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Evolving Multimodal Networks for

Multitask Games
Jacob Schrum and Risto Miikkulainen

Abstract—Intelligent opponent behavior makes video games
interesting to human players. Evolutionary computation can
discover such behavior, however, it is challenging to evolve
behavior that consists of multiple separate tasks. This paper
evaluates three ways of meeting this challenge via neuroevolution:
(1) Multinetwork learns separate controllers for each task, which
are then combined manually. (2) Multitask evolves separate
output units for each task, but shares information within the
network’s hidden layer. (3) Mode Mutation evolves new output
modes, and includes a way to arbitrate between them. Whereas
the first two methods require that the task division is known,
Mode Mutation does not. Results in Front/Back Ramming and
Predator/Prey games show that each of these methods has
different strengths. Multinetwork is good in both domains, taking
advantage of the clear division between tasks. Multitask performs
well in Front/Back Ramming, in which the relative difficulty of
the tasks is even, but poorly in Predator/Prey, in which it is
lopsided. Interestingly, Mode Mutation adapts to this asymmetry
and performs well in Predator/Prey. This result demonstrates how
a human-specified task division is not always the best. Altogether
the results suggest how human knowledge and learning can be
combined most effectively to evolve multimodal behavior.

Index Terms—Multiobjective, Multiagent, Multimodal, Multi-
task, Neuroevolution, Predator-prey games

I. INTRODUCTION

V IDEO games often feature computer-controlled oppo-

nents, or Non-Player Characters (NPCs), which human

players must defeat to do well in the game. Creating intelligent

behavior for such NPCs traditionally requires extensive hand-

coding and troubleshooting by programmers. However, there

has been much interest, and some success, in the academic

community in evolving NPC behavior for games [1], [2], [3],

[4]. These approaches each treat the game as a single task,

and optimize the NPC behavior for that task.

However, many entertaining games consist of multiple tasks.

Even the classic game of Pac-Man involves two tasks: NPC

ghosts chase after Pac-Man and try to catch him, but as soon

as he eats a power pellet the task switches, and the ghosts

must run from Pac-Man or be eaten.

Recently, the multitask nature of games has been recog-

nized, and a few methods have been developed to deal with

them. Two methods that directly motivate the work in this

paper are Multitask Learning [5] and Mode Mutation [6].

Multitask Learning is an approach primarily applied in a

supervised learning context, originally with neural networks

using the backpropogation algorithm [5]: One network has

multiple sets of outputs, where each set corresponds to a
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different, yet related, task. Each set of outputs is trained on

the data for the task to which it corresponds, but because

hidden layer neurons are shared by all outputs, knowledge

common to all tasks can be stored in the weights of the hidden

layer. This approach speeds up supervised learning of multiple

tasks because knowledge shared across tasks is only learned

once and shared, rather than learned independently multiple

times. However, this approach has not yet been used to evolve

agent behavior. Therefore, multitask evolution for games is

one approach evaluated in this paper.

When learning agent behavior, Multitask Learning depends

on knowing which task the agent is currently facing, so that

the correct network outputs can be used to control the agent.

While it may be easy to divide a game into its constituent

tasks in some cases, games are typically complex enough

that an appropriate division is not always obvious. Not all

games have a clear task division like Pac-Man. One approach

that addresses this problem is Mode Mutation [6], a mutation

operator that adds a new output mode that the network can use

when it wants to, so that evolution decides how many modes to

have and when to use them. Unlike Multitask Learning, Mode

Mutation can be used without knowledge of the domain’s task

division. Interestingly, as shown in this paper, even if such

a division is available, Mode Mutation may sometimes learn

superior behavior without it. In this paper, the original Mode

Mutation is evaluated, as well as an enhanced version that

improves it.

A third approach studied in this paper is Multinetwork,

in which a separate controller is evolved for each task, and

combined in a finished controller that knows which network to

use in which task. Multinetwork is loosely based on previous

approaches in which networks evolved in separate tasks are

combined in a final controller [7], [8], but is simpler than these

approaches because the multitask domains in this work are in-

dependent (as will be clarified in Section III-A), and therefore

there is no uncertainty as to which of the subnetworks needs

to be used at any given moment during evaluation. Both the

Multinetwork and Multitask Learning approaches rely on an

oracle to tell them the current task. Such an oracle will not

always be available in practice, but is used here to see what

the best attainable performance is.

Multinetwork creates agents with multiple networks, and

therefore multiple modes of behavior. Multitask Learning

and Mode Mutation create individual networks with multiple

modes of behavior, namely multimodal networks. Similar

approaches have been explored by researchers in the past.

The next section discusses some of these methods and points

out the similarities and differences between past work and the

methods used in this paper. Following the related work section,
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two multitask games designed for this paper are discussed.

After these games are reviewed, the evolutionary method used

to learn agent behavior in these games is described, along with

specific details on Multitask Learning and Mode Mutation. The

method section is followed by a description of experiments,

results, and ideas for future work.

II. RELATED WORK

Domains involving multiple tasks are common in both

videogame research and robotics research. Therefore various

approaches have been implemented to deal with such domains.

This related work is divided into approaches that involve

separately evolved controllers, single controllers with modular

architectures, and controllers that achieve functional modular-

ity via recurrency.

A. Separately Evolved Controllers

As mentioned above, the Multinetwork approach is similar

to previous work in which separate controllers are combined

in a single agent. One example is in the TORCS race car

game [7], where the goal is to drive around each track as

quickly as possible. However, a different behavior is needed

to maneuver around opponents than to just speed around

the empty track segments. Therefore, Cardamone et al. [7]

evolved a racing behavior and a passing behavior in separate

evolutionary scenarios, and combined them into an agent that

was programmed to use the passing behavior when sufficiently

close to an opponent car, and the racing behavior otherwise.

This example shows how multiple networks can be com-

bined in a single agent. Notice, however, that the racing

domain is not explicitly divided into racing and passing

tasks. The decision to evolve these behaviors separately, and

only these two behaviors, was based on human expertise.

Furthermore, when to use one behavior instead of the other

is based on a mixture of human expertise and trial-and-error

testing. The manner in which the multitask games of this paper

differ from TORCS will be further defined in Section III-A.

Another separation approach is Togelius’s evolved sub-

sumption architecture [9], which extends the hand-designed

subsumption architecture approach of Brooks [10] by using

evolved neural networks to create a hierarchical controller.

This approach has been applied to games such as Unreal

Tournament [8] and EvoTanks [11]. Like the car racing ex-

ample above, this approach requires the programmer to divide

a domain into constituent tasks and develop effective training

scenarios to evolve separate network controllers for each task.

This method differs from that of Cardamone et al. in that these

controllers are then combined into a hierarchical controller,

which is also evolved, thus letting evolution decide how to

use the separate controllers.

The subsumption approach is appealing from an engineering

standpoint because the controller is hierarchical, and each

individual component has a clear purpose. However, the level

of human expertise needed to properly divide a domain into

subtasks is still restrictive. Therefore, instead of manually

combining evolved components, some researchers have also

developed methods in which the evolved controllers have built-

in capacity to split the task up across separate modules.

B. Modular Architectures

Modular approaches automatically determine which compo-

nents of the architecture to associate with which task. Mode

Mutation falls into this category, since it learns to associate

particular control modules with particular situations.

In work by Calabretta et al. [12], neural networks were

evolved to control robots using a “duplication operator”, which

creates a copy of one output neuron with all of its connections

and weights. The network then has two output neurons that

correspond to the same actuator on the robot, and it needs

a means to arbitrate between them. This goal is achieved

via “selector units”: The output neuron with the highest

corresponding selector unit activation is chosen.

The duplication operator differs from Mode Mutation in two

major ways: (1) The number of neural modules per output

neuron was limited to two, so for any given output, only

one duplication operation was allowed. (2) The duplication

operation works at the level of individual output neurons,

but Mode Mutation works at the level of groups of output

neurons. While selected, each Mode Mutation “module” is

entirely responsible for an agent’s behavior (Section IV-C2).

More generally, there is much interest in evolving modular

networks, particularly using developmental and generative

methods [13], [14], [15]. These approaches evolve modular

neural networks based on the assumption that distributing

aspects of a problem across particular modules within a

network makes optimization of task-specific behavior easier,

and therefore faster. The concept of a module is usually less

strictly defined in these contexts, but the modules produced by

these methods generally need not consist exclusively of output

neurons. Rather, a module is a cluster of tightly interconnected

neurons with few connections to neurons in other clusters.

Modular networks have also been used in combination

with supervised learning. For example, Khare et al. [16] used

coevolution to learn the connectivity of individual modules

along with their organization within a combining network; the

modules themselves were trained through supervised learning.

Dam et al.’s Neural-Based Learning Classifier System [17]

also combines evolution and supervised learning, but instead

of combining network components into a modular network,

each network/module is associated with a particular region of

the state space, and is trained only on data from this region.

Whenever the system must make a decision, all networks

whose region of expertise contains the current state combine

into an ensemble that determines the system’s decision.

Hierarchical reinforcement learning methods [18], [19] also

learn modular architectures, namely hierarchical value func-

tions in which separate components are used in different

regions of the state space. In contrast, a method by Sprague

and Ballard [20] deals with non-hierarchically structured do-

mains by learning separate competing policies using a different

reward function for each task. There is also the field of

“multitask reinforcement learning” [21], [22] that is concerned

with tackling distributions of similar but different tasks.

However, modular architectures are not the only way to

generate modular behavior. “Functional modularity” can also

be obtained with the use of recurrent network connections, as

will be described next.
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C. Diachronic Behavior

Recurrent connections transmit signals that are not pro-

cessed by the network until the following time step, which

gives them a form of memory. Recurrency is especially useful

when brief environmental cues indicate a need for an agent

to switch to a behavior that must be carried out beyond the

time during which the cues are present. Both Ziemke [23]

and Stanley et al. [24] presented results indicating that non-

modular architectures with recurrent connections can achieve

modular behavior, sometimes superior to the behavior of mod-

ular architectures. Such behavior is described as diachronic,

because it changes over time in response to the sequence of

inputs and the history of internal recurrent activations.

