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ABSTRACT

Evolutionary algorithms tend to produce solutions that are
not evolvable: Although current fitness may be high, further
search is impeded as the effects of mutation and crossover
become increasingly detrimental. In nature, in addition to
having high fitness, organisms have evolvable genomes: phe-
notypic variation resulting from random mutation is struc-
tured and robust. Evolvability is important because it allows
the population to produce meaningful variation, leading to
efficient search. However, because evolvability does not im-
prove immediate fitness, it must be selected for indirectly.
One way to establish such a selection pressure is to change
the fitness function systematically. Under such conditions,
evolvability emerges only if the representation allows manip-
ulating how genotypic variation maps onto phenotypic vari-
ation and if such manipulations lead to detectable changes in
fitness. This research forms a framework for understanding
how fitness function and representation interact to produce
evolvability, yielding more evolvable encodings. Ultimately
such encodings may lead to evolutionary algorithms that
exhibit the structured complexity and robustness found in
nature.

Categories and Subject Descriptors

G.1.6 [Optimization]: Global Optimization; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search

General Terms
experimentation, measurement, performance
Keywords

genetic algorithms, evolvability, modularity, representations,
indirect encodings, development, estimation-of-distribution

1. INTRODUCTION

Evolvability is defined as “the capacity to generate heri-
table, selectable phenotypic variation” [10]. In terms of evo-
lutionary search, evolvability means that the algorithm pro-
duces novel, high-fitness solutions with a high frequency.
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For example, when designing a coffee table, a representation
with natural parameters for height and surface area would
be more evolvable than a direct encoding controlling the in-
dividual position of each block of wood; making parameter
changes yields different kinds of tables, constraining varia-
tion in a meaningful way. This effect can also be seen in
genetic programming, where parse-tree representations are
more evolvable than searching code strings directly.

The main benefits of evolvability are to reduce the fre-
quency of catastrophic mutations and to reduce the number
of mutations required to produce phenotypically novel traits
|10]. Thus evolvability provides a mechanism through which
structured variation and complex adaptations can occur [9,
15} 122]. It is necessary to consider evolvability in situations
where currently evolutionary search is inefficient and unable
to produce reasonable solutions. Focusing on evolvability
will yield more powerful genetic algorithms (GAs) that learn
not only the highly-fit points in the search space, but also
good search strategies, enabling GAs to solve more complex
real-world problems.

Although evolvability is beneficial in the long term, it is
not clear how evolvability is selected for in nature [10], or
how it can be selected for in artificial evolution. Evolvability
does not improve fitness immediately; in fact, in some cases
of artificial selection it actually slows evolution. In artificial
evolution, evolvability can be selected for directly, provided
knowledge of good phenotypic variation can be built into
the fitness function. However, in most interesting cases (e.g.
open-ended domains), the algorithm designer does not know
what constitutes good phenotypic variation and thus it must
be learned by the algorithm. Therefore, evolvability must
be selected for indirectly, e.g. as a side-effect of selection for
some other characteristic.

One simple yet robust way of generating a selection pres-
sure for evolvability is to gradually change the fitness func-
tion in a systematic manner over the course of evolution |9}
13]. Such methods are promising because they do not re-
quire specific information about evolvability to be built into
the fitness function, but still provide a reward to genomes
that learn the underlying structure of the problem. This pa-
per analyzes various selection pressures for evolvability that
are generated in this manner. In a series of experiments,
representations are trained to exploit bilateral symmetry by
presenting a sequence of bilaterally symmetric fitness func-
tions. Only representations capable of manipulating phe-
notypic variation through the genotype-phenotype mapping
are found to be evolvable. Furthermore, the degree to which
representations do so is limited by how easily the resulting



changes in fitness can be detected. Detectability is influ-
enced by several factors such as the fitness function, how
much it changes per generation, the number of genotypic
traits controlling evolvability, their mutation rates, and the
size of the phenotype. This limitation suggests that repre-
sentations should be designed to maximize the detectability
of mutations that restructure phenotypic variation.

