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Eugenic Evolution for Combinatorial Optimization

John William Prior, M.A.

The University of Texas at Austin, 1998

Supervisor: Risto Miikkulainen

In the past several years, evolutionary algorithms such as simulated annealing and the

genetic algorithm have received increasing recognition for their ability to optimize arbitrary

functions. These algorithms rely on the process of Darwinian evolution, which promotes

highly successful solutions that result from random variation. This variation is produced by

the random operators of mutation and/or recombination. These operators make no attempt

to determine which alleles or combinations of alleles are most likely to yield overall �tness

improvement. This thesis will explore the bene�ts that can be gained by utilizing a direct

analysis of the correlations between �tness and alleles or allele combinations to intelligently

and purposefully design new highly-�t solutions.

An algorithm is developed in this thesis that explicitly analyzes allele-�tness distri-

butions and then uses the information gained from this analysis to purposefully construct

new individuals \bit by bit". Explicit measurements of \gene signi�cance" (the e�ect of

a particular gene upon �tness) allows the algorithm to adaptively decide when conditional

allele-�tness distributions are necessary in order to correctly track important allele inter-

actions. A new operator|the \restriction" operator|allows the algorithm to simply and

quickly compute allele selection probabilities using these conditional �tness distributions.

The resulting feedback from the evaluation of new individuals is used to update the statistics

and therefore guide the creation of increasingly better individuals. Since explicit analysis

and creation is used to guide this evolutionary process, it is not a form of Darwinian evo-

lution. It is a pro-active, contrived process that attempts to intelligently create better

individuals through the use of a detailed analysis of historical data. It is therefore a eugenic

evolutionary process, and thus this algorithm is called the \Eugenic Algorithm" (EuA).

The EuA was tested on a number of benchmark problems (some of which are NP-

complete) and compared to widely recognized evolutionary optimization techniques such as

simulated annealing and genetic algorithms. The results of these tests are very promising,

as the EuA optimized all the problems at a very high level of performance, and did so much
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more consistently than the other algorithms. In addition, the operation of EuA was very

helpful in illustrating the structure of the test problems. The development of the EuA is a

very signi�cant step to statistically justi�ed combinatorial optimization, paving the way to

the creation of optimization algorithms that make more intelligent use of the information

that is available to them. This new evolutionary paradigm, eugenic evolution will lead to

faster and more accurate combinatorial optimization and to a greater understanding of the

structure of combinatorial optimization problems.
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Chapter 1

Introduction

The �eld of combinatorial optimization deals with problems whose inputs are discrete ar-

rangements or permutations. These problems are typically NP-complete, and therefore no

polynomial time algorithms exist which can solve them. However, some algorithms forsake

the goal of �nding optimal solutions and instead attempt to �nd good solutions in poly-

nomial time. Since there is no guarantee that an optimal solution will be found, these

algorithms are called \approximation" algorithms; it is hoped that solutions almost as good

as the optimal solution will be found. Because most of these algorithms guide their quest

for better solutions by making small modi�cations to existing solutions, they rely on the

heuristic of \neighborhood search" (Garey and Johnson, 1979). Both genetic algorithms

(\GA"s) (Goldberg, 1989; Holland, 1975) and simulated annealing (\SA") (Kirkpatrick and

Sherrington, 1988) are examples of neighborhood search algorithms. In past years, both

GAs and SA have received increasing recognition for their ability to e�ciently approximate

arbitrary functions. Both of these algorithms are \evolutionary" algorithms, as they are

characterized by survival-of-the-�ttest search pruning and the inheritance of information

from one iteration (\generation") of solutions to the next.

There are many methods by which evolutionary algorithms pass information from

generation to generation, but most modern algorithms rely on random choices to decide

which information shall be inherited. For example, genetic algorithms perform a type of

beam search, where a simulated process of \natural selection" prunes the event space (\pop-

ulation") and selects solutions from the population to be modi�ed by the random state-space

operators of \recombination" and \mutation". Standard recombination operators randomly

combine parts of highly �t solutions to form complete new solutions. No attempt is made

to determine which parts might perform best with each other. SA is a probabilistic opti-

mization algorithm that can be viewed as a simpli�cation of the GA; it uses a population of

only a single solution, and relies solely on random mutation of this solution to create new
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solutions. The standard mutation operators used by both GAs and SA make small random

changes to existing solutions. No attempt is made to determine what changes would be

most likely to yield improvements in �tness.

What bene�t might come from \smart" recombination operators that analyze inter-

actions and dependencies among parts of solutions and solution �tness, and then intelligently

assemble these parts into new, hopefully higher �tness, solutions? What bene�t might come

from \smart" mutation operators that only perform those mutations most likely to increase

the �tness of selected solutions? This thesis explores these questions through the devel-

opment of an algorithm that explicitly analyzes the distribution of �tness with respect to

specially selected allele combinations, and intelligently creates solutions using the informa-

tion gained from this analysis. Instead of relying on random recombinations or mutations

of parent solutions to generate o�spring, this new algorithm|the \Eugenic Algorithm"

(EuA)|constructs new solutions \bit by bit", probabilistically including parts of solutions

based upon statistical measures of their historical performance. The major innovation of

this algorithm, the \restriction operator", will be shown to be paramount to e�ectively

tracking and exploiting dependencies among solution parts (\epistasis"). In particular, the

EuA studied in thesis will measure the bene�t of genotypic parts by computing the average

�tness of solutions in which these parts are found, and then selecting these parts for use

in new individuals proportionately to these average �tnesses. The EuA will be compared

to standard evolutionary techniques on a variety of combinatorial optimization problems,

and will be demonstrated to be superior to these techniques in many situations. The EuA's

success at selecting the right combinations of alleles through the use of statistical measures

of performance of both single alleles and dependent groups of alleles represents a major step

forward in approximating very di�cult combinatorial optimization problems.
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Chapter 2

Evolutionary Combinatorial

Optimization

Evolution is the adaptation of a population to its environment. This adaptation causes the

creation of individuals of increasingly higher \�tness"; in environments where the de�nition

of �tness remains static, evolution drives the population to better and better individuals.

This process is similar to approximation|the search for good solutions to a particular prob-

lem. The parallels between the concepts of evolution and approximation have lead to the

creation of evolutionary approximation algorithms|algorithms that attempt to optimize

a particular function through a simulated process of evolution. This section will briey

describe the particular �eld of optimization studied in this thesis (combinatorial optimiza-

tion), and then will discuss how various paradigms of evolution (Darwinian, Lamarckian,

and eugenic) relate to approximation.

2.1 Combinatorial Optimization and Evolution

Combinatorial problems (de�ned below) are often NP-complete. Approaches to solving

NP-complete problems can be roughly divided into two categories (Garey and Johnson,

1979). The �rst category includes more \traditional" techniques, while the second consists

of more modern (and radical) algorithms. The traditional techniques focus mainly on

reducing the size of the search by eliminating as many potential solutions as possible.

For example, \branch-and-bound" and \implicit-enumeration" (Gar�nkel and Nemhauser,

1972) utilize a tree-structured search that generates \partial" solutions, subsequentally

identifying partial solutions that could not possibly be part of a true solution and then

eliminating those solutions containing these partial solutions. Other traditional techniques

include \dynamic programming" and \cutting-plane" techniques (Gar�nkel and Nemhauser,
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1972). The second major category of algorithms used for attacking NP-complete problems

pertain soley to combinatorial optimization. These algorithms do not attempt to guarantee

the �nding of an optimal solution, but instead just try to �nd good solutions as quickly as

possible. They are approximation algorithms. This thesis focuses on this class of algorithms.

(Garey and Johnson, 1979) provides a concise discussion of combinatorial optimiza-

tion. Combinatorial optimization problems consist of three components: (1) a set D� of

problem instances, (2) for each problem instance I 2 D� a set S�(I) of possible solutions for

I, and (3) an objective function f� that assigns a positive rational number f�(I; x) (a solu-

tion value) to each problem instance I and solution x 2 S�(I). Combinatorial optimization

problems can either be maximization or minimization problems. For a maximization prob-

lem instance I, an optimal solution x� is one such that f�(I; x
�) � f�(I; x) for all x 6= x�.

For a minimization problem, the solution value of x� must be less than or equal to the solu-

tion value of any other solution. A combinatorial approximation algorithm is an algorithm

that �nds a solution x for any given problem instance I 2 D�. An combinatorial opti-

mization algorithm is an algorithm that �nds x� for all I 2 D�. The performance of these

algorithms is judged upon how quickly they �nd good or optimal solutions, respectively.

Combinatorial approximation is similar to the search for \better" organisms that

is performed during biological evolution. This similarity is so great that highly successful

combinatorial approximation algorithms have been designed that mimic the natural forces

that occur during evolution. In this thesis, these algorithms shall be referred to as evo-

lutionary combinatorial approximation algorithms, or simply evolutionary algorithms. Just

as combinatorial approximation algorithms search for better solutions, biological evolution

drives systems of populations to generate individuals of increasingly higher \�tness", where

�tness is implicitly de�ned as successful survival and propagation1. In evolutionary com-

binatorial approximation algorithms, the blurred mixing of the concepts of reproductive

success and �tness that occurs in biological evolution is replaced by explicit measurements

of �tness and explicit laws of reproduction based upon �tness measurements. This allows

evolutionary algorithms to produce solutions that are \better" in any sense a practitioner

de�nes.

The biological terminology of natural evolution transfers directly to the mathemat-

ical terminology of combinatorial approximation. Solutions are \individuals", and an in-

dividual's solution value|its \goodness" measurement|is referred to as its \�tness". In

evolutionary combinatorial approximation, solution components get a new name: \genes",

and each di�erent solution component value is termed an \allele". The aggregate of a so-

lution's components is called its \genotype", while a solution's speci�c form is called its

1Propagation is more important than simple reproduction, since production of o�spring that do not
reproduce themselves would not be \�t".
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\phenotype". It is commonly necessary to \decode" individuals' genotypes in order to

determine or create their phenotypes. Often, individuals are encoded as binary vectors,

although other representations (such as real vectors) are also commonly used. When indi-

viduals are represented as vectors, each vector element is consider to be a gene and each

vector element value an allele. This thesis will focus on problems that have been encoded

in binary vectors, since most GA research deals with such problems.