Methods with memory of past states have an advantage in

partially observable domains. In such domains, the current

observed state cannot be distinguished from other observed

states without memory of past states [25]. Recurrent connec-

tions help in these situations because they encode and transmit

memory of past states; a property that can help a network

determine which of several tasks it currently faces.

If recurrency on its own can produce modular behavior, then

it should be even more useful when combined with modular

architectures. The networks in this paper allow recurrent

connections to evolve, so the concept of diachronic behavior

will be important in explaining some of the results presented

later. These results concern the evolution of agent behavior in

two multitask games described in the next section.

III. MULTITASK GAMES

This section defines multitask games in order to show what

separates the domains of this paper from several other games

that involve multiple tasks. Then two such games designed for

the experiments of this paper are described.

A. Definition of Multitask Games

In multitask games, NPCs perform two or more separate

tasks, each with their own measures of performance. In

the extreme case, performance in one task is unrelated to

performance in the other tasks, i.e. the tasks are independent.

This extreme view makes it easy to analyze task performance

independently of other tasks, and is therefore the basis of

the domains in this paper. However, multitask games are

only interesting if it is desirable to have NPCs capable of

performing all tasks. Therefore, all tasks in this paper place

the NPCs in the same environment with the same sensors.

There is an important distinction between multitask games

as defined in this paper and other games with multiple tasks.

In a multitask game, tasks are isolated and it is always clear

what the current task is. In contrast, Pac-Man has a clear

task division (because eating a power pellet causes a task

switch), but the tasks are not isolated (because the positions of

agents at the task switch affect performance in the next task).

Furthermore, in a game like Unreal Tournament the tasks are

not even separated: NPCs choose which task to perform when,

such as gathering items and fighting, and may even do multiple

tasks simultaneously. Note that an NPC’s internal state is

irrelevant for determining whether the game has separable

tasks; the multitask nature of a game is a property of the

game, and not of the NPCs programmed to play it. This paper

focuses solely on multitask games, though it will be possible

to apply the methods in this paper to games with less strict

task divisions in the future.

Although the task division is clear in a multitask game, the

NPCs may not have access to this knowledge. Therefore, some

methods in this paper are designed to control the agents despite

not knowing which task they face. Although these methods

face a more difficult challenge, they can potentially scale up

to games with unknown or ambiguous task divisions.

To assure that the test domains in this paper are challenging,

they are designed to involve tasks in which good behavior in

one task is bad behavior in another task. The separate tasks

still have underlying similarities, but different behaviors are

needed across tasks to be effective in the game as a whole.

The tasks are designed using the simulation environment

BREVE [26]. In each task, evaluation begins with a team of

NPCs surrounding the player on an infinite plane in continuous

space. NPCs start facing the player. Task evaluations have

limited duration and are independent from each other. All

agents can move forward and backward and can turn left and

right with respect to their current heading.

Although the player stands for a human player in principle,

a scripted, task-dependent agent was used in the experiments

to make a large number of evaluations possible. This “player”

agent will be referred to as the “enemy” throughout this paper.

The initial heading of the enemy is always random, which

requires NPCs to learn situational behavior and makes it detri-

mental to memorize enemy trajectories. Informal experiments

show that NPC behavior evolved against the scripted enemy

is still interesting and challenging for humans to overcome.

The multitask games designed for this work are Front/Back

Ramming (FBR), which requires NPCs to be alternately ag-

gressive with and protective of different parts of their body

depending on the task, and Predator/Prey (PP), which contrasts

attacking the enemy with running away from it. Each domain

is explained in detail next.

B. Front/Back Ramming Game

This game requires both offensive and defensive behavior

in each task, but under different circumstances. Each NPC

has a sphere-shaped battering ram affixed to its body, and is

therefore called a rammer (Fig. 1). If a ram hits the enemy,

then the enemy is damaged, but if the enemy hits any part of

the rammer other than its ram, then the rammer takes damage.

Rammers do not physically interact with each other (they can

occupy the same space). Whenever any agent takes damage,

it is temporarily invulnerable for a brief period of time during

which it is knocked backwards, which is common in games

(e.g. Sonic the Hedgehog, Super Mario Bros.). Such protection

gives agents a chance to recover from a mistake. All agents

start with 50 hit points, and every hit removes 10 hit points.

If the enemy dies, it respawns, and all agents are reset to their

starting locations, thus giving the evolving NPCs a chance to

accrue additional fitness in whatever evaluation time remains.

The resurrection of the enemy models the common occurrence
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(a) Front Ramming task (b) Back Ramming task

Fig. 1: Front/Back Ramming game. (a) The start of a Front Ramming
task; (b) the start of a Back Ramming task. In both tasks the NPCs
start pointed at the enemy in the center. The rams are depicted by
white orbs attached to the NPCs. In the Front Ramming task, NPCs
can start attacking the enemy immediately, but in the Back Ramming
task they must turn around first. Learning which behavior to exhibit
is difficult because different behavior is needed in the different tasks,
even though the sensor readings are the same (NPCs cannot sense
where on their bodies the rams are affixed).

in games of the player having multiple lives. In contrast, when

NPCs die, they are dead for the rest of the evaluation.

The game consists of Front Ramming and Back Ramming

tasks. When Front Ramming, rams are attached to the fronts

of rammers’ bodies, and the game starts with rams pointed

at the surrounded enemy. When Back Ramming, the rams are

attached to the rear ends of the NPCs, and they start facing

away from the enemy, so that rammers must execute a 180
degree turn before ramming.

Enemy behavior is essentially the same in both tasks: It

will try to circle around the rammers to hit them from the

unprotected side if possible, but if threatened by the rams, it

will prefer to run and avoid damage.

This game has six objectives. Each task has its own instance

of the same three objectives: deal damage to the enemy, avoid

damage from the enemy, and stay alive as long as possible.

Damage dealt to the enemy is shared by NPCs on a team. The

damage-avoidance and staying-alive objectives are assessed

individually, and the average across team members is assigned

to the team. Although damage received and time alive are

both affected by taking damage, each one provides valuable

feedback when the other does not: If all NPCs die, then time

alive indicates how long each avoided death, but if no NPCs

die, then damage received indicates which team is better.

Even though the NPCs cannot sense how their rams are

attached, they need to be alternately offensive and defensive in

each task, which makes this game very challenging. The large

number of fitness objectives is another cause for difficulty.

The second game has fewer objectives, but is nonetheless

challenging because NPCs are required to exhibit opposite

behaviors in different tasks in order to succeed.

C. Predator/Prey Game

In contrast to FBR, offensive and defensive behaviors are

needed in separate tasks within this game. NPCs are either

predators or prey depending on the task, and the enemy takes

on the opposite role (Fig. 2). The dynamics of the environment

and the behavior of the enemy change depending on the task.

(a) Predator task (b) Prey task

Fig. 2: Predator/Prey game. Both the Predator and Prey tasks look
the same. (a) The movement path of the enemy in the Predator task:
It tries to escape through the nearest gap between two NPCs. (b) The
enemy path in the Prey task: It pursues the nearest NPC prey in front
of it. Both situations look the same to the NPCs, but because the
environmental dynamics and enemy behavior are different, different
behavior is needed to succeed.

Predator/prey scenarios have long been of interest in re-

inforcement learning, multiagent systems, and evolutionary

computation [27], [28], [29]. Even the Pac-Man game is a

predator/prey scenario. What distinguishes both Pac-Man and

the Predator/Prey game of this paper from other predator/prey

scenarios is that agents are expected to succeed as both

predators and prey, rather than just one or the other.

In the Predator task, NPCs are predators and the enemy

is prey (Fig. 2a). The enemy tries to escape by moving

through a gap between two predators. When a predator hits the

enemy, the enemy sustains damage and becomes temporarily

invulnerable while being flung away from its attacker, as

in FBR. Also as in FBR, NPCs do not physically interact

with each other. All agents move at the same speed, which

means predators must avoid crowding the enemy, since hitting

it can knock it so far away that it is impossible to catch.

Therefore, evaluation ends prematurely if the enemy is no

longer surrounded. This task is the same as the “Flight” task

in [6], but the enemy’s escaping behavior is more intelligent

because it explicitly seeks gaps through which it can escape.

The Prey task reverses the dynamics of the Predator task,

such that the enemy deals damage to NPCs, who are now

the prey (Fig. 2b). This task is fairly simple since NPCs can

avoid the enemy by just running away. The enemy’s behavior

consists of moving forward towards the closest NPC. Thus,

PP is challenging because a single evolved controller must

execute essentially opposite behaviors depending on the task.

PP has three objectives. In the Predator task, the only

objective is to maximize damage dealt, which is shared across

NPCs as in FBR. The Prey task has two objectives: minimize

damage received, and maximize time alive. As in FBR, each

amount is averaged across team members to get the team score.

As in FBR, the damage dealt per hit is 10 hit points, and

all agents have 50 hit points. If the enemy dies (which is only

possible in the Predator task), then it respawns surrounded by

NPCs, as in FBR. The next section explains the evolutionary

methods used to learn NPC behavior in these games.

IV. EVOLUTIONARY METHODS

Evolutionary multiobjective optimization was used to learn

behavior that satisfies the many objectives across tasks. The
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evolved individuals were neural networks, and special methods

were used to evolve them for multitask games.

