
Constructing Game Agents Through Simulated Evolution

Jacob Schrum, Department of Mathematics and Computer Science,
Southwestern University, Georgetown, TX, USA

Risto Miikkulainen, Department of Computer Science,
University of Texas at Austin, Austin, TX, USA

Synonyms: Evolutionary computation, evolu-
tionary algorithms, evolutionary machine-learning,
neuroevolution, evolutionary agent design.

Definition: Construction of game agents through
simulated evolution is the use of algorithms that
model the biological of process of evolution to develop
the behavior and/or morphology of game agents.

1 Introduction

Computer game worlds are often inhabited by nu-
merous artificial agents, which may be helpful, neu-
tral, or hostile toward the player or players. Com-
mon approaches for defining the behavior of such
agents include rule-based scripts and finite state ma-
chines (Buckland, 2005). However, agent behavior
can also be generated automatically using evolution-
ary computation (EC; Eiben and Smith 2003). EC is
a machine-learning technique that can be applied to
sequential decision-making problems with large and
partially observable state spaces, like video games.

EC can create individual agents or teams, and
these agents can be opponents or companions of hu-
man players. Agents can also be evolved to play
games as a human would, in order to test the efficacy
of EC techniques. EC can even create game artifacts
besides agents, such as weapons. The reason EC is
so flexible is that it requires little domain knowledge
compared to traditional approaches. It is also capa-
ble of discovering surprising and effective behavior
that a human expert would not think to program.
If applied intelligently, this approach can even adapt

to humans in a manner that keeps providing inter-
esting and novel experiences for players. This article
focuses mostly on discovering effective opponent be-
havior (since that is the focus of most research), al-
though examples of other applications are also given
when appropriate.

2 Evolutionary Computation

EC models the process of Darwinian evolution by
natural selection (Darwin, 1859) for the purpose of
generating solutions to difficult embedded problems.
Initially, a random collection of candidate solutions,
called the population, is generated and evaluated in
a task within some environment. Because of random-
ness in how the population was generated, there will
be variation in the performance of different candidate
solutions. At this point a new population is generated
from the old population using a mixture of selection,
recombination, and mutation.

Selection is based on Darwin’s concept of natu-
ral selection, by which fitter individuals enjoy higher
reproductive success. It involves identifying mem-
bers of the population that perform best, typically
through a fitness function that maps candidate so-
lutions to numeric measures of performance. Some-
times a certain number of top performers are selected
directly (a technique known as elitism), but selec-
tion is generally a random process that merely favors
high-performing individuals, while still allowing some
poor-performing, but lucky, individuals to be chosen.
This random element is one way of maintaining di-
versity in the evolving population and is generally

1



important to the long-term success of evolution.
In order for evolution to progress, some of the slots

in the new population must be filled by results of re-
combination or mutation. Recombination creates a
new solution to the problem by combining compo-
nents of solutions that were selected from the old
population. Generally, two solutions from the old
population, called parents, are selected and recom-
bined to create a new solution, a child or offspring,
via simulated crossover, which models the process of
genetic crossover that is a major benefit in biologi-
cal sexual reproduction. In addition, some of these
offspring undergo mutation before joining the new
population.

Mutation operations are applied with low proba-
bility and generally result in small changes to a can-
didate solution. It is also possible, and common, for
mutation to be applied directly to members of the old
population to generate new solutions, which can also
fill slots in the new population. Mutation without
recombination models asexual reproduction.

The new population of candidate solutions is la-
belled the next generation of the evolutionary pro-
cess. The new population now also undergoes eval-
uation and is subject to selection, recombination,
and mutation, which leads to yet another genera-
tion, and so on. Because recombination and mutation
keep creating new individuals, this process is able to
search the space of possible solutions in parallel, and
because selection favors high-performing individuals,
this search will gradually focus on the best solutions
in the search space. As such, the evolutionary process
is repeated until some stopping criteria is reached,
such as the attainment of a desired level of perfor-
mance, or the end of a preset number of generations.

A major benefit of this process is that it is general:
it can be applied to any domain in which there is
a measure of fitness/performance that allows certain
solutions to be identified as being better than others.

