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Abstract

When studying different species in the wild, field biologists
can see enormous variation in their behaviors and learning
abilities. For example, spotted hyenas and baboons share the
same habitat and have similar levels of complexity in their so-
cial interactions, but differ widely in how specific vs. general
their behaviors are. This paper analyzes two potential factors
that lead to this difference: the density of connections in the
brain, and the number of generations in prolonged evolution
(i.e. after a solution has been found). Using neuroevolution
with the NEAT algorithm, network structures with different
connectivities were evaluated in recognizing digits and their
mirror images. These experiments show that general intel-
ligence, i.e. recognition of previously unseen examples, in-
creases with increase in connectivity, up to a point. General
intelligence also increases with the number of generationsin
prolonged evolution, even when performance no longer im-
proves in the known examples. This outcome suggests that
general intelligence depends on specific anatomical and en-
vironmental factors. The results from this paper can be used
to gain insight into differences in animal behaviors, as well
as a guideline for constructing complex general behaviors in
artificial agents such as video game bots and physical robots.

Introduction
All species have special abilities that help them survive in
their ecological and social niche. Such abilities can be
termeddomain-specific intelligence. For example, spotted
hyenas are extremely capable hunters, whether alone or in
a pack, but they are poor at tasks in new domains to which
they have not been exposed. On the other hand, baboons,
which share the same habitat and have similar social struc-
ture, are very good at solving new tasks that they have never
seen before, such as finding food that is hidden from them by
human beings. This ability to solve novel problems outside
of specific cognitive domains is calleddomain-general intel-
ligence. Thus, the extent of general intelligence is different
in different species, even those in similar environments.

A prevailing theory is that domain-general intelligence
emerges from the interaction of multiple processes or mod-
ules in the brain (Kaufman et al., 2011; van der Maas et al.,
2006). So far, there have been few attempts to analyze or

verify this theory through computer simulations. In this pa-
per, neuroevolution techniques were used to study the evolu-
tion of general intelligence. These simulations investigated
the effects of different network structures and prolonged
evolution on the ability to solve a new task never seen dur-
ing evolution. Network connection densities were varied to
resemble the interconnectivity of brain modules in differ-
ent species. The length of prolonged evolution after the old
tasks had been solved was also varied. It was discovered that
the performance on the new task, i.e. general intelligence,
increased with increasing connection density, up to a point.
Performance also improved with prolonged evolution even
though fitness in the old tasks no longer improved. These
results suggest that general intelligence may emerge due to
specific anatomical and environmental factors.

Neural networks were employed in these experiments be-
cause they have been used to simulate brain structures previ-
ously with success(Amit, 1992; Miikkulainen et al., 2005).
In addition, neuroevolution has been used to study predator-
prey interactions and the evolution of complex behaviors in
animals (Rawal et al., 2010; Rajagopalan et al., 2011). Thus
the insights from this paper should be useful in building bet-
ter better models of intelligent behavior in the wild, as well
as to develop more realistic artificial agents in video games
or robotics.

This paper is organized as follows. The next section ex-
amines the biological background and prior work in analyz-
ing the origins of general intelligence in animals. The neu-
roevolution architecture and algorithm used in this paper are
discussed in the section after that. The two sections follow-
ing that lay out the hypotheses and the experimental setup
used to test them. The Results section describes the actual
experiments performed as well as the results obtained.

Biological Background

Animals in their natural habitat face many different kinds of
problems for which special abilities may be required. In-
deed, all species exhibit specialized cognitive skills that are
essential for their survival. These skills fall under the realm
of domain-specific intelligence, and may be activated or in-



Figure 1: Three models of the positive manifold: (a) the
standardg model, which shows the underlyingg factor that
influences all cognitive processes, (b) the mutualism model,
showing the interaction between various mental mecha-
nisms, and (c) the extended mutualism model, where only
the latent processes interact. Squares and circles denote
manifest and latent variables, respectively. Symbols x de-
note processes, u unique variances, and K resources (van der
Maas et al., 2006).

hibited by specific circumstances arising in the environment.
Each ability is thought to be controlled by a particular mod-
ule or area of the brain (Cosmides and Tooby, 2002). Thus,
many animal species excel in solving certain problems, but
not others.

