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ABSTRACT
Genetic representations that do not employ a one-to-one
mapping of genotype to phenotype are known as indirect
encodings, and can be much more efficient than direct en-
codings for complex problems. Increasing a representation’s
capacity to facilitate effective search, i.e. its evolvability, has
long been a goal of Evolutionary Computation. However,
currently no benchmarks exist to measure evolvability. One
reason is that it is difficult to decouple a representation’s
capacity to evolve under any fitness function, i.e. the la-
tent evolvability, and its performance on a specific bench-
mark. Towards this goal, a method is proposed in this paper
that measures the representation’s ability to extract invari-
ant properties from a changing fitness function. The test
is applied to three distinct representations and it is able to
distinguish all three. Ultimately, this test can serve as the
foundation for performing controlled experiments determin-
ing what factors contribute to evolvability.

Categories and Subject Descriptors
G.1.6 [Optimization]: Global Optimization; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search

General Terms
experimentation, measurement, performance

Keywords
genetic algorithms, evolvability, representations, indirect en-
codings, genetic regulatory networks, development

1. INTRODUCTION
Evolvability is the genome’s ability to adaptively organize

how mutations affect the phenotype, through a many-to-one
genotype-phenotype mapping [6, 17, 21]. This kind of adap-
tation arises through the interactions between the genetic
operators and the genetic representation (i.e. the genotype-
phenotypic map). Although it is generally believed that
improving the evolvability of artificial evolutionary systems
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would benefit evolutionary computation (EC), to date no
standardized test exists to measure it.

Two primary reasons motivate an empirical measure of
evolvability. First, such a test can determine whether or
not representations exist that are evolvable across many fit-
ness functions. Second, such a test would make it easier to
study what factors contribute to evolvability, which in turn
will allow EC researchers to methodically construct repre-
sentations more amenable to artificial evolution. Ultimately
this may lead to a more fundamental understanding of why
indirect encodings seem to be more evolvable in general.

Determining exactly what factors affect evolvability is im-
portant because artificial developmental systems that are
based on biology (e.g. models with multiple cells, genetic
regulatory networks, etc.) are computationally expensive,
and it is therefore important to find the most tractable rep-
resentation with high evolvability. Such models may provide
valuable insight into more complex systems [6]. This paper
takes a first step in this direction, focusing on relatively sim-
ple genotype-phenotype mappings.

Unfortunately, directly measuring evolvability is difficult
for several reasons:

1. Evolvability in natural evolution is the capacity for an
adaptive response to a dynamic environment (fitness
function)[8], however in artificial evolution, the fitness
function is in many cases static, so there is little selec-
tion pressure for “evolvability” in the biological sense.

2. It is possible to overlook the effects of convergence in
a trained population. A population with training on
a certain domain may have acquired some evolvabil-
ity with respect to that domain, but may be more
converged than a randomly initialized population, and
thus may perform less efficiently. This is also influ-
enced by the location of the population in the genetic
space, with respect to the target function.

3. Finally, it is easy to confuse search performance and
evolvability. For example, a particular encoding may
solve a simple problem more efficiently, but not exhibit
any traits associated with evolvability. Moreover, the
traits that facilitate effective long-term evolution may
not directly benefit evolution in the short-term.

This paper describes a principled method to address these
difficulties and establish a direct test for a representation’s
contribution to evolvability (disregarding genetic operators
as a source of evolvability). The evolvability of a particular
representation acquired during the course of evolution can



be measured as the degree to which the representation en-
ables evolution to identify and exploit underlying factors in-
herent in the fitness function, for example fundamental sym-
metries or modular structures. This measure can be used to
augment more theoretical analysis, for example through an-
alyzing representations that induce neutral networks [4].

This paper is organized into four main sections: a descrip-
tion of natural and artificial evolvability, the evolvability
measure, the representations tested, and the results.