Biological evolution itself does not necessarily drive the population to generate in-

dividuals of higher ability, unless this ability is strictly de�ned as propagative success. In

biological evolution, better individuals are simply those that produce the most reproducing

o�spring under a variety of environmental conditions. No decisions are made that directly

select and promote individuals on the basis of their ability to run faster, jump higher, or go

farther with less food. In contrast, for an evolutionary algorithm to e�ciently approximate

or optimize a function, �tness must be clearly de�ned, and higher �tness individuals must

be explicitly promoted. As a result, if any other ability besides propagative success is de-

sired, an evolutionary algorithm must directly encourage the formation of individuals with

the desired ability.

In addition to these philosophical similarities between biological evolution and combi-

natorial approximation, there is a very distinct similarity in the mechanism of improvement

that is utilized by both processes. A heuristic common among many combinatorial ap-

proximation algorithms is \neighborhood search", in which the search proceeds by making

small modi�cations to existing solutions (Garey and Johnson, 1979). This closely parallels

the random genotypic mutations that occur during biological reproduction. Some algo-

rithms even go so far as to mimic sexual reproduction in order to share information among

solutions. One such algorithm, the genetic algorithm (GA), is probably the most widely rec-

ognized evolutionary combinatorial approximation algorithm. Genetic algorithms rely upon

�tness-biased simulated sexual reproduction and random mutation of o�spring to generate

variation. The �tness-biased reproduction ensures that lower �tness solutions have a smaller

chance of contributing their genetic material to the next generation (Goldberg, 1989). This

process is very similar to that used of Darwinian evolution. Darwinian evolution relies upon

random variation to expand its search into unexplored regions of the genotypic search space,

and natural selection to discourage exploration into lower �tness regions. Darwinian evo-

lution is not the only type of evolution possible for evolutionary algorithms. In particular,

the Eugenic Algorithm (EuA) developed in this paper does not rely on random mutations

to create variation; nor does it rely on simple sexual reproduction to combine information

from di�ering previous solutions. Instead, new individuals are purposefully constructed one

part at a time, using any genetic material previously encountered.

To better understand the macro-processes that evolutionary approximation algo-
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rithms implicitly utilize, and to understand the process that the EuA will employ, the

traditional paradigms of Darwinian and Lamarckian evolution must be understood. The

next section will describe these two paradigms, their di�erences, and how the EuA creates

a new paradigm of optimization|eugenic evolution.

2.2 Evolution

Evolution is the adaptation of an entire population of replicating individuals to their en-

vironment. Two major forms of evolution|Darwinian and Lamarckian|dominate our

understanding of adaptation in natural environments and our research in arti�cial envi-

ronments. A third form of evolution|eugenic evolution|will be introduced in this thesis.

Eugenic evolution di�ers from Darwinian and Lamarckian evolution by how the genotypes

of new individuals are constructed. While both Darwinian and Lamarckian evolution rely

on random genetic inheritances, new individuals in a eugenically evolving population are

purposefully created using genetic parts that have been carefully selected based on their his-

torical performance. When contrasting these forms of evolution, the speci�c mechanism of

replication is not important, nor are the particular genotypes, phenotypes, or environments

present in the evolutionary systems. What is important is how feedback from individuals'

performance is used to guide the construction of future genotypes.

2.2.1 Darwinian Evolution

In Darwinian evolution (Darwin, 1859), the genetic operators of random mutation and

crossover cause genotypic variation in o�spring, resulting in variations in phenotype. The

phenotypic variations that produce advantages in survival and reproduction, relative to

other variations, become increasingly predominant in the population from generation to

generation. There is no direct feedback from the environment to an individual's genotype;

each individual's genotype remains constant, una�ected by the environment. New genomes

arise only through the random actions of mutation and crossover. However, the frequencies

of genotypes adapt in response to the environment's e�ect on their corresponding pheno-

types, and, as a result, higher \�tness" genotypes come to dominate the evolving population.

Thus, in Darwinian evolution, entire populations adapt to their environment through bi-

ased sampling of higher \�tness" genotypes, even though the genotypes themselves do not

directly respond or adapt to the environment. Darwinian evolution is the form of evolution

prevalent in such well-known evolutionary approximation algorithms as genetic algorithms

and simulated annealing, which both rely on random modi�cations of existing individuals

to create new individuals.
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2.2.2 Lamarckian Evolution

In Lamarckian evolution (Lamarck, 1914), adaptation occurs in not only the genotypic fre-

quencies of the population, but also in the genotypes themselves. In Lamarckian evolution,

it is possible for the phenotypic state of an individual to directly modify its current genotypic

state. As environmental interaction shapes and molds an individual's phenotypic state, the

environmentally speci�c \adaptation information" encoded in the resultant state (learned

information) can directly modify and be absorbed by the individual's genotype(Luria et al.,

1981; Whitley et al., 1994). These modi�cations to o�springs' genotypes are a form of

\smart" mutation, guided by the parent's environmental encounters, and this smart muta-

tion can supplant or augment the random genetic operations that cause individual variation

in Darwinian evolution. Just as with Darwinian evolution, variations that confer higher re-

productive success upon individuals increase in frequency in Lamarckian populations, and

therefore populations (in addition to genotypes) will adapt to the environment.

2.2.3 Eugenic Evolution

A third evolutionary method is proposed in this paper|eugenic evolution. In eugenic

evolution, as with both Darwinian and Lamarckian evolution, genotypic frequencies adapt

in response to feedback from environmental trials. However, unlike the more \standard"

versions of Darwinian and Lamarckian evolution, where an unsupervised (random), trial

and error process of reproduction is biased by natural selection, and where the genotypes of

new individuals are limited to slightly modi�ed parental inheritances, eugenic evolution is

a supervised (directed) adaptive process, where the genotypes of newly created individuals

are virtually unlimited.

In eugenic evolution, the correlation2 between occurrences of genotypic \parts" and

individual �tness is explicitly analyzed, and new individuals are carefully constructed part

by part, by allowing these correlations to bias the probability of choosing each part for

inclusion in these new individuals. Environmental feedback is not limited to only complete

genotypes and phenotypes|environmental feedback can bypass genotypes and be trans-

mitted directly to genotypic parts. In addition, the genotype of a new individual is not

constrained to be similar to the genotypes of a handful of parents|the new genotype can

be constructed from any alleles found in the entire population. By piecing together the best

\parts" of the most elite individuals, the entire population becomes the parent of the new

individual.

It should be noted that eugenic and Darwinian evolution do not necessarily require

2In this paper, \correlation" refers to the qualitative correspondence between two variables, and not
necessarily simple linear correlation.
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the same level of technological sophistication as Lamarckian evolution, and therefore it is

easier to implement eugenic or Darwinian evolutionary combinatorial approximation algo-

rithms. Darwinian evolution requires only random variation and selection, and eugenic

evolution requires only fairly simple correlations between alleles or allele combinations and

�tness. For example, calculating the average �tness of individuals containing particular al-

leles or allele combinations can be su�cient to identify patterns of high average �tness. In

contrast, Lamarckian evolution requires much more technological sophistication. In order

to ensure that o�spring share the adaptations of the parent, it must be possible for tran-

sients in the phenotypic state of the parent to be encoded in the genotype of the o�spring.

Therefore, some mechanism for performing specialized modi�cations to the genotype must

exist, and the mapping from phenotypic state to genotype must somehow be available. Such

a mechanism is not necessary for eugenic or Darwinian evolution. Furthermore, even if it

were possible for a Lamarckian algorithm to encode phenotypic adaptations into a genotype,

some mechanism for identifying the necessary modi�cations to the genotype to cause the

desired pre-adaptations must be available. In addition, the genotype-phenotype mapping

may not rich enough to encode these transients. For example, it may be practically impos-

sible to extend a genotype in order to encode an individual's acquired memories or learned

concepts. Because of these additional complications, Lamarckian evolutionary algorithms

are rare and, for many problems, not even possible, and therefore eugenic evolutionary

algorithms are much more promising for practical implementations.

2.3 Current Methods of Evolutionary Combinatorial Approx-

imation

This section will discuss current methods of evolutionary combinatorial approximation. It

will introduce a new way of categorizing evolutionary approximation algorithms into two

groups|\mutation-based" and \pattern-based" algorithms, and discuss some of the best

known representatives from each group. Afterward, two major characteristics of evolution-

ary algorithms|the use of a population for search focus and learning, and the processing

of schemata, will be discussed.

2.3.1 Mutation-based and Pattern-based Evolutionary Algorithms

Modern evolutionary approximation algorithms rely primarily on Darwinian evolution. De-

pending on how many individuals contribute to the creation of a new individual, they can

be roughly divided into two categories: mutation-based methods and pattern-based meth-
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ods3. Mutation-based methods are those that modify a single existing individual to produce

a single new individual. Simulated annealing is probably the best known mutation-based

method. In contrast to mutation-based methods, pattern-based methods create new indi-

viduals by combining parts of multiple existing individuals to produce a new individual.

Genetic algorithms are pattern-based algorithms. Current approaches to both mutation-

and pattern-based evolutionary combinatorial approximation will now be discussed.

Mutation-Based Methods

Mutation-based algorithms repeatedly modify a single individual. These modi�cations

(\mutations") produce new solutions. In all mutation-based methods, tournaments be-

tween the original and mutated solution are performed. The loser of each competition

is discarded, and a new solution is then created by modifying the winner. The winner

and the new solution then compete in a new tournament, and the process is repeated. In

simulated annealing (Kirkpatrick and Sherrington, 1988), the tournaments are stochastic|

i.e. the winner of each tournament is not necessarily the highest �tness individual. This

allows for \stochastic backtracking", where algorithm can extract itself from dead-ends.

The probability of accepting a lower �tness individual over a higher �tness individual (the

\acceptance probability") can be made to decrease over time. Other mutation-based algo-

rithms, including the \two-membered evolution strategy" (1+1)-ES (B�ack et al., 1993) and

the roughly equivalent MBSH algorithm (Baluja, 1995), utilize deterministic competitions

that are always won by the competitor of higher �tness.

A secondary characteristic of mutation-based methods are their mutation \temperatures"|

the average size of modi�cations made to competition winners to create new individuals.

Lower temperatures correspond to fewer mutations, while higher temperatures correspond

to more mutations. This temperature can vary over the course of an algorithm's search.

