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Abstract

Conversion rate optimization means designing web interfaces
such that more visitors perform a desired action (such as reg-
ister or purchase) on the site. One promising approach, im-
plemented in Sentient Ascend, is to optimize the design us-
ing evolutionary algorithms, evaluating each candidate de-
sign online with actual visitors. Because such evaluations are
costly and noisy, several challenges emerge: How can avail-
able visitor traffic be used most efficiently? How can good
solutions be identified most reliably? How can a high con-
version rate be maintained during optimization? This paper
proposes a new technique to address these issues. Traffic is
allocated to candidate solutions using a multi-armed bandit
algorithm, using more traffic on those evaluations that are
most useful. In a best-arm identification mode, the best can-
didate can be identified reliably at the end of evolution, and
in a campaign mode, the overall conversion rate can be op-
timized throughout the entire evolution process. Multi-armed
bandit algorithms thus improve performance and reliability of
machine discovery in noisy real-world environments.

Introduction
Conversion rate optimization (CRO) is an emerging field of
applied AI (Salehd and Shukairy 2011). Web interface de-
signs are optimized to increase the percentage of visitors
who perform a desired action such as making a purchase,
registering a new account, or clicking on a desired link. The
true conversion rate of a web interface is unknown, but can
be estimated via a number of user interactions, which are
usually noisy. CRO is therefore a challenging application of
optimization under uncertainty.

Recently, a new technology for CRO was developed in a
system called Sentient Ascend (Miikkulainen et al. 2017a;
2018). Each website design is represented as a genome, and
evolutionary algorithms (EAs) are used to search for designs
that convert well. Evolutionary CRO provides considerable
advantages over traditional A/B or multivariant testing: Ex-
ploration in EA covers a large design space; evolution dis-
covers and utilizes effective interactions among variables;
optimization of website design is fully automated.

Although this approach leads to impressive improvements
over human design (Miikkulainen et al. 2017a; 2018), sev-
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eral open issues remain in evolutionary CRO. First, candi-
date designs are expensive to evaluate, and traffic is often
wasted on bad designs. Second, only weak statistical evi-
dence is available to select a winner design, reducing relia-
bility of the optimization outcome. Third, in some cases, the
target is to maintain a high overall conversion rate during
the optimization process instead of identifying a single best
design at the end of the optimization.

To overcome these issues, this paper proposes augmenting
EAs with multi-armed bandit (MAB) algorithms (Agrawal
and Goyal 2012; Audibert and Bubeck 2010; Auer, Cesa-
Bianchi, and Fischer 2002). First, a new framework for traf-
fic allocation during fitness evaluation is developed based
on MAB, called MAB-EA. This framework aims at reduc-
ing the evaluation cost while maintaining the optimization
performance. Second, an enhanced variant of MAB-EA is
designed to select the winner reliably. The main idea is to
include an addtional verification phase, based on MAB al-
gorithms, to the end of the evolution process. Third, another
variant of MAB-EA is developed by introducing a new con-
cept called asynchronous statistics into MAB algorithms.
The new variant is particularly well suited for situations
where overall conversion rate during optimization needs to
be maximized. Empirical studies with simulated traffic in
Sentient Ascend demonstrate that the MAB techniques are
effective in Evolutionary CRO. The techniques proposed in
the paper are general, however, and it should be possible to
adapt them to other optimization problems in uncertain en-
vironments.

The remainder of this paper is organized as follows. First,
background knowledge regarding evolutionary CRO and
MAB algorithms is provided. The technical details of the
new approaches are then explained, and the underlying ra-
tionale is discussed. After that, the proposed techniques are
evaluated experimentally with Sentient Ascend on simulated
traffic. Evaluation of the results and suggestions for future
work conclude the paper.

Background
This section describes the basic concepts and existing chal-
lenges in evolutionary CRO. A brief introduction of MAB
problem and representative MAB algorithms is then pro-
vided.



Evolutionary Conversion Rate Optimization
EA is a population-based metaheuristic inspired by natural
evolution process. Each individual (genome) in the popula-
tion represents a single solution to the optimization problem,
and these individuals will evolve through crossover, muta-
tion and survival selection iteratively. The most significant
advantage of EAs is that they do not make any assumption
about the underlying landscape of the optimization prob-
lems, thereby leading to exceptional ability in finding good
solutions to mathematically intractable problems (Eiben and
Smith 2015).