In contrast to domain-specific intelligence, domain-
general intelligence is the ability of an individual to solve
new problems. Some animal species, for example, mice
(Matzel et al., 2011) and primates (Reader and Laland,
2002), possess an underlying cognitive mechanism that
helps them with associative learning and general problem-
solving. Evolutionary biologists and behavioral ecolo-
gists have posited that domain-general intelligence consists
of several linked domain-specific abilities (Cosmides and
Tooby, 2002). It has also been hypothesized that general in-
telligence emerged from domain-specific capabilities evolv-
ing under complex evolutionary pressures. Primatologists
argue that these pressures were specifically the complex so-
cial structures and labile social interactions required ofpri-
mates (Dunbar, 2003; Byrne and Whiten, 1989).

Primates are well known to be superior to most other ani-
mals in their behavioral flexibility and ability to solve prob-

lems (Byrne and Whiten, 1989; Tomasello and Call, 1997).
Moreover, they live in structurally complex groups. There-
fore, social cognition seems to be related to general intelli-
gence, implying that all animal species that live in similarly
large and complex societies should possess primate-like
cognitive abilities. However, this prediction is not always
true. For example, the societies of spotted hyenas (Cro-
cuta crocuta) are remarkably like those of cercopithecine
primates such as savanna baboons (Papio anubis) with re-
spect to size, composition, structure, and patterns of com-
petition and cooperation (Holekamp et al., 2012). A host
of studies have found that spotted hyenas and baboons have
converged with respect to social cognition (Holekamp et al.,
2007; Benson-Amram et al., 2011), but there is no evidence
that their domain-general intelligence has converged. This
result indicates that there may be some fundamental differ-
ences in the way the brain structures and cognitive faculties
of different species have evolved.

General intelligence is most apparent in human beings.
There is a significant positive correlation between abilities in
various cognitive tasks (van der Maas et al., 2006): A good
score on one cognitive test predicts good scores on all other
cognitive tests. This empirical phenomenon is called the
positive manifold, and it is unlikely to result from a strictly
modular brain (Figure 1).

There are many theories regarding the origin of the pos-
itive manifold (van der Maas et al., 2006). One hypothesis
is that there must be a single underlying mechanism in the
brain on which general intelligence depends (van der Maas
et al., 2006; Sternberg and Grigorenko, 2002). This factor
is commonly denoted asg (Figure 1a). Another general in-
telligence model is calledmutualism(van der Maas et al.,
2006). In this model, the positive manifold arises from the
interaction of multiple cognitive processes in the brain (Fig-
ure 1b). The extended mutualism model (Figure 1c) posits
thatg itself arises from the interaction between several latent
cognitive mechanisms in the brain. These latent variables
then influence the outwardly manifest variables that consti-
tute general intelligence (van der Maas et al., 2006).

In this paper, neuroevolution was used to evaluate the the-
ory of mutualism in the evolution of general intelligence.
Neural networks represented the brains, and the neurons in
them were the cognitive mechanisms that interacted to pro-
duce general intelligence. The extent of interactions was
characterized by the number of connections between neu-
rons in a neural network. Hence, a neural network with more
connections was expected to perform better when tested on
a general intelligence task. In addition, the amount of task-
specific learning was varied to check whether there was a
positive manifold or correlation between performance in that
task and performance in a new cognitive task.



NeuroEvolution of Augmenting Topologies
Neuroevolution has previously been used to great effect for
producing dynamic and intelligent behaviors in autonomous
agents. For example, it has been used in simulated robot
soccer (Whiteson et al., 2005), robotic battle (Stanley and
Miikkulainen, 2004) and Ms. Pac-Man (Burrow and Lucas,
2009). It has also been used to simulate the hunting and
social behaviors of animal groups (Rawal et al., 2010; Ra-
jagopalan et al., 2011; Rawal et al., 2012). Thus, neuroevo-
lution is a natural choice for modeling the emergence of gen-
eral intelligence.

