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ABSTRACT
Multiobjective evolutionary algorithms have long been ap-
plied to engineering problems. Lately they have also been
used to evolve behaviors for intelligent agents. In such ap-
plications, it is often necessary to “shape” the behavior via
increasingly difficult tasks. Such shaping requires extensive
domain knowledge. An alternative is fitness-based shaping
through changing selection pressures, which requires little to
no domain knowledge. Two such methods are evaluated in
this paper. The first approach, Targeting Unachieved Goals,
dynamically chooses when an objective should be used for
selection based on how well the population is performing in
that objective. The second method, Behavioral Diversity,
adds a behavioral diversity objective to the objective set.
These approaches are implemented in the popular multi-
objective evolutionary algorithm NSGA-II and evaluated in
a multiobjective battle domain. Both methods outperform
plain NSGA-II in evolution time and final performance, but
differ in the profiles of final solution populations. Therefore,
both methods should allow multiobjective evolution to be
more extensively applied to various agent control problems
in the future.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Connectionism

and neural nets

General Terms
Algorithms

Keywords
Multi-objective optimization, Neural networks, Multi-agent
systems, Shaping

1. INTRODUCTION
Multi-Objective Evolutionary Algorithms (MOEAs) have

long been used to discover useful trade-offs for challenging
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engineering problems [3, 10, 18]. Recently, another appli-
cation of MOEAs has emerged: agent control, i.e. evolving
behavior for intelligent agents in complex and noisy environ-
ments [1, 12, 19]. Whereas hand-designing agent behavior
is challenging and time-consuming, evolution has proven to
be an effective means of discovering such behavior automat-
ically. Although agent control problems are different from
engineering design problems, traditional MOEAs have been
successful at solving them as well.

However, such success has often depended on some form of
“shaping”. The term shaping comes from behavioral psychol-
ogy [13] and describes how animal behavior can be trained
via a series of increasingly complex tasks. Animal behav-
ior can also be shaped via biological evolution if successive
generations face increasingly complex challenges [14].

Such shaping has been modelled by the evolutionary com-
putation community using incremental evolution [11, 12],
and division of problems into subproblems [19]. A progres-
sion of tasks helps agents evolve intermediate behaviors that
eventually lead to success in the overall task. However,
defining effective sets of tasks is error prone, and requires
significant domain expertise that is difficult to come by.

An alternative to these task-based shaping methods is
fitness-based shaping, defined here as any method that chang-
es selection pressures to favor behaviors that will ultimately
lead to good performance. Such intermediate behaviors may
be inferior to others in the current population in terms of
objective scores, but are needed by evolution in order to
reach the behaviors with the highest performance. Unlike
task-based shaping methods, fitness-based shaping can be
effective in general, without extensive domain knowledge,
as will be shown in this paper.

For agent control problems, the evolved representation is
a policy defining how the agent behaves. These problems
are essentially Reinforcement Learning problems [17], ex-
cept such problems are not typically formulated in terms of
multiple objectives. It turns out that such a formulation is
very useful when evolving complex behavior.

In standard multiobjective optimization, the desired re-
sult is an approximation of the Pareto front, from which
specific solutions can be chosen by a “decision maker” [6].
However, in agent control problems the desired result is good
behavior, which means that the solutions are competent in
each objective, i.e. pass a certain threshold. Defining success
in terms of thresholds makes dynamic objective management
possible. This paper introduces such a method: Targeting
Unachieved Goals (TUG).

The threshold for each objective defines a goal. When



enough of the objective scores for the population have sur-
passed the objective’s goal, the goal is considered achieved.
TUG deactivates objectives whose goals have been achieved,
so that only objectives with unachieved goals are part of the
multiobjective selection process. Removing objectives with
achieved goals from consideration encourages better perfor-
mance in the more challenging objectives, resulting in effi-
cient and domain-independent shaping.

Another possible approach to shaping is Behavioral Di-
versity (BD). This method was originally proposed for a
much narrower role, i.e. as a way to bootstrap evolution
in single-objective problems by including a second, domain-
specific objective measuring behavioral uniqueness [8, 9]. In
this paper, this idea is extended to a problem that already
has multiple objectives, and a domain-independent way of
defining behavioral uniqueness is proposed.