In evolutionary CRO (Miikkulainen et al. 2017a; 2018),
each genome represents a web interface design. The search
space is pre-defined by the web designer. For each such
space, the designer specifies the elements of the interface
and values that they can take. For instance in a landing page,
logo size, header image, button color, content order are such
elements, and they can each take on 2-4 values. Evolution-
ary CRO searches for good designs in the space of possible
combinations of these values, which often number in mil-
lions. In each generation, all the genomes will be evaluated
with a fixed number of user interactions, and the conversion
rates during evalution will be used as the fitnesses for each
genome. Fitness-proportionate selection is then used to se-
lect parent genomes, and traditional genetic operations such
as crossover (recombination of the elements in two parent
genomes) and mutation (randomly changing one element in
the offspring genome) are performed to generate offspring
candidates. The same process will be repeated generation by
generation until the termination criterion is met, which usu-
ally means reaching a fixed number of user interactions. In
a typical winner-selection application, the winning design is
then selected among the best candidates, with an estimate of
its future performance. In campaign-mode application, there
is no winner but performance is measured by the overall con-
vergence rate throughout the entire experiment.

Challenges in Real-World Evolutionary CRO When the
Evolutionary CRO methods were taken out of the laboratory
and into the real world application, it became clear that there
were new and interesting challenges that needed to be met.
First, in the original Evolutionary CRO framework (Miikku-
lainen et al. 2017a; 2018), the evaluation of each candidate
is performed in a static fashion: A fixed amount of traffic
is allocated to each web design. This means even if a can-
didate is clearly bad based on a few visits, the system cur-
rently gives it the same amount of traffic as for good ones.
A large amount of real traffic may be wasted by bad candi-
dates, leading to more expensive evaluations. Second, dur-
ing the normal evolutionary process, only weak statistical
evidence is obtained. Therefore, there is a multiple hypothe-
ses problem, i.e. the winner candidate is most likely not the
one with the best true conversion rate, but one that got lucky
with evaluations. Third, the current evolutionary CRO tech-
nique is designed to identify a good candidate at the end of
optimization. However, in some scenaria, the goal for CRO
is to make the overall conversion rate during optimization
as high as possible. With uniform traffic allocation, bad can-
didates are tested as much as good ones, thereby reducing

the overall conversion rate. To address these issues, this pa-
per presents a new technique that takes advantage of MAB
algorithms in evolutionary CRO.

Multi-armed Bandit Algorithms
This subsection explains the definition of multi-armed ban-
dit problem, and introduces three representative multi-armed
bandit algorithms used in this paper.

Multi-armed Bandit Problem In MAB problem, a slot
machine with multiple arms is given, and the gambler has
to decide which arms to pull, how many times to pull each
arm, and in which order to pull them (Weber 1992). The
most common is the stochastic MAB problem, which is
parameterized by the number of arms K, the number of
rounds n, and K fixed but unknown reward distributions
ν1, ν2, . . . , νK associated with arm 1, arm 2, . . . , arm K,
respectively. For t = 1, 2, . . . , n, at round t, the agent (gam-
bler) chooses an arm It from the set of arms {1, 2, . . . ,K} to
pull, and observes a reward sampled from νIt . Each reward
sample is independent from the past actions and observa-
tions. The CRO problem is a special case (called Bernoulli
bandit) of the general stochastic MAB problem: the reward
for each pull is either 1 or 0 (converted or not in CRO), and
for arm i the probability of success (reward = 1) is pi, which
equals to its true conversion rate.

An algorithm for the stochastic MAB problem must de-
cide which arm to pull at each round t, based on the out-
comes of the previous t−1 pulls. In the classical MAB prob-
lem, the goal is to maximize the cumulative sum of rewards
over the n rounds (Robbins 1952; Auer, Cesa-Bianchi, and
Fischer 2002). Since the agent has no prior knowledge about
the reward distributions, it needs to explore the different
arms, and at the same time, exploit the seemingly most re-
warding arms (Audibert and Bubeck 2010). This goal aligns
with the campaign-mode application in CRO. For clarity of
statement, we call this type of problem the classical stochas-
tic MAB problem. Another target for stochastic MAB prob-
lem is to output a recommended arm after a given number of
pulls. The performance of the MAB algorithm is only eval-
uated by the average payoff of that recommended arm. This
goal aligns with the winner-selection application in CRO.
This is called pure exploration problem (Bubeck, Munos,
and Stoltz 2009).

