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Abstract

A major current challenge in reinforcement learning re-
search is to extend methods that work well on discrete,
short-range, low-dimensional problems to continuous, high-
diameter, high-dimensional problems, such as robot navi-
gation using high-resolution sensors. We present a method
whereby an robot in a continuous world can, with little prior
knowledge of its sensorimotor system, environment, and task,
improve task learning by first using a self-organizing feature
map to develop a set of higher-level perceptual features while
exploring using primitive, local actions. Then using those
features, the agent can build a set of high-level actions that
carry it between perceptually distinctive states in the envi-
ronment. This method combines a perceptual abstraction of
the agent’s sensory input into useful perceptual features, and
a temporal abstraction of the agent’s motor output into ex-
tended, high-level actions, thus reducing both the dimension-
ality and the diameter of the task. An experiment on a sim-
ulated robot navigation task shows that the agent using this
method can learn to perform a task requiring 300 small-scale,
local actions using as few as 7 temporally-extended, abstract
actions, significantly improving learning time.

Introduction
Modern robots are endowed with rich, high-dimensional
sensory systems, providing measurements of a continu-
ous environment. In addition, many important real-world
robotic tasks have high diameter, that is, their solution re-
quires a large number of primitive actions by the robot, as
in, for example, navigating to distant locations using primi-
tive motor control commands. Reinforcement learning (RL)
methods that model the world as a Markov decision pro-
cess (MDP) have shown promise as a method for automatic
learning of robot behavior, but extending these methods to
high-dimensional, continuous, high-diameter problems still
remains a major challenge. Thus, the success of RL on real-
world tasks still depends on human analysis of the robot,
environment, and task to provide a useful set of perceptual
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features and an appropriate decomposition of the task into
subtasks. We feel, however, that a major goal of AI research
is to create autonomous learning agents, and that one of the
requirements of autonomy is that the “hard part” of learning
ultimately be performed by the agent, rather than the human
engineer. To this end we seek to reduce the amount of prior
knowledge needed by the agent.

We claim that a robot in a continuous world can, with
little prior knowledge of its sensorimotor system, environ-
ment, and task, improve task learning by first using a self-
organizing feature map to develop a set of higher level per-
ceptual features while exploring using primitive, local ac-
tions. Then using those features the agent can build a set
of high-level actions that carry it between perceptually dis-
tinctive states in the environment. This method combines
a perceptual abstraction of the agent’s sensory input into
useful perceptual features, with a temporal abstraction of
the agent’s motor output into extended, high-level actions,
thus reducing both the dimensionality and the diameter of
the task.

In the remainder of this paper we describe the method, and
an experiment that demonstrates the method on a simulated
robot navigation task.

Method
Given a robot with high-dimensional, continuous sensations,
continuous actions, and a reinforcement signal for a high-
diameter task, the agent’s learning process consists of the
following steps:
Define Primitive Actions – First the agent defines a set of

discrete, short-range, local actions to act as the primitive
motor operations. These actions can either be defined as a
fixed discretization of a learnable abstract motor interface
consisting of a set of “principal motor components,” as is
done in our current experiments, or learned, e.g. using
a self-organizing feature map (Kohonen, 1995), in which
each feature map unit represents a local motor command,
as is done by Smith (2002).

Learn High-level Perceptual Features – Next the agent
explores using the primitive actions, and feeds the ob-
served sensations to a self-organizing feature map that
learns a set of high-level percepts, in the form of proto-
typical sensory impressions.

Define High-level Actions – Using these new features, the
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Figure 1: The Architecture of the Learning Agent. The learn-
ing agent receives a continuous sensory vector from the environ-
ment (via the robot), from which a SOM learns a set of perceptual
features. These features and the reward signal are fed as input to a
reinforcement learning algorithm that learns a policy for generating
actions. Each high-level action consists of a trajectory-following
and hill-climbing control law pair that uses primitive actions to
carry the robot between perceptually distinctive states.

agent defines perceptually distinctive states as points in
the robot’s state space that are the local best match for
some perceptual feature, and creates actions that carry it
from one distinctive state to another. The actions are com-
positions of trajectory-following control laws, that carry
the agent into the neighborhood of a new distinctive state,
and hill-climbing control laws, that climb the gradient of
a perceptual feature to a distinctive state.

Learn Tasks – Using the new state and temporal abstrac-
tion, the agent attempts to learn its task using a stan-
dard RL method such as SARSA (Sutton & Barto, 1998),
adapted to use temporally-extended actions (Sutton, Pre-
cup, & Singh, 1999).

Figure 1 shows the architecture of the learning agent. Be-
low we describe in more detail the two key steps: learning
the state abstraction, and using it to construct the temporal
abstraction.

