
Humanlike Combat Behavior via Multiobjective
Neuroevolution

Jacob Schrum, Igor V. Karpov and Risto Miikkulainen

Abstract Although evolution has proven to be a powerful search method for dis-
covering effective behavior for sequential decision-making problems, it seems un-
likely that evolving for raw performance could result in behavior that is distinctly
humanlike. This chapter demonstrates how humanlike behavior can be evolved by
restricting a bot’s actions in a way consistent with human limitations and predilec-
tions. This approach evolves good behavior, but assures that it is consistent with
how humans behave. The approach is demonstrated in the UTˆ2 bot for the com-
mercial first-person shooter videogame Unreal Tournament 2004. UTˆ2’s human-
like qualities allowed it to take 2nd place in BotPrize 2010, a competition to develop
humanlike bots for Unreal Tournament 2004. This chapter analyzes UTˆ2, explains
how it achieved its current level of humanness, and discusses insights gained from
the competition results that should lead to improved humanlike bot performance in
future competitions and in videogames in general.
1 Introduction

Simulated evolution has proven to be a powerful policy-search method for solv-
ing challenging reinforcement learning problems [6, 11, 19, 22, 24, 28]. However,
evolutionary methods are also notorious for taking advantage of any trick available
to achieve high fitness: any loopholes present in the domain simulation software are
sure to be exploited. A similar problem arises in the context of evolving humanlike
behavior for videogames. Because humans are skilled at videogames, it is reason-
able to evolve bots for performance in order to get humanlike behavior. However,
evolution may exploit domain tricks for the sake of performance, which results in
bots behaving in a non-humanlike-manner.

However, if the senses and actions available to the bot are constrained such that
they both simulate the restrictions humans deal with, and make common human ac-
tions easy to carry out, then it is possible to achieve humanlike behavior by evolving
for good performance, even when good performance is defined in terms of multi-

Jacob Schrum, Igor V. Karpov and Risto Miikkulainen
University of Texas at Austin, Austin, TX 78712 USA,
e-mail: {schrum2,ikarpov,risto}@cs.utexas.edu

1



2 Jacob Schrum, Igor V. Karpov and Risto Miikkulainen

ple conflicting objectives. This maxim is demonstrated by the UTˆ2 bot, which
placed 2nd in BotPrize 2010, a competition to develop humanlike bots for the com-
mercial First-Person Shooter (FPS) videogame Unreal Tournament 2004 (UT2004).

This chapter describes the UTˆ2 bot, with emphasis on its combat behavior, the
policy for which was determined by a neural network whose weights and topology
were evolved using Evolutionary Multiobjective Optimization (EMO). The UTˆ2
bot is further discussed in [17], also in this book, which describes how UTˆ2 makes
use of human trace data to navigate when pathfinding fails. The two techniques are
complimentary, and can be used separately or together, as was done in UTˆ2.

Understanding how UTˆ2 exhibits humanlike behavior requires an understand-
ing of the role of bots in the FPS genre (section 2). The particulars of UT2004
and BotPrize are discussed in sections 2.1 and 2.2 respectively. Given this context,
UTˆ2 can be discussed in detail (section 3) with emphasis on its combat behavior
(section 3.2). The combat behavior was learned using neuroevolution and evolu-
tionary multiobjective optimization, which are discussed in sections 4.1 and 4.2
respectively. How these methods were used to produce the final combat behavior
for UTˆ2 is discussed in section 4.3. After fully describing the bot, it is evaluated in
section 5. This evaluation leads to discussion and ideas for future work in section 6.
Then section 7 concludes the chapter.
2 Bots in First-Person Shooters

FPS games display the game world to the player through the first-person per-
spective of the agent controlled in the game. Early games pitted players against sim-
plistic computer controlled opponents. Since the available weapons, ammo, health,
and general capabilities of players differed so much from that of the computer op-
ponents, it mattered little if the enemies behaved in a humanlike manner.

However, FPS games eventually began incorporating multiplayer modes that al-
lowed players to compete against other humans over a network connection. A free-
for-all competition between several human competitors is called a Deathmatch. In
this style of play, all players are on equal footing with regards to weapons, health
and abilities. From the advent of human multiplayer combat, it was only a small
step to FPS games entirely based around the concept of multiplayer-style play.
2.1 Unreal Tournament 2004

The original Unreal Tournament (1999) was the first FPS to fully embrace the
multiplayer style of gameplay. Although the game had a single-player mode, this
mode consisted exclusively of a series of matches against bots played with the ex-
act same rules used in multiplayer mode against humans. Thus arose the need for
convincingly human bots in FPS games.

UT2004 is the second sequel to the original Unreal Tournament, and continues
the trend of focusing on multiplayer-style play against humans. In addition to Death-
match mode, all Unreal Tournament games feature several additional types of team
play, such as team Deathmatch and capture the flag, but since these modes of play
are not yet part of BotPrize, they will not be discussed further in this chapter.

In a Deathmatch, players spawn at random spawn points with only the most basic
weapons. They then run around the level, accruing more powerful weapons and
other useful items in order to help them kill each other in combat. An event where



Humanlike Combat Behavior via Multiobjective Neuroevolution 3

one player kills another is called a frag, and is worth one point. After dying, players
immediately respawn at a new, randomly chosen spawn point with full health, but
only rudimentary weapons, as at the start of the match. If a player kills himself or
herself, for example by jumping in a pit or by firing a rocket at a nearby wall, the
penalty is the loss of one point, which can result in a negative score. The goal of a
Deathmatch is to either get the most points within a preset time limit, or be the first
to attain a preset number of points.

Because this chapter deals primarily with bot combat behavior, the specific
weapons available in UT2004 will be reviewed in detail. Each weapon has both
primary and alternate firing modes which are often very different from each other.
Sometimes the alternate firing mode does not fire at all, but instead activates some
special ability of the weapon. Several weapons also have a charging attack, which
requires holding down the fire button to charge up a projectile whose properties de-
pend on how long the weapon is charged before being released. Each weapon is
explained in detail so that later descriptions (section 3.2.3) of how the bot handles
each weapon will be understood:

• Shield Gun: A last resort weapon whose ammo recharges automatically. Players
spawn with this weapon.

– Primary: Charges weapon until the player is close enough to touch an oppo-
nent, at which point the weapon automatically discharges to deal an amount
of damage proportional (within bounds) to how long the weapon was charged.

– Alternate: Creates a defensive shield in front of the player that deflects pro-
jectiles while the fire button is held.

• Assault Rifle: A weak but rapid firing gun that all players spawn with.

– Primary: Automatic fire that is rapid but weak.
– Alternate: Charges a grenade that is launched in an arc on release. The grenade

bounces off of level geometry but explodes on impact with players. Powerful,
but difficult to aim.

• Shock Rifle: Weapon with both a fast, focused attack and a slower attack that
explodes to affect a large area on impact.

– Primary: Immediately hits target in the crosshairs and knocks players back
on impact, which can disorient them. However, the delay between subsequent
shots is significant.

– Alternate: Fires a large, slow moving orb that explodes on impact. There is
also a special combo attack that creates a larger, more powerful explosion if
the primary fire mode is used to shoot the orb out of the air. Bots can only
perform this “shock combo” by chance because they cannot determine the
locations of their own projectiles.

• Bio-Rifle: Weapon whose projectiles fire in an arc and linger on the ground,
where they explode on impact with any player that comes into contact with them.
Note that the bots in BotPrize have no way of seeing these potential traps.



4 Jacob Schrum, Igor V. Karpov and Risto Miikkulainen

– Primary: Rapidly fires small explosive green blobs.
– Alternate: Charges the weapon in preparation for firing a large blob that deals

an amount of damage proportional (within bounds) to the duration of the
charge. If the shot misses, then the large blob explodes into a batch of small
blobs upon hitting the ground.

• Minigun: A rapid fire machine gun.

– Primary: High rate of fire, but slightly inaccurate, and therefore best suited to
close quarters combat.

– Alternate: Slower rate of fire, but is more accurate and fires shots that deal
more damage.

• Flak Cannon: Versatile weapon whose primary firing mode is effective at close
range and whose alternate firing mode works well at medium range.

– Primary: Several small shards of flak are launched in a wide spread, each
doing little damage, but dealing a great deal of damage together.

– Alternate: Launches a flak grenade in an arc. Damaging flak is spread in all
directions on impact.

• Rocket Launcher: Fires slow but powerful explosive projectiles.

– Primary: Immediately fires a single rocket.
– Alternate: Charges up to three rockets to be fired simultaneously. When re-

leased, however many rockets are currently loaded will be fired. The default
firing pattern is a wide spread that becomes wider as the rockets get farther
away. However, pressing the primary fire button while still charging causes
the rockets to shoot in a tighter, forward moving spiral.

• Sniper Rifle: Very accurate and powerful, but slow firing weapon.

– Primary: Fires a single shot that instantly hits whatever is in the crosshairs.
– Alternate: For humans, alternate fire activates the sniper scope. Holding down

the alternate fire button zooms in to allow the player a better view of what is
in the distance at the cost of not being able to see nearby surroundings. While
zoomed in, the player can use primary fire to shoot. However, bots are unable
to use this feature because they do not see the world the way humans do.

• Lightning Gun: Functionally the same as the Sniper Rifle, except that the bolt of
lightning fired by this gun can be seen by humans, making it easier to trace an
attack back to its source. Bots cannot see these lightning bolts.

– Primary: Fires a single bolt of lightning that instantly hits its target.
– Alternate: Switches to a sniper scope, as with the Sniper Rifle.

This list shows that UT2004 provides viable weapons for any combat situation.
Certain weapons are only useful within certain ranges, though when under attack
players may be forced to improvise with the weapons and ammo currently avail-
able to them. Given a choice of what weapon to use in combat, there are several



Humanlike Combat Behavior via Multiobjective Neuroevolution 5

salient features that can be used to choose an appropriate weapon. Perhaps more
importantly, these features dictate how the weapon is used once it has been chosen.

• Rate of Fire: Rapid firing weapons work best in hectic, mid-range combat sce-
narios when players are actively dodging, whereas slow-firing weapons tend to
be better at longer range, in which case the shooter can take time to make each
shot. The latter statement is especially true of the sniping weapons.