Both TUG and BD result in better performing agents
with more complex behaviors, yet each is suitable to dif-
ferent types of problems. These methods demonstrate that
domain-independent shaping can help extend multiobjective
evolution to more challenging agent control problems.

2. MULTIOBJECTIVE EVOLUTION
There are several evolutionary methods designed to solve

multiobjective problems by approximating the Pareto front,
including SPEA2 [24], PESA-II [4] and NSGA-II [5]. The
algorithm used in this work is NSGA-II, though the shap-
ing methods presented below should be applicable to other
MOEAs as well.

In this paper, NSGA-II is used to evolve neural networks,
which implement agent behavior. In this section, NSGA-II
is briefly reviewed, followed by details on the evolution of
neural networks.

2.1 NSGA-II
Like all MOEAs, NSGA-II is based on the principle of

Pareto dominance. Vector ~v = (v1, . . . , vn) dominates ~u =
(u1, . . . , un) iff:
1. ∀i ∈ {1, . . . , n} : vi ≥ ui, and
2. ∃i ∈ {1, . . . , n} : vi > ui.

The expression ~v ≻ ~u denotes that ~v dominates ~u. Vector
~v within population F is said to be non-dominated if there
does not exist any ~x ∈ F such that ~x ≻ ~v. The vectors in F
that are non-dominated are said to be Pareto optimal, and
make up the non-dominated Pareto front of F .

NSGA-II sorts individuals with respect to domination. In-
dividuals in the Pareto front have a rank of 1, indicating that
they are the best in a multiobjective sense. Individuals that
are only dominated by solutions with a rank of 1 are the next
best, and are assigned a rank of 2, and so on. Given these
rankings, NSGA-II repeatedly carries out an elitist (µ + λ)
selection procedure [2]: µ parents give rise to λ children, and
selection is performed on the combined parent/child popu-
lation to get the next µ parents. Better-ranked individuals
are favored in selection, with ties broken based on a metric
called “crowding distance” [5].

Unlike the original NSGA-II, selection in this paper is not
used to create the λ children of the (µ + λ) selection proce-
dure. The child population is formed instead by cloning each
individual member of the parent population, then probabilis-
tically mutating them. This process is faster and sufficient
for the current experiment.

2.2 Neuroevolution
Neuroevolution is the application of an evolutionary algo-

rithm to artificial neural networks. In this paper, a neu-
roevolution method similar to NEAT (Neuroevolution of
Augmenting Topologies [16]) is used, adapted to support
multiobjective evolution. Networks are represented using a
direct encoding that allows for arbitrary network topologies.
They are stored as lists of neurons with weighted pointers
to other neurons.

The initial population of networks consists of individuals
with no hidden layers, i.e. only input and output nodes. Fur-
thermore, these networks are sparsely connected in a style
similar to Feature Selective NEAT [21]. Initializing the net-
works in this way allows them to easily ignore any inputs
that are not, or at least not yet, useful.

In order to support multiobjective evolution, the selection
process of NSGA-II is used instead of the fitness assign-
ment and selection procedures of NEAT. Therefore, specia-
tion and fitness sharing are not used.

After the cloning stage of NSGA-II, mutations are prob-
abilistically applied to the cloned neural networks. As in
NEAT, there are mutations to perturb the weights of exist-
ing connections, add new (potentially recurrent) connections
between existing nodes, and splice new nodes along existing
connections. Crossover is not used because preliminary ex-
periments using a crossover operator similar to the one used
in NEAT actually decreased performance.

The networks evolved by the above method serve as the
brains of agents used in a multiobjective task. The inputs
for a network come from the agent’s sensors and the net-
work outputs drive its actuators, as described in section 4.
Through evolution, networks gradually emerge that imple-
ment intelligent behavior with respect to multiple objectives.

NSGA-II neuroevolution as described above is the control

condition for experiments presented below. This version of
NSGA-II is independently augmented with TUG and BD
methods for shaping as described next.