NeuroEvolution of Augmenting Topologies, or NEAT
(Stanley and Miikkulainen, 2002), is a neuroevolution tech-
nique that optimizes not only the connection weights, but
also the topology of a neural network. NEAT has the
resources to add and delete both nodes and links. This
technique was shown to be more effective than traditional
neuroevolution methods that modify only the connection
weights of neural networks (Stanley and Miikkulainen,
2002).

To make crossover between two neural networks with dif-
ferent topologies possible, their links have to be lined up ac-
cording to the nodes they connect. NEAT makes this possi-
ble using a historical marker called a global innovation num-
ber which records when each connection was formed in the
population’s history. Speciation is also used to nurture new
innovations in network structure that might otherwise be lost
due to their low initial fitnesses.

In this paper, the NEAT algorithm was used to evolve sim-
ple neural networks. These networks were trained on one
cognitive task, but tested on a different task to study their
ability to adapt. The number of links in the neural networks
was varied to analyze the effect of connection density on
performance in general intelligence, or the testing phase.It
is easy to manipulate the connectivity of networks in NEAT
by changing the probability of adding new links. This ability
makes it a good choice as the neuroevolution algorithm for
this particular study.

Hypotheses
The experiments in this paper were conducted with the ob-
jective of simulating the early evolutionary processes in the
brains of species with different levels of domain-general in-
telligence. With this goal in mind, two factors thought to
influence general intelligence were tested. The following
hypotheses specify the expected results:

1. The general intelligence should increase with the connec-
tion density.

Theories from differential psychology claim that more in-
teraction between the various modules in the brain that
have evolved for specific tasks results in higher domain-
general intelligence (van der Maas et al., 2006). In the

simulations in this paper, a neural network with more con-
nections between its neurons is expected to have perform
better in the testing phase.

2. The general intelligence should increase with extended
evolution.

As stated in the Biological Background section, perfor-
mance in various cognitive tasks are found to be posi-
tively correlated with one another. If neural networks
are evolved past the point where their performance in the
known tasks has plateaued, they evolve to be more di-
verse, robust and efficient in these tasks (Watson et al.,
2011; Lehman and Stanley, 2010). They are more resilient
to changes in network function (such as mutations), and
should be more resilient to changes in the input as well,
and thereby more general. As a result, their performance
in the testing phase should improve with prolonged evo-
lution on the first task.

Experimental Setup

This section describes the experimental setup used for the
experiments in this paper. As explained in the previous
sections, the goal was to computationally explore theo-
ries from neurobiology and psychology about the evolution
of domain-general intelligence. To simulate the evolution
of animal brains, simple two-layer neural networks were
evolved using the NEAT algorithm.

The connections between the neurons simulated the inter-
action of processes in the brain, and the length of prolonged
evolution (i.e. evolution after a satisfactory performance had
been reached) represented the opportunity to evolve general-
ized processes. In the testing phase, new input was presented
to the neural network. These inputs were related to the old
inputs, but were not shown to the neural network during evo-
lution. The performance on the new input was taken as the
general intelligence of that particular neural network. Fit-
ness was defined as the percentage of inputs for which the
correct output was produced.

All neural networks in the population were identical be-
fore the start of evolution. They each had a single hidden
layer of neurons and sigmoidal activation functions. In the
preliminary experiments, topology as well as weights could
change through evolution. The later experiments involved
the evolution of only the connection weights. Even when
topology was evolved, only links were added or deleted; the
number of hidden neurons was always constant. The pop-
ulation consisted of a single species of either 30 or 100 in-
dividual neural networks. This number and the number of
species changed during the program’s execution as part of
the NEAT algorithm. Each experiment was run 20 times for
each population of neural networks and their results were
averaged.