3 Evolution in Games

Games are typically full of numeric scores and met-
rics that can easily be used as a means of measuring
agent performance. Each possible agent is a candi-

date solution to the problem of how to behave in
the game world. Several different representations for
such agents are discussed later, but even given such a
representation, there are different ways of evaluating
an agent’s performance.

Although most game agents are ultimately de-
signed to interact with humans, having humans eval-
uate all candidate solutions is seldom feasible because
it is difficult for humans to maintain focus and eval-
uate solutions consistently. Completely automated
approaches are more commonly used, but sometimes
humans can also be incorporated into the process.

3.1 Evolution in Stationary Worlds

A simple approach to evolving agent behavior is to
have an evolved agent interact only with a static or
stationary world. Such worlds may have no other
agents in them or may only have agents with fixed
control policies. A world is stationary if it and its
agents do not adjust or adapt to what occurs during
evaluation. In other words, the probability of experi-
encing certain outcomes in certain situations remains
the same.

An example of an agent evolving in a stationary
world without other agents is a racecar controller on
a track without other cars. This process can produce
skilled racing behavior (Cardamone et al., 2009). To
add to this agent the ability to interact with other
racecars, a scripted component could be added to
the controller that takes over when other cars are
near, thus combining scripted and evolved compo-
nents. Another option is to evolve a racecar con-
troller in an environment filled with scripted oppo-
nent cars. A variety of different scripted opponents
could be used, either in one trial or across the course
of several, in order to make the discovered behavior
more robust in the face of different opponents.

Scripted controllers could be rudimentary yet still
pose an interesting challenge for an evolved controller
to overcome. However, scripted opponents may have
weaknesses that evolution can discover and exploit.
Such behaviors may result in a high score, even
though they may be uninteresting or easily defeat-
able for human players. Fortunately, the evolution-
ary approach can be generalized and extended into a

2



process that discovers good behaviors in an absolute
sense. This process is coevolution.

3.2 Coevolution

Coevolution occurs when individuals in a population
are evaluated with respect to other evolved individ-
uals. Such individuals can come from the same or
different populations and can be evaluated in tasks
requiring cooperation or competition. A prominent
example of competitive coevolution within a single
population is Fogel’s (2002) evolved checkers player,
Blondie24. Blondie24 was evolved by an evolution-
ary algorithm that pitted evolved players from a
single population against each other. The players
that did a better job of defeating other members
of the same population had higher fitness and were
used to create more offspring for the next generation.
The best individual after many generations used the
name Blondie24 on an online checkers service and
was found to be highly competitive against the hu-
man players it faced.

Although checkers is a traditional board game, the
same coevolutionary process can be used in video
games where bots are needed to fill in for human play-
ers. First-person shooter (FPS) games, like the Un-
real Tournament and Quake franchises, fit this model
because during the deathmatch mode of play (a free-
for-all competition between agents trying to kill each
other for points), all agents in the game have the
same in-game representation and available action set,
making it straightforward to evolve such agents with
a single homogeneous population.

When the representations and available actions of
different classes of agents are different from each
other, it makes more sense to evolve separate pop-
ulations for each type of agent and define their fit-
nesses in relation to each other. For example, fighting
games, like the Street Fighter and Tekken franchises,
pit two characters against each other in direct one-
on-one competition and generally feature a variety of
characters. Therefore, the abilities of the two players
may be completely different from each other.

For example, assume that the goal of coevolution
is to discover skilled controllers for Ryu and Guile in
Street Fighter (at least, each controller will become

skilled with respect to its particular opponent). In
this scenario, there is a population of Ryu controllers
and a population of Guile controllers: each evaluation
is a match between a member of each population in
which performance depends on the amounts of dam-
age dealt and received by each controller (there are
various ways to evaluate performance with respect to
these two scores). Any improvement in the perfor-
mance of individual Ryu controllers will come at the
expense of Guile controllers, because the two popu-
lations are in direct competition. When set up cor-
rectly, this process will result in an evolutionary arms
race, encouraging each population to find new ways
to overcome the other.