2. EVOLVABILITY
Evolvability has been defined several ways, e.g. the “abil-

ity to respond to a selective challenge” [8], the “ability of
random variations to sometimes produce improvement” [21],
etc. Evolvability can be intuitively understood as adaptive
organization of the genotype-phenotype mapping such that
the search operators produce more favorable phenotypes (i.e.
choose a mapping with local neighborhoods around good so-
lutions that are amenable to search). In this sense, evolv-
ability is an aspect of the representation (genotype to phe-
notype mapping) and the search algorithm employed. Al-
though the phrase “evolvable representation” is commonly
used in EC literature, representations generally only have a
capacity to become evolvable: evolvability emerges over the
course of evolution with a specific fitness function, and is
defined within the terms of that function. Therefore, in this
paper the term latent evolvability will be used to describe the
representation’s underlying capacity for becoming evolvable,
and acquired evolvability will be used to refer to its evolvabil-
ity learned in response to a particular fitness function. The
test defined in this paper will measure acquired evolvability,
and use that as a proxy for latent evolvability.

The general concept of evolvability applies to both natural
evolution and in artificial evolution; however latent evolv-
ability is not important in nature: sudden shifts in the en-
vironment factors occur, but the genome is not restarted
with a random configuration with no acquired evolvability.
Also in nature, evolvability can be selected for directly, since
more evolvable representations are better able to survive in
the long-term (the environment is not static); genomes that
are able to react to changing environments quickly (i.e. have
high acquired evolvability) are more likely to survive. How-
ever, in artificial evolution, less selection pressure exists to
generate “evolvable” phenotypes because a single “perfect”
phenotype usually exists: outside of coevolution or incre-
mental evolution [7], the fitness function is generally not
adaptive. If the fitness function is static, there is little need
for evolvability, since any solution with high fitness, even
one with low evolvability, is likely to survive. Thus if a
representation will be ultimately used in a domain with a
static fitness function, it is more important to increase latent
evolvability, since no evolvability will be acquired during
evolution. Determining how to measure latent evolvability,
and what representations exhibit a high latent evolvability
will be a theme for future work.

From studies of biological organisms it is clear that many
factors affect evolvability, including:

• modularity : the organization of genotypic and pheno-
typic features into reusable components [11, 13].

• duplication and divergence: structure A is duplicated
yielding structure B, then B is free to change function
without resulting in a loss of A [13].

• canalization: organizing the effects of mutations such
that some features become more resistant to change
[19, 20].

• developmental constraints: constraining phenotypic vari-
ation against the appearance of less fit individuals [12].

• hidden genetic variation: the developmental system
builds up phenotype-neutral mutations that can be ex-
pressed en masse with a certain selection pressure [9].

Whether or not these factors are products of selection for
evolvability or necessary preconditions for it is not yet well
understood. However, even simple developmental encodings
such as GRNs and RNA folding can exhibit these features
(see [2] for generic canalization in GRNs, and [6] for a gen-
eral overview in the RNA folding case). Thus the contribu-
tion to evolvability of these factors can be measured without
modeling a full developmental system.

3. MEASURING EVOLVABILITY
One way to measure evolvability in artificial evolution is

to compare the performance of several representations on
a standard benchmark test. However, such a test would
confuse the effects of the representations’ latent evolvabil-
ity and their performance on the given task. Such a test
is fine comparing the effectiveness as an optimization algo-
rithm, but does not give an accurate measure of the relative
evolvability of each representation.

Instead, acquired evolvability can be empirically measured
as the representation’s ability to retain and generalize infor-
mation learned about a changing domain. Specifically, by
varying the amount of information provided during a train-
ing period (i.e. training on an adaptive fitness function) and
measuring the resulting change in efficiency during a test
phase, evolvability can be determined. If the representation
exhibits a large difference in efficiency between cases where
little information is provided, and cases where information
about the underlying problem is plentiful, then the repre-
sentation can be said to have acquired evolvability for the
domain. Conversely, no change would indicate that the rep-
resentation does not make use of the information provided.

This test separates evolvability from benchmark perfor-
mance and furthermore from the effects of genetic variance
(by comparing only trained populations). Separating perfor-
mance and genetic variance is necessary because direct en-
codings can perform well on some tasks, even on re-evolution,
although they exhibit no evolvability. In other words, this
separation allows systematic study of what is good for evolu-
tion in the long-term (evolvability), instead of the short-term
(finding the optimal solution).