3. SHAPING METHODS
The two methods presented in this section are used inde-

pendently to implement multiobjective fitness-based shaping
in agent control problems. Their performance is evaluated
experimentally in section 5.

3.1 Targeting Unachieved Goals
The selection process in NSGA-II can be improved by dy-

namically managing which objectives are used in calculating
the successive Pareto fronts of the population. This choice
is guided by the principle that only objectives in which the
population is having trouble performing should be part of
the selection process; objectives in which the entire popula-
tion is performing well can be ignored.

To know when to deactivate an objective, a numeric goal
is defined for each objective. These values represent desired
levels of performance, and are a way of specifying how well
an agent would have to perform to be considered successful.

A goal is considered achieved once the average perfor-
mance of the population in that objective has persisted long
enough at a level above the value of the goal. Persisting
above the goal means both the average performance and
a recency-weighted average of that average have surpassed
their objective’s goal value. The persistence requirement
assures that goal achievement is not the result of luck.



Formally, a recency-weighted average rt at time t is up-
dated according to rt+1 ← rt +α(x̄t+1−rt), where α defines
what portion of the distance between rt and the current ac-
tual average, denoted by x̄t+1, that rt should be increased
by. Thus the recency-weighted average moves slightly closer
to the most recent average every generation.

Note that objectives can be reactivated if performance
drops back below the goal. Goals reactivate as soon as
the actual average drops below the goal, since the recency-
weighted average catches up too slowly in comparison.

As to how the goal values are set, it turns out that ap-
propriate values can be learned automatically with little do-
main knowledge. TUG defines a gradual way of increasing
the goal values that does not overshoot the capabilities of
agents within the domain. For each objective, TUG moves
the current goal closer to the current maximum score in that
objective every time the population achieves all goals. For-
mally, the update rule is go ← go + η(omax − go), where
go is the goal for objective o, omax is the current maximum
score within the population for objective o, and η defines
what portion of the distance between the current goal and
the current maximum the goal should be increased by.

The maximum score in an objective will always be above
the average, which will always be above the goal at the mo-
ment it is achieved, so TUG will always increase goals. Be-
cause goals are moved towards the current maximum score,
no goal will ever be set at a level which is unattainable.
Furthermore, the goals are only increased when all of them
are achieved. Whenever all goals are achieved, all recency-
weighted averages are also reset, so that the population must
prove it can perform well given the new goals.

In this manner, all initial goals can be set at low values eas-
ily attainable by the population. TUG then automatically
increases the goal values based on the capabilities of the
population, eventually leading to maximum performance.
Therefore, TUG requires almost no domain knowledge.

Another way to achieve fitness-based shaping in multiob-
jective problems is by using a behavioral diversity objective,
as will be described next.

3.2 Behavioral Diversity
Given a single-objective problem, one can encourage the

population to explore the space of possible solutions by trans-
forming the problem into a two-objective problem with a
behavioral diversity objective [8, 9]. This method was orig-
inally proposed as a bootstrapping algorithm because the
behavioral diversity objective helps the population find so-
lutions when it would otherwise stagnate. However, the be-
havioral diversity objective actually shapes learning through-
out the entire course of evolution. Although this method has
so far been used to augment single-objective problems only,
a behavioral diversity objective can just as well be added to
a problem that is already defined using multiple objectives.

In order to use a behavioral diversity objective, first a
way of assigning behavior vectors to each individual must
be defined. The actual behavioral diversity objective score
is then taken to be the average Euclidean distance between
a genome’s behavior vector and those of all other genomes
in the population. Originally, Mouret et al. suggested that
behavior vectors had to be domain specific [8, 9]. In contrast,
this paper proposes a domain-independent way of using the
behavioral diversity objective for any domain in which agent

behavior is defined by a mapping from real-valued input
vectors to real-valued output vectors.

Each generation, ten random input vectors are generated.
Each input vector is presented to the control policy of each
genome in the population in the same order (in case the pol-
icy representation supports some form of memory), and the
output vectors are saved. Given these output vectors, the
behavior vector for a specific genome is simply the concate-
nation of its output vectors. Defining behavior vectors in
this way is simple and effective.