However, there are many potential pitfalls to this
process. For example, because each member of each
population is different, evaluations of the Ryu popu-
lation will not be consistent if each Ryu controller
faces a different member of the Guile population.
There is a risk of a mediocre Ryu controller receiv-
ing a high performance rating simply because it was
paired with a poor Guile controller. This problem
can be somewhat mitigated if every member of each
population faces off against several members of the
other population, and overall performance depends
on performance in all evaluations. However, perfor-
mance will only be completely consistent if the set of
opponents for each population is the same, and pick-
ing an appropriate set of opponents is challenging.

Unfortunately, if the set of opponents is chosen
poorly, the two populations will not improve in an
absolute sense. Instead, they may simply get bet-
ter with respect to each other in ways that a hu-
man player will find bizarre or incompetent. Such
improvements may go through alternating cycles be-
cause they lead to behavior that beats the current
prevalent opponent behavior, but has a weakness
against another easily discovered opponent behavior.
The trick with coevolution is to discover behavior
that incorporates all of the strengths while avoiding
all of the weaknesses available within the population’s
range of possible behaviors.

In some domains, performance that is good in an
absolute sense will be achieved automatically. In oth-
ers, it may be necessary to keep evaluating each pop-
ulation against an archive of defeated opponents to

3



assure that agents never lose the ability to overcome
opponents their ancestors could defeat.

Although coevolution can give rise to behavior that
is intelligent in an absolute sense, it is hard to imple-
ment correctly. However, agent behavior only needs
to be interesting with respect to human players, and
there are also ways to evolve agent behavior by in-
cluding humans in the loop.

3.3 Evolving with Humans in the
Loop

As mentioned before, the main challenges to evolving
against humans are that they have a limited ability
to maintain focus for long periods of time, and that
they are not consistent in their evaluations.

A computer can usually run many evaluations be-
tween computer opponents very quickly, but all eval-
uations with a human must occur in real time. After
many such evaluations, a human is likely to become
fatigued, and be unwilling to expend the necessary
effort to evaluate agents properly. Naturally, this
tendency also makes evaluations inconsistent. How-
ever, fatigue is less likely to occur if it is possible to
evaluate many agents at once, or if the population
is sufficiently small. Fatigue can also be avoided if
a prolonged evaluation process is simply the point of
the game.

For example, the commercial Creatures (Grand
et al., 1997) series of games is centered around rais-
ing artificial creatures called Norns. Superficially, the
game looks like a virtual pet style game, but among
many other AI techniques applied in the game is sup-
port for evolution. The creatures the player raises
grow, mature, and seek mates. The Creatures games
take place in open-ended worlds in which the fun
comes from nurturing and interacting with Norns.
However, these lengthy interactions influence when
and with whom each Norn mates, and therefore in-
fluence the direction evolution takes in the creation
of new Norns.

The model used in the Creatures games is inter-
esting and unique, but too slow and time intensive
to be useful in most other genres. Inconsistency in
human evaluations is also not terribly relevant in the
Creatures games because variation and novelty in the

results of evolution are part of the fun of the game.
Additionally, there is no set goal that the evolved
Norns are supposed to achieve, but the game is enter-
taining precisely because of the variety it produces.

Another manner in which a human may be an in-
consistent evaluator is due to a human’s tendency
to learn and adapt: a human player that changes
strategy mid-generation will evaluate members of the
same generation differently, which would likely give
an advantage to agents evaluated before the human
adopted a new strategy.

However, human adaptation is also a potential ben-
efit. Inconsistent evaluations may add noise to the
evolutionary process, but in the long run a human or
set of humans who evaluate artificial agents will set-
tle on strategies that suit their computer opponents.
However, if the humans adapt and improve, then the
evolved agents should improve as well. In fact, if this
improvement happens in real time, then the result-
ing experience is more exciting and engaging for the
human player.

Therefore, the primary challenge to evolving agents
with humans in the loop is in generating new and in-
teresting behaviors quickly enough to keep humans
engaged. In general, having one human be respon-
sible for evaluating all individuals puts an unreason-
able burden on that individual, so methods that keep
humans in the loop need to distribute evaluations
in novel ways. These evaluations can either be dis-
tributed among several different humans or split be-
tween humans and the computer.