Since acquired evolvability is being measured in a manner
uncoupled from the performance on a particular benchmark,
it is important to ask what it means to have high evolv-
ability, but to perform relatively poorly at a certain task?
Certainly if the representation were poor for many tasks, it
might not be particularly useful in general. However, repre-
sentations with high evolvability should perform better, on
average, on problems with adaptive fitness functions, such
as those found in coevolution or incremental evolution, since
adaptability is more directly rewarded. Ultimately, the goal
of this line of work is to develop an encoding that has both
high evolvability and is efficient in solving many tasks, but
since performance is the best understood of the two goals,
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Figure 1: Calculating specific symmetry. The fit-
ness function is composed of the target function
concatenated with its mirror image (in order to en-
sure bilateral symmetry). The candidate solution is
rewarded for characters matching the fitness func-
tion, but only when the character that is bilaterally-
symmetric also matches.

this paper emphasizes the effort to raise evolvability, as op-
posed to pure benchmark performance.

The domain used to demonstrate the test procedure is bi-
nary string symmetry. A distinction must be made between
learning general symmetry of any target string that is sym-
metric about the midpoint, and specific symmetry where
one half of the target string is defined explicitly, and this
half is mirrored in order to complete the full target string.
This distinction is important because the degree to which
the representation learns general symmetry from instances
of specific symmetry is taken as the measure for acquired
evolvability. Fitness is calculated as the number of charac-
ters in the phenotype that match both the target function
and the character that is bilaterally-symmetric (figure 1).
Phenotypic characters that only match the target function
do not count towards fitness, so that only matching symme-
tries are rewarded.

This domain was chosen for two reasons: first, the fit-
ness calculation is computationally simple to perform, and
second, there is a clear underlying structure to the prob-
lem that does not change, even if the target is changed (i.e.
target-independent bilateral symmetry). Thus, if the repre-
sentation is capable, there is an opportunity for exploiting
this invariance (general bilateral symmetry) in order to be-
come more evolvable, and furthermore, no other opportuni-
ties exist to do so.

By varying how quickly the specific instances of bilateral
symmetry change (the target drift rate), training sessions
can be constructed that provide variable amounts of infor-
mation about general symmetry. For example, a representa-
tion trained on only a single instance of bilateral symmetry
has no pressure to exploit general symmetry as a survival
strategy. Therefore the representation might not exhibit ac-
quired evolvability, even though it has the capacity for it.
Conversely, if the target function is changed slowly, then
there is a pressure for such learning. Since the optimal level
of change for a given representation is not known ahead of
time, several trials are run with the target drift rate varied
between 0.0 to 0.5 (0-50% change per generation), i.e. rang-
ing from static evaluation to evaluation on random noise.
The idea that an adaptive target function may facilitate
evolvability is due to Lipson et. al. [11].

After the initial training period, the target function is
completely randomized (maintaining bilateral symmetry),
and the efficiency is measured by running for 100 genera-
tions and then averaging the best fitness of each trial at ev-
ery epoch. This procedure ensures that the result is based

• For each value of the target drift rate:

– Evolve for a fixed number of genera-
tions (150), randomly changing the tar-
get after each generation.

– Reset to a new target function.

– Evolve without changing the target
function for a fixed number of gener-
ations (100).

– Calculate the efficiency for this trial as
the average of the best fitness individ-
ual over the last 100 generations.

• Calculate the acquired evolvability as the
variance of efficiency over all drift rates.

Figure 2: Summary of the method employed to mea-
sure acquired evolvability.

not only on the quality of the final solution reached, but
also on how long it took the population to produce that so-
lution. The number of training generations is set at 150,
during which time the target function is allowed to change.
In this paper, target drift rates ranging from 0 to 0.5 are
tested in a total of nine trials: 0.0, 0.01, 0.05, 0.1, 0.15, 0.2,
0.3, 0.4, and 0.5, in order to cover a full range of high- and
low-information cases. See figure 2 for a summary.