UCB Algorithm Upper Confidence Bound (UCB) algo-
rithm is arguably the most popular approach for solving clas-
sical MAB problems due to its good theoretical guarantees
(Agrawal and Goyal 2012). The principle behind UCB is op-
timism in the face of uncertainty (Kamiura and Sano 2017).
Generally, UCB constructs an optimistic guess on the poten-
tial reward of each arm, and pulls the arm with the highest
guess. Among the UCB family of algorithms, UCB1 (Auer,
Cesa-Bianchi, and Fischer 2002) is a simple yet efficient
variant that can be directly applied to Bernoulli Bandits. The
optimistic guess in UCB1 is in the form of an upper confi-
dence bound derived from the Chernoff-Hoeffding inequal-
ity (Chernoff 1952; Hoeffding 1963). Algorithm 1 shows the
basic steps of UCB1 algorithm.



Algorithm 1 UCB1 Algorithm

Require:
K: Total number of arms

1: for i = 1 to K do
2: Pull arm i, and observe reward Xi,0

3: x̂i = Xi,0

4: ni = 1
5: end for
6: for t = K + 1,K + 2, . . . do
7: Pull arm imax := argmaxix̂i +

√
2 log (t)/ni, and

observe reward Ximax,t

8: x̂imax
=

x̂imax×nimax+Ximax,t

nimax+1

9: nimax = nimax + 1
10: end for

Thompson Sampling Except for UCB, Thompson Sam-
pling (TS) (Thompson 1933) is another good alternative
MAB algorithm for the classical stochastic MAB problem.
The idea is to assume a simple prior distribution on the pa-
rameters of the reward distribution of every arm, and at each
round, play an arm according to its posterior probability of
being the best arm (Agrawal and Goyal 2012). The effec-
tiveness of TS has been empirically demonstrated by several
studies (Granmo 2010; Scott 2010; Chapelle and Li 2011),
and the asymptotic optimality of TS has been theoretically
proved for Bernoulli bandits (Kaufmann, Korda, and Munos
2012; Agrawal and Goyal 2012). TS for Bernoulli bandits
utilizes beta distribution as priors, i.e., a family of contin-
uous probability distributions on the interval [0, 1] parame-
terized by two positive shape parameters, denoted by α and
β. The mean of Beta(α, β) is α

α+β , and higher α, β lead
to tighter concentration of Beta(α, β) around the mean. TS
initially assumes each arm i to have prior reward distribu-
tion Beta(1, 1), which is equivalent to uniform distribution
on [0, 1]. At round t, after having observed Si successes (re-
ward = 1) and Fi failures (reward = 0) in Si + Fi pulls for
arm i, the reward distribution of arm i will be updated as
Beta(Si+1, Fi+1). The algorithm then samples from these
updated reward distributions, and selects the next arm to pull
according to the sampled reward. Algorithm 2 describes the
detailed procedure of TS.

Successive Rejects Algorithm Among many existing al-
gorithms for solving the pure exploration problem, Succes-
sive Rejects (SR) algorithm stands out in that it is parameter-
free and independent of the scaling of the rewards (Audib-
ert and Bubeck 2010). The main task for SR algorithm is
to identify the best arm (the arm with truly best mean re-
ward) after a fixed number of pulls. Suppose we are givenK
arms and n pulls. First the SR algorithm divides the n pulls
into K − 1 phases. At the end of each phase, the arm with
the lowest empirical mean reward will be discarded. During
each phase, each arm that has not been discarded yet will be
pulled for equal number of times. The only surviving arm af-
ter K − 1 phases, Jn, will be recommended as the best arm.
The SR algorithm is essentially optimal because the regret
(difference between the mean rewards of identified best arm