• Projectile Speed: Some weapon shots instantly hit any target in the crosshairs,
while others take time to reach their destinations. Humans using weapons with
slower projectiles tend to compensate for the slowness by anticipating where
their opponents will be in the next few seconds.

• Firing Trajectory: The alternate firing modes of both the Flak Cannon and the
Assault Rifle launch projectiles in curved arcs that tend towards the ground. Both
firing modes of the Bio-Rifle also fire in an arc. When using these weapons,
players must account for gravity, which usually means aiming higher than one
would aim with a straight firing weapon.

• Splash Damage: Weapons with an explosive component deal “splash” damage.
Splash damage is particularly useful against players that dodge well, and are
therefore hard to hit, since near misses will also damage them. However, splash
damage weapons are also dangerous since they can damage the shooter as well.
For this reason, splash damage weapons are not preferred in close quarters com-
bat. When fired, it makes sense to aim at an opponent’s feet, since the explosion
from hitting the ground may damage the opponent even when the shot misses.

These weapon features are all relevant in defining the combat behavior of UTˆ2.
However, UTˆ2 was designed not only to perform well in UT2004, but in the mod-
ified version used in the 2010 BotPrize competition, which is described next.
2.2 BotPrize 2010

The original 2008 BotPrize competition [13] was billed as a “Turing Test for
Bots” in which, as in a traditional Turing Test [27], each judge attempted to distin-
guish between a computer controlled bot and a human confederate in a three-player
match. Many changes to this scheme were introduced in the 2010 competition [14].
The most important is the inclusion of a judging gun, which replaces a weapon not
mentioned in section 2.1: the Link Gun. All human players and bots spawn with the
judging gun, which has infinite ammo. Both the primary and alternate fire modes of
the gun look and sound the same to all observers, but these two modes are different
in that one is meant to be fired at bots and the other is meant to be fired at humans.
If a bot is shot using the primary firing mode, then the bot instantly dies and the
shooter gains 10 points. Similarly, if a human-controlled agent is shot using the al-
ternate firing mode, then the human-controlled agent instantly dies and the shooter
gains 10 points. In contrast, if either firing mode is used against an agent that is the
opposite of the intended type, then the shooter instantly dies, and loses 10 points.
In any case, a player is allowed to judge any other player only once; subsequent
attempts to judge the same player will have no effect.

The judging gun not only changes how judging is done, but completely changes
the game from a pure Deathmatch to a judging game. Since the bots are being tested



6 Jacob Schrum, Igor V. Karpov and Risto Miikkulainen

in this new judging game, they also have access to the judging gun, which adds the
challenge of deciding if and when a bot should use the judging gun. Unfortunately,
humans can now benefit from pretending to be bots. Such “distortion effects” are
discussed in [30].

Because all players have the judging gun, there is no longer a division between
human judges and human confederates. Furthermore, matches are no longer limited
to three players. Several bots and a roughly equal number of humans play simul-
taneously. All human players are judges, but they are ultimately competing for the
highest score. Of course, judging correctly is a good way to get a high score, since
correct judgments are worth 10 points each.

Other than the judging gun, all weapons function as usual, except that all damage
dealt is only 40% of normal, in order to give humans ample chance to observe op-
ponents before one of them dies. The levels used were three publicly available maps
designed by members of the UT2004 community: DM-DG-Colosseum (Colos-
seum), DM-IceHenge (IceHenge), and DM-GoatswoodPlay (Goatswood). Each
match lasted 15 minutes between the five competing bots, one to two native UT2004
bots, and six to seven humans. There were a total of 12 matches conducted during
three separate one-hour sessions.

All of this information, along with the maps and the game modification which
implemented the competition rules, were available to the entrants before the com-
petition. UTˆ2 was designed to compete within the parameters of this competition.

3 The UTˆ2 Bot
The UTˆ2 bot was developed at the University of Texas at Austin for use in

the game Unreal Tournament 2004, hence the exponent of 2 after UT in the name.
Specifically, the bot was designed for BotPrize 2010 using Pogamut 3 [10], a plat-
form for writing Java code to control UT2004 bots via a customized version of the
Gamebots message protocol [1]. This section outlines the overall architecture of the
UTˆ2 bot, and then focuses on the bot’s battle controller.
3.1 Architecture

The architecture controlling UTˆ2 is a behavior-based approach similar to both
the POSH interface [5], which is integrated into Pogamut 3, and behavior trees [16],
which were introduced in the commercial videogame Halo 2. The bot has a list of
behavior modules, each with its own triggers. On every time step the bot iterates
through the list, checking triggers for each module until one of them evaluates to
true. The module associated with the chosen trigger takes control of the bot for the
current time step. Each module can potentially have its own set of internal triggers
that further subdivide the range of available behavioral modes.

The specific bot architecture is shown in Fig. 1. The highest priority action is
getting UNSTUCK. Several triggers detect if the bot is stuck, but if any of them fire,
it means the bot’s ability to navigate has failed, and emergency action is needed to
return to a state where the bot can function as normal. UTˆ2’s method for getting
unstuck is based on human trace data, and is explained in full detail in another
chapter in this book [17].



Humanlike Combat Behavior via Multiobjective Neuroevolution 7

HUMAN TRACE CONTROLLER

PATH CONTROLLER

CHASE CONTROLLER

BATTLE CONTROLLER

WATER CONTROLLER

SHIELD GUN CONTROLLER

GET ITEM

CHASE ENEMY

BATTLE

USE SHIELD GUN

JUDGE

GET IMPORTANT ITEM

PICKUP DROPPED WEAPON

UNSTUCK

GOTO LOCATION

ADVANCE

RETREAT

STRAFE

GOTO ITEM

STAND STILL

FOLLOW PATH

TRAVERSE LOCATIONS

Fig. 1 Agent architecture for the UTˆ2 bot. The left column shows the behavior modules in pri-
ority order from top to bottom. The middle column shows the individual controllers used by each
module. Notice that the battle controller is used by both the JUDGE and BATTLE modules. The
right column shows the individual actions available to each controller. This architecture can also
be thought of as a POSH plan or a two-level behavior tree. This behavior-based architecture modu-
larized bot behaviors, making the overall behavior easier to understand, and making programming
and troubleshooting easier.

The next highest priority action is picking up weapons that have been dropped
by killed opponents (PICKUP DROPPED WEAPON). Whenever an opponent dies,
the weapon the opponent was using, along with whatever ammo it had, becomes
available for pickup for a short time before disappearing. Humans tend to pick up
these weapons immediately when they are dropped provided they are close enough,
so it was decided that a humanlike bot should do the same.

The next highest priority module is GET IMPORTANT ITEM. Some items are
highly desirable, either in absolute terms or in certain contexts, and should be pur-
sued even if it means running away from combat. One such item is the Keg o’
Health, which gives a player 100 health points, exceeding the normal limit of 100.
The Double Damage powerup is always desirable as well. It makes a player’s
weapons deal twice the normal amount of damage for a period of 30 seconds. Items
that are circumstantially important are health items when the bot is low on health,
and weapons/ammo when the bot can only use the basic starting weapons. The GET
IMPORTANT ITEM module makes the bot focus on and pursue any important item
that is visible and close enough to obtain in a relatively short amount of time.

The next module is the JUDGE module, which uses the battle controller, the
primary focus of this chapter. The bot remembers all opponents that it has judged so
that it will not attempt to judge anyone twice. The bot’s decision to judge is based



8 Jacob Schrum, Igor V. Karpov and Risto Miikkulainen

on how much interaction it has had with a given opponent, and how much time is
remaining in the match. Judging is more likely if the bot has interacted a lot with
an opponent, and if there is little time remaining in the match. Once the decision
to judge has been made, the actual decision is based on knowledge of previous
judgments and an assumption (only approximately true) that the number of bots in
a match equals the number of humans. Whenever the bot judges an opponent, it
knows the identity of the opponent after the judgment, regardless of the outcome.
This knowledge is used to determine the probability that any remaining player is a
human or a bot, which is in turn used to make a random but informed decision about
how to judge an opponent. As for how the bot behaves while making its judgment,
this is determined by the battle controller, which is described below in section 3.2.

The JUDGE module is high in the priority list because every player has infinite
ammo for the judging gun, which makes its use a viable option at all times. However,
if the bot chooses not to judge, but has no other ranged weapons available, it will
resort to the USE SHIELD GUN module. Proper Shield Gun usage separates the
good players from the experts, but typical players avoid using it because the ranged
weapons are so much easier to use in comparison. Most players only resort to the
Shield Gun when there is no other option. Because the Shield Gun is so different
from the other weapons in the game, it has its own scripted controller.

Without ranged weapons, a player is more vulnerable. Human players will typ-
ically seek out better weapons rather than risk fighting with just the Shield Gun.
Therefore, the controller’s design is based on the idea that a human’s primary con-
cern when using the Shield Gun is getting a better weapon. The bot is programmed
to approach the nearest relevant item while facing the nearest opponent and using
the shield mode of the gun to defend itself. Relevant items consist of ammo for
weapons that the bot has, and weapons that the bot does not have (picking up a pre-
viously possessed weapon provides no extra ammo for that weapon). However, the
bot only pursues such a relevant item if it is closer than the nearest enemy. If the
enemy is very close, then the bot will rush in with the attack mode of the Shield
Gun. If the enemy is closer than a relevant item, but not close enough to do a Shield
Gun rush, then the bot will simply try to put as much distance between itself and the
opponent as possible while using the shield mode to defend itself.

The Shield Gun is only used if ranged weapons are unavailable. For ranged
weapons, the BATTLE module takes over. The bot avoids combat if its health is
very low, or if it is very far away from visible opponents, but otherwise it equips
whatever available weapon is best for the given circumstances and uses the battle
controller to drive its behavior, as described in the next section (section 3.2).