The paper is divided into six main sections: Section 2 re-
views indirect encodings and evolvability, section 3 describes
one method to induce selection for evolvability, section 4
compares the performance of two representations under sev-
eral changing fitness functions, and sections 5 and 6 discuss
the implications for representation design.

2. EVOLVABLE REPRESENTATIONS

The term evolvability is often used to describe an evo-
lutionary system at the population level: populations with
high genetic variance tend to be more evolvable than those
with low variance. This paper focuses on evolvability at a
more fundamental level, i.e. that of genetic representations.
Intuitively, representational evolvability means the degree to
which a particular genome is capable of extracting and ex-
ploiting the underlying structure of a particular fitness func-
tion. In general, representations that exhibit high evolvabil-
ity are more capable of searching effectively through com-
plex spaces. The benefits commonly associated with evolv-
ability include increasing adaptive phenotypic variation (i.e.
developmental constraints) [5| 15|, decorrelating phenotypic
traits (weak linkage) |20], and the emergence of both geno-
typic and morphological modularity [9, [13]. Evolvability is
obtained by adaptively organizing the genotype-phenotype
mapping in such a way that the search operators are more
likely to produce highly fit phenotypes.

Representations capable of exhibiting such control over
the genotype-phenotype mapping are known as indirect en-
codings and have been shown to exhibit many of the same
characteristics as natural developmental systems [18]. Indi-
rect encodings are powerful because they facilitate search in
complex domains by making meaningful phenotypes more
accessible to search. Given an appropriate selection pres-
sure, such representations will adapt how genetic variation
generated by the search operators maps onto phenotypic
variation such that it becomes more structured and highly
constrained [15]. For example, when evolving designs for
tables, L-system based developmental encodings have been
shown to find parameterizations of phenotypic variation that
correspond to “natural” axes, such as the height and width
of the table [6]. Evolvable representations thus allow search
to manipulate its own bias over the course of evolution. Such
restructuring cannot happen immediately, but must take
place gradually as the representation exploits information
gained about the fitness function. One promising method
of designing indirect encodings is to utilize developmental
processes |7} [18].

Although the phrase “evolvable representation” is com-
monly used in Evolutionary Computation (EC) literature,
representations generally only have a capacity to become
evolvable: evolvability emerges over the course of evolution
with a specific fitness function, and is defined in terms of
that function. Therefore, in this paper the term latent evolv-
ability will be used to describe the representation’s under-
lying capacity for becoming evolvable, and acquired evolv-
ability will be used to refer to its evolvability produced in

response to a particular fitness function.

The distinction between latent and acquired evolvability is
important: as this study shows, representations with high la-
tent evolvability may not exhibit acquired evolvability under
certain fitness functions. Since evolvability confers mainly a
future evolutionary benefit, it is unclear how it is selected for
in nature. In general, evolvability can only be selected for
in cases where an increase in evolvability is correlated with
selection for some phenotypic trait. Kirschner and Gerhart
|10] propose three possible methods at both the individual
and clade level through which indirect selection for evolv-
ability can be generated. First, more modular and robust
organization can confer physiological advantages, such as
making the organism more tolerant against stochastic de-
velopment and environments. Second, because fewer mu-
tations have harmful effects, more genetic variation can be
stored in the population (i.e. they form neutral networks
[8]). Third, populations with higher evolvability are more
likely to survive when environmental conditions change [10].

Recent artificial evolution studies suggest several meth-
ods through which selection for evolvability, particularly
through modularity, can arise |3} |4 (11} |19} [21} [23]. The
simplest and most effective way is to make evolvability it-
self a component of fitness. A commonly studied example
is Estimation-of-Distribution algorithms (EDAs), which at-
tempt to learn evolvable phenotypic distributions by analyz-
ing selection data from past generations [14]. Although less
biologically plausible than traditional genetic algorithms,
EDAs have been shown to be particular powerful in opti-
mization problems. The primary difference in EDAs and
indirect encoding methods is that EDAs adapt the search
operators, whereas indirect encodings adapt the genotype-
phenotype mapping.