Algorithm 2 Thompson Sampling for Bernoulli Bandits

Require:
K: Total number of arms

1: for i = 1 to K do
2: Si = 0, Fi = 0
3: end for
4: for t = 1, 2, . . . do
5: for i = 1 to K do
6: Sample θi,t from Beta(Si + 1, Fi + 1)
7: end for
8: Pull arm imax := argmaxiθi,t, and observe reward

Ximax,t

9: if Ximax,t = 1 then
10: Si = Si + 1
11: else
12: Fi = Fi + 1
13: end if
14: end for

Algorithm 3 Successive Rejects Algorithm

Require:
K: Total number of arms
n: Total number of pulls

Ensure:
Best arm Jn

1: A1 = {1, . . . ,K}, log(K) = 1
2 +

∑K
i=2

1
i , n0 = 0

2: for k = 1 to K − 1 do
3: nk = d 1

log(K)
n−K
K+1−k e

4: for i ∈ Ak do
5: Pull arm i for nk − nk−1 rounds
6: end for
7: Ak+1 = Ak\argmini∈Ak

X̂i,nk
, where X̂i,nk

is the
average reward for arm i after nk pulls

8: end for
9: Let Jn be the unique element of AK

and true best arm) decreases exponentially at a rate which
is, up to a logarithmic factor, the best possible (Audibert and
Bubeck 2010). The details of SR are described in Algorithm
3.

Methodology
This section describes the algorithmic details of the pro-
posed approaches and mechanisms. A basic framework
combining Evolutionary CRO technique with MAB algo-
rithm is presented first, then two enhanced variants are de-
veloped for tackling different use cases, namely, Best Arm
Identification and Campaign mode.

MAB-EA
The first goal of this work is to develop a new framework
that allocates traffic dynamically in a more efficient way.
MAB algorithms are well suited for this role. Each candi-
date web design can be regarded as an arm, and each visit
to the website is equal to a pull. The reward of each visit to
a single web design is assumed to follow an unknown but



Algorithm 4 MAB-EA

Require:
K: Population size, Gmax: Total number of generations
T : Number of website visits for each generation
Ce: Percentage for elites, Cp: Percentage for parents
P1: Initial population, Cm: Mutation probability

1: D = P1, D is the archive for storing evaluated candi-
dates

2: for g = 1 to Gmax do
3: Perform MAB algorithm on Pg with a traffic budget

of T , record the number of conversions si and number
of visits ni within current generation for each candi-
date

4: for i = 1 to K do
5: Set fitness for candidate i as fi = si/ni
6: end for
7: Create elite pool Eg as the best Ce percentile candi-

dates in current generation
8: Create parent pool Ag as the best Cp percentile can-

didates in current generation
9: Initialize offspring pool Og as empty

10: while Size of Eg +Og is less than K do
11: Perform fitness-proportionate selection on Ag to

pick 2 parent candidates
12: Perform uniform crossover between the two par-

ents to generate an offspring
13: Perform mutation operation on the offspring, each

element of the offspring will have Cm probability
to be randomly altered

14: if the offspring is not in D then
15: Add the offspring to Og
16: Add the offspring to D
17: end if
18: end while
19: Pg+1 = Eg +Og
20: end for

fixed Bernoulli distribution. The probability of getting re-
ward 1 (the visited user is successfully converted) is p and
the probability of getting reward 0 (the visited user is not
converted) is 1−p, where p is the true conversion rate of that
web design. Given a fixed budget of traffic (number of visits)
for each generation, a Bernoulli MAB algorithm will then
be invoked to allocate traffic to the current candidates. The
fitness of each candidate is equivalent to its number of suc-
cessful conversions divided by its total visits (both numbers
are counted within the current generation). Based on these
fitnesses, standard EA operations such as parent selection,
crossover, mutation and survival selection will be conducted
to generate the population for next generation. Algorithm 4
depicts the procedure of the proposed framework, namely
MAB-EA.