Sharing evaluations with the computer means that
the computer still evaluates the majority of candi-
date solutions in the usual way, using a computer-
controlled opponent as a stand-in for a human player.
This process could in fact be carried out for many
generations, only occasionally letting a human face
the best evolved agents. If performance against the
human is comparable to performance against the
computer-controlled stand-in, then evolution is on
the right track. Otherwise, data on how the human
plays can be collected and used to adjust the behav-
ior of the stand-in. These adjustments can be made
using supervised learning techniques, or by evolving
the stand-in to emulate human play better. However,
such a system is complex, and a great deal of effort is

4



required to make sure all of the separate components
successfully interact.

A conceptually simpler way to distribute evalua-
tions is across many human players. Although us-
ing different human players makes inconsistencies in
evaluation even more likely, there will at least not
be any systematic tendency toward generating be-
haviors that are inappropriate for human consump-
tion: if any human can exploit an agent’s failings,
then it will eventually be weeded out of the popu-
lation. Furthermore, distributing evaluations across
many humans is made easier by the Internet: specif-
ically, tools such as Amazon’s Mechanical Turk and
massively multiplayer online (MMO) games.

In fact, although the MMO model has not yet been
used to evolve agent behaviors specifically, EC has
succeeded in the MMO video game Galactic Arms
Race (Hastings et al., 2009). This space-based action
shooter game evolves diverse weapons for users to
find and equip on their spaceships. The weapon pref-
erences of all users determine the fitness of weapons.
The most popular weapons are more likely to create
offspring, i.e., new weapons that players are given
when they defeat certain enemies. A similar model
could apply for enemy agents in many MMO worlds,
with enemies that are more successful in combat with
human players being considered more fit, and giving
rise to increasingly challenging offspring. Such a pro-
cess has the potential to give rise to new types of
games in which all agents evolve and adapt based on
a community of human players.

3.4 Evolving Humanlike Behavior

Pitting evolved agents against human opponents will
assure that incompetent behaviors are weeded out of
the population. However, simply discovering skilled
behavior is not always a problem. Because arti-
ficial agents are differently embodied than human-
controlled avatars, they may have unfair access to
skills that are difficult for humans to develop, which
in some cases means that they quickly become too
skilled to be good opponents for humans. For ex-
ample, in Unreal Tournament 2004, artificial agents
can be programmed using a system called Poga-
mut (Gemrot et al., 2009). It is easy for these agents

to shoot their weapons with pinpoint accuracy: evo-
lution thus creates skilled agents, albeit in a way that
human players find frustrating and inhuman.

However, evolution can still be applied in these
situations. Agents can be evolved to maximize per-
formance, but under restrictions similar to those ex-
perienced by humans. The ability of such an agent
to behave in a humanlike manner was demonstrated
in the 2007–2012 BotPrize competition. The pur-
pose of the competition was to develop bots for Un-
real Tournament 2004 that human players would mis-
take for humans at least 50 % of the time. The bot
UT^2 achieved this goal with evolved combat behav-
ior (Schrum et al., 2012). The key idea was to opti-
mize the behavior under humanlike restrictions: the
more quickly it was moving and the farther its tar-
gets were, the less accurate it was. These restrictions
forced the bot to evolve humanlike movement pat-
terns in order to have skilled behavior.

This example demonstrates how the abilities avail-
able to an evolved agent have a strong influence on
the range of behaviors that are likely to be evolved.
These abilities are in turn influenced by the type of
controller evolved for the agent. A variety of con-
trollers that can be evolved to produce game agents
are discussed next.

4 Evolved Representations

When constructing agents for games via evolution,
each candidate solution is a means of representing an
agent. Often, this representation needs only account
for the behavior of the agent, because its form is of-
ten fixed by the constraints of the game. However,
diverse agent morphology can also be evolved. Re-
gardless, there are a variety of representations that
can be used to suit the needs of any particular game.