Interestingly, the randomly generated input vectors do not
even need to represent possible or likely inputs, though it
seems likely that differences in behavior will be better high-
lighted by input vectors that an agent might actually expe-
rience in the domain. Some potentially better approaches to
defining behavior vectors are suggested in section 6. How-
ever, random input vectors serve well enough for this initial
experiment. The details of the domain used in this work are
described next.

4. BATTLE DOMAIN
The battle domain has previously been used to show the

advantages of multiobjective evolution over the weighted-
sum approach in challenging agent control tasks [11]. An
illustration of the domain is shown in figure 1. Several mon-
ster agents evolve to attack a scripted fighter agent. The
fighter swings a bat that damages monsters on impact, and
the monsters damage the fighter on impact. Agents are
knocked backwards whenever they take damage. All agents
have limited health points, and die after taking too much
damage, though the fighter immediately respawns, thus al-
lowing evaluation to continue.

The version of the battle domain used in this paper is
slightly more challenging than before because monster teams
consist of only four members (in contrast to the original 15).
The team composition is also different in that each monster
has a copy of the same policy, i.e. the teams are homo-
geneous. Third, instead of task-based shaping via hand-
designed incremental evolution, which was used in [11] to
overcome the challenging scripted fighter agent, TUG and
BD will be used for fitness-based shaping.

The behavior of the fighter is simple yet challenging. The
fighter moves constantly forward, always swinging its bat
and turning to pursue the nearest monster that it sees. The
fighter can only see monsters in front of it, so it ignores near
monsters that are behind it. If no monsters are in front of
the fighter, it turns until it finds one. Because the fighter
constantly swings its bat, a frontal attack by a monster is
difficult, but possible with precise timing. However, team-
work can also help the monsters overcome this challenge.

Monsters are controlled via neural networks with 38 in-
puts: a constant bias; the angles to the fighter and each
teammate; the differences in headings from the fighter and
each of the teammates; indicators of when the monster is
in front of the fighter, and when the fighter is reeling from
taking damage; indicators for when the monster is close and
very close to the fighter’s bat; brief signals whenever the
sensing monster is injured or damages the fighter, whenever
any monster is injured or damages the fighter, and when-
ever each particular teammate damages the fighter. The
last 15 inputs come from three sets of five sensors spread
out in front of each monster. One of these sets can detect
the fighter, the second other monsters, and the third the bat.



Figure 1: Battle Domain. The fighter (center) starts

an evaluation surrounded by four monster agents. The

fighter approaches the nearest monster while swinging its

bat. If the bat hits a monster, the monster is damaged;

if it receives enough damage, it dies. If a monster hits

the fighter, the fighter is damaged. The monsters must

evolve to deal damage to the fighter, avoid damage from

the fighter’s bat, and survive as long as possible. This is

a challenging multiobjective task that is difficult to learn

without some form of shaping.

Two network outputs define a monster’s behavior: one con-
trols the forward/backward impulse, and the second controls
the left/right turning.

Using these inputs the monsters must fulfill multiple con-
tradictory objectives. They must avoid the fighter’s bat,
since they die from too many hits. If death is unavoidable,
then it should be avoided for as long as possible. If the
fighter can kill monsters quickly, then it can keep shifting
its focus to new monsters, and kill even more. Finally, mon-
sters must maximize the damage that they as a group deal
to the fighter. It is not individual scores, but the group score
that matters. Therefore, the monsters must work together
to maximize group score. Given these objectives, the follow-
ing three fitness measures are designed to measure success:

1. Maximize Damage Dealt: Every time a monster con-
tacts the fighter, the fighter loses 10 health points. The
amount of damage dealt is attributed to the team, re-
gardless of which individual dealt the damage.

2. Minimize Damage Received: Every time the fighter
strikes a monster with its bat, the monster takes 10
points of damage, making for a resulting change in
health of −10. The fitness attributed to the team is
the average change in health across all individuals.

3. Maximize Time Alive: There are 600 time steps in
each trial. For each individual monster, this objective
measures the number of time steps that the monster is
alive. The team score in this objective is the average
across team members.