Note that the goals of the MAB algorithm and the eval-
uation phase in EA are inherently different: MAB algo-
rithm only cares about identifying the good arms efficiently,
whereas evaluation phase in EA aims at estimating the fit-
nesses of all arms. In spite of this fact, MAB algorithm

Algorithm 5 Best Arm Identification Mode

Require:
Same control parameters as in Algorithm 4
Ke: Size for the elite pool
Te: Additional traffic for Best Arm Identification phase

1: D = P1, D is the archive for storing evaluated candi-
dates

2: Initialize elite pool E as empty
3: for g = 1 to Gmax do
4: Same as lines 3-6 in Algorithm 4
5: Add the best Ce percentile candidates of current gen-

eration to elite pool E
6: while Size of E is larger than Ke do
7: Remove the worst candidate from E
8: end while
9: Create parent pool Ag as the best Cp percentile can-

didates in current generation
10: Initialize offspring pool Og as empty
11: while Size of Og is less than K do
12: Same as lines 11-17 in Algorithm 4
13: end while
14: Pg+1 = Og
15: end for
16: Perform pure exploration MAB algorithm on E with a

traffic budget of Te, return the identified best candidate

should not impair the optimization performance signifi-
cantly, and may even improve it. As shown in Algorithm
4, elite candidates play an important role in both parent se-
lection and survival selection. Since MAB algorithms al-
locate more traffic to those promising candidates, their fit-
nesses are actually more reliably estimated than those of
the least promising candidates. Selection mechanisms rely-
ing on good candidates are therefore further enhanced. The
proposed framework is expected to significantly increase the
overall conversion rate during evolution without sacrificing
the overall optimization performance.

Best Arm Identification Mode
One classical task for CRO is to identify a single best de-
sign that can be delivered to website owner for long-term
use. The reliability of the optimization outcome therefore
becomes critical. To handle this situation, a Best Arm Iden-
tification (BAI) Mode (Algorithm 5) is developed based on
the new MAB-EA framework.

In BAI mode, an additional BAI phase is applied after
the evolution process has concluded. A MAB algorithm for
pure exploration (e.g., SR algorithm) will be performed on
an elite archive, i.e., the collection of top candidates over
all generations. A single winner will be returned after the
BAI phase. Although additional traffic is needed for run-
ning the BAI phase, this cost can be compensated by extract-
ing a small portion of traffic from each previous generation
(e.g., 10%). Empirical tests in later section show that BAI
mode can significantly improve the reliability of identified
best candidate without incurring any additional cost.

One additional modification in BAI mode is the removal



Algorithm 6 Campaign Mode with Asynchronous MAB Al-
gorithm

Require:
Same control parameters as in Algorithm 4 excluding
Ce

1: Initialize the total number of conversions si and total
number of visits ni for each candidate as 0

2: for g = 1 to Gmax do
3: Perform asynchronous MAB algorithm on Pg with a

traffic budget of T , update the total number of con-
versions si and total number of visits ni for each can-
didate

4: Same as lines 4-6 in Algorithm 4
5: Create parent pool Ag as the best Cp percentile can-

didates in current generation
6: Remove the worst Cp percentile candidates from Pg
7: Initialize offspring pool Og as empty
8: while Size of Pg +Og is less than K do
9: Same as lines 11-13 in Algorithm 4

10: if the offspring is not in Pg +Og then
11: Initialize the total number of conversions si and

total number of visits ni for the offspring as 0
12: Add the offspring to Og
13: end if
14: end while
15: Pg+1 = Pg +Og
16: end for

of elite survival mechanism. No candidate is allowed to sur-
vive for more than one generation, and all the candidates
for next generation will be totally new. The purpose for this
modification is to further improve the explorative ability of
the framework, considering the fact that the evaluations are
very expensive and only limited number of generations (less
than 10) are acceptable in real CRO cases. Since the elite
archive in BAI mode has already stored the outstanding can-
didates for every generation, the evolution can focus on ex-
ploring more regions in search space.

Campaign Mode with Asynchronous Multi-armed
Bandit Algorithm
In some scenaria, the goal for CRO is to make the overall
conversion rate during optimization as high as possible in-
stead of returning a single winner. To fill this need, a Cam-
paign mode based on MAB-EA is developed by introducing
a new concept to existing MAB algorithms: asynchronous
statistics.