Self-Organizing Perceptual Features
Given a set of primitive actions, the agent can begin to act,
and receive a stream of sense vectors. The agent constructs
features by using the sensory input as training data for a self-
organizing feature map (SOM) (Kohonen, 1995) that learns
a set of sensory prototypes to represent its sensory experi-
ence.

A standard SOM consists of a set of units or cells arranged
in a lattice.1 The SOM takes a continuous-valued vector x as
input and returns one of its units as the output. Each unit has

1The lattice is often, but not necessarily, a 2D rectangular grid.

a weight vector wi of the same dimension as the input. On
the presentation of an input, each weight vector is compared
with the input using the Euclidean distance and a winner is
selected as arg mini ‖x−wi‖.

In training, the weight vectors in the SOM are initialized
to random values. When an input vector xt is presented, the
winning unit’s weight vector is moved toward the input by
some fraction of the distance between them, and units in the
topological neighborhood of the winning unit in the lattice
are moved toward the input by lesser amounts.

Training begins with a large topological neighborhood
size. As training proceeds, learning rate and neighborhood
are gradually annealed to very small values. As a result,
early training orients the map to cover the gross topology
of the input space, and as the parameters are annealed, finer
grained structure of the input space emerges.

SOMs have several properties that lend themselves well
to our feature learning task:
• They are data- and sensor-general. Because they operate

on any input that can be expressed in the form of a vector,
SOMs are not specific to any particular kinds of sensor or
environment, making them especially well suited to learn-
ing autonomously in a continuous environment.

• A SOM can be trained incrementally, with training vec-
tors presented on-line as they are received during robot
exploration. The implementation described below uses a
variant on the standard SOM algorithm called the Grow-
ing Neural Gas (GNG) (Fritzke, 1995), that begins with
a minimal lattice and inserts nodes where the input dis-
tribution is densest to minimize distortion error. Unlike
the standard SOM, the GNG does not anneal its parame-
ters, and thus is able to continue learning indefinitely, and
track changing input distributions. This property makes
the GNG especially suitable for robot learning, since a
robot experiences its perceptual space sequentially, and
may experience entirely new regions of the input space
after an indeterminate period of exploration.

• Most importantly, A SOM provides both a coarse-grained
discretization of its input space, through its winner, the
closest prototype to the input, and a set of continuous fea-
tures, or “activations,” defined in terms of the distance of
the input from each unit. This divides the continuous state
space into a set of neighborhoods defined by their win-
ning unit, each containing a stable fixed point at the local
maximum of the winner’s activation, allowing the agent
to construct actions, as described below.

Constructing High-level Actions
To create high-level actions, the agent uses the the abstrac-
tion from the control and causal levels of the Spatial Se-
mantic Hierarchy (SSH), a theory of navigation in large-
scale space (Kuipers, 2000). At the control level, there are
two kinds of control laws: Trajectory-following (TF) con-
trol laws carry the robot from one distinctive state into the
neighborhood of another, while Hill-climbing (HC) control
laws carry the robot to a distinctive state, i.e. the location
with maximal SOM-unit response. At the causal level, the
agent defines a set of high-level actions each consisting of a
TC/HF control-law pair that carries the robot to a new dis-



Figure 2: High-level Actions. The agent travels from one dis-
tinctive state to another using an action with two parts: first a
trajectory-following controller drives the robot into the neighbor-
hood of a new sensory prototype, then a hill-climbing controller to
the local state that best matches that prototype.

tinctive state. Our current experiments use fixed, hard-coded
policies for trajectory following and hill climbing, and are
not themselves learned, though in general these behaviors
are sequential decision tasks with delayed reward, and could
themselves be learned with RL. In that context, the control-
laws and actions of the SSH are temporally-extended actions
that can be represented as Options (Sutton, Precup, & Singh,
1999) in a semi-Markov decision process (SMDP).

Related Work
The SOM has been used previously for learning percep-
tual features or state representations in general robotics, for
many of the reasons mentioned above, see for example,
Martinetz, Ritter, & Schulten (1990); Duckett & Nehmzow
(2000); Nehmzow & Smithers (1991); Nehmzow, Smithers,
& Hallam (1991); Provost, Beeson, & Kuipers (2001).

