
UT^2: Human-like Behavior via Neuroevolution of Combat Behavior

and Replay of Human Traces

Jacob Schrum, Igor V. Karpov and Risto Miikkulainen

{schrum2,ikarpov,risto}@cs.utexas.edu

1 Architecture

The University of Texas at Austin’s entry in the
CEC 2011 Human-like Bots Competition is UT^2,
which stand for University of Texas in Unreal
Tournament.

The UT^2 bot uses a behavior-based architecture
in which a list of behavior modules is cycled through
in priority order on every logic cycle. Each behavior
module has a trigger, and if a module’s trigger fires
on a given cycle, then that module defines the be-
havior of the agent for the given logic cycle. The full
architecture is shown in Fig. 1.

In terms of Computational Intelligence, the two
most interesting features of UT^2 are that its com-
bat behavior is defined via an evolved neural network
(in the Battle Controller), and both its naviga-
tion and its routine for getting unstuck make use of a
database of traces of human behavior in UT2004 (via
the Human Retrace Controller).

This architecture is based on UT^2-2010: a
previous version of UT^2 that came 2nd in Bot-
Prize 2010 [1]. Full details are available in two chap-
ters for the upcoming book Believable Bots. There-
fore, this abstract focuses on how UT^2 has been im-
proved since BotPrize 2010.

2 Evolved Battle Controller

UT^2-2010’s Battle Controller was learned using
multiobjective constructive neuroevolution [2]. A
new controller was evolved against native UT2004
bots. Evolution occurred in the relatively small map
DM-1on1-Albatross to assure that as much of the
bot’s time was spent in combat as possible. The
set of objectives used was reduced to a simple set
of three: damage dealt (maximize), damage received
(minimize), and number of collision events with level
geometry (minimize).

Several input sensors were added to the bot’s neural
network, most interesting of which are the mimicry
sensors. These are sensors that heuristically deter-
mine whether an opponent is executing one of a small
set of combat movement options that are available to
the bot. Such sensors were built to make evolution
of mimicry possible should it prove useful in combat.
Such mimicry should be useful since evolved behavior
is generally not inherently human-like.

Human-like tendencies are enforced in how the out-
puts of the evolved network are interpreted. As with
UT^2-2010, the combat actions available to UT^2 are

defined relative to its current opponent, which was
selected via a scripted routine. The available actions
are: Approach, Retreat, Strafe (left or right), stand
Still, and Go To Item which is nearest. The bot
always looks at the opponent while performing these
actions, and thus seems to be focused in a human-like
manner. The mimicry sensors indicate if the bot’s
opponent is performing any of these actions. Dur-
ing these actions, the bot has the option of jumping
and/or shooting. UT^2-2010 evolved the decision of
when to shoot, but this year’s version simply favors
shooting whenever a target is available. Many new
filters and restrictions on when these actions can be
performed have also been added. For example, the
bot is not allowed to strafe into walls, and if it is
not being attacked and has the high ground, it will
favor standing still to snipe. In terms of weapon us-
age, specific subroutines have been implemented to
make weapon-specific tricks work, such as the Bio-
Rifle’s secondary charge attack. These and other fil-
ters on the available actions were added based on the
authors’ knowledge of what humans consider to be
human-like/bot-like behavior in UT2004.

Another important change in how the Battle Con-

troller is used relates to use of the judging gun.
UT^2-2010’s Judging Controller made use of the
Battle Controller to define bot movement while
attempting to judge opponents. However, competi-
tion experience has shown that the power and im-
portance of judging makes getting a successful judge-
ment important enough that human players are less
concerned with maneuvering to avoid damage than
usual. Therefore, UT^2’s Judging Controller does
not use the Battle Controller to select from all
available combat movement actions, but instead sim-
ply chooses the Approach command every time.