Another effective way to select for evolvability is through
a systematically varying fitness function. This approach is
particularly useful when performing controlled experiments
on evolvability. Evolvability can be defined purely in terms
of the degree of exploitation of the underlying structure,
and several different representations can be tested under the
same conditions, since the selection pressure for evolvability
is constant and continuous.

An experimental setup presented in this paper, consisting
of a changing fitness function paired with an indirect en-
coding, allows acquired evolvability to be observed directly
and manipulated in a controlled manner. It constitutes a
first step towards isolating and analyzing the effects of var-
ious representational factors on evolvability. Specific issues
regarding implementation are described in section 3.

3. GENERATING SELECTION PRESSURE
FOR EVOLVABILITY

An implicit selection pressure for evolvability can be gen-
erated experimentally using two components: a changing fit-
ness function with an exploitable structure and a genotypic
representation capable of storing information regarding that
structure. Section 3.1 introduces systematically changing
fitness functions in general, section 3.2 describes a specific
instance based on bilateral symmetry, and 3.3 describes the
simplest indirect encoding capable of acquiring evolvability
in that domain.

3.1 Fitness Regimes

A fitness regime is defined in this paper as a fitness func-



tion that gradually changes over the course of evolution.
The degree of change can be fixed or variable and is called
the target drift rate. Fitness regimes with low target drift
rates can be tracked by evolution, whereas fitness regimes
that change too quickly can disrupt evolution to the point
where fitness does not increase.

Of particular interest to the study of evolvability is a sub-
set of fitness regimes where the fitness function does not
change randomly, but rather has some underlying structure
I that is invariant across all instances (i.e. a generalization
of Kashtan and Alon’s modularly varying fitness function
[9]). When evolving under such a regime, it is beneficial for
a population to identify and exploit I'. Doing so increases
the population’s ability to adapt when the fitness function
changes. Thus the fitness regime defines a fitness differential
between genomes that exploit I and those that do not. Since
exploiting I' requires manipulating the phenotypic variation
of the population, fitness regimes implicitly produce a se-
lection pressure for evolvability. Furthermore, adapting the
local search space in this way allows the population to find
more general solutions and to escape local optima [9].

In terms of representation, each genome has a mutational
cost associated with exploiting I'. Some genomes may be
able to exploit it with relatively few mutations whereas oth-
ers may take many. The amount of evolvability that a rep-
resentation acquires under a particular fitness regime is pro-
portional to the number of mutations required for learning
I'. Large fitness differentials generate more selection pres-
sure and thus more tolerance to adaptations that may take
many mutations. If a certain selection pressure is not enough
to meet the representation’s threshold, then evolvability will
not emerge. Representations that exhibit high evolvability
even when there is little selection pressure are desirable, es-
pecially in cases like co-evolution, where large fitness differ-
entials cannot necessarily be guaranteed.

Since static fitness functions do not provide pressure to
select for evolvability, even if a representation has high la-
tent evolvability, it may exhibit little acquired evolvability
under such circumstances. This insight is important be-
cause it may help explain the tendency for “brittle” evolved
solutions, i.e. solutions whose local mutation space reflects
simply how rugged the fitness function is. In general, static
fitness functions may be a cause of low evolvability in arti-
ficial evolution, even with developmental systems |2].

3.2 Symmetry Domain

One conceptually simple fitness regime involves present-
ing a sequence of symmetric binary strings as the target for
evolution. A target string of n bits is generated randomly
with symmetry around the midpoint and used as the fitness
function. This function is changed over time by flipping each
bit with a predefined probability, maintaining bilateral sym-
metry. A distinction must be made between learning general
symmetry of any target string that is symmetric about the
midpoint and specific symmetry where the target string is
defined explicitly. This distinction is important because the
representation must generalize from each instance of specific
symmetry in order to learn about general symmetry.