Figure 2: The initial network topology for the parity task.
There are eight input nodes of which five are active, and
three are don’t cares. The five input nodes are connected
to five hidden neurons, each of which is connected to the
single output node. This preliminary task demonstrated that
the topology-evolving approach would converge to similar
architectures for this simple problem. Therefore, a fixed-
topology approach in a more challenging task was necessary
to test the hypotheses.

Results
Preliminary experiments were first conducted in the multi-
bit parity domain to check what kinds of tasks and neural
network architectures were most suitable for simulating gen-
eral intelligence. In these experiments, both the connection
weights and the structure of the networks were evolved us-
ing NEAT. Although links between already existing neurons
were added or removed during evolution, neurons them-
selves were not created or deleted. Thus, the only factors af-
fecting fitness were the number and location of the links, and
the values of their weights. In this manner, interconnections
between various brain modules were modeled. Insights from
these experiments were then used to design a second set of
experiments on a handwritten digit recognition domain.

Parity Task for Topology-Evolving Networks

For practical reasons, it is useful to start any simulation
study with the simplest of tasks and the most basic neural
network structures. After gaining insights on how to make
them work, the algorithm and the task may be expanded
gradually to more complex tasks. In this case, a simple logic
function, multi-bit parity, served as a starting point to test
the neural networks. In this task, the answer is 1 if the num-
ber of 1’s in the input is odd, and 0 if the number of 1’s in
the input is even. The neural networks had eight neurons or
nodes in the input layer, five nodes in the hidden layer and
a single output neuron (Figure 2). Initially, each of the five

hidden neurons was connected to a different input neuron.
Due to the sigmoidal activation function, the output neuron
produced a real-valued number between 0 and 1. This value
was taken to mean a 0 if less than 0.5, and a 1 otherwise.
Of the eight input nodes, five were in use and had incom-
ing multi-bit input, one bit at each node. Hence, there were
32 possible input bit strings. The other three nodes had as
input fixed “don’t-care” values. The neural networks were
expected to ignore the don’t-care inputs while successfully
calculating the parity of the correct inputs.

Several combinations of evolution and testing scenarios
were given to the networks and the percentage of testing
phase inputs for which the network gave the wrong output
(error) was recorded. Several neural network populations
with different probabilities of adding links during evolution
were tested in each of these. The idea was that networks
with a higher probability of having links added would have
acquired more links by the end of the simulation. Thus, ac-
cording to our original hypotheses, these networks should
perform better in the testing phase.

More specifically, the following experiments were per-
formed in the parity task:

1. Evolution task: 22 of the 32 possible input bitstrings;
don’t care = 0

Test set: The other 10 bitstrings; don’t care = 0

2. Evolution task: 22 of the 32 possible input bitstrings;
don’t care = 0

Test set: The other 10 bitstrings; don’t care changes to 1

3. Evolution task: All 32 bit combinations;
don’t care = 0

Test set: All 32 bit combinations; don’t care = 1

The purpose of conducting these different experiments
was to evolve a neural network on one set of inputs and
then test it on another, related set. If the neural network had
evolved to generalize, the test problem should be solvable
even if never seen before by the network. The performance
on the new inputs was also expected to depend on the num-
ber of connections between the neurons of the network in
question.

The main result was that all the different populations of
neural networks (with the different probabilities of adding
links during evolution) had similar performances during the
testing phase. The reason was that all the networks had
similar structure at the end of the simulation. Apparently,
the NEAT algorithm is capable of adding links as needed
for different network structures regardless of the probability
of adding links. Moreover, although some links had been
added for every network, the final structures still remained
very simple. This result proved that the parity task was solv-
able by too simple a network structure. Therefore, a more



Figure 3: An example of the 8×8 bitmap encoding the im-
age of a single digit, 7. The 1’s represent black and the 0’s
represent white. This bitmap is concatenated into a 64-bit
vector, which is given as input to the neural networks.

complex problem as well as a different neuroevolution strat-
egy was needed to test the hypothesis that more connections
mean more general intelligence.