4.1 Parameter Tuning

The simplest way to incorporate evolution into tradi-
tional agent design is via parameter tuning. If there
is an existing controller for an agent whose behavior
is influenced by some key parameters, then these pa-
rameters can be optimized using evolution (typically

5



via genetic algorithms or evolution strategies).
For example, a hand-coded controller for an agent

in an FPS may have numeric parameters indicating
which weapon to favor, depending on the agent’s dis-
tance from its opponents. Similarly, such an agent
may have several distinct control modules, like attack,
retreat, and explore, and might decide which one to
use based on numeric features such as its own health
and its distance from enemies and items. Evolved
parameters then specify the exact thresholds for each
feature, indicating when one module is used instead
of another.

The strength of parameter tuning depends on the
strength of the underlying controller. For a bad con-
troller, no amount of parameter tuning may be able
to help. Similarly, a very good controller may not
be very difficult to tune, resulting in quick but small
improvements in performance. In order for evolu-
tion to reach its full potential, the evolved represen-
tation needs to exist within a search space that is rich
enough to contain skilled solutions that a human de-
signer either would not consider, or would have diffi-
culty creating.

4.2 Rule-Based Scripts

Rule-based scripts are a common approach to speci-
fying the behaviors of agents in commercial games.
Typically, considerable effort and person-hours go
into designing scripts for each agent in the game.
Simple agents can have simple scripts, but scripts for
opponents must be complicated in order for the game
to be challenging and interesting.

Scripts generally consist of a list of rules, and each
rule consists of a trigger and a corresponding action
or sequence of actions. Triggers and actions may
also be parameterized. Evolution can easily rear-
range blocks of information and search the param-
eter spaces of each rule and trigger. Of course, the
process can be difficult if there is a large number of
basic triggers and actions.

One game genre in which opponents have a large
range of possible actions is real-time strategy (RTS)
games. Because the computer opponent must control
a collection of agents in a large space, the number
of actions available is massive. Therefore, it makes

more sense to reason about behavior at a higher level.
Given a set of high-level actions, or tactics, to choose
from, a reinforcement learning technique called dy-
namic scripting can be used to select the best tactic
for each situation, leading to improved behavior. In
its basic form, this technique is still limited by the
preprogrammed tactics available to the agent. How-
ever, dynamic scripting can be combined with evo-
lution that generates new tactics. This process has
been successfully applied to Wargus, a clone of the
very popular Warcraft II RTS game (Ponsen et al.,
2006).

Since commercial game designers are already com-
fortable using scripts, evolving scripts is a straight-
forward way to combine existing industry knowledge
with cutting-edge AI techniques. However, there
are also evolvable representations that are potentially
more powerful, but less well known in the game in-
dustry.

4.3 Genetic Programming

Genetic programming (GP) is a technique for evolv-
ing computer programs, or more accurately subrou-
tines, that are often represented as trees. Each inter-
nal node is a function call whose branches are input
parameters, and leaves are either constants, or func-
tions with no parameters. These functions with no
parameters provide sensor values from the agent to
the program.

For any given game, the specific functions that can
be used in evolved trees need to be specified by the
programmer. The types of functions used depend on
how the evolved trees are used to control an agent.
Evolved trees could be straightforward function ap-
proximators made up of purely mathematical func-
tions using agent sensors to provide numbers. How-
ever, trees with arbitrarily complex functions can also
be evolved. For example, functions can have side ef-
fects that directly lead to agent action or that alter
a stored memory structure whose contents can influ-
ence future function evaluations.

GP can also be used to evolve behavior trees. Such
trees hierarchically decompose behavior into a collec-
tion of tasks that are prioritized and then executed
only if certain triggers are satisfied. In fact, a behav-

6



ior tree can be thought of as a hierarchical rule-based
script. Behavior trees were initially developed for the
commercial release of Halo 2 (Isla, 2005) and have
since been evolved in Unreal Tournament 2004 using
Pogamut (Kadlec, 2008).