3 Human Trace Replay

UT^2-2010 made use of human traces purely for the
purpose of getting the bot unstuck whenever one of
several stuck triggers fired, thus indicating that nav-
igation had somehow failed. The current version of
UT^2 still uses human traces for this purpose, but also
uses scripted actions for getting unstuck under spe-
cific circumstances.

The new approach to getting unstuck uses human
traces as only one component. The scripted responses
to getting stuck are to Move Forward if standing still,
Move Away from walls and agents that the bot is
colliding with, and to Dodge away from obstacles if



Approach

Retreat

Dodge

Strafe

Go To Item

Move Along Points

Move Away From

Move Forward

Path To Location

Still

Turn To Find

Unstuck Controller

Path Controller

Chasing Controller

Judging Controller

Shield Gun Controller

Battle Controller

Human Retrace Controller

UNSTUCK

GET DROPPED WEAPON

IMPORTANT ITEM

GET GOOD WEAPON

JUDGE

SHIELD GUN

BATTLE

CHASE

RETRACE

PATH

Figure 1: UT^2 Architecture. Control cycles through the list of modules on the left once every logic cycle. If
a reached module’s trigger fires, then that module will define the bot’s next action. Most modules have an
associated controller (middle column) that further arbitrates between several available actions, or otherwise
aggregates and makes use of information relevant to the actions performed by that module. All actions available
to the controllers are in the right column. One of these actions is executed each logic cycle. Some control modules
are simple enough that they do not need controllers: they carry out a specific action directly. Most of the control
in this diagram flows from left to right, but note that the Unstuck Controller can actually make use of the
Human Retrace Controller to define its action.

collisions are occurring with high frequency. These
scripted responses usually work well in these situa-
tions, but if these responses repeatedly fail, or if the
bot is near the same navpoint for too long, then the
bot will try using human traces to get unstuck.

There is a separate database of human traces cor-
responding to each level in UT2004. Each database
consists of a collection of agent locations stored along
with the game time that the player was at that posi-
tion. The sequence of locations for one player or-
dered by time represents a trace of how a human
player moved through a given level. The locations
within the traces are indexed by their nearest nav-
point within the level. This indexing scheme speeds
up the operation of finding the nearest point of the
nearest trace when needed. Whenever a trace is re-
trieved for replay, the bot picks points along the trace
starting from near its current location, and uses the
Move Along Points action to move directly to one
point while planning ahead to the next point in the
sequence. Such advance planning results in smoother,
more human-like movement.

If there is no reasonably close human trace avail-
able, or if the human traces have repeatedly failed to
get the bot unstuck, then the bot resorts to random
unstuck actions, which include Move Forward, Move
Away From, Dodge, and Go To Item.

In addition to using human traces to get unstuck,
the new control module RETRACE is entirely based
on the prolonged playback of human traces, for the
sake of smooth, human-like navigation throughout
the level. Playing back human traces via the RETRACE
module results in smoother movement than the lower
priority PATH module, which is a slightly improved
version of the path navigation module used by UT^2-

2010. The human data used by RETRACE plays back
smoothly because it was created in a synthetic man-
ner: individual players ran around levels by them-
selves with no enemies, with the purpose of collecting
items while exploring the level as much as possible.
Such synthetic data is free of the erratic movement
which is characteristic of combat, but which would
look strange of replayed in the absence of an oppo-
nent.

4 Conclusion

More extensive use of human traces, extra filters on
the evolved combat behavior, and numerous other
small changes to the bot have made this year’s version
of UT^2 more human than before. These improve-
ments should give UT^2 an advantage in the upcoming
competition.

References

[1] Hingston, P. A New Design for a Turing
Test for Bots. In Computational Intelligence and

Games (2010).
[2] Schrum, J., and Miikkulainen, R. Evolving

agent behavior in multiobjective domains using
fitness-based shaping. In Proceedings of the Ge-

netic and Evolutionary Computation Conference

(Portland, Oregon, July 2010), pp. 439–446.