Handwritten Digit Recognition Task for
Fixed-Topology Networks
To avoid the problem with the parity experiments, in the sec-
ond set of experiments, the topologies of all the networks
were fixed and only the connection weights were evolved.
Twenty trials of each experiment were run for each popula-
tion and their results were averaged. The connection density
remained the same between trials, but the individual connec-
tions could be different. Both feed-forward and recurrent
neural networks were tested.

The recognition of handwritten digits, a well-known
benchmark problem for neural networks, was chosen as a
more challenging task, adapted for a test for domain-general
intelligence. The inputs were not only the images of the
digits, but also their mirror images. The mirror image of
a single digit, 7, was left out of the set of inputs used dur-
ing evolution and only used as a test input. The digit 7 was
chosen for this purpose because the mirror image of 7 is
not easily confused with other digits, and 7 is distinct from
its mirror image (unlike 0, 1 or 8). If the neural network
had evolved to recognize that some of its inputs were mir-
ror images of other inputs, it should have no difficulty in
recognizing a previously unseen set of mirror images. The
performance during the testing phase is thus a good measure
of the extent to which general intelligence has evolved in a
neural network.

The handwritten digits were obtained from data stored in
the NIST database. These images are taken from real-world

Figure 4: The network topology for the handwritten digit
recognition task. There are 64 input nodes, 25 hidden neu-
rons and ten output nodes. The connections between them
are initially added at random based on the required connec-
tion density, but remain fixed thereafter. This more com-
plex task and fixed-density architecture allowed testing the
hypotheses about connectivity and prolonged evolution reli-
ably.

data and therefore contain several noisy and distorted exam-
ples. The image of each digit was converted into an 8×8
bitmap representation, where 0 represents white and 1 rep-
resents black (Figure 3). The bits in the bitmap were then
concatenated into a 64-bit vector, which was used as a sin-
gle input to the neural network. Therefore, the neural net-
works in these experiments comprised 64 input nodes and
10 output nodes, representing a digit from 0 to 9. The digit
corresponding to the node with the maximum value of out-
put was considered the answer of the neural network to that
particular input. The number of hidden neurons in each neu-
ral network was fixed at 25 (Figure 4). The number of dis-
tinct handwritten digit images shown to the networks during
evolution was 5687, and the number of mirror images of 7
shown during the testing phase was 299.

The fixed topology of the neural networks meant that the
effect of connection density on the testing phase perfor-
mance could be easily measured. The second hypothesis,
that the extent of prolonged evolution influences test per-
formance, could also be verified by varying the number of
generations for which the neural network was evolved after
it had already evolved to recognize the inputs shown dur-
ing evolution. The results of these experiments are shown in
figures 5 and 6.

As predicted, the test performance increased with increas-
ing connection density of the neural network. This result
was true for both feed-forward and recurrent neural net-
works. After 65% density, however, the test performance
started to decrease again (Figure 5). At the same time,
the fitness on the training inputs also decreased, indicating



Figure 5: The average performance on the test phase (with unseen input) after evolving the network for 100 generations
on the other inputs. Connection density fraction is on thex-axis and percentage of test input images the neural network
identified correctly on they-axis. The performance increases with increased connectivity up to a point, indicating more general
intelligence.

that the decrease was not due to overfitting, but probably
from the difficulty of evolving large numbers of connection
weights.

Similarly, the test performance also increased with in-
creasing numbers of generations for which the neural net-
work was evolved. Evolution was continued beyond the
100 or so generations needed for networks with the optimal
connection density (65%) to learn the training inputs. The
performance on unseen inputs was plotted against number
of generations for which the networks were evolved on the
training inputs (Figure 6). It should be noted that there was
no significant increase in the fitness over the evolution ex-
amples during the prolonged training. There was no effect
on the results whether population size was 30 or 100. The
fitness in Figure 6 for the point 0 on thex-axis (100 gener-
ations of evolution, stagnation just reached) is the same as
the fitness for point 0.65 in Figure 5.

Thus, these results confirm that both denser connectiv-
ity and prolonged evolution result in networks that imple-
mented more general solutions and therefore, more general
intelligence.