A static lookup table indexed by distance from the opponent determines the best
weapon in each situation. Distance from the opponent is partitioned into close (less
than 100 UT units), medium (100 to 2000 UT units) and long range (greater than
2000 UT units). In general, sniping weapons and splash damage weapons are fa-
vored at long range. At medium range, the Flak Cannon is favored, followed by rapid
fire weapons and splash damage weapons. At close range, splash damage weapons
and sniping weapons have lowest priority, and rapid fire weapons are favored. This
table was tuned based on experience in UT2004, as well as trial and error.



Humanlike Combat Behavior via Multiobjective Neuroevolution 9

If the bot is otherwise ready for battle, but sees no enemy, it checks its memory of
where it last saw an opponent, and uses the CHASE ENEMY module. The bot runs
to the last location that it remembers seeing an enemy in hopes of reacquiring its
target and reengaging in combat, though it will break off the chase for any opponent
that it sees. If the bot reaches the last known location of an enemy and still sees no
opponents, it gives up the search. The bot also gives up the search after too long a
period passes without encountering an enemy.

Given nothing better to do, the bot will simply head towards the nearest desirable
item (GET ITEM), where desirability is based on current equipment and vital statis-
tics. Basically, the bot will pursue weapons it does not have, ammo for weapons it
does have, and health and armor if it has less than the full allowance.

Note that although the battle controller is primarily responsible for all combat
actions, the bot is still capable of firing at opponents while using any of the non-
combat-oriented modules above. In particular, the bot does not stop shooting if it
needs to get unstuck, and it will fire on enemies it sees while attempting to pick up
an important item. This sort of behavior is common among human players, and was
deemed an essential component of a humanlike bot.

Still, the majority of UTˆ2’s combat behavior can be attributed to the battle con-
troller. Furthermore, most interactions between the bot and other players occurs
during combat, so the bot’s capacity to appear human depends very much on the
battle controller, which is described next.
3.2 Battle Controller

The battle controller is used by the combat and judging modules. It controls the
bot using an artificial neural network. Artificial neural networks mimic some of the
information processing capabilities of organic brains, but at their most basic level
they can be thought of as universal function approximators between RN and RM

for arbitrary integers N and M [12]. Some network architectures also have an inter-
nal recurrent state which influences network output [12], thus making the network
behavior a function of all previous inputs rather than just the current input.

This section describes the input sensors of the battle controller’s neural network,
which is evolved (section 4.1), followed by a discussion of the network’s outputs,
including how these outputs are interpreted and filtered to produce behavior that is
both effective and humanlike.
3.2.1 Network Inputs

The network used by UTˆ2 processes inputs based on the bot’s sensors every
time step the battle controller is in use. The network produces several outputs for
each set of inputs, and the outputs are used to produce an action for UTˆ2. The
numerical inputs to UTˆ2’s neural network are:

• Ten Pie Slice Enemy Sensors: These sensors are identical to those used by van
Hoorn et al. [15] to evolve combat behavior for a UT2004 bot. From an overhead
perspective, the space around the bot is divided into slices, with the slices near
the front of the bot narrower (and therefore more precise) than the slices near
the rear of the bot (Fig. 2). For each sensor, the value of the input is higher if an



10 Jacob Schrum, Igor V. Karpov and Risto Miikkulainen

Fig. 2 Pie Slice Enemy Sensors. There
are more slices of smaller size near the
front (right) so the bot can better distin-
guish locations in front of it. The dots
represent enemies, and filled portions
of the pie slices show the relative acti-
vations for opponents at different dis-
tances. Activation increases as oppo-
nents get nearer, which is why the op-
ponent in the upper left causes the cor-
responding pie slice to be filled less
than the slice for the nearer opponent
on the lower right side of the figure.
Adapted from [15].

enemy sensed within that slice is closer. Given multiple enemies in one slice, the
distance of the closest enemy defines the sensor value.

• Twenty-two Ray-Tracing Level Geometry Sensors: Gamebots provides a way to
define periodically updated ray traces, each of which senses the distance to the
first piece of level geometry that the ray trace intersects. The bot is surrounded by
twelve such ray traces which are parallel to level ground. These twelve sensors
are identical to the wall sensors used in [15]. However, because BotPrize levels
have complicated 3D geometry, additional ray traces were added which radiated
out at 45◦ angles both above and below the bot to sense unusual ground and
ceiling geometry. There were six ceiling traces and four ground traces. Traces at
each level were spread evenly around the bot (Fig. 3). However, it was discovered
after the competition that the BotPrize version of Gamebots actually disabled all
ray traces, meaning all these network sensors returned a value of 0. This problem
is being fixed for future competitions, which will give future versions of the bot
better awareness of their surroundings.

• One Crosshair Sensor: There is an additional ray trace projecting straight in front
of the bot which can sense agents. If this ray trace hits an agent, then this sensor
is 1.0; it is 0.0 otherwise. As with the ray traces for level geometry, this sensor
only returned a value of 0 during the competition because the BotPrize version
of Gamebots did not support ray traces.

• One Damage Sensor: 1.0 if the bot is currently being damaged, 0.0 otherwise.
• One Movement Sensor: 1.0 if the bot is currently moving, 0.0 otherwise.
• One Shooting Sensor: 1.0 if the bot is currently shooting, 0.0 otherwise.
• One Damage Inflicting Sensor: 1.0 if the bot is currently inflicting damage, 0.0

otherwise.
• One Ledge Sensor: 1.0 if the bot is on a ledge, 0.0 otherwise (potentially helps

the bot avoid falling off of cliffs).
• One Enemy Shooting Sensor: 1.0 if the currently targeted enemy is shooting, 0.0

otherwise. UTˆ2 usually targets whichever enemy is closest, but if another en-
emy is damaging the bot, then the threatening enemy will be targeted. Also, if the



Humanlike Combat Behavior via Multiobjective Neuroevolution 11

Fig. 3 Ray-Tracing Level Geometry Sen-
sors. Gamebots has a debugging option for
viewing ray traces on a bot. The figure
shows all 22 ray trace sensors around the
bot, with the contrast heightened to improve
visibility. Some of the rays aiming upward
are brighter because they are not collid-
ing with any level geometry. These sen-
sors provide the bot with information about
the structure of its immediate environment,
which helps it reason about how best to
dodge enemy attacks. Though disabled in
BotPrize 2010, these sensors should help
the bot be more aware of its surroundings
in future competitions.

bot has already invested time damaging a particular enemy, it continues targeting
that enemy unless it gets very far away, while another enemy gets much closer.

• Eight Current Weapon Sensors: For two of these sensors, 1.0/0.0 values represent
yes/no answers to the following questions: Is it a sniping weapon? Does either
fire mode deal splash damage? The remaining sensors report the rates of fire of
both firing modes, the start-up times for firing with both modes, and the damage
dealt by both modes. However, it was discovered after evolving the bot that the
values Pogamut 3 returns for the damage of some weapons is incorrectly set to
zero. Furthermore, alternate fire damage values for the Rocket Launcher and the
Bio-Rifle are equal to the primary damage values, which does not indicate the
high damage potential that these modes actually have. However, evolution seems
to have been robust enough to account for these deficiencies.

• Six Nearest Item Sensors: 1.0/0.0 values represent yes/no answers regarding
properties of the closest item to the bot: Is it visible? Is it health? Is it armor?
Is it a shield? Is it a weapon? Is it a Double Damage powerup?

• Four Nearest Health Item Sensors: Scaled relative distances to the nearest health
giving item along the x, y and z axes, as well as the scaled direct distance.

Though some of the inputs used by UTˆ2 were based on sensors used in other
work, some sensors were provided simply because there was a chance they would
be useful. Though this particular set of inputs proved sufficient to generate good
combat behavior for the 2010 competition, the task of trying to find an ideal set of
inputs with which to evolve is future work.
3.2.2 Network Outputs

The outputs of the network were chosen to assure that in battle the bot would
choose among actions similar to those commonly used by humans. When evolving
neural networks (as described below in section 4.1) to control agents, it is common
for both the inputs and the outputs to be ego-centric (cf. [15, 23]). The inputs listed
above are ego-centric, but the outputs are defined both in terms of the UTˆ2 bot
and the opponent that it is currently targeting. This approach works because the



12 Jacob Schrum, Igor V. Karpov and Risto Miikkulainen

battle controller is only used when there is an opponent to fight, and it makes sense
because human opponents pay attention to the opponents they face. Focusing on
opponents is both good strategy and typical human behavior.

Specifically, the network has eight

Enemy

Bot

Item

Fig. 4 Opponent-Relative Movement Actions.
During combat the bot has six available move-
ment actions depicted by the arrows in the figure
(STAND STILL is not shown). These actions are
defined with respect to the opponent the bot is
currently targeting. Forcing the bot to always fo-
cus on an opponent makes it seem interested in
the opponent, and therefore more humanlike.

outputs: five compete to define the type
of opponent-relative movement action
taken by the bot, and three determine
whether the bot shoots, which firing
mode to use, and whether or not to
jump. The five available movement ac-
tions are ADVANCE towards opponent,
RETREAT from opponent, STRAFE left
around opponent, STRAFE right around
opponent, GOTO ITEM which is near-
est, and STAND STILL (Fig. 4). The
GOTO ITEM action is the only non-
opponent-relative movement action. The
movement action performed by the bot
is the action whose network output has
the highest activation.

While executing all actions, the bot
looks at the targeted opponent. It is im-
portant that the bot seems interested in
the human opponents it fights. The bot
can also fire its weapon at the targeted
opponent during any movement action. If the shooting output of the network is in
the upper half of the output range, the bot shoots. The mode of fire depends on
whether the fire mode output is in the lower, for primary fire, or upper, for alternate
fire, half of the range. If the jumping output is in the upper half of the range, then
the bot jumps while performing its movement action.

This scheme is enough to evolve effective combat behavior in UT2004, but be-
cause the objective is to evolve humanlike behavior, some additional restrictions are
required to filter and adjust certain actions.
3.2.3 Action Filtering

In terms of movement, the bot will not move towards items that are not desirable
(as defined with respect to the GET ITEM module from section 3.1). Also, when
using a sniping weapon or the dangerously explosive Rocket Launcher, the bot will
not ADVANCE towards enemies to which it is already close enough. In these cases,
the action with the next highest activation is considered until a suitable action is
found. The bot is also not allowed to jump if it is performing the STAND STILL
action, since jumping in place generally looks very bot-like.