By varying how quickly the specific instances of bilat-
eral symmetry change over evolution (the target drift rate),
training sessions can be constructed that provide variable
amounts of information about general symmetry. For ex-
ample, a representation trained on only a single instance
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Figure 1: Fitness calculation for the strict symmet-
ric and non-strict symmetric fitness regimes. In the
strict regime, fitness is the number of traits (i.e. lo-
cations or genes) in the phenotype that match both
the target string and the trait at the bilaterally sym-
metric point in the phenotype. Phenotypic traits
that only match the target string do not count to-
wards fitness. The non-strict regime relaxes this re-
quirement, rewarding all traits that match the tar-
get, regardless of whether the bilaterally symmet-
ric point matches. Although fundamentally similar,
these two fitness regimes generate significantly dif-
ferent selection pressures for evolvability.

of bilateral symmetry has no pressure to exploit general
symmetry as a survival strategy. Therefore, the represen-
tation might not exhibit acquired evolvability, even though
it has the capacity for it. Conversely, if the target string is
changed slowly, then there is a pressure for such learning.
Furthermore, higher rates of change yield stronger selection
for evolvability.

Three fitness regimes are compared in this study, one
random and two based on bilateral symmetry. Although
all three fitness regimes employ a varying fitness function,
each generates quantitatively different selection pressures for
evolvability:

e Random, where the fitness function drifts without struc-
ture; the initial instance is generated randomly (with
no bilateral symmetry) and all target string mutations
are made at random. Individuals are rewarded for each
trait (i.e. bit location or gene) that matches the target
string.

e Strict, where target string mutations occur only on one
half and are copied over to the other half to preserve
symmetry. When fitness is calculated, only traits that
match the target function and the trait at the bilat-
erally symmetric point on the genome are rewarded

(figure [I).

e Non-strict is similar to the strict fitness regime ex-
cept that all traits that match the target function are
rewarded, regardless of whether they match the bilat-
erally symmetric point as well (figure [1)).

This domain was chosen for two reasons: first, the fit-
ness calculation is computationally simple to perform, and
second, there is a clear underlying structure to the prob-
lem that remains even when the target is changed. Thus,
if the representation is capable, there is an opportunity for
exploiting the invariance in order to become more evolvable.
Furthermore, no other opportunities exist to do so.

3.3 Linkage Representation

In order to make use of the selection pressure for evolv-
ability, the solution representation must be able to adapt its
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Figure 2: Effects of the linkage parameter on the
local mutational space. Circles indicate symmetric
phenotypic traits, bold arrows show high probability
mutations, and dotted arrows indicate low probabil-
ity mutations. With low linkage, mutations between
each of the four combinations of phenotypic values
(0-0, 0-1, 1-0, 1-1) are possible with equal proba-
bility. However, as the linkage parameter value in-
creases (from low to high), the symmetric settings
(0-0 and 1-1) become more probable and further-
more direct mutation between the two states be-
comes possible. Because bilateral symmetry is re-
warded more than asymmetry (except in the ran-
dom domain), the linkage parameters provide a way
in which the genotype can become more evolvable.

genotype-phenotype mapping. For ease of analysis, the sim-
plest indirect encoding capable of exhibiting acquired evolv-
ability under the symmetry domain is employed. Genomes
consist of n phenotypic traits (genes determining the pheno-
type), directly encoded as binary digits, and an additional
set of real-valued linkage parameters, all of which are under
evolutionary control. For genomes with high values for the
linkage parameters, point mutations made to the phenotypic
traits have a high probability of affecting the trait symmet-
rically opposite as well. Likewise, low values of the linkage
parameters provide little mutational correlation between the
two halves. Although the linkage parameter does not di-
rectly affect fitness, high linkage effectively adds a “short-
cut” mutation, allowing pairs of symmetric phenotypic traits
to mutate together. In addition, it reduces the probability
that symmetric traits differ (ﬁgure. Thus when the target
drifts, genomes with high linkage require fewer mutations
to adapt the phenotypic traits. Using this representation,
genomes that evolve high linkage values learn to exploit the
domain structure, and thus have high evolvability; further-
more, no other methods exist to increase evolvability. There-
fore, acquired evolvability can be measured directly as the
average linkage values over the entire population.