Finally, acquired evolvability can be identified qualita-
tively from the shape of the average efficiency vs. target
drift rate curve. The more pronounced the “bell-curve”
shape, the higher the evolvability, since there is a signifi-
cant difference between the trials where information about
general symmetry is provided (i.e. 1% - 10% drift), and trials
where little or no information is provided (i.e. 0% drift, and
50% drift). Conversely, a flat line represents no evolvability,
since both high-information and low-information cases pro-
vide the same result. The “tails” of the bell-curve are fixed
at 0% (no information due to an unchanging fitness func-
tion) and 50% (no information due to the fitness function
changing too quickly). However, the location of the “peak”
of the bell-curve depends on the representation, although in
all three representations tested in this paper, the peak fell
between 1% and 10% target drift. That the representation
should be able to extract the most information from this case
can be understood intuitively: the target is changing slowly
enough for the population to adapt when it drifts, but fast
enough to keep the population from converging on a specific
target, providing information about general symmetry.

Based on this qualitative analysis, acquired evolvability
can be quantified as the variance of efficiency over all trials,

E =
X

t

(Xt − µ)2/N(t),

where Xt is the efficiency of trial t, µ is the average over
all the trials, and N(t) is the number of trials. High vari-
ance corresponds to a steeper bell-curve and higher evolv-
ability. Conversely, low variance corresponds to a flat-line,
or no difference in performance between low-information and
high-information cases, thus little evolvability. By using this
metric, representations can be assigned a numerical score for
acquired evolvability and thus ranked empirically.
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Figure 3: The modified direct genetic representa-
tion. Each gene consists of a phenotypic trait (P),
and a linkage (L) and variance (V) parameter. In
this example the first two traits are linked very
strongly and the second two traits are linked weakly.
The addition of the linkage and variance parameters
allows the genotype to encode information about
general symmetry.

4. CANDIDATE ENCODINGS
Three encodings are tested using this method (for param-

eters see appendix):

1. A direct-encoding, where the genotype and phenotype
are the same, represented by a binary string.

2. A modified direct encoding, containing secondary pa-
rameters affecting how mutations should occur for each
character, and at what rate.

3. An encoding based on genetic regulatory networks,
where the phenotype is read as the network state after
a set number of iterations.

These three encodings were chosen to cover as broad a
range as possible, and in particular the modified direct en-
coding is the simplest possible representation able to learn
the underlying dynamics of the problem. It also serves as a
basis for controlled testing of features found in natural devel-
opmental systems (e.g. developmental variation and modu-
larity). By distinguishing these encodings, the proposed test
is shown to produce useful insights for future research.

4.1 Direct
The direct encoding tested in this paper consists of a bi-

nary string representing both the genotype and phenotype.
Standard point mutation (bit flip) and one-point crossover
are employed, and each phenotypic character has the same
chance of being mutated. This encoding serves as a base-
line to calibrate the test for evolvability. Any evolvability
it exhibits must be strictly due to genetic variance inherent
in the population, since the only other modifiable parame-
ters are the phenotypic characters undergoing evolution. In
other words, since the genotype is not extensible, there is no
space to store information learned about the fitness function
in general; only specific instances can be stored.

4.2 Modified Direct
The modified direct encoding is similar to the direct en-

coding, with the exception that each phenotypic trait also
has a linkage and developmental variance parameter (figure
3). The same evolutionary operators are used.

The linkage parameter is a value from 0 to 1 which de-
scribes how single mutations affect multiple traits. If two
traits have very similar linkage parameters, then they will
most likely be mutated together (to the same value). The
function used to determine this probability is

E(`1, `2) = e−T∗(`1−`2)2 , (1)

where T is the tolerance parameter controlling what linkage
distances are effective, and `1 and `2 are the two linkage
parameters being compared. This function is a Gaussian
distribution with a maximum of 1.0 occurring when `1 = `2,
i.e. when the two linkage parameters are equal.

The linkage parameter allows the genetic representation
to store knowledge it has gained of the fitness function in
a way that does not necessarily directly affect fitness. This
type of parameter is known as a neutral trait [16], and can be
considered a form of strategy parameter, commonly found in
Evolutionary Strategies (ES) literature[15]. This neutrality
is non-trivial, however, since although the linkage param-
eters only affect how future mutations are structured, the
effects of a linkage mutation will manifest over time as a
fitness change. In the case of learning specific symmetry, an
optimal linkage pattern exists linking each phenotypic trait
on the string to the corresponding trait on the second half
that is bilaterally symmetry (i.e. general symmetry).