In terms of weapon usage, one of the clearest signs that an opponent is a bot
is superhuman accuracy, particularly with single-shot, instant-hit weapons. There-
fore, to make the accuracy of the bot more humanlike when using such weapons,
the bot is actually commanded to fire at a point equal to the location of the target



Humanlike Combat Behavior via Multiobjective Neuroevolution 13

plus some random noise. The maximum potential magnitude of the noise depends
on both the distance between the bot and the opponent, and the relative velocities of
the two agents. To account for a human’s difficulty in aiming at targets that are far
away, greater distances between the bot and the opponent result in greater random
noise potential. To account for human difficulty in hitting moving targets, the mag-
nitude of the noise added along the x, y and z directions is also proportional to the
differences in velocity between the bot and the opponent along each of these axes.
Therefore, if both the bot and the opponent are moving in the same direction at the
same speed, then they are both standing still relative to each other, and no noise is
added. However, such perfect synchronicity is unlikely, and in most cases the faster
either agent moves, particularly when moving in different directions, the greater the
noise will be and the harder it will be to aim with an instant-hit weapon.

The standard setup also needs to be more humanlike regarding how automatic
weapons are used. Humans generally fire these weapons in continuous bursts as
long as they can keep roughly on target. Because one network needs to handle proper
control of all weapon types, automatic weapon use can become choppy and inter-
mittent, which only makes sense with single-shot weapons. Therefore, whenever the
bot initiates fire with an automatic weapon, it will remain firing as long as its target
is available, regardless of whether the network commands it to shoot or not.

Weapons that need to be charged are similar to automatic weapons in that the
network controller is likely to release the fire button while charging. The fix for the
problem is similar, except that releasing the charge needs to happen while still facing
the opponent. In order to make the bot effectively use charged weapons, a random
check is used for as long as the bot is charging the weapon: for every time step after
starting to charge a weapon, the chance of releasing the charge and firing is 25%.
Because the triple rocket attack of the Rocket Launcher takes longer to charge, and
is a very useful attack, this percentage is reduced to 15% for this weapon.

Other important features of the Rocket Launcher are that its projectiles are explo-
sive, and take extra time to reach their target. The secondary fire of the Shock Rifle
shares these features. Humans adjust to the slowness by firing at locations where
they believe their target will be by the time the projectile hits. Therefore, when us-
ing the Rocket Launcher or the alternate fire of the Shock Rifle, UTˆ2 adjusts its
target along the direction of enemy movement with a small amount of random noise
whose maximum magnitude along each axis is proportional to the corresponding
components of the target’s velocity along each axis. In other words, the bot will
always aim slightly ahead of its target along the target’s direction of movement. Ad-
ditionally, in order to take advantage of splash damage from explosions that hit the
ground near opponents, the bot will further adjust its target down by a small amount
whenever its current position is higher than that of the opponent.

Weapons that lob projectiles in an arc are also problematic. Gamebots uses a
one-size-fits-all firing command that does not work well for lobbing projectiles. The
behavior of the default fire command is neither humanlike nor particularly accurate.
The default behavior often results in projectiles lobbed over the heads of opponents.
To compensate for this problem, the target for all lobbing projectiles is adjusted to



14 Jacob Schrum, Igor V. Karpov and Risto Miikkulainen

be a point slightly in front of the opponent along the line between the bot and the
opponent. Random noise is used to determine exactly how much to adjust the aim.

Finally, weapons primarily intended for close to middle range are prevented from
firing when the bot is too far away from its target. The decisions over which weapons
to restrict and to what ranges were made with the help of volunteer human players.

Some of these modifications could effectively be added to the bot after the con-
trolling network is evolved, but one of the main ideas of this chapter is that having
these constraints and filters in place before evolution takes place requires evolution
to find policies that perform well within the context of these constraints. For exam-
ple, reducing the accuracy of the Sniper Rifle when moving at high speeds makes
the bot more likely to evolve to stand still when using it, which is what humans do.

However, creating a network for the battle controller requires a method for evolv-
ing neural networks, which is the topic of the next section.
4 Evolution

Evolutionary Algorithms (EAs) are inspired by Darwin’s Theory of Evolution
by Natural Selection [7]. Though there are many different types of EAs, they are
all population-based search methods. They depend on mutation operators to modify
existing solution representations in order to search the space of available solutions.
Selection is applied to favor the better solutions for inclusion in the next generation.

Many EAs also involve some form of crossover, which takes two existing so-
lutions and recombines them to form a new solution, sharing traits of each parent.
Though crossover is generally considered to be advantageous, there is some ev-
idence [9] that crossover is unnecessary in evolutionary search, and in some cir-
cumstances detrimental, since the crossover operation often creates individuals that
are highly dissimilar from either parent despite being derived from both of them.
Simple mutation, on the other hand, always results in an individual that is a slight
variation from its “parent” genotype. In fact, the Evolution Strategy (ES) paradigm
relies exclusively on mutation [3]. Based on these arguments and preliminary work
evolving with and without crossover, the decision was made to not use crossover
in the evolution of UTˆ2. Further details about what methods were used to evolve
UTˆ2’s combat behavior are given next.
4.1 Neuroevolution

Neuroevolution is the application of an EA to artificial neural networks. UTˆ2’s
combat behavior was learned via constructive neuroevolution, meaning that the net-
works start with minimal structure and only become more complex as a result of
mutations across several generations. The initial population of networks consists of
individuals with no hidden layers, i.e. only input and output nodes. Furthermore,
these networks are sparsely connected in a style similar to Feature Selective Neuro-
Evolution of Augmenting Topologies (FS-NEAT [29]). Initializing the networks in
this way allows them to easily ignore any inputs that are not, or at least not yet, use-
ful. Given the large number of inputs available to UTˆ2, it is important to be able to
ignore certain inputs early in evolution, when establishing a baseline policy is more
important than refining the policy.

Three mutation operators were used to change network behavior. The weight mu-
tation perturbs the weights of existing network connections, the link mutation adds



Humanlike Combat Behavior via Multiobjective Neuroevolution 15

new (potentially recurrent) connections between existing nodes, and the node muta-
tion splices new nodes along existing connections. Recurrent connections transmit
signals that are not processed by the network until the following time step, which
makes them particularly useful in partially observable domains. In the context of
reinforcement learning problems [25], such as UT2004, an environment is partially
observable if the current observed state cannot be distinguished from other observed
states without memory of past states. Recurrent connections help in these situations
because they encode and transmit memory of past states. These mutation operators
are similar to those used in NEAT [24].

This section explained the representation that was used to evolve policies for
UTˆ2. The next section explains the algorithm controlling how the space of policies
was searched.
4.2 Evolutionary Multiobjective Optimization

In multiobjective optimization, two or more conflicting objectives are optimized
simultaneously. A multiobjective approach is important for domains like UT2004,
which involve many conflicting objectives: kill opponents, conserve ammo, avoid
damage, etc. Important concepts in dealing with multiple objectives are Pareto dom-
inance and optimality. The following definitions assume a maximization problem.
Objectives that are to be minimized can simply have their values multiplied by −1.

Definition 1 (Pareto Dominance). Vector v =(v1, . . . ,vn) dominates u =(u1, . . . ,un)
if and only if the following conditions hold:

1. ∀i ∈ {1, . . . ,n} : vi ≥ ui, and
2. ∃i ∈ {1, . . . ,n} : vi > ui.

The expression vÂ u denotes that v dominates u.

Definition 2 (Pareto Optimality). A set of points A ⊆F is Pareto optimal if and
only if it contains all points such that ∀x ∈A : ¬∃y ∈F such that yÂ x. The points
in A are non-dominated, and make up the non-dominated Pareto front of F .

The above definitions indicate that one solution is better than (i.e. dominates)
another solution if it is strictly better in at least one objective and no worse in the
others. The best solutions are not dominated by any other solutions, and make up
the Pareto front of the search space. Therefore, solving a multiobjective optimization
problem involves approximating the Pareto front as best as possible, which is exactly
what EMO methods do. In particular, the EMO method used in this work is the Non-
Dominated Sorting Genetic Algorithm II (NSGA-II [8]).

NSGA-II uses a (µ +λ ) selection strategy. In this paradigm, a parent population
of size µ is evaluated, and then used to produce a child population of size λ . Selec-
tion is performed on the combined parent and child population to give rise to a new
parent population of size µ . NSGA-II uses µ = λ .

NSGA-II sorts the population into non-dominated layers in terms of each individ-
ual’s fitness scores. For a given population, the first non-dominated layer is simply
the Pareto front of that population (usually not the same as the true Pareto front of



16 Jacob Schrum, Igor V. Karpov and Risto Miikkulainen

the search space). If this first layer is removed, then the second layer is the Pareto
front of the remaining population. By removing layers and recalculating the Pareto
front, the whole population can be sorted. Individuals in layers dominated by fewer
other layers are considered more desirable by evolution.

Elitist selection favors these individuals for inclusion in the next parent gener-
ation. However, a cutoff is often reached such that the non-dominated layer under
consideration holds more individuals than there are remaining slots in the next par-
ent population. These slots are filled by selecting individuals from the current layer
based on a metric called crowding distance.

The crowding distance for a point p in objective space is the average distance
between all pairs of points on either side of p along each objective. Points having
an objective score that is the maximum or minimum for the particular objective are
considered to have a crowding distance of infinity. For other points, the crowding
distance tends to be bigger the more isolated the point is. NSGA-II favors solutions
with high crowding distance during selection, because the more isolated points in
objective space are filling a niche in the trade-off surface with less competition.

By combining the notions of non-dominance and crowding distance, a total or-
dering of the population arises by which individuals in different layers are sorted
based on the dominance criteria, and individuals in the same layer are sorted based
on crowding distance. The resulting comparison operator for this total ordering is
also used by NSGA-II: The way that a new child population is derived from a parent
population is via binary tournament selection based on this comparison operator.