A. Evolutionary Multiobjective Optimization

Multitask games are by their very nature multiobjective,

since at least one objective is needed in each task. The above

domains have multiple objectives per task, which makes evolv-

ing in them even more challenging. Therefore a principled

way of dealing with multiple objectives is needed. Such an

approach allows one to avoid the design pitfalls inherent in

aggregating objectives (e.g. how to weight objectives), and

also has theoretical benefits with respect to the types of

solutions that are attainable [30]. In practice, a multiobjective

approach can find better overall performance than simply

optimizing a single combined objective [2]. The concepts of

Pareto dominance and optimality provide the framework for

multiobjective optimization1:

Pareto Dominance: Vector ~v = (v1, . . . , vn) dominates

~u = (u1, . . . , un), i.e. ~v ≻ ~u, iff

1. ∀i ∈ {1, . . . , n} : vi ≥ ui, and

2. ∃i ∈ {1, . . . , n} : vi > ui.

Pareto Optimality: A set of points A ⊆ F is Pareto optimal

iff it contains all points in F such that ∀~x ∈ A: ¬∃~y ∈ F such

that ~y ≻ ~x. The points in A are non-dominated, and make up

the non-dominated Pareto front of F .

The above definitions indicate that one solution is better

than (i.e. dominates) another solution if it is strictly better

in at least one objective and no worse in the others. The

best solutions are not dominated by any other solutions, and

make up the Pareto front of the search space. The next best

individuals are those that would be in a recalculated Pareto

front if the actual Pareto front were removed first. Layers of

Pareto fronts can be defined by successively removing the front

and recalculating it for the remaining individuals. Solving a

multiobjective optimization problem involves approximating

the first Pareto front as well as possible; In this paper this goal

is accomplished using the Non-Dominated Sorting Genetic

Algorithm II (NSGA-II [31]).

NSGA-II uses (µ + λ) elitist selection favoring individuals

in higher Pareto fronts (i.e. closer to the true Pareto front)

over those in lower fronts. In the (µ + λ) paradigm, a parent

population of size µ is evaluated, and then used to produce

a child population of size λ. Selection is performed on the

combined parent and child population to give rise to a new

parent population of size µ. NSGA-II uses µ = λ.

When performing selection based on which Pareto layer an

individual occupies, a cutoff is often reached such that the

layer under consideration holds more individuals than there

are remaining slots in the next parent population. These slots

are filled by selecting individuals from the current layer based

on a metric called “crowding distance”, which encourages the

selection of individuals in less-explored areas of the trade-off

surface between objectives.

By combining the notions of non-dominance and crowding

distance, a total ordering of the population is obtained: indi-

viduals in different layers are sorted based on the dominance

1These definitions assume a maximization problem. Objectives to be
minimized can simply be multiplied by −1.

criteria, and individuals in the same layer are sorted based

on crowding distance. The resulting comparison operator for

this total ordering is also used by NSGA-II: Each new child

population is derived from the parent population via binary

tournament selection based on this comparison operator.

Applying NSGA-II to a problem results in an approximation

to the true Pareto front. This approximation set potentially

contains multiple solutions, which must be analyzed in order

to determine which solutions fulfill the needs of the user.

However, NSGA-II is indifferent as to how these solutions are

represented. For all domains in this paper, NSGA-II was used

to evolve artificial neural networks to control the NPCs. The

process of evolving these networks is called neuroevolution.

B. Neuroevolution

Neuroevolution is the application of evolution to neural

networks. All evolved behavior in this paper was learned via

constructive neuroevolution, meaning that networks start with

minimum structure and become more complex from mutations

across several generations. The initial population consists of

networks with no hidden layers, i.e. only input and output

neurons. Furthermore, these networks are sparsely connected

in a style similar to Feature Selective Neuro-Evolution of Aug-

menting Topologies (FS-NEAT [32]). Initializing the networks

in this way allows them to ignore any inputs that are not, or

at least not yet, useful. It is beneficial to ignore certain inputs

early in evolution, when establishing a baseline policy is more

important than refining the policy.

Three mutation operators were used to change network

behavior. Weight mutation perturbs the weights of existing net-

work connections, link mutation adds new (potentially recur-

rent) connections between existing nodes, and node mutation

splices new nodes along existing connections. As mentioned

in Section II-C, recurrent connections are particularly useful

in partially observable domains, like those of this paper.

The mutation operators are similar to those in NEAT [33].

However, since NEAT was designed to use only a single fitness

function, it turned out simpler to reimplement these features

of NEAT in NSGA-II than to modify NEAT to use a Pareto-

based multiobjective approach. One feature of NEAT that

was not used in this paper is crossover, because preliminary

experiments showed that it often had no effect, and in some

cases even decreased performance in the domains of this paper.

The form of neuroevolution described so far has been used

to solve many challenging problems [33], [34], [35], but this

approach does not directly target multitask domains. However,

this approach can be used to implement the Multinetwork

approach, where separate component controllers are evolved

for each task of a multitask game.

In contrast, the next section describes two enhancements

to neuroevolution for dealing with multitask domains using a

single neural network.

C. Multitask Evolution

Two methods for evolving multimodal networks are de-

scribed: Multitask Learning, which translates work by Caru-

ana [5] into a neuroevolution framework, and Mode Mutation,
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(a) Multitask network (b) One-mode network (c) Network after MM(P) (d) Network after MM(R)

Fig. 3: Networks for playing multitask games. (a) Multitask network with two modes, each consisting of two outputs. During execution, the
simulator knows which of the two tasks the network is performing, and picks the appropriate outputs from the multitask network accordingly.
(b) Network with only one output mode containing a grey preference neuron. (c) How the one-mode network would be modified by MM(P)
to create a network whose new output mode receives inputs from the previous mode. The new lateral connections all have weights of 1.0
to assure similarity to the previous mode as a starting point for further evolution. (d) How the one-mode network would be modified by
MM(R). In this case, the new mode is connected by randomly weighted synapses to random nodes in the hidden and input layers, thus
making the new mode likely to be very different from pre-existing modes. For both types of Mode Mutation, further mutations can change
the behavior of these new modes, and add modes beyond the two shown. These multimodal approaches are compared against two unshown
approaches: (1) One-mode networks like the one in (b), but lacking the preference neuron (since they will only ever have one mode), and
(2) Multinetwork, which involves training one-mode networks in separate tasks and combining them. The benefit of multimodal approaches
over one-mode networks is that they allow networks to have multiple policies for different tasks/situations, which is useful in complex games.

which was introduced in our previous work [6], but is en-

hanced in this paper.

1) Multitask Learning: Multitask Learning assumes that

evolving agents are always aware of the task they currently

face. Each network is equipped with a complete set of output

neurons per task (Fig. 3a). Therefore, if two outputs are

required to define the behavior of an NPC, and the NPC must

solve two tasks, then the networks would have two outputs for

each task, for a total of four outputs. When performing a given

task, the NPC bases its behavior on the outputs corresponding

to the current task, and ignores the other outputs.

2) Mode Mutation: Mode Mutation does not provide NPCs

with knowledge of the current task. It is a mutation operator

that adds a new output mode to a network. As a result,

networks can have many different output modes, often even

exceeding the number of tasks in the domain.

There is no mode-to-task mapping, therefore a way of

choosing a mode to define NPC behavior for each time

step is needed. Mode arbitration depends on output neurons

called preference neurons (similar to selector units [12]). Each

mode has one preference neuron in addition to several policy

neurons, i.e. neurons that define the agent’s behavior. Every

time step, the output mode whose preference neuron value is

highest is selected. So if two neurons are needed to define

agent behavior, Mode Mutation adds three neurons to the

output layer: two policy neurons and one preference neuron.

Two methods of Mode Mutation are evaluated in this paper.

The first is Mode Mutation Previous (MM(P); Fig. 3c), i.e. the

original version [6]. Neurons for new modes start with one

input synapse each. Each input comes from the corresponding

neuron of the previous output mode. These connections are

lateral, from left to right in the same layer, but are treated as

feed-forward connections (i.e. they transmit on the same time

step). The weights of these connections are set to 1.0, but

the new mode is not identical to the previous mode because

the tanh activation function is used on each neuron (which is

common in neural networks), and acts as a squashing function.

Therefore, the new mode is a similar but slightly diminished

(in terms of activation) version of the previous mode. Future

mutations can further differentiate the new mode from its

source mode such that both modes exhibit distinct behavior.

However, such differentiation is not guaranteed to occur.

Because new modes are similar to old modes, there is little

selection pressure for them to change, meaning that they

may persist indefinitely. Furthermore, despite the capacity for

evolved connections to differentiate each mode, older modes

will always have some influence over later modes via the

lateral connections created along with each new mode, thus

making it hard to evolve lasting modular behavior.

The second method of Mode Mutation, new in this pa-

per, addresses this problem. With Mode Mutation Random

(MM(R); Fig. 3d), each neuron in a new mode receives one

input with a random weight from a random source in either the

hidden or input layer. This approach is risky since a new mode

could cause fitness scores to plummet, but it has the advantage

of more quickly introducing distinct modes of behavior.

MM(R) also makes it feasible to delete output modes.

Deleting an MM(P) mode is often infeasible, because the

modes are tightly interconnected and a deletion would often

disconnect modes from the network. Specifically, since new

modes start out connected only to the previous mode, deletion

of an MM(P) mode can potentially disconnect all modes added

after that mode. Even if links had evolved that would prevent

these newer modes from becoming disconnected, the deletion

of the lateral links connecting the deleted mode to the next

mode could drastically change the behavior of all of these

modes, which would usually be undesirable.

However, modes can be safely deleted in MM(R) networks

without modes becoming disconnected. In fact, preliminary

experiments indicated that the ability to delete modes is very

important to the success of MM(R). Therefore, whenever using

MM(R), a mode-deletion mutation is also used.

Throughout evaluation, the number of times each mode

is used is tracked. If a mode-deletion mutation occurs on a

network with multiple modes, then this data is used to choose

for deletion the output mode that was used the least in the

previous evaluation. If multiple modes are tied for least usage

(usually meaning they were not used at all), then the oldest of
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these modes is deleted. This procedure removes unimportant,

dead-end modes and allows the other mutation operators to

focus on refining the remaining useful modes.

V. EXPERIMENTS

This section describes how the methods discussed are

evaluated. Following the experimental setup, methods used for

evaluating the results are discussed.