These objectives are similar to those in [11], except the in-
tuitive Maximize Damage Dealt objective replaces the com-
paratively convoluted Attack Assist Bonus used in that study.

Attack Assist Bonus assigned fitness to individuals near the
fighter whenever any monster dealt damage to it. This mea-
sure was used to overcome the team credit assignment prob-
lem that results from evolving heterogeneous teams with
individual-level selection for a task involving teamwork. Since
the teams in this paper are homogeneous and selected at the
team level, credit assignment is not an issue. The decision
to use homogeneous teams is partly based on [20], which
demonstrated that homogeneous teams are better for tasks
requiring teamwork and altruism. Because of team-level se-
lection, all the objectives described above are team-centric.

An initial set of goal values for these objectives indicates
a reasonably good level of performance:

1. Maximize Damage Dealt = 50: The fighter has 50
health points, so this goal requires the monsters to
kill the fighter at least once per trial. The fighter
respawns after death, giving the monsters a chance to
inflict more damage.

2. Minimize Damage Received = −20: Bat strikes deal 10
damage points each, so each monster should take no
more than two hits on average. However, because this
value is averaged across team members, it is possible
to achieve this goal even if one team member dies (50
damage), since the average across the four team mem-
bers could still be above −20.

3. Maximize Time Alive = 540: On average across team
members, monsters must survive throughout 90% of
the trial. It is still possible to achieve this goal even if
some NPCs die in fewer than 540 iterations (the total
number of iterations per trial is 600).

These goal values were found to be appropriate in prelim-
inary runs. With regards to how these values are used by
TUG, lower values could safely be used at the expense of
slowing down evolution slightly.

5. EXPERIMENTS
Having described the fitness-based shaping methods to be

evaluated and the multiobjective domain that they will be
evaluated in, the next step is to describe how these methods
will be experimentally evaluated.

5.1 Setup
In these experiments, three methods are tested: NSGA-

II by itself (Control), NSGA-II combined with TUG, and
NSGA-II combined with BD. Each method was evaluated
in 30 trials. The parent and child population sizes were
µ = λ = 52, and trials executed for 500 generations. Every
network was evaluated three times, and its objective scores
were averaged across evaluations in order to get more reliable
scores in the face of noisy evaluations.

With respect to goal achievement, the particular recency-
weighted average step-size constant used was α = 0.15. Goal
achievement was monitored in all runs, though it only influ-
enced evolution in runs using TUG. Also important to TUG
was the step-size constant by which goal values increased,
which was η = 0.15.

In runs using BD, completely random vectors within a
limited range were used as the input vectors for generating
the output vectors necessary to define behavior vectors.
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Figure 2: Number of successful runs (out of 30) for each

generation for each method. A run is considered success-

ful once its population has achieved all initial goals for

the battle domain. Both TUG and BD runs succeed

quickly in early generations with TUG only slightly bet-

ter than BD, whereas the Control plot (i.e. plain NSGA-

II) is at the bottom with only has a few successful runs.

5.2 Results
NSGA-II combined with either TUG or BD significantly

outperforms NSGA-II in creating populations of individuals
with successful and interesting behaviors.

The first measure of success is the number of generations
required by the population to achieve all goals. All trials
evolved past this point, but assuming good goal values, the
point where all goals are achieved can be thought of as a
reasonable stopping point for evolution. These results are
shown in figure 2. TUG and BD perform similarly well, with
TUG slightly outperforming BD. Both methods outperform
plain NSGA-II by a large margin.

Only one TUG run and one BD run failed to achieve all
goals within 500 generations. In contrast, 25 of the plain
NSGA-II runs failed. These failed runs mean that average
completion times cannot be compared. However, median
tests can still be used, and they indicate that TUG is signif-
icantly faster than the control (χ2(1, n = 60) = 52.2667, p <
0.001) by a large amount (φ = 0.933), and that BD is signif-
icantly faster than the control (χ2(1, n = 60) = 52.2667, p <
0.001) by a large amount (φ = 0.933). The difference be-
tween TUG and BD is not significant (χ2(1, n = 60) =
1.0667, p = 0.302).