The original MAB algorithms initialize the statistics (total
reward, average reward, number of pulls, etc.) of all the arms
as 0. In contrast, the MAB algorithms in Campaign mode
run in an asynchronous manner: All the candidates surviv-
ing from previous generation preserve their statistics and use
them to initialize the MAB algorithm, which then updates
them further, as usual. Taking asynchronous TS as an exam-
ple, each candidate has an Si and Fi, and these two numbers
are updated over generations until the candidate fails to sur-
vive. The underlying rationale is that preservation of statis-

tics increases the survival probability of good candidates,
therefore Campaign mode focuses more on exploitation than
exploration. Asynchronous MAB algorithms allocate more
traffic to the existing elites without reevaluating them from
scratch, thus improving overall conversion rate. Algorithm 6
summarizes the structure of Campaign mode.

Except for asynchronous statistics in MAB algorithms,
the Campaign mode differs from the original MAB-EA in
two other aspects. First, the duplication avoidance mecha-
nism is weakened. Since exploration is not the first priority
in Campaign mode, duplications between different genera-
tions are allowed to encourage the revival of underestimated
candidates. Second, only the worst Cp percentile candidates
are replaced by the new offspring, which are generated from
the topCp percentile candidates. By settingCp as 20 or even
less, the portion of newly generated offspring is limited, and
the overall conversion rate is more stable. Moreover, because
all the offspring are generated based on the top candidates,
the overall quality of offspring tends to be better than purely
random sampling. Under these mechanisms, the crossover
and mutation operations can continue the exploration at a
steady pace.

Empirical Study
This section evaluates the proposed framework and mech-
anisms via experiments based on real-world data. All the
conclusions in this section are supported by t-test at a 5%
significance level.

Experimental Setup
The Sentient Ascend system contains a simulator that allows
testing conversion rate performance on simulated traffic. It
therefore makes it possible to evaluate the effect of new al-
gorithms in formal and controlled conditions before they are
applied to real traffic. There are multiple possible choices for
each element of a website, and each choice will increase or
decrease the basic conversion rate of the website. The effect
of each choice is predefined and kept fixed during the CRO
process. For all the experiments in this section, the following
setup is used: There are a total of 8 elements in the website
that needs to be optimized. The elements have 5, 4, 2, 3, 4, 3,
3 and 4 choices, respectively. The basic conversion rate for
the website is 0.05, and the effect of each element choice is
within [−0.01, 0.01]. The mean conversion rate for all pos-
sible designs is 0.04997, and the conversion rate for the best
possible design is 0.08494. This parametric setup is based
on real-world data. For each simulated visit, a Bernoulli test
with success probability equal to the conversion rate of the
web design will be conducted. A successful trial corresponds
to a successful conversion, and givies a reward of 1. A failed
trial returns a reward of 0.

Overall Performance Evaluation
To evaluate the performance of the new framework, three
representative MAB algorithms (SR, TS and UCB1) are in-
corporated into it, and an empirical comparison between
these three variants and the original evolutionary CRO al-
gorithm is conducted. The original algorithm is the same as



Figure 1: The figure shows the best conversion rate and overall conversion rate in each generation. The results are averaged over
500 independent runs for different Ce and Cp settings. TS and SR perform significantly better than Standard Method in terms
of both measures. The differences in best conversion rate are statistically significant after Generation 1, and the differences in
overall conversion rate are statistically significant over all generations.

Algorithm 4 except for traffic allocation: instead of varying
it based on a MAB algorithm, all candidates evenly share
the traffic budget. For convenience, the original evolution-
ary CRO algorithm is named ”Standard Method” in the rest
of the paper.

The traffic budget for each generation is fixed at 10,000,
and the maximun number of generations is set at 10 , con-
forming to cost limitations in real-world CRO. The pop-
ulation size K is 20, and the mutation probability Cm is
0.01. Different values of elite and parent percentages,Ce and
Cp, are tested to investigate the robustness of the proposed
framework. Two performance metrics are utilized: one is
the best conversion rate, i.e., the true conversion rate of the
best-performing candidate in each generation; the other is
the overall conversion rate for each generation, i.e., the total
number of conversions in one generation divided by the to-
tal number of visits in that generation. Note that the overall
conversion rate is different from simply averaging the con-
version rates of all the candidates, because the traffic allo-
cated to each candidate may be different.