A. Experimental Setup

The approaches in Section IV to solving multitask games

were applied to the games in Section III. Experiments in both

games were run in a similar manner. All experiments used

constructive neuroevolution with a weight-mutation rate of 0.4,

link-mutation rate of 0.2, and node-mutation rate of 0.1. These

and other parameters are similar to those used in previous

work [2], [6], [35].

In the results below, Control represents networks with

one mode used in both tasks of each game. Multitask

represents networks with one mode for each task in a game.

These networks always knew which task they were facing,

and used the appropriate mode accordingly. Both Mode Mu-

tation methods, MM(P) and MM(R), had initial populations

containing networks with only one mode. New modes could be

added by the appropriate Mode Mutation, whose rate was 0.1
in each case. Additionally, MM(R) used a mutation to delete

the least-used output mode at a rate of 0.1. The fifth method,

Multinetwork, involves evolving networks for each task

individually, and then combining the resulting controllers so

that the appropriate network is used in the task for which it was

evolved. Each “run” of Multinetwork actually consists of a

pair of runs: one in each task of a multitask game. The scores

from each individual in the Pareto front of a given single-

task run are combined with scores from each individual in the

Pareto front of the other task from the corresponding paired

run. The result is a population of scores for the full multitask

game, representing the result of a single Multinetwork run.

NPCs were evolved 20 times for 500 generations for each

method in each game. NSGA-II was used with a population

size of µ = λ = 52 to evolve neural network controllers (52 is

a historical value; other values work as well). Each controller

earned scores by being evaluated in multitask games. For each

task, a network was copied into each of the four members of

a team of NPCs. Such homogeneous teams tend to be better

at teamwork because the altruistic behavior of individuals is

not punished if it contributes to greater team scores [36]. We

have confirmed this advantage in our own work [2], [6].

Because the enemy faces a random direction when it is

spawned (Section III-A), evaluations are noisy. A common ap-

proach used to deal with noisy evaluations is to average fitness

scores across multiple evaluations [8], [37], [7]. Therefore,

every network was evaluated three times in each task, and the

final scores in each objective were the averages. The maximum

evaluation time for each task was 600 time steps, which was

chosen through trial and error to balance the need for enough

time to exhibit interesting behavior against the desire to reduce

the overall duration of each experiment.

On each time step of the simulation, the enemy acts ac-

cording to scripted behavior (described in Section III), and

the evolving agents act according to their neural networks.

On each time step, the NPCs’ sensors provide inputs to the

network, which are then processed to produce outputs, which

then define the behavior of the NPC for the given time step.

The inputs to the NPCs’ neural networks are described in

Table I. Though each team member is controlled by a copy

of the same network, each member senses the environment

differently, and can therefore take action in accordance with

its particular circumstances. Additionally, each NPC’s network

has its own recurrent state dependent on how the evolved

network’s recurrent links are structured, and what information

they have transmitted from the NPC’s history of senses and

actions. The recurrent states of all NPCs are reset whenever

the enemy respawns. Even though there are many network

inputs, recall that a feature-selective approach [32] is used to

evolve the networks. This approach allows for some of these

inputs to be ignored or incorporated later if necessary.

In contrast to the long list of inputs, the list of outputs

(per mode for multimodal approaches) is short: One output

for the degree of backward vs. forward thrust (negative for

backward, positive for forward), and another for left vs. right

turn (negative for left, positive for right). However, complex

behaviors can be produced from these outputs, as the results

show. Interpreting these results requires knowledge of how to

assess performance in multiobjective domains.

B. Assessing Multiobjective Performance

A run of NSGA-II creates an approximation to the true

Pareto front, i.e. an approximation set. Multiobjective per-

formance metrics compare approximation sets from different

runs. Individual objective scores and statistics based on them

are misleading because high scores in one objective can be

combined with low scores in other objectives. Comparing

approximation sets directly reveals whether one dominates

another, but this approach does not scale to a large number

of comparisons. Furthermore, if different approximation sets

cover non-intersecting regions of objective space, it is still un-

clear which one is better. Multiobjective performance metrics

help by reducing an approximation set to a single number that

gives some indication of its quality.

All of these measures involve first normalizing the scores

achieved within the Pareto fronts to the range [0, 1] with

respect to minimum and maximum objective scores. The

specific minimums and maximums used depend on the metric

being calculated, as is further explained below. The role of

normalization in interpreting the results of each metric is also

explained below. The normalized objective scores are used to

calculate two types of metrics: hypervolume [38] and unary

epsilon indicator values [39].

1) Hypervolume: Hypervolume (HV) is the primary perfor-

mance measure of this paper. It measures the region dominated

by all points in an approximation set with reference to some

point that is dominated by all points in the set. For example,

if an approximation set consisted of a single solution, and the

reference point were the zero vector, its hypervolume would be
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TABLE I
DESCRIPTION OF INPUT SENSORS FOR NPCS.

Name # Range Description

Bias 1 {1} Constant

NPC/Enemy Heading Diff. 1 (−π, π] Shortest amount the NPC would have to turn to have the same heading as the enemy.

NPC Heading/Enemy Loc. Diff. 1 (−π, π] Shortest amount the NPC would have to turn to be directly facing the enemy.

NPC Dealt Damage 1 {0, 1} 1 if NPC dealt damage to enemy on previous time step, 0 otherwise.

NPC Received Damage 1 {0, 1} 1 if NPC received damage from enemy on previous time step, 0 otherwise.

Any NPC Dealt Damage 1 {0, 1} 1 if any NPC dealt damage to enemy on previous time step, 0 otherwise.

Any NPC Received Damage 1 {0, 1} 1 if any NPC received damage from enemy on previous time step, 0 otherwise.

Enemy Knockback 1 {0, 1} 1 if enemy is temporarily invulnerable because it is being knocked back, 0 otherwise.

In Front of Enemy 1 {0, 1} 1 if magnitude of shortest turn the enemy would need to make to face the NPC is
less than or equal to π/2, 0 otherwise.

NPC/Teammate Heading Diff. 4 (−π, π] For each slot x within the team of NPCs, sensor returns the shortest amount the
sensing NPC would have to turn to have the same heading as the teammate in slot
x. The difference in heading from an NPC to itself is always 0.

NPC Heading/Teammate Loc. Diff. 4 (−π, π] For each slot x within the team of NPCs, sensor returns the shortest amount the
sensing NPC would have to turn to be directly facing teammate x. 0 is returned by
the sensor corresponding to the sensing NPC.

Teammate Dealt Damage 4 {0, 1} For each slot x within the team of NPCs, sensor returns 1 if teammate x dealt damage
to enemy on previous time step, 0 otherwise.

Enemy Ray Traces 5 {0, 1} Each sensor returns a 1 if it is currently intersecting space occupied by the enemy,
and 0 otherwise.

Teammate Ray Traces 5 {0, 1} Each sensor returns a 1 if it is currently intersecting space occupied by any teammate,
and 0 otherwise.

Each row stands for a different sensor or group of sensors, with number indicated by the “#” column. Some groups of sensors refer to
team member slots. These groups consist of four sensors each, where each sensor corresponds to a given NPC, determined by its starting
position with respect to the enemy (north, south, east or west). Given NPC x, its sensors that correspond to team slot x will refer to itself.
Those same sensors in a different NPC y will refer to NPC x as well. Note that the values for the “NPC/Teammate Heading Diff.” and
“NPC Heading/Teammate Loc. Diff.” sensors will be different for NPCs x and y, because the values depend on relative NPC positions
and headings. Another type of grouped sensors are ray traces. Each of these sensor groups consists of an array of 5 sensors that are 3.5
times the length of an agent, and positioned around the NPC relative to its heading at the angles of −π/4, −π/8, 0, π/8 and π/4 radians.
The ‘Range’ column lists the set/interval of possible sensor values for each sensor type. Whenever turning is referred to, a negative value
corresponds to a left turn and a positive value corresponds to a right turn. This set of 31 inputs is sufficient for the evolving NPCs to develop
complex and interesting behavior in the domains of this paper.

the product of all normalized objective scores, i.e. the volume

of the hypercube between the solution and the reference point.

When more points are in the approximation set, hypervolume

measures the size of the union of the hypercubes between each

solution and the reference point.

When analyzing how hypervolume changes across gener-

ations, the reference points used for each game were their

corresponding zero vectors, containing the minimum scores

for each objective: (0,−50,0) for PP and (0,0,−50,−50,0,0)

for FBR, where the zeroes are for the various damage-dealt

and time-alive objectives, and each −50 is for one of the

damage-received objectives. The normalization used for cal-

culating hypervolumes was on a scale between the minimum

points above, and maximum points based on maximum scores

achieved in each objective across all experiments in a given

domain. The maximum points turned out to be (250,0,600) for

PP and (310,210,0,0,600,600) for FBR. The maximum point

for PP indicates that the best damage score in the Predator task

was 250, and some NPC teams survived the full 600 time steps

of the Prey task sustaining no damage. The maximum point

for FBR indicates that the best damage scores in Front and

Back Ramming were 310 and 210, respectively. NPC teams

in each of these tasks also managed to survive the entire 600
time steps sustaining no damage. The normalization scheme

for hypervolume ranges from the absolute minimum possible

scores to the maximum achieved because hypervolume scores

are presented from generation 0, when scores are very small,

all the way to generation 500, where the maximums occur.

Because each objective is scaled to the range [0, 1], hyper-

volume is also restricted to this range. A hypervolume close

to 0 thus has nearly minimum performance in all objectives,

while a hypervolume close to 1 has nearly maximum perfor-

mance in all objectives. For a domain with strongly conflicting

objectives, hypervolumes close to 1 are unlikely, since high

performance in some objectives is traded for low performance

in others. Solutions that have high scores in multiple objectives

will contribute more to hypervolume than solutions with high

scores in some objectives but low scores in the others.