GP can also be used as part of a developmental
process: the evolved programs are executed to create
some other structure that is actually used to con-
trol the agent. Such a process more closely emulates
the creation of complex organisms from DNA. With
GP, an evolved program tree can be used to create
the structure and weights of a neural network (Gruau
et al., 1996) or simply be queried to fill in the weights
of a predefined network architecture (Togelius et al.,
2009). Neural networks have their own set of ad-
vantages as agent control mechanisms, which are dis-
cussed next.

4.4 Neuroevolution

The human brain is a neural network made up of
neurons that connect to each other via synapses and
communicate via electrical signals. An artificial neu-
ral network is an abstraction of this idea that trans-
mits numerical values in place of electrical signals,
and neuroevolution is the process by which artificial
neural networks are evolved to solve problems.

There are many neural network models (Haykin,
1999), but the most common is a multi-layer per-
ceptron (MLP), consisting of input neurons, output
neurons, and hidden neurons in between. Each neu-
ron is connected to every neuron in the next layer,
and a continuous activation function, typically a sig-
moid, transforms the numerical signals accumulated
in each neuron. MLPs are universal function ap-
proximators, assuming the correct number of neu-
rons/layers is available, so they are useful in defining
agent behavior. MLPs can be trained by supervised
learning if labelled training data is available, but this
is seldom the case when defining agent behavior in
games.

MLPs typically have their architecture (number of
neurons in each layer) fixed before learning, and in
such a setting there is a known number of synap-
tic weights in the network. Discovering the weights
for such networks is therefore a special case of pa-

rameter tuning. Although intelligent behavior can
be learned using MLPs, the large number of param-
eters can make it difficult to learn particularly large
MLPs.

An alternative approach is NeuroEvolution of Aug-
menting Topologies (NEAT; Stanley and Miikku-
lainen, 2002), which does not produce MLPs. Rather,
NEAT networks can have neurons connected to each
other in an arbitrary topology. All networks start
evolution with a minimal topology with no hidden
neurons. The networks in the population gradually
complexify across generations as new neurons and
links are added via mutations, which allows for convo-
luted, but effective topologies. In fact, by beginning
the search in a small space with few links, it is often
possible to find very effective simple networks with
fewer links than an MLP with the same number of
inputs and outputs.

A variant of NEAT that allows a team of agents
to learn in real-time (rtNEAT; Stanley et al., 2005)
was actually the driving force behind a machine-
learning game called Neuro-Evolving Robotic Oper-
atives (NERO), in which the player takes on the role
of a virtual drill sergeant to train robot soldiers that
learn via neuroevolution. NEAT has since then been
applied to many other video games.

An extension to NEAT called HyperNEAT (Stan-
ley et al., 2009) can exploit the geometry of a state
space to make learning certain behaviors easier. Hy-
perNEAT networks are evolved with NEAT, but with
extra activation functions possible in the neurons to
capture symmetries and repeated patterns in the do-
main. Most importantly, each evolved network is
used to create another network, which becomes the
actual controller of an agent. This is another ex-
ample of a developmental process (cf. section “Ge-
netic Programming”). A benefit of this process is
that it becomes feasible to generate very large, but
effective, controller networks from small evolved net-
works. In fact, HyperNEAT has been effectively ap-
plied to simulated RoboCup Soccer Keepaway (Ver-
bancsics and Stanley, 2010) and general game playing
of Atari games (Hausknecht et al., 2012) using con-
troller networks whose input layers were linked to 2D
grids spanning the entire visual display. Such massive
networks are difficult to evolve when each connection

7



weight must be learned individually.
HyperNEAT is known to produce regular networks

with repeating patterns. However, these networks
are not inherently modular (though techniques to en-
courage such modularity exist; Huizinga et al. 2014).
Modularity is useful because a challenging problem
can be broken down into smaller components that
are easier to learn. Breaking up a controller into sev-
eral distinct sub-controllers is a useful way to achieve
multimodal behavior, i.e., behavior that consists of
distinct modes subjectively different from each other.
Such behavior is necessary in many games, because
different strategies often require different actions,
such as attacking, retreating, searching, hiding, etc.