A second measure of success is the number of individuals

in the population whose objective scores surpass the initial
goal values of each objective. These results are shown for
the final generation in figure 3. Once again, both TUG
and BD significantly outperform plain NSGA-II (p < 0.05).
Furthermore, in most generations TUG significantly outper-
forms BD (p < 0.05). This result is not surprising since BD
intentionally allows poor-performing individuals to persist
in the population if their behavior is significantly different
from the behavior of all other individuals in the population.

TUG runs tend to have more successful individuals in the
population, and in two runs all 52 networks in the popula-
tion, after the final generation, surpassed all goals. However,
the minimum number of successful individuals in a TUG
run is less than BD’s minimum. Observation of learning
curves from individual TUG runs (figure 4) indicates that
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Figure 3: Box-and-whisker plots of the number of suc-

cessful networks/teams in the final parent populations

(each of size 52) for each method. These plots show the

lower quartile, median, and upper quartile as the lower

boundary, center line, and upper boundary of each box

respectively, and the whiskers denote the furthest points

within 1.5IQR of the nearest quartile, where IQR is the

interquartile range. Points outside of the whiskers are

outliers. A network is successful if its objective scores

surpass all goal values defined in section 4. Both TUG

and BD result in significantly more successful individu-

als within the population than NSGA-II alone (Control).

All of the control’s high scores are outliers. TUG runs

produce populations with the most successful individu-

als, though they also have the most variance.

TUG runs go through cycles in which the number of suc-
cessful individuals is maximized at the point where all goals
are achieved, and then minimized soon afterwards when all
goals are increased and reactivated. Therefore, it is best to
terminate TUG at a point where all goals have just been
achieved rather than after a fixed number of generations.

The methods can also be compared in terms of summary
attainment surfaces [7]. Such a surface shows the portion of
objective space that is dominated by solutions from a given
percentage of runs of the same method. The surfaces shown
in figure 5 are the best, median, and worst summary at-
tainment surfaces for each of the three methods. The worst
surface contains the region dominated in all runs, whereas
the median surface indicates what portion of objective space
is dominated by the Pareto fronts from 50% of runs. The
best surface dominates a given region of objective space if
any of the runs dominated that region. Each row shows
TUG dominating more volume than the control, and BD
dominating more volume than TUG.

The superiority of BD’s Pareto fronts can also be mea-
sured in terms of hypervolumes, i.e. the portion of the objec-
tive space that is dominated by the Pareto front [23]. Hyper-
volume is one of few Pareto-compliant metrics [22], meaning
that if one Pareto front completely dominates another, then
it will have a larger hypervolume. The hypervolume plots
show that BD fronts have the largest hypervolumes, followed
by TUG and then the control (figure 6).

To gain further insight into these results, representative
behaviors generated by each method will be analyzed next.

5.3 Behaviors
As expected from the results above, the behaviors evolved
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rows show the best, median and worst summary attainment surfaces for each method. In terms of the best surface,

TUG is only slightly better than Control, but BD dominates considerably more area than either. In terms of the

median surface, the coverage clearly improves from the Control to TUG, and from TUG to BD. In terms of the worst

surface, the Control is terrible, TUG is much better, and BD is the best.

with TUG and BD tend to be better than those evolved
with plain NSGA-II. Movies of characteristic behaviors can
be viewed at: http://nn.cs.utexas.edu/?fitness-shaping

The most effective behavior occurred in a BD run. Across
the three trials that the team faced, it avoided all damage
and thus stayed alive the whole time. However, this team is
exceptional in that it also dealt an average of 240 damage,
which amounts to killing the fighter nearly five times. This
team’s trick is to rush at the fighter, pause for just the right
amount of time as its bat swings past, then rush in to at-
tack the fighter repeatedly until it dies. Somewhat similar
behaviors emerged in TUG and even in control runs, but
they received damage because very precise timing is needed
in order to avoid the bat. Apparently the behavioral di-
versity objective makes it easier for evolution to fine-tune
network weights by encouraging networks to differentiate.