Figure 1 shows the results based on 500 independent runs.
From Figure 1, it is clear that the proposed framework with
TS and SR significantly increases the overall conversion
rate during evolution without deteriorating the optimization
performance. In fact, the incorporation of MAB algorithms
even improves the optimization performance in terms of
best conversion rate. Regarding the influence of Ce and Cp,
larger values of these two parameters lead to more explo-
rative behaviors at a cost of overall conversion rate at early
stage. In real-world cases, an acceptable generation number

is usually 5, so a reasonable choice for Ce and Cp would
be 20 or even less. Under these circumstances, the TS and
SR variants perform best both in terms of overall conver-
sion rate and best conversion rate. There are three explana-
tions: first, the MAB algorithm allocates more traffic to the
promising candidates, thereby increasing the overall conver-
sion rate during evaluation; second, since the top candidates
receive more traffic from MAB algorithm, the reliability of
best performing candidate is enhanced; third, under small
Ce and Cp, the quality of offspring relies heavily on the top
candidates, and more reliable top candidates tend to gener-
ate more reliable offspring. The overall quality of candidates
is therefore improved, and the overall conversion rate is fur-
ther increased in this way. Regarding UCB1, since the av-
erage reward in the simulated CRO case is very low (e.g.,
0.05), the exploration term (

√
2 log (t)/ni in line 7 of Algo-

rithm 1) plays a more important role in arm selection. This
encourages evenly allocation of the traffic, thereby leading
to similar behaviors as in Standard Method.

Effectiveness of Best Arm Identification Mode
This subsection demonstrates the effectiveness of BAI mode
through an experimental comparison with the Standard
Method, MAB-EA, and a state-of-the-art approach (Miikku-
lainen et al. 2017b) where the average fitness within a pre-
defined neighborhood (in solution space) is used to evaluate
candidates. In the experiments, the neighborhood approach
was further improved by considering all the previous candi-
dates when calculating neighbood fitnesses.

For a fair comparison, MAB-EA and neighborhood ap-
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Figure 2: Best conversion rate over generations. The meth-
ods with a BAI phase perform significantly better, i.e. they
allow identifying a candidate where true performance is sig-
nificantly better than methods without a BAI phase. The
neighborhood approach is better than non-BAI methods in
later stages, but not as good as BAI variants. The results are
averaged over 500 independent runs, and the performance
differences between BAI variants and non-BAI variants are
statistically significant.

proach have 11,000 visits per generation; BAI mode has
10,000 visits for each generation and 10,000 additional vis-
its in the BAI phase. The other parameters are identical for
all algorithms: Ce = 20, Cp = 20, K = 20, Gmax = 15,
Cm = 0.01. For BAI mode, Ke = 20, and SR algorithm is
used in BAI phase. For neighborhood approach, neighbor-
hood size is fixed at 5.

Figure 2 compares the best conversion rates of all the al-
gorithms averaging over 500 independent runs. BAI mode
consistently improves over the Standard Method, MAB-EA,
and neighborhood approach. It both converges faster early
on, and explores more efficiently later. After Generation 10,
BAI mode significantly outperforms MAB-EA even with
less total traffic. The neighborhood approach’s performance
gradually improves with the collection of more candidates.
However, BAI mode is still more reliable than the neigh-
borhood approach even in later stages. Based on the exper-
imental results, BAI mode allows selecting a better winner,
and estimates its future/true performance more accurately. It
therefore provides important improvements in practical ap-
plications.

Effectiveness of Asynchronous MAB Algorithm in
Campaign Mode
The main difference between Campaign mode and MAB-
EA is the new asynchronous MAB algorithm. This section
verifies the effectiveness of asynchronous statistics in MAB
algorithms via an empirical comparison. In the experiments,
SR, TS and UCB1 are modified to run asynchronously and
compared with their original versions, as well as with the
Standard Method. The same parameters are used for all al-
gorithms: Cp = 20, K = 20, Cm = 0.01, T = 10, 000.
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Figure 3: The overall conversion rate for entire optimization
process in Campaign Mode. The data point at generation g
shows the overall conversion rate until generation g. The
asynchronous versions of TS and SR perform significantly
better than other variants, leading to better conversion rate
over the entire campaign. The results are averaged over 500
independent runs, and the performance differences between
asynchronous versions and original versions are statistically
significant for all tested MAB algorithms.