The developmental variance parameter describes the trait’s
propensity to be mis-expressed during fitness evaluation.
Each phenotypic trait has a probability of being mutated
(flipped) during development with a probability equal to
the variance parameter. Combining developmental variance
with multiple evaluations of a single genotype yields an av-
erage of the local search space around the solution, biased
by the linkage parameters. That is, if the linkage is bilater-
ally symmetric, then only bilaterally symmetric variants will
be included in the average. Tying linkage directly to fitness
is important for rewarding solutions that have learned the
“correct” parameter linkage for the target problem.

Two versions of the modified direct encoding were tested,
one with developmental variance taking place as described
above (the standard implementation), and a second with the
effects of developmental variance randomized. Thus the ef-
fects both parameters have on evolvability can be measured
independently; linkage by comparing the second version to
direct, and variance by comparing both modified encodings.

4.3 Genetic Regulatory Network
The third encoding tested in this paper is based on a

simple model of the processes inherent to genetic regulatory
networks (GRNs), particularly those found in eukaryotes.
GRN encodings are often used in EC research because they
are considered to have high evolvability, which makes them
a particularly interesting encoding to test.

4.3.1 GRN Encodings
Recent studies in EC highlight the use of GRN encodings,

for example, the work of Eggenberger [5] and Bongard [3],
as well as in theoretical biology, for example in the work of
Hogeweg [10]. These methods are all multicellular, where
the GRN state evolution over time describes cell division
and differentiation. Since complex morphologies consisting
of many cells can be computationally intensive to model,
the implementation tested in this paper is limited to a single
GRN, which corresponds to single-celled eukaryotes, such as
yeast.

Despite the relative simplicity of single GRN models, they
have several features which make them important for study-
ing evolvability. First, GRNs are capable of organizing as
scale-free networks, i.e. a mix between random and hier-
archical organizations [1]. Scale-free networks exhibit many
properties that are important for evolvability, such as modu-
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Figure 4: The GRN genetic representation. Each
gene has a cis region and a transcription region, as
well as an innovation number (not depicted). The
GRN specified by this genome is shown in figure 5.
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Figure 5: The resulting network from the genome
shown in figure 4. Arrows represent promotion, and
the flat connection between product 1 and 2 is in-
hibitory. A and B are environmental tfs, i.e. they
determine the state of the phenotype but do not
perform any regulatory function like 1 and 2. GRN
representations are able to represent complex net-
works of interactions compactly.

larity and robustness against failure due to single mutations.
Second, GRNs inherently support the “duplication and di-
vergence” scheme whereby a gene is first duplicated, and the
copy then begins to develop some new function, and slowly
diverges from the original [22]. This phenomenon allows
new function to develop while still preserving the old regu-
latory structures. Duplication and divergence is implicated
as a source of modularity, which is necessary for evolvability
[14]. Finally, complex network models in general have been
shown to exhibit canalization [2].

4.3.2 Implementation
In this paper, a GRN consists of a concentration of tran-

scription factors (tfs) in some arbitrary substrate, and a set
of fuzzy if-then rules for reading the current state and al-
tering the production of one or more tfs. These rules are
encoded directly into the genome itself. A single gene con-
sists of a cis-regulatory (cis) region paired with a list of
transcription factors (figure 4). The cis region contains the
precondition for producing the proteins specified in the tf
list. It is composed of promoter sites, which facilitate pro-
tein transcription, and inhibitor binding sites, which inhibit
production. Proteins in the environment bind to these sites
and affect the production of the tfs specified in the tf list.
The transcription factors produced can either be environ-
mental or regulatory. Environmental tfs correspond to the
“outputs” of the GRN (and thus have a set number, one
per phenotypic character). At each time-step during the
simulation their concentrations are read and stored as en-
tries in the output vector. The regulatory tfs bind back to
the cis region to determine the current state of the network.
New regulatory tfs can arise through mutation, however the
number of environmental tfs is fixed.