Another behavior that is good at both avoiding and deal-
ing damage is based on a clever turning maneuver at the
start of each trial. The monster moves towards the fighter
while turning left, and after it barely dodges a bat swing the
monster starts backing into the fighter. The monster then
continues to strike while turning, and thereby manages to
avoid the bat. This behavior is slightly less efficient than the
one above due to the turning motion. Since the maneuver
takes more time to execute, monsters cannot deal as much
damage in the allotted time. This behavior was common in
both TUG and BD runs, but not in control runs.

A set of behaviors popular in TUG runs, but not in BD or

control runs, employed baiting motions by one of the mon-
sters, similar to those observed in the original work in the
battle domain [11]. A monster backs away from the fighter
while turning such that it has a greater risk of being hit
by the bat, yet also slows down the progress of the fighter
so that teammates can sneak up from behind to attack.
Though this behavior requires teamwork and is visually com-
pelling, it is not as efficient as the first two behaviors because
extra time is required to successfully move the fighter into a
vulnerable position via baiting. There is also a greater risk
that one of the monsters will be hit.

The TUG runs also evolved an effective coordinated coun-
ter-clockwise attack behavior. Because the fighter swings its
bat from right to left, it is safer to attack it on its left side.
Starting from the monster on which the fighter currently
focuses, and moving counter-clockwise around the fighter,
the next monster will always be in a position to easily attack
the fighter on its left side. Therefore, the monsters will
be able to repeatedly blindside the fighter. This behavior
is generally effective, but tends to result in large damage
received because it is hard to get it coordinated precisely.

Control runs were characterized primarily by reckless be-
haviors that would sacrifice life in order to deal damage,
and cowardly behaviors that would run away to avoid dam-
age. Often different members of the same population exhibit
these opposing behaviors, which makes sense given that they
represent different trade-offs between objectives. However,
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Figure 4: The best, average, and worst scores in each

objective by generation for an individual run using TUG.

Objective scores are normalized to a common range and

measured as percentages of the maximum attained val-

ues. Vertical lines on the plot signify generations at

which TUG achieved all goals, and thus had its goal

values increased. Remember that all objectives are re-

activated after goals are increased. The plot for Time

Alive is always on top, since it is the easiest objective

to perform well in. Damage Received is just beneath

Time Alive, and its plot fluctuates in a similar manner

because Time Alive is also affected by receiving damage.

Damage Dealt is clearly the hardest objective to per-

form well in, since its plot is always beneath the plots

of the other objectives. Damage Dealt drops after each

vertical line because the reactivation of the other two ob-

jectives makes it hard to deal damage, yet as the goals

for Damage Received and Time Alive are achieved, se-

lection focuses more on Damage Dealt until all goals are

achieved. Therefore, the population scores are always at

their best on generations when all goals are achieved.

some control trials did achieve all goals, usually by approx-
imating the coordinated attack behavior described above.

It is interesting that, for the most part, TUG and BD
succeeded in different ways. Successful BD behavior consists
of well-timed maneuvers for which only the actions of a single
agent mattered. The behavioral diversity objective helped
networks fine-tune their behavior such that they perform
well on their own. TUG runs that produced similar behavior
did not perform as well as BD, because the timing was not as
good. In contrast, TUG runs produced groups of agents that
exhibit teamwork, which is in some ways more interesting
despite the fact that such teams did not score as well. In the
battle domain, teamwork means risking oneself for the sake
of the team. The result was more damage received due to
teamwork. However, TUG agents do not mind such damage
as long as the current damage received goal is still achieved.
This orientation towards teamwork may be more useful than
sheer performance in some applications, such as developing
behavior for non-player characters in video games.

6. DISCUSSION AND FUTURE WORK
Both TUG and BD are successful in shaping evolution

in a challenging multiobjective agent control problem. In-
terestingly, they do it in a different manner: TUG allows

         0

    500000

   1000000

   1500000

   2000000

   2500000

   3000000

   3500000

   4000000

Control BD TUG

H
yp

er
-V

ol
um

e

Figure 6: Box-and-whisker plots of hypervolume values

for the three methods. Hypervolumes were calculated

with respect to the following reference point: −10 for

damage dealt, −60 for damage received, and 350 for time

alive. This point was chosen because its values are just

slightly smaller than the minimal values across points in

all Pareto fronts. The Pareto fronts of the control con-

dition dominate little area, with TUG dominating more

and BD usually dominating the most.

evolution to quickly and reliably find populations full of in-
dividuals that perform well across objectives, while BD leads
to better final Pareto fronts.