The number of linkage parameters can be manipulated
experimentally, ranging from one parameter per phenotypic
trait to a single parameter controlling the linkage of all the
phenotypic traits. This range corresponds to the amount of
a priori information about bilateral symmetry in the rep-
resentation. A single linkage parameter encodes knowledge
of bilateral symmetry perfectly into the domain. If linkage
is broken up over several parameters, the representation be-
comes capable of expressing many kinds of symmetry, but
has less specific knowledge about bilateral symmetry.

In the experiment, the linkage representation is compared
to a control representation with an identical genotype but
where the linkage parameters control random pairs of phe-
notypic traits, not necessarily bilaterally symmetric ones.

random non-strict  strict
control 0.000 0.014 -0.060
linkage  0.011 0.066 0.319

Table 1: The acquired evolvability of the control and
linkage representations over all three domains. The
evolvability score represents the average AL over all
target drift rates. Only the linkage representation
under the strict fitness regime exhibits significant
acquired evolvability.

Since random linkage does not exploit the structure of sym-
metry, if the control representation evolves high linkage val-
ues, then evolution may just be selecting for a higher muta-
tion rate, rather than evolvability. Thus comparing against
this representation elucidates whether higher evolvability is
actually being selected for.

4. RESULTS

A standard genetic algorithm with tournament selection,
one-point crossover, and speciation [17] is run for 500 gen-
erations (until linkage values settled) on a population of
50 randomly seeded individuals. Each genome had a fixed
length and consisted of binary-valued phenotypic traits and
floating-point linkage parameters. For phenotypic traits, un-
less otherwise noted, the point mutation rate was 0.01 and
the linkage parameter mutation rate was 0.2 (higher linkage
parameter mutation was found to increase acquired evolv-
ability). At the end of the run, all the linkage parameters
in the population were averaged across 200 trials, yielding
the linkage value Lgana). Since linkage values are drawn ini-
tially from the uniform distribution over [0.0,1.0], the ex-
pected linkage value at generation 0, Lo, is E(Lo) = 0.5.
Thus, Lfinai = 0.5 indicates neutral drift (that is, no ac-
quired evolvability), 0.0 indicates selection for low linkage,
and 1.0 selection for high linkage, i.e. acquired evolvability.
Since only the linkage parameter affects the representation’s
evolvability, acquired evolvability can be measured directly
as AL = Lgnal — E(Lo), which ranges from -0.5 (selection
against evolvability), to 0.5 (acquired evolvability), with 0.0
indicating no change in evolvability.

The difference in average best fitness after 500 genera-
tions using the control representation and the linkage rep-
resentation is shown in figure @] Genomes consisted of 40
phenotypic traits and a single linkage parameter. Under the
random fitness regime, the two representations performed
equally well, indicating that the linkage parameters have
no effect on fitness. Under both the strict and non-strict
fitness regimes, symmetric linkage provided a fitness advan-
tage. The fitness differential generated under the strict fit-
ness regime was several times larger than under the non-
strict regime (0.09 as opposed to 0.013). This larger differ-
ential generated a stronger selection pressure for evolvability
(table . The fitness differential generated by the random
representation was too small to induce selection for evolv-
ability (table . As the target drift rate increased, average
best fitness decreased from near 1.0 to 0.7 for the linkage
representation, and 0.6 for the control representation.