\Cooling" or \heating" schedules control the rate at which temperature decreases or in-

creases. The cooling schedule of simulated annealing can be set in such a way that the

entire search space is eventually explored, and can therefore guarantee the discovery of an

optimal solution. When a search is guaranteed to visit all solutions in a search space, it

is called \ergodic search". However, any algorithm can be modi�ed to simply enumerate

the entire search space and therefore be ergodic; therefore ergodicity by itself is a rather

uninteresting property. What is more important is e�ciency|how quickly an algorithm

can �nd good or even optimal solutions. A simulated annealing process can be made more

e�cient at �nding good (but not necessarily optimal) solutions by increasing its cooling rate.

When this is done, the process is called \simulated quenching" (SQ). Simulated quenching

3The methods could also be termed \asexual" and \sexual" methods, respectively.
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does not have the same ergodic search property as simulated annealing, and therefore can

not guarantee an optimal solution. However, it has been demonstrated previously (Ingber,

1993) and will be shown in this thesis that simulated quenching can compare favorably in

e�ciency to genetic algorithms (and even the EuA) on some practical combinatorial op-

timization problems, but su�er from the same premature convergence problems that GAs

encounter as a consequence of too rapid a cooling schedule.

One weakness of mutation-based based methods is the paucity of information preser-

vation from one iteration to the next. Pattern-based methods attack this weakness by em-

ploying a \memory" more sophisticated than just a single stored individual. Pattern based

methods will be discussed next.

Pattern-Based Methods

Pattern-based methods can be considered to be more sophisticated than mutation-based

methods, because they utilize groups of solutions to generate new individuals. Information

is garnered from individuals in the \parent" group and used in the creation of o�spring. The

parent group, just like mutation-based methods' \current individual", serves as a storehouse

of knowledge about the search space.

The genetic algorithm (Goldberg, 1989; Holland, 1975) is probably the best known

pattern-based evolutionary algorithm. They begin with a (typically random) population of

n solutions. Two parent solutions are chosen and the \recombination" operator is used to

combine parts of the parents to form o�spring individuals. This process is repeated n times.

The n generated can either replace individuals in the current population or be added to a

completely new parent population. If o�spring replace individuals in the current population,

the algorithm is called a \steady state" genetic algorithm (SSGA) (Syswerda, 1991). There

are a great many variations of the crossover operator, but two forms of recombination|

\M-point crossover" and \uniform crossover" are probably the most common (Goldberg,

1989). In M-point crossover, each parent is divided at M locations into M+1 contiguous

sections, numbered 1 through M+1. Each parent is divided at the same M locations. Two

o�spring are created by exchanging every odd section between the two parents. One-point

crossover is probably the most commonly used type of M-point crossover. Uniform crossover

is very similar to M-point crossover. Uniform crossover can be thought of M-point crossover,

where M+1 is the number of genes in each parent. Therefore each gene is a section, and

every section is probabilistically interchanged between the two parents. Other recombination

operators take many shapes and forms, including crossover operators that use more than

two parents to generate a single o�spring (Eiben et al., 1994). However, these operators

typically give no consideration to the functional interdependence of alleles (\epistasis")

when deciding how to section the parents. Alleles are functionally interdependent when
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their \best" settings (resulting in individuals of highest �tness) depend on the settings of

each other|when found in speci�c combinations, they are \more than the sum of their

parts". Epistasis is considered to be the most signi�cant factor in a problem's di�culty.

Chapter 3 will discuss epistasis in depth.

The genetic algorithm also employs mutation; however, the probability of mutation

is usually very low. Just as with mutation-based methods, standard GA mutation operators

\perturb" o�spring by changing a small number of alleles. Some GAs use only the mutation

operator|they perform no recombination. These GAs are roughly equivalent to running

many simulated annealing algorithms in parallel, and are therefore mutation-based meth-

ods. Genetic algorithm use mutation operators for two main purposes: to maintain allele

diversity and to \tune" individuals by allowing genetic search to explore those areas of the

sample space that have a very small Hamming distance (usually 1) from these individuals

(neighborhood search). No attempt is made to determine which genes of selected individ-

uals would be most likely to yield overall �tness improvement through mutation. The use

of standard mutation operators for local tuning assumes that the di�erence in �tness is

small among individuals separated by small Hamming distances|that genotypically similar

individuals are phenotypically similar.

As mentioned above, the o�spring created by the recombination and mutation op-

erators replace lower �tness individuals in the population or are used to create entirely new

populations. By repeatedly creating new o�spring more often from the parts of highly �t

solutions than from low �tness solutions, a simulated process of natural selection and evo-

lution occurs. The process is usually continued until the chance of generating an o�spring

that is more �t than the best individual in the current population becomes very small. At

this point, the search is terminated, and the best individual in the �nal population is chosen

as the solution to the problem at hand.

2.3.2 The Population and Search Focus

Evolutionary algorithms are \weak" search methods; they require no domain knowledge to

perform their tasks. When very good heuristics are available to guide the optimization of a

given objective function (\knowledge-rich domains"), weak search methods will very often

not perform as well or as quickly as traditional algorithms (like branch-and-bound) employ-

ing these known heuristics, although there are counterexamples in which GAs performed

better than the best known conventional algorithms (H-L. Fang, 1993). However, there

exist a great number of practical problems for which few heuristics exist (\knowledge-poor

domains"). For such domains, trial and error is the only possibility. But it might be hoped

that, at the least, weak search methods learn something from their experiences that may

help them guide future search. The populations (whether composed of single or multiple
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individuals) utilized by evolutionary algorithms allow these algorithms to accomplish this

task.

All evolutionary search algorithms, whether mutation-based or pattern-based, main-

tain a search focus through the use of populations of sample points. Mutation-based meth-

ods (simulated annealing, for instance) typically use populations with only one member,

while pattern-based methods typically have populations consisting of many individuals.

The population can be viewed as a very basic form of learning; the algorithms are storing

explicit representations of \good" parts of the target space and unrepresented regions are

implicitly avoided and therefore considered \bad". The population plays a fundamental role

in the search strategy, by biasing the selection probabilities of new samples. As discussed

by Syswerda (Syswerda, 1993), it is not easily possible to eliminate the population com-

pletely and substitute a simply-updated set of allele statistics, as this strategy would lead to

repeatedly generating the same alleles with the same probabilities. A dynamic population

is needed, as it will adaptively change the search focus and force exploration of the search

space, instead of repeated exploitation of a static region.

Although the population serves to focus the search in promising regions of the search

space, these algorithms make no explicit attempts to categorize interesting or bene�cial

properties of particular genotypes; they notice nothing and target nothing. However, it is

hypothesized that implicitly, important genotypic properties are exploited. This is accom-

plished through schemata processing.

2.3.3 Schemata Processing

Pattern-based methods' primary operator is the recombination operator; it chooses geno-

typic parts or patterns from parent individuals and combines them to form new individuals.

These parts are called \schemata", as they are patterned constituents of a greater whole.

Some of these schemata may be more important than others in forming higher �tness solu-

tions, and so, intuitively, recombination operators that more often choose higher \�tness"

schemata are more likely to create higher �tness solutions. This idea is called the \building

block hypothesis". This section will discuss how both mutation-based and pattern-based

evolutionary search use schemata, and how schemata should be exploited most e�ectively.

Schemata

The concepts of \schemata" and \schemata processing" have been used to quantify the

structure of binary combinatorial problems, explain how evolutionary algorithms process

the information contained in their populations, and how the evolutionary algorithms should

exploit this information (Holland, 1975). Schemata are generalized descriptors of properties
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found in an individual's genotype; several individuals may share the same property, and

it is hoped that an evolutionary algorithm will promote the spread of bene�cial properties

and curtail the propagation of detrimental properties. A single schema describes a set of

individuals by enumerating a group of gene values (alleles); all the individuals that contain

these alleles belong to the schema. A standard way to represent schemata is to use vectors

whose nth element either speci�es a particular allele for the nth gene or allows the nth gene

to remain unspeci�ed. In this way, schemata are simple, �xed-length patterns containing

symbols speci�c to certain alleles and possibly wildcard characters. For example, a schema

describing binary genotypes could be expressed as a sequence from the set f0,1,#g|the

schema `0#0` would \match\ the genotypes `000` and `010`. Occurrences of either of these

genotypes would provide �tness information on this schema, as well as any other schemata

that matched the genotypes. The \order" K of a schema is the number of �xed genes in the

genotype; our example schema `0#0` is order 2. We denote \order K" as o(K). A schema`s

order can range from 0 to l, where l is the number of genes in (�xed length) genotype.

Schemata processing occurs in both mutation- and pattern-based algorithms; schemata

processing occurs when schemata are compared and combined in order to form new solu-

tions. Mutation-based evolutionary algorithms take a single genotype and randomly change

parts of it; they never deal with parts of multiple genotypes simultaneously. As a result,

these algorithms perform the most basic type of schemata processing since they evaluate and

compare only o(l) schemata|the highest order schema that matches the current individual.

Since pattern-based methods combine genotypic parts of various size from multiple individ-

uals, they process all schemata from o(1) to o(l). This allows pattern-based algorithms to

be more \conservatively explorative" than mutation-based algorithms, since recombination

of previously tested genotypic parts is a more cautious strategy than randomly mutating

existing parts into completely new forms (Syswerda, 1993). But how do pattern-based al-

gorithms choose the \best" parts to recombine? Somehow, the \�tness" of schemata must

be gauged. The next section will describe how this can be accomplished.

Schemata and Fitness Information

Each sample point x yields info on all schemata Sx for which x 2 Sx, i.e. all those schemata

whose de�ned alleles match those found in x. As a result, each x is a member of 2l

schemata, and therefore very few genotypes are needed to sample large numbers of schemata.

However, there exists a trade-o� between the number of schemata sampled and the amount

of information per schema. The amount of information gathered by one genotype about one

schema depends on the schema's order. A genotype is an instance of 2l schemata ranging

from o(1) to o(l), but yields less information about lower-order schema. For example, if a

schema is o(l), then every position in that schema is �xed, and so only one genotype will be
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a member of the schema. Therefore the matching genotype will yield complete information

on such a schema. Conversely, an o(0) schema will contain l unde�ned genes, and so 2l

genotypes will be members of the schema. Each member genotype will sample only 1=2lth

of the schema, and so yield vastly less information about the schema.