Applying NSGA-II to a problem results in a population containing a close ap-
proximation to the true Pareto front (an approximation set) with individuals spread
out evenly across the trade-off surface between objectives. The details of how this
process was carried out in UT2004, as well as an explanation of how one network
was selected from the resulting Pareto front, are covered in the next section.
4.3 Evolution of UTˆ2

How can the above techniques be used to generate a network for UTˆ2’s battle
controller? In order to evolve bots for UT2004, fitness objectives need to be de-
signed to favor good behavior, opponents against which the bots can evolve need to
be chosen, and maps within which the Deathmatches will occur are needed. After
evolving a population in this manner, the results of evolution need to be examined
in order to pick an appropriate network to serve as the brain for UTˆ2’s battle con-
troller.
4.3.1 Fitness Objectives

Some of the objectives used to evolve UTˆ2 were the same as those used in [15]
(Damage Dealt, Accuracy, Damage Received), though additional objectives were
added to discourage collisions with level geometry and other agents, since such
collisions are characteristic of bot-like behavior.

• Damage Dealt: This objective measures both kills and damage dealt by the bot. It
is possible to kill an opponent without being responsible for depleting all of its hit
points, but the kill is still attributed to whoever delivered the final hit. Therefore,
for each of the bot’s kills, this fitness measure rewards it with an extra 100 fitness,



Humanlike Combat Behavior via Multiobjective Neuroevolution 17

since 100 is the starting health of all agents. Additionally, the bot keeps track of
how much damage it has dealt so far to each opponent. These amounts are reset to
zero when the corresponding opponent dies. At the end of the match, whichever
value is highest is added to the fitness score. Thus this fitness measure rewards
kills, as well as additional damage that comes short of a successful kill.

• Accuracy: This objective measures the accuracy of the bot in hitting opponents.
In section 3.2.3 some restrictions on UTˆ2’s accuracy were described. These
restrictions can be overcome if the bot chooses to stand still or otherwise move
such that it can aim better. The exact measure used is the number of hits divided
by the amount of ammo used. This measure works well for most weapons, but
it has become clear since the competition that it does not make sense for some
weapons. For example, each shard fired by the Flak Cannon registers as a separate
hit, and the secondary fire of some weapons consumes more than one unit of
ammunition even though they may only register a single hit when successful.

• Damage Received: This objective needs to be minimized. Each time the bot dies,
it counts as 100 damage received. However many hit points fewer than 100 the
bot has at the end of a match are added to this amount.

• Level Collisions: A level collision registers whenever the bot bumps into some
aspect of level geometry, usually a wall. Because these collisions look awkward,
and can lead to the bot getting stuck, the goal of looking human requires the bot
to minimize collisions of this type.

• Agent Collisions: Bumping into other agents in the world can also look awkward
and should be avoided, so this is another objective to be minimized.

Though each of the above objectives measures an aspect of performance that is
important in a skilled bot, it is not necessarily the case that this is the best set to
evolve with in order to discover quality Deathmatch behavior. In particular, it would
probably have been better to evolve with fewer objectives, since NSGA-II’s perfor-
mance is known to degrade with increased numbers of objectives. In future work,
it would make sense to combine the collision objectives into a single objective, or
perhaps simply drop them both. The accuracy objective is also problematic, as de-
scribed above, and will need to be fixed before use in future competitions.

One meta-objective was also used in order to help evolution effectively explore
the range of possible behaviors. Behavioral diversity [20, 22] was used to encourage
different types of behaviors to assure that evolution did not get stuck in local optima.
The objective is a generalized form of behavioral diversity [22] that uses a different
set of randomized input vectors per generation to generate a behavior vector for each
individual in the population. A behavior vector is the concatenation of all output
vectors derived from processing each of the randomized input vectors through an
individual’s neural network. The behavioral diversity objective is to maximize the
average distance of an individual’s behavior vector in Euclidean space from all other
behavior vectors in the population, thus favoring diverse network/agent behavior.
4.3.2 Agents

Given these objectives, decisions still need to be made regarding the scenario
in which the bot will evolve. Because BotPrize involves competing simultaneously
against multiple opponents, it was decided that the bot should evolve in a similar



18 Jacob Schrum, Igor V. Karpov and Risto Miikkulainen

scenario. Evolving against native UT2004 bots would have been ideal, but because
Pogamut 3 was fairly new at the time UTˆ2 was being developed, an easy way to do
this was not yet available (support has since been added). Therefore, the opponents
for the evolving bots were instances of the Hunter bot, a simple but effective scripted
bot that is provided with the Pogamut 3 platform. Specifically, during evolution one
bot participated in a Deathmatch against five Hunter bots per evaluation.

In order to evolve a battle controller that would eventually be used by UTˆ2
in the competition, a slightly modified version of UTˆ2’s architecture was used.
The architecture presented earlier (section 3.1) was changed in two ways. First,
the JUDGE module was disabled (the Hunters could not judge either), since in a
scenario consisting entirely of bots there is no sense in judging. Secondly, the HU-
MAN TRACE CONTROLLER of the UNSTUCK module was replaced with a simple
hand-coded controller for getting unstuck. This SimpleUnstuckController
tries to move away from any obstacle that it collides with, and resorts to one of
several random movement actions if it is stuck for some other reason. The Sim-
pleUnstuckController was used because during evolution the version based
on human traces was not yet fully developed. Both the SimpleUnstuckCon-
troller and the HUMAN TRACE CONTROLLER, which was actually used by
UTˆ2 in the competition, are described in full detail elsewhere in this book [17].
4.3.3 Maps/Levels

When evolving UTˆ2’s battle controller, the exact level used and the length of
evaluation depended on the current generation. The sequence of levels used was
meant to increase in size and challenge, so that early generations would have a
chance to learn basic behaviors before having to deal with more complicated sit-
uations. Evaluations in earlier levels were shorter than in later levels, both be-
cause more time is required to find enemies in larger levels, and because it is
not worthwhile to evaluate networks for a long time in early generations, since
much time would likely be wasted on bad solutions. The exact level/duration se-
quence was DM-TrainingDay/100 seconds, DM-Corrugation/200 seconds,
DM-DG-Colosseum/300 seconds, DM-GoatswoodPlay/400 seconds, and then
DM-IceHenge/500 seconds.

Though this sequence served well for the purpose of evolving combat behav-
ior, competition experience has indicated that a better sequence is likely possible.
For example, although Goatswood and IceHenge have challenging water hazards,
Colosseum is difficult for the bot to deal with because it is easy to get lost and stuck
in the columns. Furthermore, lessons learned by bots in earlier levels may have been
forgotten in order to better specialize in later levels. Though the cost in evaluation
time would be high, in future work it might be better to have bots face Deathmatches
in multiple levels per evaluation.

Twenty generations were spent on DM-TrainingDay, and ten generations on
each subsequent level, for a total of 60 generations. This is a very small number
of generations, and better performance could likely have been achieved given more
time. However, evaluation time is a major bottleneck in UT2004, so a lesser num-
ber of generations was used. For the same reason, the population size was only 20,
which due to NSGA-II’s (µ + λ ) selection strategy meant that each generation in-



Humanlike Combat Behavior via Multiobjective Neuroevolution 19

volved selection upon a population of size 40. This number is fairly small for evolu-
tionary computation, but good results were obtained despite this practical restriction.

4.3.4 Results of Evolution
Fig. 5 compares values of the hy-

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

Colosseum Goatswood IceHenge

H
yp

er
vo

lu
m

e

Hypervolume of Starting Generation vs. Final Generation

Start Final

Fig. 5 Hypervolume of First Generation vs. Fi-
nal Generation. This figure shows the gains made
by evolution in each of the three levels used in
BotPrize. In order to get accurate scores, each of
the 20 members of both the start and final parent
generations was evaluated in each level for 500
seconds against five Hunter bots ten times each.
The objective scores for each individual were
the averages of scores attained in each objective
across the ten trials. Pareto fronts of the resulting
scores were calculated, and the scores for each
objective were normalized according to the max-
imum magnitude scores for each objective in the
given map (hypervolumes between maps are not
comparable). These normalized fronts were used
to calculate hypervolume. In each level, the hy-
pervolume in the final generation is greater than
in the start generation, showing that the popula-
tion evolved to dominate a larger region of objec-
tive space across generations.

pervolume indicator [32] for both the
starting and final parent populations in
each of the levels of BotPrize. The hy-
pervolume indicator measures the hy-
pervolume of the region dominated by
all points in a given approximation to
a Pareto front. The hypervolume indi-
cator is special in that it is a Pareto-
compliant metric [31], meaning that an
approximation set that completely dom-
inates another approximation set is guar-
anteed to have a higher hypervolume.

Other Pareto-compliant metrics are
the multiplicative (I1

ε ) and additive (I1
ε+)

unary epsilon indicators [18]. Both in-
dicators are defined with respect to a
reference set R. The multiplicative in-
dicator I1

ε measures how much each
objective for each solution in a set would
have to be multiplied (divided for min-
imization) by such that each solution
in R would be dominated by or equal
to a point in the resulting set. The addi-
tive indicator I1

ε+ measures how much
would have to be added (subtracted for
minimization) to each objective in each
solution such that each point in R would
be dominated by or equal to a point in
the modified set. For both indicators, smaller values are better because they indicate
that a smaller adjustment is needed to dominate the reference set.

The scores from the start and end generations were compared using these unary
epsilon indicators with a separate reference set for each level defined as the super
Pareto front (Pareto front of several Pareto fronts) of the fronts from the start and
end generations, as suggested in [18]. The results are shown in Fig. 6.

The evolved population has better hypervolume and epsilon values, but it is ac-
tually not the case that the approximation sets from the final generation are strictly
better than those from the starting generation, although the sets from the final gener-
ation do tend to contain points that completely dominate points in the first generation
sets. The lack of complete domination is likely caused by use of such small popula-



20 Jacob Schrum, Igor V. Karpov and Risto Miikkulainen

tions and so many objectives, which in combination make it hard for the population
to cover all trade-offs.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Colosseum Goatswood IceHenge

E
ps

ilo
n 

V
al

ue
s

Unary Epsilon Indicator Values of Starting Generation vs. Final Generation

Start ε Final ε

(a) Multiplicative Indicator I1
ε

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

Colosseum Goatswood IceHenge

E
ps

ilo
n 

V
al

ue
s

Unary Epsilon Indicator Values of Starting Generation vs. Final Generation

Start ε+ Final ε+

(b) Additive Indicator I1
ε+

Fig. 6 Epsilon Indicator Values of Starting Generation vs. Final Generation. The normalized Pareto
fronts used to compute the hypervolumes for the first and final generations in each level were used
to compute unary epsilon indicator values with respect to reference sets, which were the super
Pareto fronts of the two approximation sets under consideration in each level. With the exception
of the I1

ε values for Colosseum, all epsilon values indicate that the solutions in the final generation
are better than those in the first generation.