Since Campaign mode usually run for longer, Gmax is set at
50.

Figure 3 compares the results over 500 independent runs.
Asynchronous SR and asynchronous TS perform signifi-
cantly better than their original versions. For UCB1, the
asynchronous version is better only in the early stages. This
is because all the candidates in UCB1 algorithm share the
parameter t (total number of visits for all the candidates).
A candidate that has survived for a long period in the asyn-
chronous variant will lead to a very large t. A significant
bias towards less visited candidates will then be introduced
during the traffic allocation (line 7 of Algorithm 1), thereby
wasting more traffic in those unreliable candidates. The can-
didates in SR and TS do not share any parameters, so the
Campaign mode works properly with their asynchronous
versions, improving overall conversion rate during optimiza-
tion significantly.

Discussion and Future Work
The proposed mechanisms in this work solve three general
issues in evolutionary CRO: how to allocate the evaluation
budget efficiently, how to make the optimization outcome
reliable, and how to maintain high overall conversion rate
during evolution. Although the new approaches are only
demonstrated in CRO domain, all of them can be generalized
to other optimization problems with noisy fitness functions.

The main idea of MAB-EA is to utilize MAB algorithms
to allocate the evaluation budget. Although poorly perform-
ing candidates cannot receive sufficient traffic to estimate
their true fitnesses accurately, the optimization performance
does not deteriorate. This is because the evolution pressure
in EAs comes from the parent selection and survival selec-



tion, and these two steps rely primarily on those good candi-
dates. That is, efficient detection of good candidates is more
important than accurate evaluation of bad candidates. Thus,
MAB algorithms reduce evaluation cost without sacrificing
optimization performance.

The BAI mode is a significant improvement in settings
where result reliability is critical. The EA maintains an elite
archive that collects good candidates during optimization.
After evolution is finished, a pure exploration MAB algo-
rithm is performed on the elite archive to select the final win-
ner. This process amounts to a two-level winner selection,
and reliability of the optimization outcome is enhanced. The
additional traffic for the BAI phase is extracted from previ-
ous generations, thus no extra cost is incurred.

For situations in which overall conversion rate during op-
timization matters, the new concepts in Campaign mode can
be applied. Asynchronous MAB algorithms together with
a high survival probability and greedy offspring generation
lead to a high yet stable overall conversion rate during evolu-
tion. It is notable that only MAB algorithms without sharing
parameters among candidates are suitable for asynchroniza-
tion, such as TS and SR but not UCB1.

One interesting future direction is to introduce contextual
bandit algorithms (Agarwal et al. 2014), in which the inter-
relations among variables are explicitly modeled. The model
will then be used by the MAB algorithms to allocate evalu-
ation budget more efficiently. Moreover, the model can be
used in the crossover or mutation operations to propagate
promising variable combinations more often, thus increas-
ing overall performance and efficiency further. Another di-
rection is the incorporation of asynchronous statistics into
BAI mode. Initializing elites in BAI phase with their statis-
tics in the main optimization phase may further increase the
reliability of best candidate.

Given that the simulation results in this paper are so pos-
itive, the techniques are currently being implemented in the
Sentient Ascend product. Thus, they will be in use in opti-
mization of real-world web interfaces shortly. Beyond CRO,
the techniques should be useful in many other domains
where fitness evaluations are noisy, such as game playing
and robotics, where fitness depends on stochastic interac-
tions with the environment, and neural architecture search,
where it depends on stochastic initialization and training.
Thus, the techniques can potentially have a high impact on
optimization of complex systems.

Conclusion
This paper demonstrates how MAB algorithms can be used
to make EAs more effective in uncertain domains. First, the
proposed MAB-EA framework makes it possible to allo-
cate the available evaluation budget more efficiently. Sec-
ond, the BAI mode, based on a pure exploration MAB algo-
rithms, makes the winner selection more reliable. Third, the
Campaign mode, based on asynchronous MAB algorithms,
achieves a high and stable overall conversion rate during the
entire optimization process. These mechanisms are shown to
be effective in the CRO domain, but should readily extend
to other applications of machine discovery in noisy environ-

ments, e.g., game playing, robotics, and neural architecture
search.
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