that the
method balances the savings on bad candidates with the
cost of having to generate more good ones. Moreover, a
sweet spot exists between these factors where the age layer-
ing performs the best. These factors can be characterized by
estimating the parameters of the theory experimentally, and
using the theory to draw conclusions. A comparison with
a practical implementation of layered evolutionary strategy
demonstrates that these conclusions are valid, and 60-fold
speedups are possible in practice. Age layering is thus a
promising approach to improving performance of evolution-
ary algorithms.

References
[1] M.-R. Akbarzadeh-T, I. Mosavat, and S. Abbasi.

Friendship modeling for cooperative co-evolutionary
fuzzy systems: A hybrid GA-GP algorithm. In
Proceedings of the 22nd International Conference of
North American Fuzzy Information Processing Society,
pages 61–66, 2003.

[2] F. J. Berlanga, A. Rivera, M. J. del Jesús, and
F. Herrera. Gp-coach: Genetic programming-based
learning of compact and accurate fuzzy rule-based
classification systems for high-dimensional problems.
Information Sciences, 180(8):1183–1200, 2010.

[3] J. C. Bongard and G. S. Hornby. Guarding against
premature convergence while accelerating evolutionary
search. In Proceedings of the Genetic and Evolutionary
Computation Conference, 2010.

[4] E. Ducheyne, B. De Baets, and R. deWulf. Is fitness
inheritance useful for real-world applications? In
Evolutionary Multi-Criterion Optimization, volume
LNCS 2631, pages 31–42. Springer, Berlin, 2003.

[5] D. Floreano and J. Urzelai. Evolutionary robots with
on-line self-organization and behavioral fitness. Neural
Networks, 13:431–4434, 2000.

[6] A. I. Forrester and A. J. Keane. Recent advances in
surrogate-based optimization. Progress in Aerospace
Sciences, 45:50–79, 2009.

[7] A. Gaspar-Cunha and A. Vieira. A multi-objective
evolutionary algorithm using neural networks to
approximate fitness evaluations. International Journal
of Computers, Systems and Signals, 6:18–36, 2005.

[8] E. Hemberg, M. Wagy, F. Dernoncourt,
K. Veeramachaneni, and U. M. O’Reilly. Imprecise
selection and fitness approximation in a large-scale
evolutionary rule based system for blood pressure
prediction. In Proceedings of the Genetic and
Evolutionary Computation Conference, 2013.

[9] B. Hodjat and H. Shahrzad. Introducing an
age-varying fitness estimation function. In R. Riolo,
E. Vladislavleva, M. D. Ritchie, and J. H. Moore,
editors, Genetic Programming Theory and Practice X,
pages 59–71. Springer, New York, 2013.

[10] G. S. Hornby. ALPS: The age-layered population
structure for reducing the problem of premature
convergence. In Proceedings of the Genetic and
Evolutionary Computation Conference, pages 815–822,
2006.

[11] Y. Jin. A comprehensive survey of fitness
approximation in evolutionary computation. Soft
Computation, 9:3–12, 2005.

[12] Y. Jin. Surrogate-assisted evolutionary computation:
Recent advances and future challenges. Swarm and
Evolutionary Computation, 1:61–70, 2011.

[13] A. Kosorukoff. Using incremental evaluation and
adaptive choice of operators in a genetic algorithm. In
Proceedings of the Genetic and Evolutionary
Computation Conference, pages 688–694, 2002.

[14] J. Lässig and D. Sudholt. General upper bounds on
the runtime of parallel evolutionary algorithms.
Evolutionary Computation, 22:405–437, 2013.

[15] J. Z. Liang and R. Miikkulainen. Evolutionary bilevel
optimization for complex control tasks. In Proceedings
of the Genetic and Evolutionary Computation
Conference (GECCO 2015), Madrid, Spain, July 2015.

[16] P. McQuesten and R. Miikkulainen. Culling and
teaching in neuro-evolution. In T. Bäck, editor,
Proceedings of the Seventh International Conference
on Genetic Algorithms (ICGA-97, East Lansing, MI),
pages 760–767. San Francisco: Morgan Kaufmann,
1997.

[17] R. Myers and D. Montgomery. Response Surface
Methodology. Wiley, New York, 1995.

[18] S. Nolfi and D. Floreano. Evolutionary Robotics. MIT
Press, Cambridge, 2000.

[19] U.-M. O’Reilly, M. Wagy, and B. Hodjat. EC-Star: A
massive-scale, hub and spoke, distributed genetic
programming system. In R. Riolo, E. Vladislavleva,
M. D. Ritchie, and J. H. Moore, editors, Genetic
Programming Theory and Practice X, pages 73–85.
Springer, New York, 2013.

[20] M. Salami and T. Hendtlass. A fast evaluation
strategy for evolutionary algorithms. Applied Soft
Computing, 2:156–173, 2003.

[21] H. Shahrzad and B. Hodjat. Tackling the Boolean
multiplexer function using a highly distributed genetic
programming system. In R. Riolo, W. P. Worzel, and
M. Kotanchek, editors, Genetic Programming Theory
and Practice XII, pages 167–179. Springer, New York,
2015.

[22] A. Sinha, P. Malo, P. Xu, and K. Deb. A bilevel
optimization approach to automated parameter
tuning. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO
2014), Vancouver, BC, Canada, July 2014.

[23] K. O. Stanley and J. Lehman. Why Greatness Cannot
Be Planned: The Myth of the Objective. Springer,
Berlin, 2015.

[24] C. C. Tutum, K. Deb, and I. Baran. Constrained
efficient global optimization for pultrusion process.
Materials and Manufacturing Processes,
30(4):538–551, 2015.

[25] I. Wegener. Methods for the analysis of evolutionary
algorithms on pseudo-boolean functions. In
Evolutionary Optimization, volume 48 of International
Series in Operations Research and Management
Science, pages 349–369. Springer, New York, 2002.

[26] D. Whitley, S. Dominic, and R. Das. Genetic
reinforcement learning with multilayer neural
networks. In R. K. Belew and L. B. Booker, editors,
Proceedings of the Fourth International Conference on
Genetic Algorithms, pages 562–569. San Francisco:
Morgan Kaufmann, 1991.

	Introduction
	Background
	Fitness Estimation
	Fitness-Level Method
	Age-Layering Method
	Terminology

	Analysis of Age Layering
	An Upper Bound for (k+1) LES
	Theoretical Advantage
	Empirical Advantage

	Future Work
	Conclusion