Such multimodal behavior can be discovered with
neuroevolution through architectures that support
multiple distinct output modules. Such modules can
exist in the initial population or be added by a mu-
tation operator called module mutation (Schrum and
Miikkulainen, 2014). This technique was applied to
Ms. Pac-Man, and the evolved networks discovered
both expected modes of behavior – such as a mode
for fleeing threat ghosts and a mode for chasing edi-
ble ghosts – and unexpected modes of behavior, such
as one for dodging ghosts after luring them near a
power pill, so that when the ghosts became edible
they would be easier to eat.

So far, only means of evolving complex controllers
have been discussed. However, it is possible to go
beyond evolving controllers and evolve the bodies of
agents as well.

4.5 Morphology

EC can be used to create many types of structures
beside function approximators. The Evolved Virtual
Creatures (EVCs; Sims, 1994; Lessin et al., 2014)
community has developed ways of evolving interest-
ing creature morphologies, often using graph-based
encodings. These encodings allow for arbitrary num-
bers of limbs and joints arranged in novel ways.
Sometimes these morphologies mimic those of real-
world organisms, but more unusual morphologies can
also emerge; the strange quality of such morphologies
would lend itself well to a game filled with aliens,
robots, or other bizarre creatures.

Given the body, a means of controlling it is re-
quired. Specifically, engaging and disengaging the ex-
isting joints and/or artificial muscles will cause parts
of the body to move, which can lead to complex be-
havior if done properly. Sometimes simple repetitive
control signals, as from a sine wave, can lead to in-
teresting behavior given the right morphology. Natu-
rally, a human designer could also step in and provide
the behavior for an evolved morphology.

However, EVCs can also have their control routines
embedded into their morphologies. In particular, spe-
cific sensors situated on an EVC can be linked to its
muscles and joints. Internally, these connections can
be wired in a manner similar to a neural network
or electrical circuit, meaning that sensor values may
be aggregated and/or serve as inputs to functions,
whose outputs are passed on until they eventually de-
termine muscle and joint behavior. Such controllers
have been evolved to run, jump, swim, grab objects,
chase after a light source, and fight or flee different
opponents. These skills could serve as the building
blocks for more complex and interesting game agents.

5 Conclusion

Evolutionary computation is a powerful machine-
learning technique that has been used to discover
skilled and interesting agent behavior in many do-
mains. Video game agents can be evolved to play the
game as a human would, to serve as opponents for
human players, or can be evolved in a context where
interacting with the evolutionary process is the point
of the game.

Despite the ability of evolution to discover di-
verse and interesting agent behaviors, the commercial
games industry has not yet harnessed the power of
evolution (and other advanced AI techniques). This
article provides a useful starting point for under-
standing what can be done with evolution in games
and also points out some areas of untapped potential.

8



References

Buckland, M. (2005). Programming Game AI by Ex-
ample. Jones and Bartlett Learning.

Cardamone, L., Loiacono, D., and Lanzi, P. L.
(2009). Evolving Competitive Car Controllers for
Racing Games with Neuroevolution. In Proceed-
ings of the 11th Annual Conference on Genetic and
Evolutionary Computation, (GECCO’09), 1179–
1186. New York: ACM.

Darwin, C. (1859). On the Origin of Species by Means
of Natural Selection or the Preservation of Favored
Races in the Struggle for Life. London: Murray.

Eiben, A. E., and Smith, J. E. (2003). Introduction
to Evolutionary Computing. Berlin: Springer.

Fogel, D. B. (2002). Blondie24: Playing at the Edge
of AI. San Francisco: Morgan Kaufmann.

Gemrot, J., Kadlec, R., Bida, M., Burkert, O., Pibil,
R., Havlicek, J., Zemcak, L., Simlovic, J., Vansa,
R., Stolba, M., Plch, T., and C., B. (2009). Poga-
mut 3 Can Assist Developers in Building AI (Not
Only) for Their Videogame Agents. Agents for
Games and Simulations, LNCS 5920, 1–15.

Grand, S., Cliff, D., and Malhotra, A. (1997). Crea-
tures: Artificial Life Autonomous Software Agents
for Home Entertainment. In Proceedings of the 1st
International Conference on Autonomous Agents,
AGENTS’97, 22–29. New York: ACM.