4.3.5 Network Selection
There are still many trade-offs to consider, however, and one network had to be

selected from all those available to compete in BotPrize 2010. In order to get a bot
that performed well, the population was first filtered based on the highest Death-
match scores across all levels, in a manner similar to [15]. This process resulted in
a set of three high-scoring networks. Each of these three networks attained a high
score by being aggressive, which was considered a human trait. These bots also
tended to die more as a result of their aggressiveness (more on this in section 5.1).

The final decision of which network to use in BotPrize was made by the authors
along with the help of two human volunteers. In Deathmatches between four humans
(two of which were involved in programming the bot), the three candidate bots,
and one native UT2004 bot, the humanness ratings (number of human judgements
divided by total judgements) across multiple matches were used to single out the
most humanlike bot of the available candidates. This bot became UTˆ2 in the 2010
BotPrize competition.
5 Evaluation

Having fully described how UTˆ2 was developed, it is now time to evaluate
UTˆ2 to see how well it performs in UT2004. UTˆ2’s performance is analyzed both
in terms of its ability to achieve high fitness scores, and in terms of how humanlike
the judges in BotPrize 2010 considered it to be.



Humanlike Combat Behavior via Multiobjective Neuroevolution 21

5.1 Evaluation of Objective Scores
The ultimate goal of UTˆ2 is to look as humanlike as possible, but the route to

accomplishing this goal was evolving for good objective performance. This section
deals with the quality of UTˆ2’s performance with respect to the objectives used in
evolution as well as Deathmatch score, which played an important role in deciding
which network from the Pareto front to use in the competition.

Fig. 7 compares the performance of UTˆ2 using the evolved network chosen for
BotPrize 2010 with the same bot using a randomized action selector for the battle
controller. Specifically, randomized vectors are treated like output vectors from a
network in order to determine combat behavior. In these evaluations, both versions
of the bot had access to the complete human-trace-based UNSTUCK module [17]
used in the final competition. Evaluations were performed for 500 seconds in each
competition level against five Hunter bots.

The results show that purposefully picking a network based on Deathmatch score
and aggressiveness has resulted in an ability to deal significantly more damage, and
therefore get significantly better scores, than a random battle controller. Accuracy
was generally better too, though only significantly so in Colosseum.

However, favoring aggressive, score-increasing behavior has resulted in signifi-
cantly more damage received in all levels. This result highlights the importance of
a multiobjective approach in helping to find the best trade-off between objectives.
It makes sense that aggressively pursuing enemies and actively engaging in combat
will result in both more frags earned, as well as more deaths experienced.

In terms of collisions with level geometry, differences between the evolved net-
work and the random bot were inconsistent across levels. In general, this behavior
seems more level-dependent than bot-dependent: level collisions are more common
in Goatswood than in IceHenge and more common in Colosseum than in either of
the other levels. Since the design of the bot depended primarily on ray traces to de-
tect surrounding obstacles, and these ray traces were unavailable in the competition
(section 3.2.1), it is not surprising that collision behavior does not seem strongly
affected by evolution. Though battle style clearly affects collision frequency, this
objective did not play as important a role in final network selection as the others
did; this decision may have been a mistake (section 5.2).

In terms of collisions with enemy agents, the evolved network is worse than
the random controller. Once again, this behavior is a result of favoring aggressive
combat behavior. Many collisions occur because the bot is chasing the opponent.
An aggressive player is more likely to be near its opponents, and therefore also likely
to bump into them more often. Furthermore, these results are based on battle against
Hunter bots, which mindlessly rush at their opponents in a way unlike humans.
The behavior of the Hunter bots made agent collisions even more likely. Since in
all cases the actual number of collisions is fairly small (averages below 13), it was
assumed that the number of collisions would drop to an insignificant level when
fighting human opponents.

Given the priorities across objectives, the evolved network has succeeded in per-
forming well in the Deathmatch domain. To what degree this good empirical perfor-
mance translated into humanlike performance in the competition is discussed next.



22 Jacob Schrum, Igor V. Karpov and Risto Miikkulainen

 0

 2

 4

 6

 8

 10

 12

 14

 16

Colosseum Goatswood IceHenge

D
ea

th
m

at
ch

 S
co

re

Average Deathmatch Scores in Botprize Maps

Evolved Random

p = 0.017

p = 0.036

p < 0.001

t(29) = 2.462

t(29) = 2.151

t(29) = 6.153

(a) Average Deathmatch Score

 0

 500

 1000

 1500

 2000

Colosseum Goatswood IceHenge

D
am

ag
e 

D
ea

lt

Average Damage Dealt in Botprize Maps

Evolved Random

p = 0.002

p = 0.009

p < 0.001

t(29) = 3.177

t(29) = 2.688

t(29) = 6.573

(b) Average Damage Dealt

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Colosseum Goatswood IceHenge

H
it 

P
er

ce
nt

ag
e

Average Accuracy in Botprize Maps

Evolved Random

p = 0.003
t(29) = 3.095

(c) Average Accuracy

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Colosseum Goatswood IceHenge

D
am

ag
e 

R
ec

ei
ve

d

Average Damage Received in Botprize Maps

Evolved Random

p = 0.001

p < 0.001

p = 0.019

t(29) = 3.597

t(29) = 4.866

t(29) = 2.41

(d) Average Damage Received

 0

 20

 40

 60

 80

 100

 120

Colosseum Goatswood IceHenge

C
ol

lis
io

ns

Average Level Collisions in Botprize Maps

Evolved Random

p = 0.008

p < 0.001

t(29) = 2.735

t(29) = .131

(e) Average Level Collisions

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

Colosseum Goatswood IceHenge

C
ol

lis
io

ns

Average Agent Collisions in Botprize Maps

Evolved Random

p < 0.001

p < 0.001

t(29) = 4.991

t(29) = 3.832

(f) Average Agent Collisions

Fig. 7 Each figure compares the average performance of the evolved network from the competition
bot to that of the bot using random action selection in the battle controller. Performance in each
of the three levels used in BotPrize 2010 is shown. Bot performance is measured in competition
with five Hunter bots in 500 second matches. Averages are across 30 trials, and 95% confidence
intervals are shown. For each score and level, t-tests were done to compare the evolved network to
random action selection. When the difference is significant, the resulting t and p values for the test
are shown above the bars. Though the evolved network is not significantly better than a random
controller in some objectives, its performance in these objectives can be attributed to focusing on
high-scoring networks when the evolved network was chosen from those available on the trade-off
surface.



Humanlike Combat Behavior via Multiobjective Neuroevolution 23

5.2 Evaluation of Humanlike Performance
The results from BotPrize 2010 are inBot Humanness

Native UT2004 Bot 35.3982%
Conscious-Robots 31.8182%
UTˆ2 27.2727%
ICE-2010 23.3333%
Discordia 17.7778%
w00t 9.3023%

Table 1 BotPrize 2010 Results (UTˆ2 high-
lighted). Humanness equals the number of
human judgments divided by the total judg-
ments, all multiplied by 100. UTˆ2 beat three
entries to get 2nd place.

Table 1. UTˆ2 placed 2nd among entrants,
though the humanness rating of the na-
tive UT2004 bots is also shown (native
bots have the advantage of being written
in UT2004’s UnrealScript, which has
some advantages over Gamebots in terms
of sensing, latency and action execution).
The lowest humanness rating for a human
was 35.4839%.
UTˆ2 did not win, but it did beat three

other entrees, losing only to Conscious-
Robots. No competitor has yet won the

grand prize, requiring a humanness rating of at least 50%. In fact, of the seven hu-
man judges, only two had humanness ratings over 50%. However, this result could
be in part due to the fact that the new judging format actually encourages humans to
act like bots in order to trick opponents into losing points for bad judgments. This
strategy is one of the distortion effects mentioned in [30].

In any case, the humans were still clearly more human than the bots, although
compared to previous competitions the gap is narrowing. Based on the many demo
files made during the competition, some analysis of bot behaviors related to specific
judgments is possible. Demos and logs of the competition are available online1.
Each one allows a viewer to see exactly what any given judge saw during specific
matches of the competition.

Most actions taken by UTˆ2 seem fairly human, or are at least difficult to dis-
tinguish from human actions. This statement is based on the fact that most humans
interacted with UTˆ2 on several distinct occasions before making any sort of judg-
ment. However, such extensive interactions make it hard to discern what aspect of
the bot’s behavior influenced the judgment. Despite this difficulty, certain behav-
iors were noticed that judges tended to associate, though not always correctly, with
either bots or humans.

Most judges assumed it was human to stand still for long periods with snip-
ing weapons while being oblivious to nearby surroundings. Although UTˆ2 would
sometimes stand still to get a better shot when firing, these pauses were usually
brief moments between dodging actions. This behavior is one case where UTˆ2’s
behavior was more effective in combat, but less humanlike. However, lack of this
behavior did not seem to cause UTˆ2 to be judged as a bot; it simply meant that
UTˆ2 missed some chances to be judged as human.

One problematic behavior exhibited by UTˆ2 is actually a bug that is not con-
sistent with the description of the battle controller in section 3.2. In order to appear
attentive, the bot is supposed to look at the targeted opponent during all combat ac-
tions. However, this was actually not the case for the GOTO ITEM action: the bot

1 http://botprize.org/result.html



24 Jacob Schrum, Igor V. Karpov and Risto Miikkulainen

would look at, and sometimes even shoot in the direction of, the item towards which
it was moving instead of the opponent it was fighting. This bug caused UTˆ2 to be
judged as a bot on several occasions.