In general, only the linkage representation exhibits ac-
quired evolvability, and then only when paired with the
strict fitness regime (table . When the effects of linkage
are random (control representation), there is no selection for
evolvability. Furthermore, using the control representation,
the strict fitness regime actually induces weak selection to
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Figure 3: Fitness differentials between linkage and
control representations. Average best fitness for
the two representations is shown after 500 gener-
ations under the three fitness regimes: random,
non-strict symmetric, and strict symmetric. Only
the strict symmetric fitness regime induces a fitness
differential large enough to generate a reliable se-
lection pressure for evolvability, although the non-
strict regime generates a non-zero fitness differential
as well.

lower the linkage parameter, and hence evolvability. Thus,
the linkage parameter is indeed being selected for because it
affects the local mutation space, rather than simply because
it leads to more mutations.

Under the strict fitness regime, as the target drift rate in-
creases, the resulting selection pressure for evolvability also
increases (figures [4 and [§)). With a target drift rate of 0.0,
the population with 40-bit phenotypes yields an acquired
evolvability score of 0.07 after 500 generations, indicating
little or no selection for evolvability. With a drift rate of 0.1,
evolvability increases to 0.35 and with a target drift rate of
0.5, evolvability becomes 0.49, indicating strong selection.

As the number of phenotypic traits is increased in pro-
portion to the number of linkage parameters, slightly higher
evolvability scores are obtained under the strict fitness regime
(figure . With a target drift rate of 0.1, genomes with 40
phenotypic traits acquire an evolvability score of 0.35, those
with 80 acquire 0.39, and those with 160 acquire 0.48. Con-
versely, as more linkage parameters are added, the selection
pressure proves too weak to generate any significant change
in the linkage parameter. Under the strict fitness regime,
with one linkage parameter, the maximum average linkage
is 0.49, with two parameters, it falls to around 0.29, and
with five to around 0.12. Under the unlinked fitness regime,
one linkage parameter yields a maximum linkage parameter
value of 0.16, two yields 0.09, and five yields 0.04 (figure
. Varying the number of phenotypic traits and linkage pa-
rameters affects the size of the fitness differential created by
linkage parameter point mutations: more phenotypic traits
increases the fitness differential, whereas more linkage pa-
rameters decreases it. As the fitness differential is decreased,
selection for higher linkage becomes untenable and thus the
representation exhibits no acquired evolvability.

The linkage parameter mutation rate also has a profound
effect on acquired evolvability. When the target drift rate
is 0.5, a linkage parameter mutation rate of 0.01 yields an
evolvability score of 0.246 after 500 generations. A mutation
rate of 0.05 yields 0.31, 0.1 yields 0.37 and 0.2 yields 0.48.
Evolvability can only be selected for when the fitness func-
tion changes in conjunction with a beneficial phenotypic mu-
tation resulting from linkage. Since the probability of these
events occurring in the same genome within the same gen-
eration is low, and since linkage mutation is not disruptive
on average, a higher mutation rate can only be beneficial to
selection for evolvability.

In conclusion, acquired evolvability is found to be bounded
by the detectability of individual mutations shifting the phe-
notypic distribution. The threshold of detectability can be
raised by increasing the fitness differential induced by the fit-
ness regime, or lowering the number of mutations required
to adaptively shift the phenotypic distribution.

S. DISCUSSION

Several intuitive results were observed in the simulations:
increasing linkage increases fitness especially under harsh
environmental conditions (i.e. target drift rate greater than
0.1); more selection pressure for evolvability is generated
with higher target drift rates; increasing the number of phe-
notypic traits per genome increases acquired evolvability;
increasing the number of linkage parameters decreases ac-
quired evolvability; increasing the mutation rate of the link-
age parameters increases acquired evolvability; the choice
of fitness regime determines the fitness differential between
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Figure 4: Evolvability with 40, 80, 160-bit pheno-
types. Comparison of linkage vs. target drift rate
after 500 generations. “Linkage” and “control” are
the two different representations and “strict”, “non-
strict” and “random” are the fitness regimes. As
target drift rate increases, acquired evolvability in-
creases in the linkage representation under the strict
and non-strict regimes. As the phenotype size in-
creases, the acquired evolvability increases.
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Figure 5: Effects of increasing the number of link-
age parameters on acquired evolvability (40 bit phe-
notypes, linkage representation). Under both fit-
ness regimes the acquired evolvability decreases, i.e.
the average change in linkage tends towards 0.0 as
more linkage parameters are added. Representa-
tions with more linkage parameters require corre-
spondingly more linkage mutations to induce a mea-
surable change in evolvability.



representations with and without acquired evolvability.