Evolutionary algorithms that utilize schemata must rely on averages observed in the

sample population. It is possible to de�ne the \�tness" of a schema as the average �tness of

all individuals belonging to the schema, whether or not these individuals are in the current

population. However, except for the highest order schemata, it is impractical to calculate

schema �tnesses, due to the large number of individuals that match each schema. As a

result, algorithms must rely on limited samples of individuals to collect information on the

true average �tness of each schema. The statistics collected in such a way are \observed"

statistics, instead of the true statistics of the schemata. \E�cient" processing of schemata

through the use of observed statistics remains an open research question, as observed average

schemata �tnesses could easily be misleading|low-�tness schemata may have high observed

�tnesses, and high-�tness schemata may not even be represented in the population. Because

of this \sampling error", a search algorithm must strike a balance between the exploitation

of observed high-�tness schemata and the exploration for more information about observed

and unobserved schemata. In the remaining parts of this thesis, the \�tness" of a schema

will refer its observed average �tness.

The greater the amount of knowledge an evolutionary algorithm has about the search

space, the greater its chances of success. (Goldberg, 1989) estimated that a random popu-

lation of size � will sample on the order of �3 schemata. Consequently, the computational

burden of explicitly recording statistics about each schema encountered quickly becomes

prohibitive as population size is increased. Still, larger populations may be more desirable

than smaller populations, as they implicitly provide information on many more schemata

than smaller populations, and judicious use of this extra information can increase the prob-

ability of discovering highly bene�cial genotypic properties. Genetic algorithms deal with

this problem of \information overload" through the use of �tness-proportionate schemata

representation. Instead of using explicit calculations to keep track of schemata �tness,

observed schemata �tnesses are implicitly recorded, by including higher �tness schemata

in the population more often than lower �tness schemata. A �tness-proportionate selec-

tion operator chooses above-average �tness individuals for reproduction more often than

below-average �tness individuals. This action engenders a positive feedback phenomena,

in which GAs allocate trials to schemata with above-average observed �tness more often

than to those of below-average observed �tness, and the population becomes increasing

composed of higher (observed) �tness schemata, which in turn increases the probability

of the selection of these schemata. This �tness-proportionate representation of schemata
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has the additional bene�t of focusing the search by probabilistically limiting the possible

combinations of schemata achievable through the application of the crossover operator; the

search collects more information on higher �tness schemata, as opposed to collecting equal

amounts of information about all schemata. However, only the selection operator performs

schemata analysis, and it examines only o(l) schemata. The mutation and recombination

operators of genetic algorithms perform no analysis on schemata; they rely on the selection

operator to choose highly �t individuals for manipulation, with the assumptions that these

individuals will contain schemata important for the construction of even higher �tness in-

dividuals and that enough random mixing of schemata will eventually result in the creation

of the \best" combinations of schemata. As a result, the population of the GA allows it to

avoid the infeasible task of explicitly recording average schemata performance, while at the

same time maintains and adapts the GA's search focus.

The \Golden" Heuristic?

A blanket assumption that �tness proportionate schemata selection is the \best" selection

method to use is simply not true. The heuristics an algorithm uses to guide its search

may have to change, depending on the speci�c task to be accomplished. Sometimes the

goal of evolutionary search is not approximation, but the maximization of the cumulative

�tness of all function evaluations. (Holland, 1975) proved that allocating exponentially

increasing trials to schemata of above-average observed �tness is a minimum-loss strategy.

It must be recognized that this strategy is only a heuristic for guiding evolutionary search.

Whether high �tness schemata should be propagated or not depends on the type of problem

attacked, the operators employed by the algorithm, and the goal of the algorithm itself. In

optimization problems, the goal is to �nd very high �tness individuals in as few function

evaluations as possible. While allocating trials on the basis of observed schema �tness

probably is a good heuristic for locating this individual, it is quite possible that the highest

�tness schemata do not contain the highest �tness individuals. This phenomena is called

\deception" (Goldberg, 1989). When deception is present, the blanket assumption that

above-average �tness schemata should be utilized more often than below-average schemata is

incorrect. In such situations, an algorithmmust take action to avoid converging permanently

to the deceptive local optima. These actions could include restarting the search with a new

individual that is maximally di�erent from the local optimum (in a binary problem, for

instance, the maximally di�erent individual would be the bitwise complement of the local

optimum). Therefore, the \golden" heuristic of �tness proportionate schemata selection

must be supplemented by other heuristics in order to e�ectively deal with deceptive and

other di�cult situations.
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2.4 Eugenic Combinatorial Approximation

All of the Darwinian evolutionary search algorithms perform minimal analyses of the infor-

mation contained in their populations; the only information used in the construction of new

individuals is a list of one or more previously encountered individuals and their correspond-

ing �tnesses. These algorithms rely on a large number of trials and repeated applications of

random operators to overcome their lack of domain knowledge and \blindly" strike about

in the search space (albeit in regions biased by the list of historical individuals). The muta-

tions made by these algorithms may be small or large, increasing or decreasing in size, but

all the mutations are random, in the sense that the choices of what parts to mutate and by

how much are not dependent on any analysis of what changes might be best. The genetic

recombinations that take place in pattern-based methods are not guided by any criteria of

which parts would work most successfully together; parts are just randomly extracted from

higher �tness individuals and patched together. Eugenic evolution hopefully reduces some

of the need for many trials by performing reasonable amounts of analysis of the information

gathered in previous trials and pro-actively exploiting this information to guide the choices

made for choosing and combining genetic material.

At least two algorithms, \Binary Simulated Crossover" (BSC) (Syswerda, 1993)

and \Population-Based Iterative Learning" (PBIL) (Baluja, 1994), have attempted to pro-

actively and explicitly identify and exploit correlations between �tness and genetic parts or

complete genotypes. Both are pattern-based methods, but PBIL also can be considered to

be a mutation-based method, even though it makes use of a population of samples. BSC

proceeds as a SSGA, but does not construct new individuals through random crossover

and mutation. Instead, the alleles of a new individual are generated independently, using

modi�ed versions of GA selection techniques such �tness-proportionate selection or rank

selection. Instead of using these selection techniques to choose individuals to participate in

reproduction, these techniques select alleles for inclusion in a completely new individual.

The \�tness" in \�tness-proportionate selection" would refer to an allele's �tness, instead

of an individual's �tness. For example, if �tness proportionate selection was being used,

and a speci�c allele of a gene was found in several individuals whose mean �tness was 50,

while another allele of the same gene was found in individuals whose mean �tness was 25,

then the probability of use of the �rst allele in new individuals would be twice that of the

second|the �rst allele would be two times more likely to appear in a new individual. The

\�tness" of an allele is dependent upon a statistic computed over the individuals in which

it is found, and in this case the statistic is the sample mean of the individuals' �tnesses.

BSC relies solely on measurements of marginal allele-�tness distributions; it makes no e�ort

to determine the dependence of an allele's �tness conditional upon the presence or absence
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of other alleles. BSC makes no attempt to determine which allele combinations go best

together; it completely ignore schemata of order greater than one. As a result, BSC only

analyzes o(1) schemata and therefore completely ignores epistasis.

PBIL also forsakes random crossover and mutation for an alternate method of o�-

spring creation. A \probability vector" is used to generate each population. This probability

vector is simply a vector whose nth component represents the probability that the nth gene

will take the '1' form in the next population. An entire population is randomly generated

with this single vector. After each population is generated, the single best and worst indi-

viduals in the population modify the probability vector so as to increase the likelihood that

the alleles found in the best individual but not in the worst individual will be produced

in the next generation. In a somewhat similar way to simulated annealing's cooling sched-

ule, the amount that the probability vector is modi�ed by decreases with time. PBIL is

pattern-based in the sense that the probability vector represents a pattern of \good" indi-

viduals, while it is also mutation-based in that a single pattern that is the \starting point"

to generate new solutions. PBIL's use of a single probability vector is basically equivalent

to a BSC algorithm that combines the allele-�tness averages of the highest and lowest �t-

ness individuals from many generations. Since PBIL only processes entire genotypes and

probability vectors, and never attempts to analyze parts of these genotypes or vector, it

processes only o(l) schemata.

In both BSC and PBIL, all alleles participate equally in updating the �tness averages

and selection probabilities, and no attempt is made to sort out the possibly conicting infor-

mation coming from very diverse individuals. BSC processes only o(1) schemata, and PBIL

processes only o(l) schemata|neither algorithm processes intermediate-order schemata. It

will be demonstrated in later chapter that the eugenic algorithm, developed independently

of both BSC and PBIL, processes schemata of all orders, through the use of measurements

of both marginal and conditional allele-�tness distributions. Therefore the EuA additionally

has the extremely important ability (lacking in both BSC and PBIL) to track and exploit

epistasis by explicitly examining allele behavior that is dependent upon other alleles, even

when these dependencies only occur in schemata of less than order l.
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Chapter 3

Problem Structure and Di�culty

A clear understanding of the optimization problems faced by evolutionary algorithms is nec-

essary to fully appreciate the mechanism of the EuA. In this chapter, �ve major qualitative

characteristics of discrete combinatorial optimization problems (attractors, hill-climbability,

deception, epistasis, and �tness distribution) are de�ned and discussed. Although none of

these concepts are new, they are usually not de�ned very concretely. This section will

attempt to de�ne and relate them into a uni�ed view of problem structure. Attractors

are optima (local or global) that have basins of attraction. Hill-climbable problems are

ones that can be solved easily using exploitation|when no suboptimal attractors exist.

When suboptimal attractors do exist, both deception and epistasis can occur. Deception

is encountered when strong suboptimal attractors exist that are very genotypically di�er-

ent from the global optima. Problems with high epistasis have a great number of small

attractors. Greater deception and higher epistasis lead to greater problem di�culty. Unlike

deception and epistasis, the relationship between �tness distribution and problem di�culty

is not so concrete. Extremely small or large �tness variance or ranges can either adversely

a�ect the success of evolutionary optimization algorithms, decrease problem di�culty, or

have no e�ect at all. It can be very di�cult to determine by observation the extent to that

these problem characteristics manifest themselves in a particular problem, but quantita-

tive methods for measuring a problem's epistasis and �tness distribution will be proposed

in this thesis. However, before a full discussion of any of these characteristics is possible,

the di�erence between the concepts of genotypic distance and algorithmic distance must be

explored and clari�ed.
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3.1 \Distance": Genetic and Algorithmic

In GA literature, the term \distance" has been associated with both genotypic and algo-

rithmic distance. Although both measures of distance are often directly proportional, this

is not always the case. A well known measure of genotypic distance is Hamming distance.

Hamming distance is a suitable metric for computing genotypic distance for binary geno-

types, as it simply counts the number of gene positions that di�er between two individuals.