A key feature of biological GRNs is the degree to which
promoter binding is “fuzzy.” That is, an entire family of
similar proteins are capable of binding to a specific promoter
site, allowing complex GRNs to form with a compact spec-

• Set all tf concentrations to a random value
between 0 and 1, initially.

• Set all production rates to 0.0, initially.

• For a fixed number of steps:

– For each gene, calculate the production
rate based on the concentrations of the
proteins binding at each promoter and
inhibitor site (eqn. 2).

– For each tf in each gene, increase or de-
crease that tf’s concentration based on
the production rate (eqn. 3). Clamp
the concentration [0, 1].

– Decay the tf concentrations by a con-
stant factor.

• Record the absolute concentrations of the
environmental tfs.

Figure 6: GRN activation method.

ification. This fuzziness is captured in the artificial GRN
encoding as binding efficacy, which depends on how com-
patible the two proteins are.

Initially the environment contains a set concentration of
tfs (random). When a tf in the environment matches (within
some tolerance level based on the binding efficacy) either
a promoter or an inhibitor region, it binds to that region
and affects the production rate of the transcription factors
encoded in that gene (figure 5). The production rate is
calculated in two steps. First, the promoter efficacy of a
single gene is calculated by

P (G) =
X
c∈C

X
v∈V

sign(c) ∗ concentration(v) ∗ E(c, v), (2)

where C is the set of all binding sites in the cis region of gene
G, V is the set of all regulatory tfs in the environment, and
E is the binding efficacy, given in equation 1. Then the tfs
specified by that gene are added to the environment, with
concentrations given by

∆concentration(v) = P (G)/length(C). (3)

The newly produced proteins are added to the existing en-
vironmental concentrations. This cycle continues for a pre-
defined number of iterations, at the end of which the envi-
ronmental tfs are arranged in order and the phenotype is
read as the concentrations thresholded {0, 1} (figure 6).

The GRN encoding uses the NeuroEvolution of Augment-
ing Topologies (NEAT) method for performing crossover on
variable length genomes [18]. Initially each genome contains
40 genes (one for each environmental tf), but new genes can
arise through mutation. Each gene consists of a cis region,
transcription region, and a unique innovation number. In-
novation numbers record when new regulatory structure, i.e.
a new character in a cis or regulatory region, or a new gene,
is introduced to a genome. During crossover, the innovation
numbers are lined up so that similar coding regions can be
crossed over correctly, regardless of the amount of genotypic
complexification (i.e. artificial synapsis is performed).

4.3.3 Variants
In addition to the standard implementation, three vari-

ants of the GRN encoding are compared:



1. A variant with the tolerance parameter set to one half
of the baseline value. The tolerance parameter controls
how similar a tf must be to a promoter/inhibitor site in
order to bind to it. A decrease in tolerance means more
proteins are compatible with more sites, and thus the
overall network connectivity increases. If the tolerance
value is set too low the network will become noisy and
unable to perform meaningful computation. On the
other hand if the tolerance value is set too high, then
few interactions will take place.

2. A variant with initially two regulators in each cis re-
gion instead of one. Increasing the size of the cis re-
gion has a similar effect to decreasing the tolerance
(increase connectivity), however since the cis region
is under genetic control, the connectivity can be fine
tuned. The main cost is a two-fold increase in the
initial genome size, which may make search inefficient.

3. A variant with non-random initial tf state. The base-
line GRN has a randomized initial tf state, in order
to encourage the GRN function to become robust (i.e.
applicable to many environments). The non-random
version does not select for this robustness, and there-
fore may exploit the initial tf state to encode its phe-
notype. Testing this variant will help determine the
extent to which reliance on epigenetic factors (e.g. ini-
tial tf state) may affect evolvability.

Comparing the evolvability of the four GRN variants will
help determine what factors affect the GRN’s ability to ex-
tract and exploit information about the target problem.