Because its Pareto fronts are better, BD is the better
method by most standards. However, BD was inferior to
TUG in terms of the number of individuals in the popula-
tion whose objective scores surpassed all goal values. There-
fore, it is the better method in applications in which the en-
tire population, or at least more individuals than make up
a Pareto front, are required as the solution to a problem.
For example, in the NERO game [15], the entire evolving
population works together as a team to accomplish train-
ing tasks. Also, the original work in the battle domain [11]
pitted larger heterogeneous teams composed of several dif-
ferent neural networks against the fighter. Therefore TUG
may yet have important applications that BD cannot fulfill.

Since TUG and BD are largely orthogonal, it should be
possible to use both at the same time. However, preliminary
experiments indicate that a näıve combination of the two
methods lowers rather than heightens performance. In these
experiments, the behavioral diversity objective was always
active. One issue to be addressed is whether TUG should
ever deactivate the behavioral diversity objective, and if so,
what its goal should be. Further analysis is required to un-
derstand how the methods interact in order to find ways for
them to leverage each other instead of cancel out.

The generalized implementation of behavioral diversity
proposed in this paper is also worth further study on its
own. In this paper, ten randomly generated input vectors
were used in each generation to produce outputs that made
up the behavior vectors, but there are many ways to refine
this approach. For example, the number of random input
vectors can be changed to see whether a lesser or greater res-
olution make the method more effective. Also, a more struc-
tured method of choosing the input vectors could result in
more meaningful behavioral distinctions. For example, in-
stead of random input vectors, a syllabus of vectors tailored
to the domain could be used. Another idea, which would



not require any domain expertise, is to derive the behavior
vectors by randomly sampling from input vectors that are
actually experienced by agents during evaluation.

While the results in this paper lead to clear conclusions,
it is important to keep in mind that so far they only per-
tain to the battle domain. Further experiments will need to
be conducted in other domains to fully explore the strengths
and weaknesses of TUG and BD. On the other hand, despite
being designed for agent control problems, these methods of
fitness-based shaping might also be useful in solving multi-
objective problems in other types of domains.

In any case, provided the extensions above, it may be pos-
sible to improve the methods further and solve even harder
problems in the future.

7. CONCLUSION
Two methods for shaping evolution of behavior in multi-

objective agent control problems are presented. These meth-
ods require little to no domain knowledge, and are thus more
attractive than previous methods.

First, Targeting Unachieved Goals speeds up evolution by
focusing selection on the hardest objectives until the popu-
lation achieves goals associated with each objective. With
low initial goals, TUG automatically increases the challenge,
meaning no domain expert is needed to set good goal values.
Second, behavioral diversity, previously used in a domain-
dependent way for single-objective problems [8, 9], speeds
up evolution by encouraging exploration of new behaviors,
which results in superior Pareto fronts. In this paper, be-
havioral diversity is measured in a domain-independent way,
meaning that no domain expert is needed to define behavior
vectors. Because domain experts are not needed, it should
be easy to apply these methods to different domains.

TUG and BD were combined with NSGA-II, and each
was shown to significantly outperform plain NSGA-II in a
multiobjective battle domain. They have complimentary
strengths, making them appropriate for different tasks. Both
methods should extend multiobjective evolution beyond typ-
ical engineering problems to challenging agent control tasks.

8. ACKNOWLEDGMENTS
This research was supported in part by NSF grants IIS-

0915038 and IIS-0757479, and by Texas Higher Education
Coordinating Board grant 003658-0036-2007.

9. REFERENCES
[1] A. Agapitos, J. Togelius, S. M. Lucas, J. Schmidhuber,

and A. Konstantinidis. Generating diverse opponents
with multiobjective evolution. In CIG’08, 2008.
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