There has also been research into automatically discov-
ering high-level actions for reinforcement learning. Nested
Q-Learning (Digney, 1998, 1996) builds a hierarchy of be-
haviors implemented as learned sub-controllers similar to
options (see above). It operates either by proposing every
discrete feature value as a subgoal and learning a controller
for each, or by keeping track of states that are frequently vis-
ited or that have a steep reward gradient and proposing those
states as subgoals. The former method requires a relatively
small set of discrete features to be tractable. Digney in-
tended the latter version to overcome this problem although
it was only tested in a very small, discrete grid-world. The
work of McGovern (2002) and McGovern & Barto (2001)
is similar in many respects to the work of Digney. It selects
states as subgoals using a statistic called “diverse density”
to discover states that occur more frequently in successful
trials of a behavior than unsuccessful trials, and creates new
high-level actions to achieve these states as subgoals. This
method differs from Nested Q-Learning in that it is able to
use negative evidence (that a state is not on the path to the
goal, and thus not likely to be a subgoal). The HEXQ algo-
rithm (Hengst, 2002) attempts to concurrently discover state
and temporal abstraction in MDPs with a discrete, factored
state vector. It relies on the assumption that some features

change more slowly than others, and defines abstract sub-
regions of the state space in which these features remain
constant. It also defines abstract actions that take the agent
between these regions.

To be used in a continous state space, the temporal
abstraction methods above all assume that a continuous-
to-discrete abstraction already exists, and they search for
higher-level temporal abstractions in the (already abstracted)
discrete MDP. The method in this paper assumes a contin-
uous state space and discovers a continuous-to-discrete ab-
straction of both perceptual and action space that results in
temporally extended, abstract actions. The above methods
and ours are not, however, mutually exclusive. In very large
problems it is likely that multiple-levels of abstraction will
be needed. It may be possible to use the methods above
to perform additional temporal abstraction on top of the
continuous-to-discrete abstraction provided by our method.

Preliminary Experiments
In our preliminary experiments, we have tested the system
on a small robot navigation task, comparing the ability of the
robot to learn the task using the high-level actions against its
ability to learn the task using primitive actions. The agent
used the same self-organized feature set in both cases.

Robot, Environment, and Task
The experiments were run using the Stage robot simula-
tor (Gerkey, Vaughan, & Howard, 2003). The environment
was a simple T-shaped room or maze, shown in Figure 5,
measuring 10m × 6m. The simulated robot consisted of a
simple base with commands to set the linear velocity, v in
mm/second and angular velocity ω in degrees/second. Stage
does not simulate acceleration, velocity change is instanta-
neous. The robot’s sensation came from a single simulated
SICK LMS laser rangefinder, providing 180 range readings
over the forward semicircle, with a maximum range of 8 me-
ters. The simulator accepted motor commands and provided
sensations every 100ms (simulator time).

The agent’s task was to drive from the upper left corner to
the bottom of the center hallway. The task terminated when
the robot reached within approximately 500mm of the goal
(a point 500mm from the end of the lower corridor), or after
2000 simulator steps, whichever came first. The reward on
each non-terminal step was 0 unless the robot collided with
a wall, in which case it was -5. The terminal reward was
graded by the robot’s progress toward the goal, according to
this formula:

r = 0.1(d0 − df ) (1)

where d0 and df are the initial and final manhattan distances
to the goal in mm, respectively.

Features and Actions
The agent had four primitive actions consisting of positive
and negative steps along each axis of motor control. The
actions are described shown in Table 1

To learn the initial set of perceptual features, the agent
trained a Growing Neural Gas network with its sensory input
over an extended random walk through the environment. An



Figure 3: Learned Perceptual Features. The agent’s self-organizing feature map learns a set a perceptual prototypes that are used to define
perceptually distinctive states in the environment. Above is one learned set of features. Each feature is a prototypical laser rangefinder image
plotted radially, with the robot at the origin. The prototypes represent a wide variety of different possible views of the environment.

action v ω resulting step
ahead 250 mm/sec 0◦/sec 25 mm

back -250 mm/sec 0◦/sec - 25 mm
left 0 mm/sec 90◦/sec 9◦

right 0 mm/sec -90◦/sec 9◦

Table 1: Primitive Actions. The learning agent has 4 primitive
action, representing positive and negative steps along each axis of
motor control.

example set of learned features is shown in Figure 3. The set
of features comprises a wide variety of prototypical views of
the environment.

The agent had four simple, open-loop trajectory-
following control laws, one for each primitive action. Each
TF controller simply repeats its primitive action until a new
prototype becomes the winner. The agent hillclimbs on
the winning feature by sampling the gradient of the fea-
ture activation in the direction of each action, and choosing
and executing the action for which the gradient was high-
est. It repeats this process until each action’s gradient is
negative. The combination of TF and HC controllers gave
the agent four high-level actions tf-ahead-then-hillclimb, tf-
back-then-hillclimb, tf-left-then-hillclimb, and tf-right-then-
hillclimb.

Policy Learning
The agent learned its high-level control policy using stan-
dard, episodic, tabular SARSA(λ) reinforcement learning,
using the SOM winner as the state. Learning curves were
generated for 20 runs of 500 episodes in each of two experi-
mental conditions, the first using only primitive actions, the
second using only high-level actions. The results of a run for
one feature set are shown in Figure 4. Learning performance
is significantly better for the agent using the high-level ac-
tions. Runs were also done with other learned feature sets.
For all feature sets, the primitive actions gave about the same
performance, but the amount of performance increase for the
high-level actions varied, although, in all cases the agent us-
ing high-level actions performed at least as well as the one
using primitive actions.