Hypervolume is particularly useful because it is Pareto-

compliant [38], meaning that an approximation set that com-

pletely dominates another approximation set will have a higher

hypervolume. The opposite is not true: An approximation set

with higher hypervolume does not necessarily dominate one

with lower hypervolume, since each set could dominate non-

intersecting regions of objective space. In fact, it is provably

impossible to construct a unary indicator that tells when one

approximation set dominates another [40]. Therefore, it is

important to compare results using other metrics as well, to

assure that these results corroborate rather than contradict

the hypervolume results. The additional metrics used are two

variants of unary epsilon indicator.

2) Epsilon Indicators: Like hypervolume, both epsilon in-

dicators are Pareto-compliant [39]. For epsilon indicators an

approximation set that dominates another approximation set

will have a lower, rather than a higher, epsilon indicator score.

The two flavors of unary epsilon indicator are multiplicative
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and additive. The multiplicative indicator I1
ǫ

measures by how

much each objective for each solution in a set would have

to be multiplied such that each solution in a reference set R

would be dominated by or equal to a point in the resulting set.

The set R should be chosen such that it dominates all fronts

under consideration. Therefore, an I1
ǫ

value of 1 corresponds

to R itself, which is in turn the best/lowest value possible. The

additive indicator I1
ǫ+ measures how much would have to be

added to each objective in each solution such that each point in

R would be dominated by or equal to a point in the modified

set. In this case, the best/lowest I1
ǫ+ value is 0, the value for

R again. For both indicators, smaller values are better because

they indicate that a smaller adjustment is needed to dominate

the reference set R. As suggested by Knowles et al. [39],

the reference set R for each game was the super Pareto front

(Pareto front of several Pareto fronts) of all fronts for which

epsilon values were being calculated across all methods.

Due to the extra complication of the reference set, epsilon

indicator values are only calculated for the final generation

of each run. However, since final performance is really all

that matters, it is appropriate to focus on the final generation,

especially since hypervolume values are calculated at every

generation, and already give insight into how multiobjective

performance changes over time.

Objective scores also need to be normalized in order for

epsilon indicator scores to be calculated, but since these

values are only calculated for the final generation, a different

normalization scheme is used. By the final generation, most

objective scores are confined to smaller ranges, thus allowing

normalization to focus on more relevant areas of objective

space. The maximum scores used for normalization are the

same, but the minimum scores, specifically the minimums in

each objective across all final populations of each method,

are sometimes higher. In particular, (0,−50,315.333333) is

the minimum point for PP, and the lowest time alive

score is now 315.333333. For FBR, the minimum point

is (10,10,−50,−50,503.25,264.5), indicating that the mini-

mum damage dealt in both ramming tasks was 10, but the

tasks are different in that even the individual that died the

quickest had a time-alive score of 503.25 in Front Ramming,

whereas the shortest-lived individual in Back Ramming had a

low time-alive score of 264.5.

For the epsilon indicators, the purpose of normalization is

to make the different objective score ranges comparable. For

example, imagine a two-objective problem where the objective

ranges are [0, 1] and [100, 200]. Consider two approximation

sets consisting of one point each: A = {(0.1, 200)} and

B = {(1.0, 110)}. With respect to the scales for each ob-

jective, these points are trade-offs at exact opposite ends of

objective space, and therefore of equal quality (assuming no

objective preferences). However, if the epsilon indicator values

are calculated without normalizing first, the following results

are obtained: I1
ǫ
(A) = 10, I1

ǫ+(A) = 0.9, I1
ǫ
(B) = 1.8181,

and I1
ǫ+(B) = 90. Not only are differences between like

metrics inappropriately large, but results across indicators are

inconsistent: Front A has a better I1
ǫ+ value, but B has a

better I1
ǫ

value. Had normalization been used, each Pareto

front would have equal scores in like metrics.

Combined with hypervolume, the epsilon indicators provide

a thorough analysis of how the Pareto fronts discovered for

each multitask game cover the space of all objectives. For each

of these metrics, a better score does not guarantee a superior

Pareto front, but superior scores in all metrics gives confidence

that a given Pareto front actually is better.

However, the individual tasks of each multitask game

are only concerned with certain dimensions within objective

space. It therefore makes sense to also compare performance

within the individual tasks, as described in the next section.

C. Multitask Performance Metrics

Extra care must be taken to characterize performance

properly in multitask games. In such games, NPCs that do

each task well are desired. However, a Pareto-based approach

allows extreme trade-offs where performance is excellent in

one task, but terrible in another. However, because tasks are

independent in multitask games, there are no inherent trade-

offs between objectives from separate tasks. When such trade-

offs are observed in evolved agents, they are entirely based on

differences in the policy representation and learning method.

One way to detect whether a population performs well in

both tasks is to calculate performance metrics with respect

to Pareto fronts for each individual task, and compare these

results to those for the full game. If one method is superior

to another in the full game, but equal in the component tasks,

then the superiority in the full game is exclusively a result of

individuals that score well in both tasks instead of just one.

The emphasis on good performance across all tasks can

be extended into an emphasis on good performance across all

objectives. This focus does not mean abandoning the ability of

multiobjective optimization to capture diverse trade-offs, but

because this paper is concerned with intelligent NPC behavior,

it is at least possible to say that an NPC is only successful if it

surpasses certain minimum expectations, i.e. obtains adequate

goal scores in each objective. In other words, extreme trade-

offs are considered undesirable. Once goals are chosen, the

number of individuals in a population that surpass all goals can

be counted, thus giving an idea of whether the population tends

to contain individuals that do well across many objectives as

opposed to just a few, i.e. just the objectives for one task.

Of course, picking specific goal values requires expert

domain knowledge, but since the purpose here is to assess

performance, a range of goal values is used. Since all scores

are normalized, any value x in the range [0, 1] can be picked

to define goals by translating the chosen x back into the

appropriate range for each objective. For example, for x = 0.5
in FBR, the goals would be (155,105,−25,−25,300,300), since

these values are halfway between the minimum and maximum

scores in FBR (Section V-B1). As x increases, the number of

successful individuals will drop, but the decline will be slower

in populations that do well in all objectives across multiple

tasks. A plot of the number of successful individuals in a

population vs. x is a “Success Plot”.

Note that this performance metric cannot be properly

calculated for the Multinetwork approach because each

Multinetwork run consists of two runs with different
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Fig. 4: Average hypervolumes in the Front/Back Ramming game.
For each method, average normalized hypervolumes across 20 runs
are shown by generation with 95% confidence intervals. The figure
indicates that multimodal approaches are superior to the unimodal
approach, represented by Control. Both MM(P) and MM(R), which
have no knowledge which task they are currently facing, significantly
outperform Control. In turn, Multitask has significantly higher
hypervolumes than either Mode Mutation method. As expected, the
best performance is achieved by the Multinetwork approach,
which is significantly better than even Multitask. This progression
indicates that increased ability to tackle this domain as a pair of
independent tasks leads to better performance.

sets of objectives. Because of how runs are combined,

Multinetwork populations effectively have a size of 52 ×
52 = 2704, and the relative significance of the number of

successful individuals in such a population would be difficult

to interpret when compared to the other methods. Therefore,

no Multinetwork results are shown on any success plots.

Armed with these means of performance assessment, the

results for each game can now be discussed.

VI. RESULTS

The results for FBR and PP are presented in this section in

terms of the metrics described above. FBR is described first

because its results are more straight-forward, followed by PP,

for which the results were more surprising.

A. Front/Back Ramming Results

The results for FBR conform to expectations of how the

different methods should perform: Control performed the

worst, both MM(P) and MM(R) are better, Multitask is

better still, with Multinetwork emerging as the best. The

hypervolume learning curves (Fig. 4) indicate that this order-

ing is established early and maintained throughout evolution.

When considering the final generation only, epsilon indi-

cator values corroborate these results (Fig. 5). Furthermore,

Mann-Whitney U tests confirm that there are significant dif-

ferences in the final generation between adjacent methods in

order of increasing performance: Control, MM(P)/MM(R),

Multitask, then Multinetwork. The two Mode Muta-

tion methods are lumped together because there is no signifi-

cant difference between them (Table II).

If Pareto fronts are recalculated for the constituent

tasks, the hypervolumes are similar for Control, MM(P)

(a) I
1
ǫ

Values.

(b) I
1
ǫ+

Values.

Fig. 5: Epsilon indicator values in the final generation of Front/Back
Ramming. Given the final Pareto fronts for each of the 20 runs with
each method, the (a) I1

ǫ
values and (b) I1

ǫ+ values are calculated
and shown as box-and-whisker plots (depicting the minimum, lower
quartile, median, upper quartile and maximum scores with scores
more than 1.5IQR (inter-quartile range) from the nearest quartile
shown as outliers). Additionally, the dashed line intersecting each
box is the average score in the metric. The decreasing epsilon values
indicate that Control results in the worst Pareto fronts, both types
of Mode Mutation are better than Control and roughly equivalent
to each other, Multitask is the next best, and Multinetwork

is the best of all, confirming the hypervolume results from Fig. 4

and MM(R), but significantly different for Multitask

and Multinetwork (Fig. 6, Table III). Therefore, the

better overall performance in FBR of Multitask and

Multinetwork is due to their exceptionally good per-

formance in both tasks. In general, individuals in the final

populations of each method can do at least one task well, but

the better methods have individuals that do both tasks well.

This point is seen in the average success counts as

well (Fig. 7), in which the multimodal methods, especially

Multitask, are better than Control because they perform

well across all objectives rather than focusing on extreme

regions of the trade-off surface.

The results so far describe how the different methods

perform compared to each other, but the metrics used to

measure performance are somewhat removed from the actual
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TABLE II
TWO-TAILED MANN-WHITNEY U TEST VALUES FOR THE FINAL

GENERATION OF FRONT/BACK RAMMING.