From the experimental results it is clear that evolvabil-
ity, rather than a high mutation rate, is being selected for
under the strict symmetric fitness regime. However, this
particular selection pressure is exceedingly weak, unable to
produce significant evolvability when the linkage parameter
is split over more than two genes. This result suggests that
there exists a lower bound on acquired evolvability based
on the detectability of the linkage parameters’ effect on fit-
ness. Since linkage parameters affect future phenotypic vari-
ation, it may take many generations for evolution to detect
that a linkage change has had any effect on average fitness.
Furthermore, selection based on detected changes is not reli-
able because further mutations may have altered the linkage
parameter in the interim. Detectability represents an inter-
play between representation and the fitness function: fitness
regimes that induce a large selection pressure for evolvability
make up for representations that require a large number of
mutations to adapt phenotypic variation. Conversely, repre-
sentations that require few mutations to acquire evolvability
will do so even when the fitness regime induces a relatively
weak selection pressure.

Detectability has practical implications for the design of
evolvable representations. Both the linkage representation
with a single linkage parameter and the linkage representa-
tion with five linkage parameters have the same latent evolv-
ability: If the linkage parameters are all set to 1.0, both rep-
resentations will exhibit the same increase in performance
on the symmetry domain. However, only the linkage repre-
sentation with a single linkage parameter actually acquires
evolvability under the symmetric fitness regime. The reason
is that many more linkage mutations are required to detect
the fitness gradient in the five parameter case; single link-
age mutations have 1/5 the chance of affecting a given phe-
notypic trait, rendering the change undetectable and thus
unselectable in most cases.

A single linkage parameter affecting all phenotypic traits
corresponds to designing a representation with perfect knowl-
edge about bilateral symmetry. As the number of linkage
parameters is increased, each individual parameter affects
fewer phenotypic parameters, but the possibilities for other
kinds of linkage (not just perfect bilateral symmetry) be-
come available. Thus as the number of traits increases,
the bias towards bilateral symmetry decreases. However,
even in representations with as few as five linkage parame-
ters, the selection pressure on evolvability proves to be too
weak to generate significant acquired evolvability. Having
too many linkage parameters diminishes the benefits of link-
age to the point where it is no longer possible to select for.
In other words, the fitness benefit per mutation is below
the detectability threshold. Thus there is an inherent trade-
off between creating tuned representations that exhibit high
evolvability but require much a priori problem information,
and more general representations that require less knowl-
edge but behave poorly.

It is likely, however, that this trade-off can be circum-
vented by designing representations that minimize the num-
ber of mutations required to adapt phenotypic variation to
reflect the problem structure, or by using co-evolutionary
methods on open-ended problems. Co-evolution in partic-
ular is capable of generating sustained fitness differentials
over the course of evolution, as opposed to fitness differen-
tials that are fixed and thus decrease as the individuals in

the population become more evolvable. Furthermore, when
learning the problem structure is key to solving the problem,
the effects of this trade-off will be diminished.

Analyzing the interplay between representation and fit-
ness regime also sheds light on earlier results on measur-
ing evolvability [16]. In that study, a version of the linkage
representation was tested where each phenotypic trait had
an associated linkage parameter. Despite using a bilaterally
symmetric fitness regime, that representation only exhibited
acquired evolvability when the individual fitness scores were
averaged together with fitness scores of genotypes nearby in
the local mutation space. Without a direct selection pres-
sure for evolvability, the linkage representation exhibited no
acquired evolvability because too many mutations were re-
quired in order to exploit symmetry. In other words, the
selection pressure was too low to overcome the limitations
imposed by the representation.