As Hamming distance increases, genotypic similarity decreases. Algorithmic distance, on

the other hand, is the amount of search an algorithm must perform to generate one point

from another. It is inversely related to transitional probability|the probability that a par-

ticular o�spring will be generated from a given parent. The algorithmic distance between

point A and point B increases as the likelihood decreases that an algorithm's search will

progress directly from point A to point B. If the algorithmic distance between point A and

point B is in�nite, then the transitional probability from point A to point B is zero. Al-

though algorithmic and genotypic distance are often related, they are independent of each

other, since algorithmic distance varies depending on the algorithm in use, while genotypic

distance remains constant.

There are cases in which algorithmic distance is directly proportional to genotypic

distance. This is true for some of the most popular evolutionary algorithms. In these cases,

the use of the term \distance" to simultaneously refer to both distance measures has been

both convenient and justi�ed. For mutation-based algorithms that use small mutations,

Hamming distance can easily be used to estimate the algorithmic distance of two points.

These methods rely on small perturbations of the current solutions to generate new solu-

tions, and so points separated by small Hamming distances are highly likely to be generated

from each other, while points separated by large Hamming distances very likely will never

be generated from each other|they are truly \far away" from each other. Therefore, for

these algorithms, the qualitative relationship between genotypic and algorithmic distance

is simple and static. The concepts of genotypic proximity and transitional improbability

are truly interchangeable, and both concepts can be easily uni�ed into a single idea of

\distance".

For pattern-based algorithms, the concept of distance is much more complicated. An

intuitive assumed equivalence between genotypic and algorithmic distance is not valid, since

extremely large perturbations to the current solution(s) can and do occur from one iteration

(generation) to the next. It is often very likely that a new individual will di�er signi�cantly

from every individual in its parent population, even though the new o�spring was created

with only a single iteration of the search. All that is likely to remain similar between parents

and o�spring are the special patterns that the algorithm promotes. When these patterns
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include most of an individual's alleles, as in mutation-based algorithms, Hamming distances

remain small from generation to generation|genotypic distance is small when algorithmic

distance is small. When the exploited patterns are more complex, such as the random-length

schemata of GAs, the Hamming distances between o�spring and their immediate parents

can often be very large. Therefore, although the genotypic distance between two individuals

may be very large, the algorithmic distance could still be very small. The simple relationship

between genotypic and algorithmic distance that is encountered in many mutation-based

methods breaks down as the complexity of the exploited patterns increase. For pattern-

based methods, and for mutation-based methods that utilize extremely high mutation rates,

genotypic distance is often largely unrelated to algorithmic distance.

3.2 Attractors

Because of the breakdown of the relationship between genotypic and algorithmic distance,

the ideas of \attractors" and \local optima" must be approached very carefully, since the

very idea of \locality" depends on the distance measure being used. Local optima are

suboptimal points or regions that optimization algorithms frequently converge to, for one

reason or another. Accompanying these sub-optima are their \basins of attraction", which

are regions of the search space such the algorithm is likely to converge to the sub-optima

if it enters the region. Whether optimal or suboptimal, points (or regions) having basins

of attraction are called \attractors". An attractor for mutation-based algorithms is not

necessarily an attractor for pattern-based algorithms. Attractors for mutation-based algo-

rithms (mutation-based attractors) are points that are superior to points in the genotypic

neighborhood. Fitness in this neighborhood monotonically decreases with increasing geno-

typic distance from the attractor. Points that are more similar to the attractor have higher

�tness, while points that are less similar have lower �tness. Therefore, a mutation-based

algorithm that encounters a point in the basin of attraction can easily increase the �tness

of the solution by mutating the point to become more similar to the attractor. Once in-

side the basin of attraction, a mutation-based algorithm would converge to the attractor,

unless the algorithm performed large mutations (\jumps") that made the current solution

less similar to the attractor. The \strength" of a mutation-based attractor depends on how

far out its basin of attraction extends (i.e. at what genotypic distance does �tness stop

monotonically decreasing), and on how many points inside the basin of attraction violate

the rule of monotonically decreasing �tness.

In contrast, attractors for pattern-based algorithms pattern-based attractors are rooted

in suboptimal patterns, not suboptimal points. When a genotypic pattern is observed to

have �tness superior to that of its alternatives, and therefore promoted throughout the
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search, then this pattern can be considered to be an attractor for a pattern-based algorithm

(see \Deception", below). The �tness of a pattern is generally considered to be the average

�tness of all individuals encountered that match the pattern, but the choice of the statistic

used (whether mean, mean-squared, etc.) is arbitrary. Patterns arise through observations

of many di�erent individuals, but the patterns do not necessarily lead to any particular

highly-�t point. The observations are incomplete, because they often do not sample all the

points matching a particular pattern, and therefore any statistics calculated using the ob-

servations are prone to sampling error. Therefore, the patterns are \noisy" attractors that

help guide the algorithm towards seemingly good groups of points, not necessarily directly

toward speci�c superior individuals. The strength of a pattern-based attractor increases as

the mean �tness of the pattern increases and its variation decreases. Strength decreases

with increasing pattern length, because the pattern becomes more speci�c and therefore

matches fewer individuals. As a result, it is less likely that the pattern will be encountered

and, when encountered, sampling error will be higher since fewer matching individuals will

be available. In e�ect, by increasing pattern length, the basin of attraction of the pattern

decreases in size.

3.3 Hill-Climbability

For many evolutionary algorithms, there are some types of discrete optimization problems

that are easier to solve than others. In particular, the characteristic of \hill-climbability"

can be found in many of the simplest problems. In hill-climbable problems, the exploitation

of observed superior properties leads easily to the creation of an optimal individual. In

such problems, there is little or no need for exploration and, speci�cally, there is no need

to discard an observed superior pattern or individual in favor of a inferior one. Varying

degrees of hill-climbability exist. Problems that have more suboptimal attractors are less

hill-climbable, as are problems whose suboptimal attractors have larger basins of attraction,

since exploitative algorithms are more likely to converge to the sub-optima in these cases.

Therefore hill-climbability decreases with increasing numbers and strength of suboptimal

attractors.

There are two types of hill-climbability|mutation-based and pattern-based. In

a mutation-based hill-climbable (MBHC) problem, all the mutation-based attractors are

global optima. This means that from every non-optimal point in the search space, there

are many single-bit mutations that lead to points of higher �tness. Therefore, there is an

exploitative, single-bit \mutation-trajectory" from every point in the space to a global op-

timum. A MBHC problem can be solved very easily by a mutation-based \hill-climbing"

algorithm, which performs single-bit mutations and replaces the current individual only
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when the new individual has higher �tness. Later in this thesis, a speci�c mutation-based

hill-climbing algorithm will be developed to determine the MBHC of any problem.

Pattern-based hill-climbability (PBHC), better known as \building block construc-

tivity", has been discussed extensively in GA literature (Goldberg, 1989). In theory, a

PBHC problem could easily be solved by exploiting alleles and allele sets that have superior

observed �tness averages. Such alleles or allele sets would surely be present in a global

optimum, and therefore it would be a simple matter for an algorithm to combine superior

patterns into an optimum individual. However, in practice, even toy problems that have

been designed speci�cally to be building block constructive are not that easily optimized

by pattern-based algorithms. However,it has been demonstrated that GAs can perform

relatively poorly on problems that are speci�cally designed to be building-block construc-

tive (the \Royal-Road" functions described in (Forrest and Mitchell, 1993)). In particular,

far simpler approaches such as random bit-climbing algorithms have been shown to easily

outperform GAs on several of these problems. It is now clear that there are many other

factors involved in GA performance, and that building-block constructivity cannot be so

easily measured. It is usually the case that only \toy" problems can be clearly seen to be

optimizable through the recombination of short, low-order schemata. Similar to MBHC,

PBHC decreases when the number and strength of pattern-based suboptimal attractors

increase.

In order to more fully understand both mutation- and pattern-based hill-climbability,

it is useful to study a problem that is completely mutation- and pattern-based hill climbable.

The BIT-COUNT problem is such a problem. It is probably the simplest toy problem used

to test and illustrate the actions of evolutionary algorithms. In BIT-COUNT, the �tness of

each point (x) is its Hamming distance from the zero-vector (x = 0:::0). The optimum is

therefore reached when all the bits are set to '1' (x = 1:::1), since this point has the highest

Hamming distance from the zero-vector. It is mutation-based hill-climbable because any

mutation from a '0' allele to a '1' allele leads to an individual of higher �tness that is also

closer to the optimum, while mutations from '1' alleles to '0' alleles lead to individuals of

lower �tness that are farther away from the optimum. Therefore a completely exploitative

mutation-based algorithm will easily and quickly locate the optimum, and the problem is

therefore mutation-based hill-climbable. In addition, all schemata that contain more '1'

alleles than their rivals will have higher average �tnesses than their rivals, if the number

of observations over which these averages are computed is high enough. As a result, the

complete exploitation of these higher �tness schemata will lead to optimization. There-

fore BIT-COUNT is also pattern-based hill-climbable. It should, however, be noted that

pattern-based algorithms do not usually have access to complete schemata information|

they must rely on only small samplings of schema members to compute schema �tness, and
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are therefore vulnerable to the errors associated with incomplete sampling. The �tness aver-

ages observed in smaller samples may incorrectly reect relative �tnesses, and therefore an

exploitative pattern-based algorithm may erroneously promote patterns not matching the

optimum. As a result, such algorithms will not always �nd the optimum of BIT-COUNT

as quickly as a completely exploitative mutation-based algorithm.

3.4 Deception

Even though a problem may display a high degree of observed hill-climbability|where

exploitation leads to signi�cant and reliable increases in �tness|the problem may still have

local optima. When local optima have very large hill-climbable basins of attraction and

di�er greatly from the global optima, the problem is \deceptive"1. In this case, the easy

\progress" made by hill-climbing algorithms is deceptive, as it leads only to local optima that

are very genotypical di�erent than the global optima. For example, a particular problem

may have one schema that is observed to have a greater average �tness than its competitors.

However this \better" schema might not be part of the optimum genotype, even though

the promotion of this schema above its competitors results in individuals of increasingly

higher �tness. In fact, the schema may match individuals that di�er signi�cantly from the

optimum individuals. In this case, the problem would be pattern-based deceptive. A similar

example can be constructed for mutation-based deception, where mutations towards a local

attractor would lead farther and farther away from the true global optimum.