5. RESULTS
Each encoding along with several parameter variants were

tested with target drift rate values of 0.0, 0.01, 0.05, 0.1,
0.15, 0.2, 0.3, 0.4, and 0.5. Though the optimal drift rate
may differ from encoding to encoding, this range should be
sufficient to capture the full range of learning response. For
each target drift rate setting, the encoding was tested 40
times, to insure a useful average. An overview of the ac-
quired evolvability scores is given in figure 7. All tests for
statistical significance were done using the standard Analy-
sis of Variance (ANOVA) method, which gives the probabil-
ity that any pairing of two means is statistically significant.

The direct encoding performs better during the test phase
than either of the other two representations (an average ef-
ficiency of about 91%; figures 8, 9, and 11), but exhibits lit-
tle efficiency variance, less than 0.00001697 (figure 7). The
means contributing to this variance are not statistically sig-
nificant (P = 0.59), thus indicating that there is no acquired
evolvability. Since there is no genetic capacity for the direct
representation to record information about the domain, any
level of variance must be due to sampling bias or the pop-
ulation’s genetic variance. In general, representations that
do not show statistically significant differences in efficiency
have acquired no evolvability during the test, and thus may
have little or no latent evolvability.

Two versions of the modified direct encoding were tested:
the standard implementation (modified), and a variant with
random developmental variance (modified-random), as dis-
cussed in discussed in Section 4.2. The variant exhibits no
evolvability (variance is not statistically significant, P =
0.56), similar to the direct encoding (figure 7). However,
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Figure 7: Overall comparison of all encodings and
parameter variants by acquired evolvability. The
light-gray colored bars represent GRN-based vari-
ants, the dark-gray bars represent modified direct
variants, and the black bar is the baseline direct-
encoding. “grn” refers to the baseline GRN imple-
mentation, “grn-lowertol” to a GRN variant with
the tolerance parameter halved, “grn-longercis” to
a GRN variant with the initial cis region length dou-
bled, “grn-nonrandom” to a variant with all initial
tf levels set to 1.0. “Modified” refers to the modified
direct baseline, “modified-random” to the modified
direct implementation with random developmental
variance, and “direct” to the direct encoding. The
GRN encoding is the most evolvable, and the evolv-
ability of the modified encoding depends heavily on
the form of the developmental variance.

the baseline implementation exhibited more than 14 times
the evolvability of the direct encoding (variance is statisti-
cally significant, P < 0.0001), though performing on aver-
age more than 10% worse (figure 8). This result indicates
that developmental variance plays a large role in determin-
ing evolvability, and in particular that this variance must
be meaningful with respect to the target fitness function,
otherwise there is no evolvability increase.

Four parameter variants of the GRN encoding were tested:
the standard implementation (grn), from section 4.3, an im-
plementation with the tolerance parameter set to one-half
of the baseline value (lowertol), an implementation with
initially two promoters in each cis region, instead of one
(longercis), and an implementation with non-random initial
tf state and all tfs initialized to 1.0 (nonrandom). Evolvabil-
ity is summarized in figure 7 and efficiency vs. target drift in
figure 9. With an acquired evolvability of 0.000558 (statis-
tically significant, P < 0.0001), the baseline GRN encoding
is almost 33 times more evolvable than the direct encod-
ing. The lower tolerance parameter variant performs slightly
worse than the baseline GRN, and the other two variants
(longer cis, and nonrandom initialization) both exhibit less
evolvability than the modified direct encoding. The latter
two variants exhibit efficiency variance that is not statis-
tically significant (and therefore no acquired evolvability),
though only by a small margin (P = 0.52). The absolute
performance of the GRN encoding is similar on average to
the modified direct encoding, on average 5-10% worse than
the direct encoding.
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ants for efficiency. Refer to figure 7 for variant
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This is consistent with the “bell-curve” shape.
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Figure 9: Comparison of the GRN variants for ef-
ficiency. Refer to figure 7 for variant descriptions.
The direct encoding performs better on average at
each target drift setting, but exhibits no variance in
performance, unlike the GRN encodings.
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Figure 10: Comparison of the effects of training on
the acquired evolvability of GRN representations.
A training period length of 300 generations (grn-
longer) leads to an effective tripling of evolvability.
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Figure 11: Comparison of the training period length
GRN variants for efficiency. Refer to figure 7 for
variant descriptions. The “grn-longer” plot refers
to a GRN variant where the training period is 300
generations, and exhibits high efficiency variance.