Gruau, F., Whitley, D., and Pyeatt, L. (1996). A
Comparison between Cellular Encoding and Direct
Encoding for Genetic Neural Networks. In Proceed-
ings of the 1st Annual Conference on Genetic Pro-
gramming, GP’96, 81–89. Cambridge: MIT Press.

Hastings, E. J., Guha, R. K., and Stanley, K. O.
(2009). Automatic Content Generation in the
Galactic Arms Race Video Game. IEEE Trans-
actions on Computational Intelligence and AI in
Games, 1(4):245–263.

Hausknecht, M., Khandelwal, P., Miikkulainen, R.,
and Stone, P. (2012). HyperNEAT-GGP: A

HyperNEAT-based Atari General Game Player. In
Proceedings of the 14th Annual Conference on Ge-
netic and Evolutionary Computation, GECCO’12,
217–224. New York: ACM.

Haykin, S. (1999). Neural Networks, A Comprehen-
sive Foundation. Upper Saddle River: Prentice
Hall.

Huizinga, J., Mouret, J.-B., and Clune, J. (2014).
Evolving Neural Networks That Are Both Modu-
lar and Regular: HyperNeat Plus the Connection
Cost Technique. In Proceedings of the 16th Annual
Conference on Genetic and Evolutionary Compu-
tation, GECCO’14, 697–704. New York: ACM.

Isla, D. (2005). Managing Complexity in the Halo 2
AI System. In Proceedings of the Game Developers
Conference, GDC’05. San Francisco, CA.

Kadlec, R. (2008). Evolution of Intelligent Agent
Behaviour in Computer Games. Master’s thesis,
Charles University in Prague, Czech Republic.

Lessin, D., Fussell, D., and Miikkulainen, R.
(2014). Adapting Morphology to Multiple Tasks
in Evolved Virtual Creatures. In Proceedings of
The 14th International Conference on the Synthe-
sis and Simulation of Living Systems, ALIFE ’14.
Cambridge: MIT Press.

Ponsen, M., Muñoz-avila, H., Spronck, P., and Aha,
D. W. (2006). Automatically Generating Game
Tactics via Evolutionary Learning. AI Magazine,
27(3):75–84.

Schrum, J., Karpov, I. V., and Miikkulainen, R.
(2012). Humanlike Combat Behavior via Multiob-
jective Neuroevolution, 119–150. Berlin: Springer.

Schrum, J., and Miikkulainen, R. (2014). Evolv-
ing Multimodal Behavior With Modular Neural
Networks in Ms. Pac-Man. In Proceedings of the
16th Annual Conference on Genetic and Evolution-
ary Computation, GECCO’14, 325–332. New York:
ACM.

9



Sims, K. (1994). Evolving Virtual Creatures. In Pro-
ceedings of the 21st Annual Conference on Com-
puter Graphics and Interactive Techniques, SIG-
GRAPH’94, 15–22. New York: ACM.

Stanley, K. O., Bryant, B. D., and Miikkulainen,
R. (2005). Evolving Neural Network Agents in
the NERO Video Game. In Proceedings of the
IEEE Symposium on Computational Intelligence
and Games, CIG’05. Piscataway: IEEE.

Stanley, K. O., D’Ambrosio, D. B., and Gauci, J.
(2009). A Hypercube-based Encoding for Evolv-
ing Large-scale Neural Networks. Artificial Life,
15(2):185–212.

Stanley, K. O., and Miikkulainen, R. (2002). Evolv-
ing Neural Networks Through Augmenting Topolo-
gies. Evolutionary Computation, 10(2):99–127.

Togelius, J., Karakovskiy, S., Koutnik, J., and
Schmidhuber, J. (2009). Super Mario Evolution.
In Proceedings of the IEEE Symposium on Compu-
tational Intelligence and Games, CIG’09, 156–161.
Piscataway: IEEE.

Verbancsics, P., and Stanley, K. O. (2010). Transfer
Learning Through Indirect Encoding. In Proceed-
ings of the 12th Annual Conference on Genetic and
Evolutionary Computation, GECCO’10, 547–554.
New York, NY, USA: ACM.

10