Discussion and Future Work
The experiments described in the previous section support
the hypothesis that fitness on a general intelligence task in-
creases with increased connectivity in the brain. With the
particular tasks with the simple neural networks in these ex-
periments, more connections typically equals better general-
ization ability.

After a certain point, the testing performance decreases
again. This is not due to overfitting but a different mecha-
nism. The likely reason is that the neural network becomes

too complex for evolution to optimize. The networks have
64 input neurons, 25 hidden neurons and 10 output neurons
each; at 0.65 connection density (i.e. with 65% of all pos-
sible connections), the number of connection weights that
need to be evolved becomes very large. Excessive complex-
ity would also explain why the populations of recurrent neu-
ral networks generally have a lower test performance than
populations of feed-forward neural networks. Not only is the
number of connections large, but the number of timesteps
required for the network to settle is also higher.

From machine learning perspective, more connections in
a neural network and prolonged training should result in
overfitting, i.e. the network should not be able to generalize
as well. It is interesting that the opposite effect is observed
in the experiments in this paper: more connections and pro-
longed evolution results in more general behavior. Note that
the task in this paper is not to simply interpolate between
training examples, which is usually done in machine learn-
ing experiments, but to extend the behavior to a new class
of examples. Such a task is more cognitive, and indeed the
result is different. The task is still limited and it is diffi-
cult to demonstrate extensive general intelligence in it. But
the fundamental property of general intelligence is the abil-
ity use behaviors in a novel context. Thus, it can be argued
that the results indicate not just a generalization of neural
networks, but the signature of general intelligence.

One significant insight gained from the above simulations
is that the neural network architecture, the training algo-
rithm, and the cognitive task employed to test general in-
telligence are all important. Further work is necessary to
determine which combinations are most conducive to gen-
eral intelligence. The main advantage of NEAT is the evo-



Figure 6: The average test performance of neural networks with connection density 65% after evolution for 50, 100, 200, and
300 generations on the other inputs. The training fitness usually plateaued at around 100 generations of evolution. The total
number of generations is on thex-axis below the plot and the number of generations after fitness stagnation on thex-axis above
the plot. The percentage of test input images the neural network identified correctly is on they-axis. The performance on the
test input increases with prolonged evolution.

lution of neural network structure, but since it is the level
of interaction between many specialized modules that is be-
ing studied, a fixed-structure neuroevolution algorithm such
as Multi-Component ESP (Gomez and Miikkulainen, 1997;
Rawal et al., 2010) may be more beneficial. Different sub-
networks of the same network can be evolved to perform dif-
ferent tasks, and their interconnections can be varied while
the whole network is tested on a new domain-general task.
Preliminary experiments with a hybrid NEAT-ESP algo-
rithm are quite promising.

Similarly, the tasks themselves can be modified to resem-
ble those faced by real animals in the wild better. Neu-
roevolution has already been used to evolve complex ani-
mal behaviors such as group hunting, communication with
conspecifics and evading predators (Rawal et al., 2010; Ra-
jagopalan et al., 2011; Rawal et al., 2012). Therefore, a task
extension in this direction should be possible.

General intelligence approaches may ultimately be used
to design robots or video game characters with realistic and
complex behaviors. Such agents should be more versatile,
more engaging, and more effective than is currently possi-
ble.

Conclusions
In this paper, two factors believed to influence the evolution
of domain-general intelligence were tested using neuroevo-
lution: connection density and prolonged evolution. The
results indicate that increasing the number of connections
leads to an increase in the general intelligence, up to a point.
They also verify the hypothesis that prolonged evolution in
similar cognitive tasks leads to better performance in a pre-

viously unseen task. Hence, it can be concluded that gen-
eral intelligence is determined by specific anatomical and
environmental factors that affect the evolution of an animal
species.

The simulations from this paper can be extended in the fu-
ture to more realistic tasks in environments resembling those
in which real-life animal species live, gaining insight into
differences observed in biology. Eventually, the same ap-
proach could be useful in creating intelligent behaviors for
artificial agents in video games or robotics as well.
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