Comparison HV I1
ǫ

I1
ǫ+

Control vs. MM(P) 88 87.5 127.5

Control vs. MM(R) 36 81.5 76

MM(P) vs. MM(R) 148 183.5 150.5

MM(P) vs. Multitask 2 4.5 3

MM(R) vs. Multitask 4 7 6

Multitask vs. Multinetwork 59 111 93

A difference between two methods is significant with p < 0.05 if
U < 127 (italic), and with p < 0.01 if U < 105 (bold). All but the
comparisons between MM(P) and MM(R), and the I1

ǫ+ comparison
between Control and MM(P) are significantly different, and all but
the I1

ǫ
comparison between Multitask and Multinetwork are

different at the p < 0.01 level.

TABLE III
TWO-TAILED MANN-WHITNEY U TEST VALUES COMPARING

HYPERVOLUMES FOR THE ISOLATED FRONT AND BACK RAMMING

TASKS, I.E. IGNORING OBJECTIVES FROM THE OTHER TASK.

Comparison Front Back

Control vs. MM(P) 171 184

Control vs. MM(R) 176 190

Control vs. Multitask 42 134

Control vs. Multinetwork 18 65

MM(P) vs. Multitask 63 146.5

MM(R) vs. Multitask 46 130

MM(P) vs. Multinetwork 35 88

MM(R) vs. Multinetwork 24 71

Multitask vs. Multinetwork 132 71

Multitask and Multinetwork are significantly different from
the other methods in Front Ramming, but not different from each
other. However, in Back Ramming, Multinetwork is significantly
better than all other methods, including Multitask. There are no
other significant differences between methods in either task.

scores achieved by agents in the game. Presenting such data

is difficult because FBR has six objectives, and the trade-offs

between objectives make it impossible to identify any one

“best” agent for any run. However, most individuals in any

Pareto front for FBR earn the maximum score of 600 in both

time-alive objectives, so this objective can be mostly ignored.

The remaining four objectives can be split up by task, resulting

in the two 2D plots of Fig. 8, which shows the best trade-offs

achieved across all runs of each method. However, this figure

does not indicate when one evolved network did well in both

tasks or just one.

Success plots, introduced in Section V-C, can be used to

assess what kind of scores are produced by individuals that

do well in many objectives. The most successful individual

of each method is defined as the one that passes the highest

success thresholds in each objective, and therefore in both

tasks. The scores of these individuals are shown in Table IV.

Because feature-selective evolution was used, it is inter-

esting to analyze which inputs were used most often. The

selections turned out to vary widely across runs, but the

NPC/Enemy Heading Diff. and the NPC Heading/Enemy

Loc. Diff. sensors were commonly included. NPC teams also

tended to have sensors for the NPC Heading/Teammate Loc.

Diff. and Teammate Dealt Damage of at least one teammate,

though the exact teammates varied across runs. Use of Enemy

Ray Traces and Teammate Ray Traces near the front of the

rammers was also common, with one exception: Component

(a) Hypervolumes for Front Ramming.

(b) Hypervolumes for Back Ramming.

Fig. 6: Hypervolumes for the individual tasks of Front/Back Ram-
ming. Scores corresponding to each domain of FBR are isolated
from the final Pareto fronts, and used to calculate new Pareto fronts
and their corresponding hypervolumes with respect to the individual
tasks that make up FBR. (a) In Front Ramming, there is little
difference between Control, MM(P), and MM(R); (b) In Back
Ramming, these methods are also similar to each other, and to
Multitask. However, both Multitask and Multinetwork

have better hypervolumes in Front Ramming, and Multinetwork

performs better in Back Ramming as well. The fact that both Mode
Mutation methods have hypervolumes similar to Control in the
individual tasks, but better hypervolumes when tasks are combined
in FBR, indicates that their good performance comes from individuals
performing well in both tasks.

networks evolved for Multinetwork in the Back Ramming

task mostly ignored all ray trace sensors, which makes sense

because these sensors are worthless when moving rear-first.

However, Multinetwork teams did use ray traces in the

Front Ramming task. Perhaps the ray trace sensors are actually

distracting in the Back Ramming task, which may explain

why Multitask, which had to use the same set of inputs in

both tasks, performed worse than Multinetwork in Back

Ramming, but was just as good at Front Ramming.

The behaviors of NPCs with each method are in

line with these results (animations can be seen at

http://nn.cs.utexas.edu/?multitask). In general, Control net-

works easily learned to perform one of the two tasks well, but

rarely both. These networks often perform the same behavior
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Fig. 7: Average success counts in Front/Back Ramming. This plot
shows the average number of individuals across the final size 52 popu-
lations of each single-network method that are considered successful,
in that their objective scores pass a threshold for all objectives,
indicating the ability to perform well across them all. The x-axis
corresponds to different thresholds, i.e. the value of all normalized
objective scores that must be surpassed. More Multitask indi-
viduals remain successful for larger success thresholds, because they
perform well in multiple objectives. Similarly, the MM(P) and MM(R)
curves dominate the Control curve. Furthermore, the two Mode
Mutation curves intersect each other, emphasizing that they are not
very different in FBR.

TABLE IV
THE MOST SUCCESSFUL INDIVIDUAL OF EACH METHOD IN

FRONT/BACK RAMMING.

Method Threshold Objective

Control 0.38 0

Score (116.67, 133.33, −15,−7.5, 600, 600)
MM(P) 0.47 0

Score (146.67, 113.33, −2.5,−10, 600, 600)
MM(R) 0.51 0

Score (156.67, 123.33,−10,−11.67, 600, 600)
Multitask 0.62 0

Score (193.33, 140,−15.83,−5.83, 600, 600)
Multinetwork 0.81 1

Score (280, 170,−5, 0, 600, 600)

The scores for the most successful individual of each method pass the
highest success threshold, which directly maps to goal values for each
objective based on the minimum and maximum scores in FBR. Even
though success plots cannot be generated for Multinetwork runs,
its most successful individual can be determined by assessing each
Multinetwork individual in terms of goal thresholds it surpasses.
The threshold reached by each set of scores is shown, as well as
the objective that determines what this threshold is; an individual’s
threshold is its lowest threshold across scores in all objectives. The
damage dealt in Front Ramming determines the success threshold
for all methods except Multinetwork, whose least-successful
objective score is damage dealt in Back Ramming. The damage
dealt objectives are the most challenging because they have no hard
ceilings like the damage-received and time-alive objectives. Notice
that the ordering of the success thresholds for the most successful
individuals of each method corresponds to the same performance
ordering established by all previous metrics.

in both tasks, even when the behavior is only successful in

one of the two tasks, and detrimental in the other.

In contrast, Multitask networks are almost always ca-

pable of performing both tasks well, as exhibited by the

behavior depicted in Fig. 9. The specific scores achieved

by the team in this figure are (220, 120,−17.5, 0, 600, 600).

Fig. 8: Slices of Super-Pareto fronts from Front/Back Ramming.
Damage received vs. damage dealt in Front Ramming, and damage
received vs. damage dealt in Back Ramming are shown for all
members of each Super-Pareto front across 20 runs of each method.
These plots illustrate the non-normalized domain performance of each
method. Notice that a two-dimensional slice of a six-dimensional
Pareto front will not necessarily be a Pareto front in terms of
the two objectives under consideration. There are points that are
dominated within the limited context of the objectives being plotted.
In particular, methods that are unaware of which task they are
performing (Control, MM(P), and MM(R)) often have more points
with low scores in one of the tasks. It is only possible for these
low scoring points to be in the Pareto front for the full task if the
points with low scores in one task correspond to points with high
scores in the other task. In contrast, Multitask and especially
Multinetwork approaches only have high scoring points in each
task. These methods know which task they are facing, and can tailor
their behavior to that task more easily.

Such behaviors are easy for Multitask to learn since the

networks have completely different policies for each task.

In the Front Ramming task NPCs rush forward to ram the

enemy, and in Back Ramming the same NPCs immediately

turn around at the start of the trial so that they can attack

the enemy with the rams on their rears. Multinetwork

teams behave similarly, but are even more efficient at Back

Ramming, presumably because their behavior for that task is

optimized in isolation from Front Ramming.

Mode Mutation networks, though lacking information avail-

able to Multitask and Multinetwork, are significantly

different from Control networks in an important way: They

are capable of solving both tasks instead of just one. However,

since Mode Mutation networks need to overcome the challenge

of not knowing which task they are facing, their scores tend

to be lower than those of Multitask networks.

For example, an MM(R) network with scores of (140, 170,

−12.5, −7.5, 600, 600) exhibited the interesting behavior

depicted in Fig. 10. The network had nine modes. Their usage

profile in the Front Ramming task was 30.26%, 34.82%,

34.51%, 0%, 0.40%, 0%, 0%, 0%, 0%; and their usage in

the Back Ramming task was 59.33%, 34.12%, 6.25%, 0.04%,

0.21%, 0%, 0.04%, 0%, 0%. Each percentage represents how

much a particular mode was used by the NPC team during

evaluation in a particular task. Therefore, three of the nine

modes were not used at all, two were not used in Front

Ramming and only used sparingly in Back Ramming, and

another mode was only used sparingly in both tasks. The
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(a) Front Ramming

(b) Back Ramming

Fig. 9: Illustration of intelligent behavior learned by Multitask networks in Front/Back Ramming (Animations of these and other behaviors
can be seen at http://nn.cs.utexas.edu/?multitask). Each row shows snapshots from the evaluation of an agent over time from left to right.
(a) Behavior in the Front Ramming task is shown first, and in (b) behavior of the same agent in the Back Ramming task is shown. The
NPC behavior is distinctive in each task, since different output modes are dedicated to each one. Multitask networks immediately take
advantage of their knowledge of the current task: In Front Ramming they attack immediately (column 2), and in Back Ramming they turn
immediately around (column 2) and then start attacking. No time is wasted figuring out what task is being faced, as Mode Mutation networks
must do (Fig. 10).