Depending on a problem's attractors, both pattern-based deception as well as mutation-

based deception are possible, but do not necessarily always coexist. \DECEPT" is stan-

dard GA test problem that is both pattern- and mutation-based deceptive. DECEPT is

very similar in structure to BIT-COUNT, but DECEPT is a much harder problem for an

evolutionary algorithm to solve. DECEPT (equation 3.4) is basically identical to \BIT-

COUNT", except that the zero-vector (x = 0:::0) itself is the optimum, with slightly higher

�tness than the one-vector (x = 1:::1). In both problems, when all non-optimal individuals

are examined2, and then the average �tness of both the '0' and '1' alleles are calculated, it

will be found that the average �tness of the '1' allele is higher than the average �tness of

the '0' allele. For the BIT-COUNT problem, this intuitively con�rms the presence of the

optimum at x = 1:::1. However, for the DECEPT problem, it contradicts the intuition that

the observed \average best" allele (allele '1') will be the one present in the optimum, since

1Deception is typically said to exist in problems with \misleading" (or locally optimal) schemata (Gold-
berg, 1989), and therefore this de�nition does not distinguish between mutation- and pattern-based
deception.

2It is reasonable to exclude the optimum from the calculation of allele or schema �tness, since we are
assuming that the optimum is not known a priori (that's why we need an optimization algorithm!).

23



l + 1 when x = 0 (3.1)

Hamm(x;0) otherwise (3.2)

Figure 3.1: The DECEPT problem

the optimum contains only '0' alleles. As a result, DECEPT is signi�cantly harder for both

mutation-based and pattern-based algorithms. It is hard for mutation-based algorithms to

optimize since �tness will increase each time a '0' is mutated to a '1' (except when starting

from the optimum). Each seemingly \good" mutation is actually an \incorrect" mutation,

in the sense that it will lead to a sub-optimal solution and away from the true global op-

timum. DECEPT is hard for pattern-based algorithms because, in populations that do

not contain the optimum, every \schemata competition"3 is won by the schema with the

greater number of '1' alleles, and so more '1' alleles are propagated through the popula-

tion. A pattern-based algorithm will allocate increasing amounts of trials to \misleading"

schemata that can never be recombined to form the optimum.

3.5 Epistasis

In general, the degree to which a problem exhibits epistasis is the degree to which the

\best" setting of an allele is dependent on the settings of other alleles|it is the amount

of interdependence among a genotype's alleles (Goldberg, 1989). However, little attention

has been given to the interaction between attractors and epistasis. Epistasis occurs when a

problem has an extremely high number of very small mutation-based attractors, to such an

extent that there are almost no pattern-based attractors, since the basins of attraction of the

sub-optima contain so few individuals over which patterns can be discerned. If the problem

has only one (global) attractor, then the best setting of every allele is always independent of

the settings of the other alleles, and the problem is completely unepistatic|it exhibits 0%

epistasis. There is no need to coordinate the selection of alleles; each gene has an elite allele

that is consistently found in superior individuals, and so it is a simple matter to construct

high �tness individuals using these alleles. BIT-COUNT is an example of a 0% epistatic

problem. It has no suboptimal attractors. For any given individual, the best setting of

every allele is completely independent of the other alleles.

3I de�ne a \schemata competition" as a comparison between two schemata with the same order and �xed
positions
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Conversely, if the best setting of an allele can never be speci�ed without the exam-

ination of all the other allele settings, then the problem is 100% epistatic. The best allele

choice for a gene can rely heavily on a suitable and \harmonious" setting of other genes.

100% epistatic problems are hard for both mutation-based and pattern-based optimization

algorithms, since the settings of almost all of the genes must be coordinated simultaneously

in order to create a superior individual. For example, in a mutation-based algorithm, such

as SA, the alleles found in the current sample roughly indicate \good" settings. As the

search progresses, fewer alleles are changed and correspondingly more alleles are left un-

touched, as it is hoped that higher and higher �tness combinations have been found. But in

a 100% epistatic problem, the \best" setting of each allele changes any time another allele

changes values. Therefore SA's heuristic of mutating fewer alleles as better solutions are

found is much less e�ective. The heuristic of promoting good sets of alleles (schemata),

used by pattern-based algorithms, is also less e�ective in these circumstances, as the �tness

of each schemata becomes too dependent on the presence or absence of other \companion"

schemata. As a result, random recombination of schemata must rely on the random chance

that two entire schemata will work well with each other. Because of the combinatorial

explosion of the number of possible combinations of schemata, this random chance is very

small. Consequentially, 100% epistatic problems are the hardest problems for evolutionary

algorithms.

Epistasis can be partially studied by examining single-allele competitions between

otherwise identical genotypes. Such a competition is performed when a single allele of

an individual is mutated into an alternative allele. The �tnesses of both the original and

the mutated individual are determined, and the allele associated with the higher �tness

individual wins the competition. These competitions can be performed on any individual in

the search space. In a 0% epistatic problem, each gene will have a special allele that it always

wins its competitions with its alternate allele, no matter how the rest of the genotype is

con�gured. In a 100% epistatic problem, however, the winners of these competitions will be

equally balanced among all the competing alleles. For example, if the genotypes are binary,

then the value of '0' for a particular gene will yield superior �tness for half the genotypes,

while '1' will be better for the other half. In e�ect, the search space is partitioned into two

sets by a particular gene|the �rst set containing all those genotypes for which '0' yields

the highest �tness, and the other set that contains those genotypes for which '1' is best.

In a 100% epistatic problem, these two sets are equal in size|each allele is best only half

the time. However, as one set increases in size and the other shrinks, a \pattern" emerges

in which one allele more frequently is a better choice, resulting in a corresponding decrease

in epistasis. Therefore, by keeping track of the frequency with which alleles yield higher

�tness than their complements (i.e. win a competition), epistasis can be estimated. More

25



\balanced" win frequencies imply more epistasis, as they imply that it is very di�cult to

decide which allele is better, without examining the rest of the genotype. However, this

epistasis estimate only deals with o(1)-schemata; it ignores competitions among higher-order

schemata and how unbalanced the win frequencies of these schemata are. It is unclear as

to whether or not this \o(1)-epistasis" is an under-estimator or over-estimator of overall

epistasis; �gure 3.5 shows an example problem that exhibits almost 100% o(1)-epistasis,

but in which higher order competitions are unbalanced, and therefore epistasis is lower for

higher-order schemata. Equation 3.3 de�nes the relationship between genotypes and �tness;

it was designed so that just about every o(1) competition was perfectly balanced.

f(x) =

(
2INT(x) when INT(x) < 2l�1

2(2l � INT(x)) otherwise
(3.3)
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Individual Gene 1 (x1) Gene 2 (x2) Gene 3 (x3)

x f(x) x1='0' x1='1' x2='0' x2='1' x3='0' x3='1'

000 1 1 - 1 - 1 -
001 3 3 - 3 - - 3
010 5 5 - - 5 5 -
011 7 7 - - 7 - 7
100 8 - 8 8 - 8 -
101 6 - 6 6 - - 6
110 4 - 4 - 4 4 -
111 2 - 2 - 2 - 2

f�(xi = a) 4.0 5.0 4.5 4.5 4.5 4.5
p�(xi = a) 0.44 0.56 0.5 0.5 0.5 0.5

Figure 3.2: A
3-bit problem with extremely high o(1)-epistasis; the mean �tness of almost every allele is
equal to that of its competitor. f�(xi = a) is the mean �tness of allele a for gene xi, and
p�(xi = a) is ratio of allele of this mean �tness over the sum of all the mean �tness of all
alleles for gene xi. When �tness-proportionate selection is being used, p�(xi = a) would be
the probability of selecting allele a for gene xi. Note that for genes 2 and 3, the probability
of selecting each allele is identical, and for gene 1, the allele selection probabilities are fairly
equal. The allele selection probabilities for gene 1 would become increasingly similar as the
number of genes is increased. Since the allele selection probabilities are almost all balanced,
it is very hard to decide which alleles are the most responsible for increased �tness.
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A measure is proposed here that can be used to directly estimate o(1)-epistasis. It

measures how hard it is to immediately solve a problem by randomly sampling a small

number of genotypes and then create a very high �tness individual by setting each allele

the the average winner of each o(1) competition. In a 100% o(1)-epistatic problem, allele

win frequencies would be balanced, and so the decision to use one allele or the other would

be di�cult. Since there may be hundreds of genes in genotype, it would not be adequate

to simply count the win frequencies of the alleles of a single gene; the win frequencies of

all the alleles of all genes must be recorded, and how much this distribution of frequencies

di�ers from a completely balanced distribution (expected in a 100% epistatic problem)

must somehow be measured. The chi-squared (�2) test (equation 3.4) can be used to

measure this di�erence between the observed win frequencies and expected win frequencies.

The chi-squared test is used to determine how well theoretical distributions �t empirical

distributions. In this case, the theoretical distribution (ei) of 100% epistasis expects each

allele to win 50% of its competitions. Therefore, if there are N competitions per gene, each

allele should win N=2 competitions (if a binary genotype is being examined). The empirical

distribution (oi) is the actual number of times each allele wins an o(1) competition over

the course of the N competitions. For binary genotypes, there are two alleles per gene, and

therefore alleles can be numbered from 1 to (2l). �2 is calculated by summing the frequency

\errors" (oi�ei)
2

ei
for all (2l) alleles. The minimum possible value (0) for �2 is achieved when

the observed distribution oi of every allele i exactly matches its expected distribution ei|

when there is 100% epistasis. The maximum possible value (l �N) occurs when the allele

competitions are completely unbalanced|either an allele wins all N competitions, or it

wins zero competitions and its complementary allele wins all N competitions. When the

allele competitions are completed unbalanced in this way, �2 is a sum of 2l integers, of

which l have the value N and l have the value zero. Therefore the maximum possible value

of �2 is (l � N). Equation 3.5 is used to calculate a value for o(1) �2-epistasis E�2 that

ranges from zero to one. A value of zero would indicate 0% o(1) �2-epistasis, while a value

of one would indicate 100% o(1) �2-epistasis. The extension of this method, to measure

the dependence of higher order schemata on the settings of alleles outside those schemata,

is straightforward but would require exponentially increasing amounts of computation with

each increase in schemata order.

To calculate o(1) �2-epistasis, single allele competitions must occur between geno-

types that di�er by only one allele. An algorithm for calculating o(1) �2-epistasis is speci�ed

in �gure 3.4.