Other issues seem to be more level specific. Table 2 breaks down judgments
against UTˆ2 by level, and shows that the bot faired best in IceHenge and worst in
Goatswood. The effect of the level on the humanness rating of the bot is closely tied
to its ability to navigate within that level. Judgements of UTˆ2 that seem to have
been based on its navigational abilities are discussed in [17].

The current level also affected the bot’s Map Human Bot Humanness
Colosseum 2 6 25.00%
Goatswood 2 9 18.18%
IceHenge 5 9 35.71%

Table 2 Number of judgments of each type
against UTˆ2 and the resulting humanness,
divided by map. The bot was least human
in Goatswood, which is unfortunate because
five sessions were played in Goatswood,
whereas four were played in IceHenge and
three in Colosseum.

combat behavior. UTˆ2 likely faired well
in IceHenge because most areas are wide
open with few obstacles. Also, the fact
that the last ten generations of evolution
were spent in IceHenge probably made
the bot’s behavior better tailored to this
level than others. In contrast to IceHenge,
Goatswood is mostly comprised of narrow
corridors and has several waist-high ob-
stacles over which the players must jump.
A few of the bot judgments that UTˆ2 re-
ceived in Goatswood seem to be the result of the bot unnecessarily colliding with
walls, however briefly, in the midst of dodging during combat. The judges presum-
ably expected humans to be more aware of their surroundings so as to avoid such
contact. These judgments indicate that the Level Collisions objective should have
been considered more important when deciding which network to use in BotPrize.

Humans also expected other humans to be aware of the judging aspect of the
competition. Some judges would purposefully miss with the judging gun in combat
to see if they could elicit human reactions from their opponents. It is impossible to
know what individual judges expected in these situations, but completely ignoring
the judging gun and attacking as normal seems to have been considered bot-like.
UTˆ2 was labelled a bot at least once for such behavior.

Humans also expected humans to use the judging gun. There are some occasions
where UTˆ2 killed a human with a correct judgment, and was in turn immediately
judged as a human by the judge the next time the two met. There are other occasions
where the exact reason UTˆ2 was judged as a human was unclear due to the large
number of interactions preceding the judgment, but in most cases where a judge saw
UTˆ2 several times before judging it as human, at least one of the things the judge
witnessed was UTˆ2 using the judging gun.

However, despite the role that judging behavior may have played in earning hu-
man judgments for UTˆ2, it is not necessarily true that judging behavior is vital to
the competition. Neither the winner, Conscious-Robots [2], nor the more hu-
man native UT2004 bot did any judging at all. It seems that bots can get away with
not judging and still look human due to the fact that most interactions are brief and
spaced out across the match. In other words, there are many chances to use the judg-



Humanlike Combat Behavior via Multiobjective Neuroevolution 25

ing gun out of sight of any given opponent, so no human would necessarily expect
to see every opponent use the judging gun.

Other judgments against UTˆ2 are harder to interpret. Sometimes a judge saw
UTˆ2 many times in a match, and eventually judged the bot as a human near the
very end. Such judgments likely indicate that over the course of several interactions
the bot did nothing overtly bot-like, and the most sensible course of action given
little remaining time was to judge the bot as human.

In a few cases, UTˆ2 was quickly judged based on very little interaction. It is not
clear from the demo replays what criteria the judges were using in these cases. It
is possible in some cases that judges are able to discern the identity of an opponent
simply by subtle movement patterns within mere seconds, but it is also possible that
some judgments are the result of errors, such as mistaken identity or weapon misfire.
Throughout all of the demo files there are many instances of snap judgments, both
correct and incorrect.

Still, regardless of the reason behind such judgments, they must be accounted for
in order to succeed at BotPrize. Ideas on how to do this, as well as some general
ideas about how a bot can appear more human, are the topic of the next section.
6 Discussion and Future Work

Most of UTˆ2’s behavior seems to be passably human. Many judges were un-
able to come to a conclusion about the bot’s humanness, even after three or more
interactions. However, UTˆ2 would look more human if it both performed certain
actions that most humans are certain a human would do, and if it avoided the few
very bot-like actions that crept into its behavior.

Fixing the bug caused by the GOTO ITEM action is simple. The availability of
working ray-traces in future competitions should also help the bot avoid bumping
into obstacles as often. There are also ideas for improving navigation with the use
of human traces, discussed in [17]. With regards to how the combat behavior was
evolved, there is room for improvement.

Obvious steps to improve the performance of the bot would be to evolve with a
larger population for more generations, but there are also ways in which the basic
evolutionary setup can be improved. These improvements are discussed below.
6.1 Opponent Interactions

One issue regards the opponents against which bots evolve. For practical reasons,
these opponents are themselves bots. The Hunter bot was used to evolve UTˆ2,
though the native bots would probably make better opponents. However, it would
likely be even better to evolve against many different types of bots. The justification
for this approach is that each of the BotPrize participants had a different play style
and skill level. An evolved bot should be accustomed to the possibility that different
opponents behave differently, and more importantly, a bot evolved against varied
opponents is more likely to learn behaviors to deal with different types of players. In
retrospect, evolving against the Hunter only may have resulted in the evolution of a
one-size-fits-all behavior that is mostly effective, but perhaps too predictable and/or
bot-like. Humans are very good at adapting and improvising. Having learned how
to respond to a wide array of opponent strategies should at least give the impression
that the bot is improvising.



26 Jacob Schrum, Igor V. Karpov and Risto Miikkulainen

An important concept when considering how agents interact is “attention”: hu-
mans pay attention to the agents they interact with, and generally continue to do
so until some note-worthy event shifts that attention. The opponent-relative move-
ment commands of UTˆ2 assure that it pays attention to whichever opponent it is
fighting, but when multiple opponents are present, UTˆ2 picks one of them to pay
attention to according to a scripted routine (see under “Enemy Shooting Sensor”
in section 3.2.1). It might be more humanlike to use a cognitive approach to this
attention problem as done by the winning bot Conscious-Robots [2].

Linked to the issue of interaction is the idea of mimicry. Mimicry is important
because it establishes an agent’s ability to comprehend what another agent is doing,
and utilize that knowledge for its own gain. Mimicry can involve copying what an
opponent is doing at the moment, or it can mean that agents mirror each other’s
behavior, such that one is always countering the other to maintain equilibrium. An
example of the first type would be jumping or dodging in a similar manner to an
opponent. An example of the second type would be maintaining distance during
combat, such that the bot moves forward when its opponent moves backward and
vice versa. In either case, such behavior would make a bot look more human when
fighting a human judge, since the bot would be acting the way the human judge acts.

One potential way to make such mimicry evolvable is to have opponent-relative
input sensors in addition to opponent-relative actions. Rather than simple awareness
of where an opponent is, the bot could sense whether the opponent was advancing,
retreating, strafing, jumping, etc. If the bot can sense when an opponent is perform-
ing an action that it can also perform, learning to act the same way via a neural
network would be quite easy. Of course, such behavior would only be favored by
evolution if it also improved fitness, but given that humans favor such strategies it is
believed that mimicking behavior will indeed lead to increased fitness.

Mimicry could be more directly encouraged by evolution if some measure of
mimicry were used as a fitness function. However, rewarding mimicry directly could
result in evolved bots that behave in non-human ways when interacting with human
judges that behave stupidly as a ruse to gauge humanness, or with other bots, which
are of course bot-like.
6.2 Scope of Evolved Policy

A limitation on how UTˆ2’s behavior was evolved is that only the battle con-
troller was evolving within a bot that had many other components. While this ap-
proach assured that its combat behavior would make sense in the context of its other
behaviors, the approach is perhaps too inefficient. It may be better to evolve the com-
bat behavior separately, at least initially, within a specialized combat scenario where
the majority of the bot’s other modules are disabled. For example, the bot could be
given infinite ammo in a small level, thus making navigation and weapon collection
irrelevant, and freeing evolution to focus on how the bot behaves in combat.

Such an evolved battle controller could be integrated with other evolved subcon-
trollers to build up a hierarchical controller as was done by van Hoorn et al. [15],
whose approach was directly based on that of Togelius [26]. The method used in
these works involves evolving the components of a subsumption architecture [4]
within several separate subtasks leading up to the full task. Learning good behav-



Humanlike Combat Behavior via Multiobjective Neuroevolution 27

ior for many small tasks in an incremental way is easier for most machine learning
methods, but requires a knowledgeable human to construct the training and control
hierarchies that define the agent’s final behavior.

Though such approaches may make learning easier, for any evolved subcompo-
nent, one must keep in mind that evolution will favor increased fitness, potentially at
the cost of human behavior. In order for an evolved controller to act like a human, it
must be both constrained as humans are and allowed to easily carry out actions that
are common and easy for humans to carry out. However, the work of determining
the proper constraints is task specific, and requires some knowledge both of how
humans perform in the task, and of how a bot is likely to cheat at the task.
6.3 Weapon Usage

Evolving the battle controller in isolation would make it easier to control what
weapons the bot has. It would then be possible to evolve a specialized controller
for each weapon, or at least each class of weapons. Humans expect other humans
to have varied behavior across weapons. Sniping weapons are an obvious example.
Although UTˆ2 knew some information about its current weapon, this information
may not have been enough to serve as a basis for different combat styles, especially
since some of the information was faulty (section 3.2.1). Simply having separate
controllers for each weapon would assure the bot’s behavior matched the weapon.
However, such an approach would take even more time to evolve, and would be
brittle with respect to new weapons, even if they were similar to existing ones.

An alternative option is to evolve multi-modal networks [21]. The networks have
distinct output modes for different situations, which seems well-suited to having
different behaviors for different types of weapons.

Knowing which weapon to use in a given situation is also an important aspect
of gameplay in UT2004. In past BotPrize competitions, the University of Texas at
Austin’s entry (named U Texas) learned weapon preferences automatically [13].
The bot would learn estimates of the expected damage and accuracy of each weapon
in each of the three ranges used by UTˆ2’s static weapon lookup rules.