(a) Front Ramming

(b) Back Ramming

Fig. 10: Illustration of intelligent behavior learned by Mode Mutation (MM(R)) in Front/Back Ramming. Notice that in the first two frames
of both (a) Front Ramming and (b) Back Ramming, the evolved NPCs perform the same maneuver, since they do not know yet which
task they are performing. They start by turning their backs towards the enemy. In the Back Ramming task, this strategy is immediately
effective, as illustrated by the NPCs confining the enemy while knocking it around with their rams (columns 3–6). In the Front Ramming
task, this behavior causes the NPCs to be hit (column 3), but this hit does two things: (1) the attacking NPC is flung backwards with its
front ram facing the enemy (column 4), and (2) NPCs sense being hit, and as a result switch network modes so they now attack with their
front rams (columns 5–6). Preference for the new attack mode is then maintained by internal recurrent state. This multimodal behavior is a
good example of how Mode Mutation networks can learn to overcome the challenges of a multitask game with a combination of recurrent
connections and structural modularity.

remaining three modes were primarily in charge of controlling

the team. In particular, NPCs made use of mode 1 more often

in Back Ramming than in Front Ramming, and less use of

mode 3 in Back Ramming than in Front Ramming. Mode 2

is used equally often in both tasks.

For a single NPC in the team generated from this network,

Fig. 11 shows how the activation of each preference neuron

fluctuates during a single Front Ramming evaluation. Some

modes mostly maintain constant activation while others exhibit

wild thrashing behavior, in essence merging two modes. Others

behave like digital signal waves, and some gradually rise and

fall like sin waves. The modes that are most often chosen by

this network tend to control the NPC for prolonged periods,

making it easy for a human observer to associate particular

modes with particular behaviors. Other networks (not shown)

sometimes utilize the other types of modes instead. MM(R)

thus uses its modes in a variety of ways to help establish

complex behavior.

Behaviors similar to those exhibited by MM(R) were also

learned by MM(P), but MM(P) networks often had many

unused modes, because they could not delete modes. For

example, an MM(P) network with scores of (117.78, 152.22,
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Fig. 11: Preference neuron activations of MM(R) network in Front
Ramming. These activations correspond to a single member of the
team whose behavior is illustrated in Fig. 10. At any given time
step, the mode whose preference neuron has the highest activation
is chosen. Neuron activations are restricted to the range [−1, 1]
from using the tanh activation function, but in order to better tell
which mode has the highest activation on each time step, the range
from 0.9999 and up is magnified in the figure. Mode 1 was used most
because it almost always maintains high activation. This mode was
used when the NPC was attacking the enemy, after it realized which
task it faced. Mode 2 has activations even higher than mode 1 for
three prolonged periods. Each of these periods begins immediately
after the enemy spawns. This mode is second most used because
whenever the enemy respawns, the recurrent states of NPCs are
flushed, so that the NPCs lose the knowledge they had previously
gained from interacting with the enemy; mode 2 gets used after each
enemy respawn until the NPC is reminded that it is in the Front
Ramming task. Mode 3 is used third most because it controls the
NPC for a prolonged period near the end of the evaluation. This
unusual usage occurs because the NPC team’s plan goes awry after
the last respawn, which is why the NPCs come up short of killing
the enemy a third time. Mode 3 gets used because the NPC is trying
to escape taking damage; a situation it does not have to deal with
during the first two successful enemy spawns. The other modes were
either not used at all, or used only for single isolated time steps at
points when their activation spiked. For example, see how mode 7
spikes around generations 340, 490 and 600. This figure shows how
MM(R) can evolve a network that makes use of multiple, separate
modes of behavior in a multitask game.

−7.22, −8.61, 600, 600) had 22 modes, but only five were

used. The usage profile of these five modes in the Front

Ramming task was 54.60%, 3.22%, 0%, 0%, 42.19%; and

their usage in Back Ramming was 40.19%, 1.66%, 0.47%,

0.34%, 57.34%. So out of 22 modes, only five were used, and

in Front Ramming only three of those modes were used. Even

in Back Ramming, these two extra modes are used sparingly.

In each task, NPC teams are controlled a majority of the time

by the same two modes. However, these two modes combined

with minor contributions from the remaining three to define

an effective multimodal strategy for the NPCs.

Though in terms of performance there is no significant

difference between MM(P) and MM(R), each method’s pat-

tern of correspondence between chosen modes and exhibited

behaviors indicates that MM(R) networks tend to associate

particular modes more clearly with particular behaviors. That

is, MM(R) behaviors are more transparent, whereas MM(P)

networks frequently thrash between modes, or exhibit multiple

Fig. 12: Average hypervolumes in the Predator/Prey game. For
each method, average hypervolumes across 20 runs are shown by
generation with 95% confidence intervals. In contrast to the FBR
game, MM(R) outperforms Control, MM(P), and Multitask

significantly. None of these three methods with lower performance
are significantly different from each other, though MM(P) is slightly
below Control and Multitask, which are on roughly the same
level. Multinetwork also significantly outperforms these three low
performing methods, and by the end of evolution has an average
hypervolume that is slightly lower, but not significantly different
from, that of MM(R). This domain demonstrates a surprising failure
of the Multitask approach, which should easily develop distinct
behaviors for each task, and the impressive success of MM(R), which
performs as well as if it could completely isolate both tasks, as
Multinetwork does. This result thus demonstrates the potential
power of discovering modes automatically.

behaviors in a single mode. Most likely the reason is that

MM(P) modes are more interconnected. Since each mode leads

into the next, a given mode might actually behave much like

the mode that precedes it. Most hidden-layer connections in

MM(P) networks lead into the oldest output modes, even when

there are several newer output modes in the network as well.

Though results in FBR make sense given the resources and

information available to each method, less balanced domains

can lead to different results, as is demonstrated next with PP.

B. Predator/Prey Results

The results in PP are unexpected, in that neither

Multitask nor MM(P) performs better than Control,

but MM(R) and Multinetwork greatly outperform all of

these methods, and achieve roughly equal performance. The

hypervolume learning curves (Fig. 12) show MM(R) and

Multinetwork quickly improving and remaining better

than all the other methods. The epsilon indicator values in

the final generation confirm these results (Fig. 13), and the

Mann-Whitney U tests (Table V) confirm that the relevant

differences are significant.

When the Pareto fronts from the final generation of each

method are split up by task, it turns out that every run of each

method results in at least one individual with perfect scores

in the Prey task. This is not surprising since NPCs simply

need to run away from the enemy to avoid all damage and

stay alive the whole time, thus having perfect scores in these

objectives. Consequently, the Pareto fronts for the Prey task

are not different across methods.
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1
ǫ+

Values.

Fig. 13: Epsilon indicator values in the final generation of Preda-
tor/Prey. Given the final Pareto fronts for each of the 20 runs
with each method, the (a) I1

ǫ
values, and (b) I1

ǫ+ values are cal-
culated, and presented in the same manner as in Fig. 5. MM(R) and
Multinetwork are superior to all other methods. MM(R)’s per-
formance is unexpected since Multitask, like Multinetwork,
always has knowledge of the current task, and has a specific policy for
each task. There is little difference between Control, Multitask,
and MM(P). In terms of I1

ǫ
values, Control and Multitask

seem better than MM(P), but Table V indicates that these differ-
ences are not significant. The slight difference between MM(R) and
Multinetwork is not significant either.

In contrast, the Pareto fronts for the Predator task are

different. Of course, a front for the single-objective Predator

task is simply the highest damage dealt in that run. Since

different objectives are not being compared, there is no need

to normalize. To compare methods, it is sufficient to look at

the distribution of best damage-dealt scores (Fig. 14): The

Mann-Whitney U test values for comparing these scores are

identical to those for I1
ǫ

and I1
ǫ+ in the full PP game (Table V).

These results show that MM(R) and Multinetwork are

significantly better than all other methods, none of which are

significantly different from each other.

Therefore, the main determinant of overall performance

in PP is performance in the Predator task. It also primarily

determines the form of average success count curves in PP

(Fig. 15). However, pressure to do well in both the Predator

TABLE V
TWO-TAILED MANN-WHITNEY U TEST VALUES FOR THE FINAL

GENERATION OF PREDATOR/PREY.

Comparison HV I1
ǫ

I1
ǫ+

Control vs. Multitask 189 195 195

Control vs. MM(P) 163.5 159 159

Control vs. MM(R) 78.5 76 76

Control vs. Multinetwork 87 89 89

MM(P) vs. Multitask 135 138.5 138.5

MM(P) vs. MM(R) 37.5 37.5 37.5

MM(P) vs. Multinetwork 52 52 52

Multitask vs. MM(R) 43 40.5 40.5

Multitask vs. Multinetwork 66 66 66

MM(R) vs. Multinetwork 180.5 176 176

MM(R) and Multinetwork are significantly better than all other
methods in all metrics, but not significantly different from each other.
Neither MM(P) nor Multitask are significantly different from
Control. The two epsilon indicators have identical U values for
all comparisons because the damage-dealt score in the Predator task
always determines the epsilon value needed to dominate the reference
set. Hypervolume is different, though still consistent, because varying
scores in the Prey task result in a slightly different ranking of
hypervolume scores than of epsilon scores.

Fig. 14: Best damage-dealt scores in the Predator task of Preda-
tor/Prey. Isolating the Pareto fronts for the Predator task reduces it
to a single-objective task. Because most individuals in the Pareto
fronts for the full task had perfect damage-received and time-alive
scores, these damage-dealt scores are primarily responsible for the
differences in hypervolumes in the full task. The main reason that
MM(R) is better than the other methods is that it always succeeds; it
has no low scores at all. Most of the other methods have scores
varying over a wider range, and thus much lower averages and
medians. The only exception is Multinetwork, which, despite
some low outliers, has very high median and average performance. It
is particularly surprising that the lowest scores in the other methods
can be so low. The pressure to perform well in the Prey task is
clearly a big distraction to these other methods, and sometimes leads
the evolving populations in a one-way direction away from good
performance in the Predator task.

and Prey tasks is what ultimately makes this domain challeng-

ing, since achieving high performance in the Predator task is

easier without the additional pressure to avoid damage in the

Prey task. This fact is demonstrated by the high performance

of Multinetwork in the Predator task.