Discussion
The results of our experiments suggest that our method can
improve reinforcement learning over just using a coarse-
coded state representation and small-scale, local actions.
This benefit seems to have two main sources: reduced task
diameter, and reduced action uncertainty.

First, using high-level actions reduces the diameter of the
problem, requiring fewer actions to get near the goal, and
making it easier to discover the critical decisions in the task.
Using the short-range actions, the agent must make around
300 actions to get to the goal. Since a critical choice – turn-
ing right at the intersection – that must be learned is ap-
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Figure 4: Learning Performance. Comparison of the reward
earned per episode using primitive actions vs. using high-level ac-
tions. Each condition used the feature set shown in Figure 3. Each
curve is an average of 20 runs. Error bars indicate +/- one standard
error.

proximately halfway through the action sequence, and the
reward comes at the end of the task, it takes many trials and
much exploration to back up the reward that far and discover
the correct choice. Traveling between distinctive states, the
agent needs fewer than 10 actions to arrive near the goal;
This makes it much easier to propagate the reward back to
the critical choice point.

Second, moving between perceptually distinctive regions
and hill-climbing to distinctive states reduces positional un-
certainty, and thus reduces the uncertainty in action, making
it easier to learn the task. State abstraction methods that par-
tition a continuous state space alias the environment creating
uncertainty about the outcome of actions. By definition, all
states within a partition of the state space are aliased, but
the outcome of an action at two different states in one par-
tition may not be the same. For example, two states in the
same partition may differ in orientation by a few degrees,
in this case, trajectory-following forward may lead to dras-
tically different states.

A general challenge when automatically generating ab-
stractions is making sure that a solution to the problem still
exists in the abstracted search space. In our case, using
the high-level actions helped less with some feature sets
than with others, though it never hurt. The feature sets
that didn’t benefit from the high-level actions tended to be
smaller suggesting that they may have had insufficient cov-
erage of the sensory space, and the set distinctive states de-
fined by those features did not contain some states necessary
to speed learning. One might think that the simple answer
to this problem is to configure the GNG to produce a larger
feature set, but of course, increasing the number of features
likely also increases the task diameter using high-level ac-
tions. Exploring this trade-off is a direction for future work.

Future Work
Our continuing work includes expanded evaluation of the
method against other other reinforcement learning methods,

Figure 5: Navigation using abstraction.. An example episode
after the agent has learned the task using the high-level actions. The
triangles indicate the state of the robot at the start of each high-level
action. The narrow line indicates the sequence of primitive actions
used by the high-level actions. Navigating to the goal requires only
7 high-level actions, instead of hundreds of primitive actions.

as well as several improvements to the method, itself.

Expanded evaluation – Although the preliminary experi-
ment shows that our method can reduce the diameter of
a navigation task by a couple of orders of magnitude, a
detailed comparison with existing reinforcement learning
methods for continuous state/action spaces remains to be
conducted. We plan to conduct such a comparison.

Learning TF and HC controllers – The trajectory-
following and hill-climbing controllers described above
are relatively naı̈ve. In principle, both could be learned.
Hill-climbing, for example, was done by manually
sampling the feature gradients. This is both expensive
and likely to be impractical or impossible with noise or
irreversible actions. Better would be to learn to predict
the gradients from experience using standard supervised
learning techniques. Alternatively, the hill-climbing pro-
cess itself could conveivably be treated as a reinforcement
learning problem.

Learning Features and Policy Concurrently – Currently,
this method requires an initial exploration phase to learn
a set of perceptual features before beginning to learn the
action policy. Using the Growing Neural Gas, it may be
possible to learn the features and actions concurrently.

Building a Causal Model – In cases where the same agent
must perform multiple tasks in the same environment –
such as navigation to several different places in the same
building – it should be possible to use the learned high-
level actions to build a causal model, in the form of the
transition function T (s, a, s′) that predicts the succeeding
state given a starting state and an action. Once the des-
tination states are identified, navigation could proceed by
planning, rather than policy learning.



Conclusion
We have described a method by which an agent in a high-
diameter, high-dimensional continuous environment uses a
self-organizing feature map to construct a perceptual ab-
straction that allows it to define a set of perceptually distinc-
tive states in the environment. A set of extended, high-level
actions, consisting of combinations of trajectory-following
and hill-climbing controllers, allow the agent to move be-
tween these states. In an experiment with a simulated robot,
this combined perceptual and temporal abstraction allowed
an agent to reduce the effective diameter of a navigation task
from approximately 300 small, local actions to 7 high-level
actions.
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