Ultimately these results shed light on designing evolvable
representations: representations should be constructed in
such a way that phenotypic variation can be adapted to
match the structure of the fitness function in as few muta-
tions as possible. More mutations requires a correspondingly
larger selection pressure to be tenable. Thus, in order to be
maximally evolvable, representations must be able to adapt
the genotype-phenotype mapping at all levels, ranging from
fundamental design changes to small phenotypic tweaks.

6. FUTURE WORK

The results of this study suggest several areas of future
work: measuring evolvability, evolvability in co-evolutionary
systems, the effects of evolvability on GA performance, and
evolvability in nature.

Representations that are highly evolvable under some fit-
ness regimes may not be evolvable under others. For ex-
ample, the linkage representation exhibited little evolvabil-
ity under the non-strict symmetric fitness regime because
there was little evolutionary benefit to exploiting the link-
age parameter. Thus when measuring evolvability, the score
must be normalized by the selection pressure. Normalization
ensures that representations that exhibit evolvability when
there is little selection pressure for it are evaluated correctly,
allowing results obtained under different fitness regimes to
be compared directly.

Fitness regimes naturally cause evolution to select for
higher evolvability when the representation has latent evolv-
ability. With direct encodings |12} [24], on the other hand,
mutations cannot be made in a way such that information
about the fitness function is accumulated to bias phenotypic
variation. Thus direct encodings have no latent evolvabil-
ity, and will not respond adaptively to evolution under a
fitness regime. This fact has particular implications for co-
evolution: Past information about the opposing population
will simply be discarded as evolution progresses, which may
lead to populations cycling between behaviors or disengag-
ing completely. Using co-evolution coupled with evolvable
indirect encodings may alleviate this problem. Furthermore,
the open-ended co-evolution fitness regime is more general
and powerful than the static fitness regimes evaluated in this
paper and in [9] because it can maintain large fitness differ-
entials continually over the course of evolution. In contrast,
with static fitness regimes the fitness differentials are finite
and tend to zero as the representation exploits the underly-
ing structure. An important direction for future work is to



develop a measure of the selection pressure for evolvability
generated in co-evolutionary settings, to elucidate the fac-
tors that affect it. This line of inquiry could lead to more
evolvable co-evolutionary systems, which should in turn help
overcome common problems such as disengagement.
Selection for evolvability may in some cases retard GA
performance. In a separate set of experiments (unpublished)
using a more complex genetic regulatory network represen-
tation, first training under a fitness regime and then testing
performance on static fitness function was found to perform
significantly slower on average compared with populations
first trained on a single static fitness function. This result
is intuitive: selection for evolvability prefers long-term fit-
ness gains that are averaged over many different instances of
the fitness function, which may yield relatively poor fitness
under any particular instance. However, ultimately repre-
sentations that are both highly evolvable and highly efficient
are desired. Therefore it is necessary to devise methods in
which both evolvability and efficiency can be rewarded.
There is growing evidence both from theory [13] and com-
putational simulation [9] that more evolvable genotypes can
be selected for. However there is little evidence for such
selection from biological studies [10]. Understanding how
evolvability arises naturally will shed light on how immense
morphological complexity and variation is generated in the
metazoans. Can these results from artificial evolution be
used to augment biological research? One important next
step would be to study selection pressures for evolvability
on more biologically plausible platforms such as Avida [1].

7. CONCLUSION

Using a conceptually simple framework of bilateral sym-
metry, some limitations associated with selection for evolv-
ability were demonstrated. Selection pressure for evolvabil-
ity was generated by making systematic changes to the sym-
metric fitness function during the course of evolution. Evolv-
ability was only exhibited by representations that store in-
formation learned from the changing fitness function. Fur-
thermore, acquired evolvability was limited by the number
of mutations required to detect the induced fitness gradi-
ent. Finding effective methods through which to overcome
this limitation is an important direction for future work in
designing representations and fitness functions. Ultimately,
more evolvable evolutionary algorithms will aid in finding
solutions to more complex problems by exploiting their un-
derlying structure.
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