Finally, the standard GRN implementation was run with
a training period of 300 generations, instead of 150. This
change resulted in nearly a 3-fold increase in the acquired
evolvability (statistically significant, P < 0.0001), an effec-
tive 91-fold increase over the direct implementation (figure
10 for evolvability comparison, figure 11 for efficiencies).
This result indicates that the length of training may play
an important role in determining acquired evolvability.

6. DISCUSSION AND FUTURE WORK
Changing the fitness function over time (adaptive fitness

function) plays an important role in evolution because a
static fitness function does not provide any pressure to se-
lect for evolvability. Therefore, even if a representation is
highly evolvable, there may be no pressure to become evolv-
able in many domains. This insight is important because it
may help explain the tendency to see many “brittle” evolved
solutions, and in general low evolvability in artificial evolu-
tion, even with developmental systems.

The results highlight several questions about evolvability:

• Can evolvability be used to counteract the effects of
convergence? For example, although the GRN encod-
ing has high acquired evolvability, when comparing a
population that has been undergoing training for 150
generations to a randomly initialized population, the
random population seems to always be more efficient
at solving the problem. The most likely explanation
is because the trained population has converged some-
what during evolution.

• How broadly can the measure proposed in this paper
be applied to other tasks? The test for evolvability
requires a fitness function that can be changed over
time, in order to provide a variable amount of infor-
mation about some invariant properties. What kinds
of domains are amenable to such variation? One in-
teresting direction would be to use coevolution as an
adaptive benchmark, as it allows for theoretically un-
bounded increases in acquired evolvability.

• What factors influence acquired evolvability? For ex-
ample, why does the version of the modified direct
encoding with random developmental variance exhibit



no acquired evolvability? Both versions are the same
genetically and thus have the same latent evolvability,
however only the standard version acquires evolvability
during training. The only difference is that “correct”
developmental variance allows the linkage parameter
to directly influence fitness.

Finally, there are three points that need to be addressed
to improve the test procedure. First, work must be done to
explore the relationship between acquired and latent evolv-
ability. Is it sufficient just to repeat the test procedure on
several domains, and average acquired evolvability? Sec-
ond, a metric needs to be established to take into account
the effect of training time on acquired evolvability. Does
evolvability saturate as training time increases? Some en-
codings may become evolvable more slowly than others, but
may have a greater capacity to do so. Each encoding should
be tested not only on a range of target drift rate settings,
but also on a range of training period lengths. Third, some
context must be imposed on the relative result scale. What
exactly does 33 times more evolvability mean, in practice?
Is it significant, i.e., does it impact long-term evolution?

7. CONCLUSION
Since the direct representation exhibits no significant vari-

ance in efficiency while the GRN and modified direct encod-
ings do, the test proposed in this paper correctly contrasts
relative acquired evolvability. Furthermore, this test eluci-
dates many factors that influence evolvability, including the
length of the training period, the genetic control of mutation
effects (linkage parameter and GRN encoding), and the ini-
tial complexity of the representation (GRN initial cis region
length). Only acquired evolvability in the general symmetry
domain has been measured so far. In order to approximate
a representation’s latent evolvability, a broad range of test
problems must be employed. In spite of this caveat, the
acquired evolvability test provides insight into evolvability,
and raises many interesting questions for future inquiry.
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APPENDIX
For all algorithms, population size is 50 and target string
length is 40 bits. Selection is through a binary tournament.
All parameters are encoded as doubles or unsigned integers,
and crossover occurs only at gene boundaries.

Direct and modified direct have a 1% chance per gene per
generation of being mutated. Modified direct genomes are
evaluated 5 times with the fitness averaged. The linkage
similarity tolerance is 150.

GRN fixed parameters: 10% weight mutation (Gaussian,
variance = 1.0), 0.5% add new character, and 5% duplicate
gene rate. The GRN model iterates for 10 steps (fixed),
each tf concentration is decayed 10% per step, and there
is no limit to the number of tfs. The tolerance parameter
is evolvable, initially 1500 (750 for lowertol). The initial
number of genes is 40 (each gene has a random promoter
and a fixed environmental tf).