Another indicator of how easy the Prey task is to solve

is the selection of inputs in Prey task networks of the

Multinetwork approach. None of the inputs go to satu-

ration, even though the population is solving the task. In other
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Fig. 15: Average success counts in Predator/Prey. The single-network
method that has the most high-performing individuals for the highest
success thresholds is MM(R), whose curve dominates all others. At
low success thresholds, the next best method is Multitask, but
at higher success thresholds it is overcome by Control because
Multitask networks have relatively low damage scores in the
Predator task.

words, there are no particular inputs that are vital to solving the

Prey task. Any input that gives a signal of fairly consistent sign

can be hooked up to the forward/backward output to make an

NPC run from the enemy. The Bias input seems like a natural

candidate for this job, but Multinetwork solutions in the

Prey task often use other inputs instead.

In contrast, Multinetwork populations in the Predator

task and populations from the other methods tend to favor

certain inputs strongly, indicating that individuals that started

using those inputs gained a large advantage over members

that did not. As in FBR, the NPC/Enemy Heading Diff. and

NPC Heading/Enemy Loc. Diff. sensors are often used. Each

individual population also favors some set of ray-trace and

team-slot sensors, but the specifics vary greatly across runs.

The insights gleaned from the empirical data are further

supported by observing the evolved behaviors of the NPCs

(animations can be seen at http://nn.cs.utexas.edu/?multitask).

Control networks tend to be good in only one of the two

tasks, but because the Prey task is so easy, there are also

Control networks that succeed in both tasks. The Predator

task is more challenging. Sometimes NPCs that take damage

and die in the Prey task make it into the Pareto front because

they deal a large amount of damage in the Predator task.

What is surprising is that Multitask networks do not

do better in the Predator task. These networks always master

the Prey task because they start running from the Predator

as soon as evaluation starts; all individuals in all 20 Pareto

fronts for Multitask networks in PP get perfect scores in

the Prey task. It is easy for Multitask networks to have

one policy that makes the NPCs run away. However, it is

unclear why Multitask networks do not always do well

in the Predator task as well. In fact, the best Multitask

scores in the Predator task are slightly lower than the best

Control scores (Fig. 14).

A possible explanation is that giving equal attention to each

task, as the Multitask architecture requires, is unnecessary

and even detrimental in this game, because the relative chal-

lenge of the two tasks is so different. Good Prey behavior

thus becomes over-optimized at the expense of good Predator

behavior. This problem does not arise with Multinetwork

because the networks learning each individual task do not face

the extra challenge of learning the other task as well. The task

division works well if the tasks are completely separated so

that they are not competing with each other.

This trade-off in evolutionary search might also explain why

MM(R) does so well: With Mode Mutation evolution is free

to choose how many modes to make, and how often to use

each of them. While the “obvious” task division may hinder

evolution, MM(R) can overcome this problem by finding its

own task division. However, this “division” often favors a

single mode that is extensively used in both the Predator and

Prey tasks. For example, an MM(R) network scoring (146.67,

0, 600) had 19 modes, but only four were used. Their usage in

the Prey task was 87.17%, 0%, 3.33%, 9.50%; and their usage

in the Predator task was 83.40%, 0.04%, 0.83%, 15.72%. The

first mode is thus primarily responsible for controlling the team

in both tasks. Furthermore, the fourth mode, which is second

most used in both tasks, is used erratically, meaning that it

controls the agent for one or two time steps in a row every

once in a while before control switches back to the primary

mode. However, the behavior is still functionally modular.

But why is MM(R) behavior so good, while MM(P) behav-

ior is so erratic? MM(P) networks can be mediocre in both

tasks, or spectacular in both tasks. Success with MM(P) seems

to depend on luck in this domain. When MM(P) succeeds, it

also tends to use few of its modes. For example, an MM(P)

network scoring (155.67, 0, 600) had 10 modes, but only used

three of them. In fact, only one mode was used in the Prey

task. This same mode was the most-used mode in the Predator

task, where the usage profile of these three modes was 88.73%,

6.99%, 4.28%. It seems that because MM(P)’s output modes

are so interconnected and similar, it is difficult for networks to

specialize modes for either task, so success for MM(P) mainly

happens when multiple modes are ignored.

Since the few quality MM(P) networks and the many quality

MM(R) networks tend to favor only one mode, perhaps one

mode is the ideal number for this game. Then why does

MM(R) do so well? The mode-deletion mutation is likely the

key. If a single quality mode is all that is necessary, then

MM(R) can, in addition to creating new, novel modes via mode

mutation, delete pointless, unused modes via mode deletion. In

other words, MM(R) helps evolution find the right one mode

for this game. In fact, modes found early on can serve as

crutches until better modes are found, at which point the old

modes can be deleted. Switching behavior in this way is easier

than incrementally changing the behavior of existing modes,

as in the Control and Multitask methods.

VII. DISCUSSION AND FUTURE WORK

Interestingly, although Multitask Learning and Mode Muta-

tion each work well in at least one of the multitask games

of this paper, the Multinetwork approach worked well in

both. However, these domains are stepping stones towards
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more difficult domains where tasks are not independent, and

Multinetwork may not be as easy to apply. In order to best

exploit these methods in more complex games, some idea of

which methods are most likely to be successful is needed.

First, Multinetwork and Multitask are restricted by

needing to know the current task, whereas MM(R) is not.

Since MM(R) does well in PP and better than Control in

FBR, it is the ideal choice for multitask games in which the

task division is not known. However, when task divisions are

clear, programmers can simply tell agents what the current

task is. Even when the division is not clear, programmers can

sometimes use domain knowledge to guess how to split the

domain into tasks. Multitask performed well using the task

division for FBR, but even in this case it was outperformed

by Multinetwork, which also did well in PP.

In fact, the results demonstrate a surprising counterexample

to the Multitask Learning hypothesis; the ability to share

knowledge about tasks in the hidden neurons of the network

was unhelpful in PP, and not helpful enough in FBR to over-

come Multinetwork. The reason could simply be that the

Multitask Learning hypothesis does not apply in the context

of evolutionary computation, or at least not in the narrow

context of multiobjective constructive neuroevolution. Further

studies using different domains and evolutionary approaches

are needed to test this hypothesis.

The limited success of Multitask Learning only applied in

FBR, where the task division properly split the challenges

of the game. As was shown by the PP game, when tasks

were not equally difficult, Multitask’s separate dedicated

modes were actually detrimental to evolution, even though

Multinetwork performed very well. However, it is surpris-

ing that MM(R) performed just as well as Multinetwork,

and even more surprising that it achieved success largely by

using only one output mode. Thus the main advantage of

MM(R) is that it can discover a task division that is effective,

albeit counterintuitive to human designers. By extension, it

may also work well in games where the task division is

dynamic or overlapping. For instance, MM(R) should work

well even when the agents choose which task they perform,

as in the Unreal Tournament example discussed in Section III.

Because the Mode Mutation methods never knew which

task they were facing, their multimodal/modular behavior was

likely established by recurrent connections. For instance, the

behavior demonstrated by MM(R) in Fig. 10 involves a mode

switch after being hit by the enemy, but the hit itself is

sensed for only a single time step. Therefore, this knowledge

must have been maintained by recurrent connections, which

means the behavior is diachronic. Since memory of past

states determines how multiple modes are used, this behavior

is an example of how diachronically influenced modularity

(i.e. functional modularity based on recurrency) can work in

concert with structural modularity.

This example network used recurrency to maintain memory

of brief environmental cues that revealed what the task was.

This ability is promising for domains where there is no

clear task division; recurrent links could accumulate evidence

indicating what the current task is. Also, rather than desig-

nating modes/networks as in Multitask/Multinetwork,

networks could be informed of which task they face via an

input sensor. This option could be used in combination with

Mode Mutation, thus giving it awareness of the task division

in addition to access to multiple modes of behavior.

MM(R) specifically could be further improved by control-

ling bloat more intelligently, while still allowing new modes to

take hold in the network. In this paper, a Mode Mutation rate

equal to the mode-deletion rate was used, which may not do a

good enough job of pruning seldom-used modes. Furthermore,

new modes may need some protection from deletion for a

certain number of generations after being created. Exploring

these and other ways of improving Mode Mutation is a

promising direction for future work.

Another issue for future work is how to select an agent

or agents from a Pareto front to use in a game. As was

suggested in Section V-C, goal thresholds for each objective

could be used for this purpose. However, such an approach

ends up throwing away potentially useful extreme solutions

on the trade-off surface. One way to make use of the whole

Pareto front in a single agent is to form an ensemble of

members of the Pareto front [41]. Such an approach can thus

take advantage of individuals from all parts of the trade-off

surface. The results for Multinetwork already demonstrate

how useful multiple networks in a single agent can be, so it

is possible that ensembles can be even more successful.

VIII. CONCLUSION

Two multitask games, Front/Back Ramming and Preda-

tor/Prey, were used to evaluate two methods of evolving

multimodal networks: Multitask Learning and Mode Mutation.

These approaches were compared against a control involving

networks with a single mode, and a method of combining

separately evolved networks called Multinetwork.

In the Front/Back Ramming game, where the task division

is both obvious and balanced, Multitask Learning is very

effective, but not as good as Multinetwork. Mode Mutation

methods come in third, but still ahead of networks with

just one mode. In Predator/Prey a form of Mode Mutation,

named MM(R), tied with Multinetwork as the most effective

method. MM(R) succeeded by efficiently searching the space

of policies to find one mode of behavior that worked well with

very little help from other modes.

Multinetwork, Multitask Learning, and Mode Mutation thus

allow evolved agents to have multiple policies to fit different

situations. Such an ability should prove useful in developing

intelligent behaviors for challenging games consisting of mul-

tiple tasks.
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