Looking back at the DECEPT example, we see that, even though the problem is

fairly di�cult, there is actually very little epistasis in the problem since there is only one

suboptimal attractor, and since most allele competitions are unbalanced (the '1' allele most
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N = number of competitions performed

oi = observed number of wins for allele i

ei = expected number of wins for allele i = N=2

i 2 1::(2l)

E�2 = o(1) �2-epistasis

�2 =
2lX
i=1

(oi � ei)
2

ei
(3.4)

max�2 = l �N

E�2 = 1�
�2

max�2
(3.5)

Figure 3.3: Calculating o(1) �2-Epistasis

DO WHILE (N <max�N)

1. Choose random genotype x

2. Evaluate f(x)

3. Choose random gene g in x and change its allele from i to i0, yielding x0

4. Evaluate f(x0)

5. If f(x) < f(x0), increment oi0 else increment oi

6. N++

OD

Figure 3.4: Pseudo-Code for Calculating o(1) �2-Epistasis

often beats the '0' allele). DECEPT is an example of a di�cult problem with practically

0% epistasis, but high deception. It is therefore clear that a problem need not be highly

epistatic in order to be di�cult to optimize.

In summary, if a problem has no suboptimal attractors (whether mutation- or

pattern-based), it is hill-climbable, because exploitation of observed higher-�tness schemata

leads easily to global optima. If a problem has an extremely large number of suboptimal

attractors, it is very di�cult to determine when a schema with higher observed �tness is

local to a suboptimal attractor, or if the feature is actually present in a global optimum.
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Such a problem is highly epistatic. If a suboptimal attractor leads an algorithm to a solution

that is signi�cantly (genotypically) di�erent from the global optima, then the attractor is

deceptive. If this attractor is strong enough|if it has a large enough basin of attraction|

then the problem is deceptive. Hill-climbability, deception and epistasis are all problem

characteristics that arise from the genotypic topology of the search space. If this topology

changes, then all three characteristics can radically change. All three of these characteristics

are relatively independent of raw �tness values, but they are very sensitive to changes in

individuals' �tness ranking. The next section will discuss \�tness distribution", which is a

problem characteristic that is completely dependent on raw �tness values.

3.6 Fitness Distribution

The distribution of a problem's �tness function can be characterized by many di�erent mea-

sures: the range of �tness values, their mean and variation, their ratios, their concentration

around speci�c values, etc.. Since most evolutionary algorithms directly use �tness values to

calculate important search probabilities such as selection probabilities and mutation rates, a

mismatch between a problem's �tness distribution and the probability-calculating functions

used by the particular algorithm can cause dismal performance. For example, if an algo-

rithm relies too much on absolute di�erences in individual's �tnesses, it can have di�culty

solving problems that have a very small range of �tnesses. For instance, a GA using �tness

proportionate selection would perform miserably on a problem in which �tness ranged from

106 to (106 + 1), as the algorithm would allocate trials to the best and worst individuals

with virtually the same frequency. The same algorithm can run into di�culty when the

range of �tness is too wide. If �tnesses ranged from 0 to 106, but most individuals had

�tness less than 10, the �rst individual encountered with �tness 102 or 104 would \swamp"

the population, as �tness proportionate selection would be likely to allocate all trials to this

individual. This \bad match" between the algorithm's use of �tness values and the �tness

range in the problem being attacked would quickly cause premature convergence.

Bad matches can also exist between a problem's �tness distribution and algorithms

that do not use �tness-proportionate selection. For example, simulated annealing has an

\acceptance probability" that determines whether lower �tness individuals will replace the

current individual. This probability changes in relation to the di�erence in �tness between

a new sample and the old sample. When the di�erence in �tness between two samples is

very low, the probability of acceptance can be very high. If a search space is dominated by a

dense concentration of low �tness points, the search may spend much of its time wandering

among these points, without ever exploiting small increases in �tnesses necessary to climb

out of the low �tness region. Almost every mutation will be accepted, no matter what its
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e�ect on �tness (since the changes in �tness will be \small"). However, it might be these

tiny changes in �tness are what is necessary to guide the search to the best regions of the

space. An example of this phenomena will be demonstrated later in this thesis (see the

discussion of F31 in the \Experiments" chapter).

Various methods (such as \�tness scaling" (Goldberg, 1989)) have been proposed

that alleviate some of the problems associated with mismatches in �tness distributions and

speci�c algorithms. These methods usually try to convert algorithms that rely on �tness-

proportionate selection into hill-climbing algorithms that allocate trials on the basis of the

�tness-rank-order of the di�erent individuals or schemata in the population.

With respect to evolutionary optimization, the major characteristic of �tness dis-

tributions is their variance|in what ranges can the majority of �tnesses be found, and

how concentrated are these �tnesses around particular values? Most importantly, from

the standpoint of an optimization algorithm, is the �tness variation caused by a particu-

lar genotypic feature? How much e�ect does a particular allele, gene or schema have on

�tness|how \signi�cant" are these genotypic features? In the following, a possible method

for the analysis of variance (ANOVA) of allele signi�cance will be proposed.

3.6.1 ANOVA of Allele-Fitness

The more predictable an individual's �tness is, given that it contains a particular allele, the

easier it should be to construct individuals with desired levels of �tness. An individual's

�tness is \predictable" from the presence of a particular allele if the variation of �tnesses

of individuals containing that allele (the allele's �tness variation) is low. When the allele's

�tness variation increases, it becomes harder to decide whether or not that that allele

has a large e�ect on �tness, as the �tness of individuals containing that allele become

less consistent. When all the alleles have high �tness variances|when no single allele is

consistently associated with a particular small range of �tness values, it becomes very hard

to predict �tness from the entire genotype. One way to measure how predictable �tness

is from complete genotypes is to sum all the allele �tness variances. I shall call this sum

\within-allele �tness variance" (S2w). A low S2w implies that many alleles' �tness variances

are low, and therefore predictability of �tness from genotypes is high. High S2w values

imply that there are many alleles that appear in individuals of wildly di�erent �tness; allele

�tness variance is high overall. High S2w values therefore indicate that the genotype-�tness

mapping is hard to predict from individual alleles.

How are \high" and \low" values of S2w de�ned? An allele's �tness variation should

be measured relative to the overall �tness variation of the problem. One measure of the

overall variation in a problem is \between-allele �tness variance" S2b . It measures how

much each gene's allele mean �tnesses di�er from each other. It is the sum of the square of
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the di�erences between all pairs of allele mean �tnesses. This quantity is mathematically

equivalent to the sum of squared di�erences between a population's mean �tness and all

allele �tness means.

i; j 2 1::2l

f�(i) = mean �tness of allele i

f�(:) = mean of all allele mean �tnesses

S2b =
X
i;j

(f�(i)� f�(j))
2

=
X
i

(f�(i)� f�(:))
2

When allele means are very di�erent from the population mean, the alleles most

highly correlated with high or low �tness become more evident|the signi�cance of the

alleles becomes more pronounced. For example, consider an l-bit genotype that simply

encodes the binary integers from 0 to 2l � 1. The mean phenotypic value (�tness) of this

problem would be f� = 2l�1
2 . The most signi�cant bit (gene) could have one of two allele

values|'0' or '1'. Allele '0' would be found in individuals having mean �tness half that of

the population at large, while allele '1' would have mean �tness one and half times that of

the mean population �tness. Therefore both alleles for this gene would be highly signi�cant,

as they both would have a signi�cant inuence on the �tness of the individuals they were

found in. S2b is the sum of di�erences in allele pairs, and so when many genes have signi�cant

alleles, S2b increases. Higher S2b implies that it is easier for an algorithm to identify alleles

that are commonly associated with high �tness individuals.

By combining both between- and within-allele variance of a problem into a single

ratio,
S2
b

S2w
, we can measure the overall ease of predicting an individual's �tness, given that

speci�c alleles are present in that individual, and therefore we have taken a large step in

categorizing the di�culty of the optimization problem. The numerator, S2b , increases when

variations in gene signi�cance increase, resulting more predictability. The denominator, S2w
indicates how unpredictable �tness is from single alleles, so as predictability decreases, S2w

will increase, and thus the ratio
S2
b

S2w
will decrease. The implications of these observations

will be discussed next.
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3.6.2 Gene Signi�cance and Fitness ANOVA

In most mutation-based algorithms, each gene has the same probability of mutation. How-

ever, in many problems, some genes have greater signi�cance than others. Changes to these

genes result in larger changes in �tness than changes to other genes. Most mutation-based

algorithms do not exploit di�erences in signi�cance. Pattern-based algorithms (and par-

ticularly GAs) indirectly exploit di�erences in signi�cance because genes that are higher

in signi�cance lose diversity much faster than lower signi�cance genes, and therefore be-

come less and less likely to change settings as the search progresses. Problems with a wide

variety of gene signi�cances will have large S2b values, as many alleles will have mean �t-

nesses di�ering signi�cantly from the population mean. Problems with high variation in

gene signi�cances might be considered to be easier than problems for which all gene signi�-

cances are equal, since, for the �rst type of problems, an algorithm could quickly determine

what the best settings were for the most signi�cant genes, and thus make large progress

initially in the search. Once this was accomplished, the algorithm could then concentrate

on determining the best settings of the lower-signi�cance genes.

Although phenotypic �tness may be highly predictable from single alleles, this does

not mean that the problem is easily optimizable. Choices must be made among competing

alleles. If complementary alleles have the same mean, at least one of their variances must be

high, since the entire range of �tness values must be included in the mean calculations. It

could be the case that one of the alleles had very low �tness variation, while the other allele

was frequently found in both the best and worst individuals and therefore had very high

�tness variation, but still had the same mean as the �rst individual. What would be the

best allele to use when constructing a new individual? If it could somehow be determined

why the second allele was present sometimes in high �tness individuals, and other times

in low �tness individuals, then it might be possible to carefully construct a new individual

that met all the conditions found in the high �tness individuals, and therefore the second

allele could be used with con�dence. An optimization algorithm|the eugenic algorithm|

will be presented in the next chapter that accomplishes this goal through the use of an

operator (the \restriction" operator) that causes conditional allele-�tness distributions to

be measured and therefore determines what combinations of alleles lead to extremes in

�tness.
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Chapter 4

The Eugenic Algorithm

The Binary Simulated Crossover (BSC) (Syswerda, 1993) algorithm explicitly analyzes and

recombines o(1) schemata to form new individuals. Population-Based Iterative Learning

(PBIL) (Baluja, 1994) uses a probability vector as an explicit \fuzzy" representation of a

\good" o(l) schema from which similar o(l) schemata are constructed. What is missing

from both these algorithms is the explicit analysis and processing of intermediate order

schemata|o(2) to o(l � 1). There are a great many of these schemata, and an explicit

analysis of every one of them is infeasible. If a search algorithm is to perform explicit

analyses of intermediate order schemata, it must limit its computational burden to only a

small subset of these possibilities. The chosen subset should include only those schemata

that are most relevant to reducing uncertainty and furthering the search.