The original intent was to integrate weapon preference learning into UTˆ2, but
this learning method was afflicted with the same problems that make the Accuracy
objective (section 4.3) problematic. Basically, the Gamebots protocol registers each
source of damage separately, which makes gauging the accuracy of weapons that fire
multiple projectiles at once difficult. Furthermore, accuracy is not as important for
weapons that have higher rates of fire. Because of these difficulties, it was decided
that UTˆ2would use static weapon preferences instead. However, including weapon
preference learning is still a good idea, which future versions of UTˆ2 will likely
include, once a way to work around the limitations of Gamebots is found.
7 Conclusion

Evolving neural networks to provide the combat behavior for the UTˆ2 bot in
UT2004 helped it earn 2nd place in the 2010 BotPrize competition. The key to
evolving humanlike behavior, despite evolving for raw performance, is to restrict
the actions available to the bot to common human actions, and to filter the overall
bot behavior such that the bot is restricted in ways that humans are. Evolving the bot
to perform well in the context of human limitations naturally results in humanlike



28 Jacob Schrum, Igor V. Karpov and Risto Miikkulainen

performance. The UTˆ2 bot focused on the most obvious of such limitations, but
much more is possible. By further tailoring bot actuators and sensors in this manner
it should be possible to evolve more humanlike bots for UT2004 and other domains
in the future.

Acknowledgements The authors would like to thank Niels van Hoorn for the use of his source
code in getting started evolving bots in UT2004. They would also like to thank Christopher Tan-
guay and Peter Djeu for volunteering to critique and evaluate versions of UTˆ2. This research
was supported in part by the NSF under grants DBI-0939454 and IIS-0915038 and Texas Higher
Education Coordinating Board grant 003658-0036-2007.

References
1. Adobbati, R., Marshall, A.N., Scholer, A., Tejada, S.: Gamebots: A 3D virtual world test-

bed for multi-agent research. In: In Proceedings of the Second International Workshop on
Infrastructure for Agents, MAS, and Scalable MAS (2001)

2. Arrabales, R., Munoz, J., Ledezma, A., Gutierrez, G., Sanchis, A.: A Machine Consciousness
Approach to the Design of Human-like Bots. In: P.F. Hingston (ed.) Believable Bots. Springer
(2011). (To Appear)

3. Bäck, T., Hoffmeister, F., Schwefel, H.P.: A survey of evolution strategies. In: Proceedings of
the Fourth International Conference on Genetic Algorithms, pp. 2–9 (1991)

4. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE Journal of Robotics
and Automation 2(10) (1986)

5. Bryson, J.J.: Intelligence by design: principles of modularity and coordination for engineering
complex adaptive agents. Ph.D. thesis, Massachusetts Institute of Technology (2001)

6. Butz, M., Lonneker, T.: Optimized sensory-motor couplings plus strategy extensions for the
TORCS car racing challenge. In: Computational Intelligence and Games, pp. 317–324 (2009)

7. Darwin, C.: On the Origin of Species by Means of Natural Selection or the Preservation of
Favored Races in the Struggle for Life. Murray, London (1859)

8. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic
Algorithm for Multi-Objective Optimization: NSGA-II. PPSN VI pp. 849–858 (2000)

9. Fogel, D.B., Atmar, J.W.: Comparing genetic operators with gaussian mutations in simulated
evolutionary processes using linear systems. Biological Cybernetics 63(2), 111–114 (1990)

10. Gemrot, J., Kadlec, R., Bida, M., Burkert, O., Pibil, R., Havlicek, J., Zemcak, L., Simlovic,
J., Vansa, R., Stolba, M., Plch, T., C., B.: Pogamut 3 can assist developers in building AI (not
only) for their videogame agents. Agents for Games and Simulations, LNCS 5920 (2009)

11. Gomez, F., Miikkulainen, R.: Active guidance for a finless rocket using neuroevolution. In:
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 2084–2095. Mor-
gan Kaufmann, San Francisco (2003). URL http://nn.cs.utexas.edu/keyword?gomez:gecco03

12. Haykin, S.: Neural Networks, A Comprehensive Foundation. Prentice Hall, Upper Saddle
River, New Jersey (1999)

13. Hingston, P.: A Turing Test for Computer Game Bots. IEEE Transactions on Computational
Intelligence and AI in Games 1(3), 169–186 (2009)

14. Hingston, P.: A New Design for a Turing Test for Bots. In: Computational Intelligence and
Games (2010)

15. van Hoorn, N., Togelius, J., Schmidhuber, J.: Hierarchical controller learning in a first-person
shooter. In: Computational Intelligence and Games, pp. 294–301 (2009)

16. Isla, D.: Managing Complexity in the Halo 2 AI System. In: Proceed-
ings of the Game Developers Conference. San Francisco, CA (2005). URL
http://www.gamasutra.com/gdc2005/features/20050311/isla 01.shtml

17. Karpov, I.V., Schrum, J., Miikkulainen, R.: Believable Bot Navigation via Playback of Human
Traces. In: P.F. Hingston (ed.) Believable Bots. Springer (2011). (To Appear)

18. Knowles, J., Thiele, L., Zitzler, E.: A Tutorial on the Performance Assessment of Stochastic
Multiobjective Optimizers. TIK Report 214, Computer Engineering and Networks Laboratory
(TIK), ETH Zurich (2006)



Humanlike Combat Behavior via Multiobjective Neuroevolution 29

19. Kohl, N., Miikkulainen, R.: Evolving neural networks for strategic decision-making problems.
Neural Networks, Special issue on Goal-Directed Neural Systems (2009)

20. Mouret, J.B., Doncieux, S.: Using behavioral exploration objectives to solve deceptive prob-
lems in neuro-evolution. In: Proceedings of the Genetic and Evolutionary Computation Con-
ference, pp. 627–634. ACM (2009). DOI http://doi.acm.org/10.1145/1569901.1569988

21. Schrum, J., Miikkulainen, R.: Evolving Multi-modal Behavior in NPCs. In: Computational
Intelligence and Games, pp. 325–332 (2009). URL http://nn.cs.utexas.edu/?schrum:cig09

22. Schrum, J., Miikkulainen, R.: Evolving agent behavior in multiobjective domains using
fitness-based shaping. In: Proceedings of the Genetic and Evolutionary Computation Confer-
ence, pp. 439–446. Portland, Oregon (2010). URL http://nn.cs.utexas.edu/?schrum:gecco10

23. Stanley, K.O., Bryant, B.D., Karpov, I., Miikkulainen, R.: Real-time evolution of neural net-
works in the NERO video game. In: Proceedings of the Twenty-First National Conference on
Artificial Intelligence (2006). URL http://nn.cs.utexas.edu/keyword?stanley:aaai06

24. Stanley, K.O., Miikkulainen, R.: Evolving Neural Networks Through Aug-
menting Topologies. Evolutionary Computation 10, 99–127 (2002). URL
http://nn.cs.utexas.edu/keyword?stanley:ec02

25. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA (1998). URL citeseer.ist.psu.edu/sutton98reinforcement.html

26. Togelius, J.: Evolution of a subsumption architecture neurocontroller. Journal of Intelligent
and Fuzzy Systems pp. 15–20 (2004)

27. Turing, A.M.: Computing machinery and intelligence. Mind 59(236), 433–460 (1950)
28. Waibel, M., Keller, L., Floreano, D.: Genetic Team Composition and Level of Selection in the

Evolution of Multi-Agent Systems. Evolutionary Computation 13(3), 648–660 (2009)
29. Whiteson, S., Stone, P., Stanley, K.O., Miikkulainen, R., Kohl, N.: Automatic Feature Se-

lection in Neuroevolution. In: Proceedings of the Genetic and Evolutionary Computation
Conference (2005). URL http://nn.cs.utexas.edu/keyword?whiteson:gecco05

30. Yannakakis, G.N., Togelius, J., Shaker, N.: Assessing Believability as a Spectator. In: P.F.
Hingston (ed.) Believable Bots. Springer (2011). (To Appear)

31. Zitzler, E., Brockhoff, D., Thiele, L.: The Hypervolume Indicator Revisited: On the Design
of Pareto-compliant Indicators Via Weighted Integration. In: Conference on Evolutionary
Multi-Criterion Optimization (EMO 2007), vol. 4403, pp. 862–876 (2007)

32. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a compar-
ative case study. In: Parallel Problem Solving from Nature, pp. 292–304 (1998)





Index

action filtering, 13–14
aggression, 21, 22
artificial neural network, 1, 9–10, 12, 15, see

also neuroevolution
attention, 12, 27

behavior-based architecture, 6
behavioral diversity objective, 18, see

also Evolutionary Multiobjective
Optimization (EMO)

BotPrize, 1, 2, 5–6, 10, 11, 18, 24, 29, see also
Unreal Tournament 2004 (UT2004)

bots
Conscious-Robots, 24, 26, 27
Discordia, 24
UTˆ2, 1–29

combat, 2–5, 9, 22, 25, 27, 28

evolution, 1, 14–15, 17–19, 29, see also
Evolutionary Algorithm (EA)

Evolution Strategy (ES), 15
Evolutionary Algorithm (EA), 14, see

also Evolutionary Multiobjective
Optimization (EMO)

Evolutionary Multiobjective Optimization
(EMO), 1, 15–17

performance metrics
hypervolume, 20
unary epsilon indicators, 20

First-Person Shooter (FPS), 1–2, see also
Unreal Tournament 2004 (UT2004)

focus, 12

Gamebots, 6, 10, 11, 14, 24, 29, see also
Pogamut

human traces, 1, 7, 19, 22, 26

memory, 9, 15
mimicry, 27–28
multiplayer, 2

navigation, 1, 7, 25, 26
neural network, see artificial neural network
neuroevolution, 2, 15, see also artificial neural

network, evolution
Non-Dominated Sorting Genetic Algorithm II

(NSGA-II), 16–19, see also Evolutionary
Multiobjective Optimization (EMO)

Pareto
Pareto compliant, 20
Pareto dominance, 16
Pareto front, 16, 20
Pareto optimality, 16

partial observability, 15
pathfinding, see navigation
Pogamut, 6, 11, 18

Reinforcement Learning (RL), 1, 15

sensors, 1, 9–12, 27

Turing Test, 5

Unreal Tournament 2004 (UT2004), 1–6, 18,
24, 26, 29

31