A new algorithm that accomplishes these objectives is proposed in this chapter. It

achieves smart recombination, in addition to smart mutation. This \Eugenic Algorithm"

(EuA) consists of three major elements: (1) selection of promising alleles, based on an

explicit analysis of allele �tness distributions, (2) restriction of the population to relevant

individuals and (3) steady-state replacement. This chapter will begin with an illustrative

description of example execution of the EuA, followed by discussions and justi�cations

of how good alleles are selected, relevant individuals are identi�ed, and why steady-state

replacement is used.

4.1 Example of Eugenic Algorithm Execution

Since many of the concepts introduced in the EuA have never previously been integrated

into the same algorithm, an illustrative example will be used to help explain the workings

of the EuA. I shall list EuA pseudo-code before beginning the example.
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L01: pop = random-pop() /* Randomly initialize the population: */
/* N counts the number of individuals created by the EuA: */
N = 0
/* Keep on creating new individuals until N exceeds Nmax */

L02: DO WHILE (N < Nmax)
u = f x1; x2; x3; :::; xl g
rpop = pop

L03: DO WHILE nonempty(u)
/* Select and set a gene: */

L04: xg = most-signi�cant-gene(rpop, u)
L05: xg;a = select-allele(xg)
L06: Remove xg from u

/* Restrict population when epistasis of unset genes is high: */
L07: E = epistasis-of-population(rpop, u)
L08: p = probability-of-restriction(E)
L09: if (uniform-random[0,1] < p)
L10: rpop = restrict-population(rpop, xg;a)

OD
/* Replace lowest-�tness individual with the new individual */

L11: w = lowest-�tness-individual(pop)
L12: popw = x

N++
OD

Figure 4.1: Pseudo-Code for the Eugenic Algorithm

4.1.1 Pseudo-Code for the Eugenic Algorithm

In �gure 4.1, pseudo-code is shown that outlines the eugenic algorithm. The subroutines it

relies upon will be described in the following sections.

The EuA begins by generating a random population of size � in step L01. In the

simplest case, the population size � will remain constant during the entire execution of the

algorithm. Once the random population is created, the algorithm repeatedly creates a new

individual (steps L04 through 10) and replaces the lowest-�tness individual in the population

with the new individual (steps L11 and L12) until the maximum number of individuals have

been created. There are obviously many other possible termination criteria, such as stopping

when an individual with particular level of �tness has been encountered.

The EuA constructs new individuals one gene at a time. Initially, all the genes have
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no set value|they are \unset" with u the set of unset genes (see steps L02, L04, and L10).

The EuA orders genes|from most signi�cant to least signi�cant. Once the most signi�cant

gene remaining in u is determined (step L04), an allele value is selected for that gene (step

L05). Once a gene's value is set, that gene is removed from u (step L06).

After setting the value of a gene, the EuA estimates the amount of epistasis E that

the population exhibits among the remaining unset genes (step L07). The EuA uses E

to determine p, the probability of restricting the population to only \relevant" individuals

(step L08). If epistasis is high, then the necessity of restriction will be high, and therefore p

will be high. In step 09, the algorithm probabilistically decides whether or not to restrict the

population. If a random sample from a uniform variable in the range [0,1] has a lower value

than p, the algorithm then temporarily removes from the population all those individuals

that do not carry allele xg;a (step L10). In e�ect, the population is \restricted" to only those

genotypes that are relevant to the allele choices for the remaining unset genes, i.e. those

individuals that contain the allele that was just chosen. These individuals are relevant since

they contain information about how other alleles interact with allele xg;a; individuals that

do not contain allele xg;a have no information on allele xg;a's epistatic interactions. At the

start of the creation of each individual, all individuals are included in rpop, the restricted

population. After each restriction, more individuals are removed from rpop. If a restriction

would cause rpop to have fewer than minpop individuals, rpop is not restricted.

Once a population is restricted, all the statistics used in steps L03-L10 are calculated

using only the restricted population. In the next iteration, step L04 determines the gene

xg that is most signi�cant in the restricted population. Step L05 calculates allele selection

probabilities for xg, based on the average �tnesses of alleles found in the restricted popula-

tion. Step L07 estimates the epistasis among the unset genes of the restricted population,

and, by limiting the scope of these calculations of signi�cance, allele selection probability,

and epistasis to only those individuals in the restricted population, the EuA increases their

relevancy to determining the best alleles to combine with the alleles already chosen.

A description of an example execution of the EuA will be given below.

4.1.2 Example Execution

In this section, I will give an example of the creation of a single individual from the popu-

lation shown in �gure 4.1.2. The EuA creates a single new individual in steps L03-L10.

Initially, the population contains 5 individuals, and the set of unset genes (u) contains

all the genes (u = fx1; x2; x3; x4g).

The �rst step in creating a new individual is to determine the most signi�cant unset

gene (step L04). The most signi�cant gene is the gene whose allele values seem to have the

greatest e�ect on individuals' �tness. A simple way to estimate gene signi�cance is to use

36



Individual Gene 1 (x1) Gene 2 (x2) Gene 3 (x3) Gene 4 (x4)
x f(x) x1='0' x1='1' x2='0' x2='1' x3='0' x3='1' x4='0' x4='1'

1100 25 - 25 - 25 25 - 25 -
1110 23 - 23 - 23 - 23 23 -
1101 22 - 22 - 22 22 - - 22
0100 20 20 - - 20 20 - 20 -
1111 2 - 2 - 2 - 2 - 2
f�(xi;a) 20.0 18.0 - 15.0 22.3 12.5 22.7 12.0
p�(xi;a) 0.53 0.47 0.0 1.0 0.64 0.36 0.65 0.35

Figure 4.2: Complete Population

x : an individual's genotype

xi; i 2 1:::l : the i th gene of the genotype

a 2 f000;0 10g : the possible allele values

xi;0; xi;1 : the two possible alleles ('0' or '1') for gene i

f�(xi;a) : mean �tness of all individuals containing allele a for gene i

p�(xi;a) : probability of selecting allele a for gene i

the absolute di�erence between its alleles' mean �tnesses. This quantity is j20:0�18:0j = 2:0

for x1 (gene 1), j22:3 � 12:5j = 9:8 for x3, and j22:7 � 12:0j = 10:7 for x4. Gene 2 (x2)

has no signi�cance since it had no allele diversity and therefore none of its allele could

have any observable e�ect on the �tness of individuals in the populations. Genes with no

allele diversity are always assigned the lowest signi�cance possible. As a result, the most

signi�cant gene in this population is x4, followed by x3, x1, and x2.

Since alleles are assigned to the most signi�cant genes �rst, an allele is chosen for x4
in step L05. An allele's selection probability is equal to its mean �tness divided by the sum

of allele mean �tnesses for all the alleles associated with this particular gene. For gene x4,

the probability of choosing allele '0' (x4;0) is 0.65, since
f�(x4;0)

f�(x4;0)+f�(x4;1)
= 22:7

22:7+12:0 = 0:65.

The corresponding probability of choosing allele x4;1 is 0.35. Say that allele x4;0 is chosen.

In the individual being created, gene x4 is therefore assigned the allele value of '0'. This

occurs in step L05.

Once a gene's allele value is set, the gene is removed from the set of unset genes (u)

in step L06. Therefore, x4 is removed from u, resulting in u = fx1; x2; x3g.

When epistasis is high, the \correct" choice of alleles depends heavily on the alleles

already present in an individual. Therefore the EuA should not always use allele selection

statistics gathered over the entire population; it should use statistics gathered over individ-
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uals that contain the same alleles as those that have been chosen for the new individual.

In steps 07 through 10, the EuA decides whether or not to restrict the population to such

individuals. Step 07 determines the probability of restriction by measuring the level of epis-

tasis (E) in the unset genes remaining in the current (possibly restricted) population. The

epistasis in the unset genes is used, since it reects the uncertainty in the remaining allele

decisions to be made, depending upon the allele choices that have already been made. A

simple way to calculate E is to use the maximum di�erence in allele selection probabilities

of the remaining unset genes (Dmax). When Dmax is very low, the allele selection prob-

abilities are all about equal, indicating high uncertainty about what allele choices would

be best|all allele choices seem to be equally good. When Dmax is high, there are unset

genes whose best allele choice is very evident. High uncertainty among allele choices im-

plies heavy interdependence among alleles|high epistasis. The largest di�erence in allele

selection probabilities in unset genes occurs in x3; this value is j0:64�0:36j = 0:28 = Dmax.

Since this di�erence ranges in the interval [0:0; 1:0], an easy way to calculate E is to use

E = 1:0�Dmax = 0:72. The calculation of Dmax and E occurs in the call to the subroutine

epistasis-of-population() in step L07.

A simple way of determining the probability of restriction (p) is to directly use

p = E, since E ranges in the interval [0:0; 1:0], with E = 1:0 indicating the highest epistasis

possible and therefore the highest justi�cation for restriction. Therefore the probability of

restriction is 0:72. Say restriction is not performed in steps L09 and L10. The algorithm

then loops back to step L03. Since x3 is the most signi�cant unset gene, an allele is chosen

for x3|say allele '0'. x3 is therefore assigned the value of '0' in the new individual in step

L05.

Again, the probability of restriction is determined in steps L07 and L08. This time,

Dmax = j0:53 � 0:47j = 0:06 and E = (1:0 � 0:06) = 0:94 = p. Say restriction is performed

this time in steps L09 and L10. Therefore, individuals that do not contain allele '0' for

x3 are temporarily removed from the population, leaving individuals 1100, 1101, and 0100.

These individuals have respective �tnesses 25, 23, and 20. Figure 4.1.2 shows the restricted

population.

Note that statistics are not calculated for genes 3 and 4 at this point, as genes 3

and 4 have already been assigned values. Alleles for genes 1 and 2 of the new individual

must still be chosen. The most signi�cant gene is now x1. Previously, the mean �tness of

the alleles for gene 1 were 20.0 for x1;0 and 18.0 for x1;1. The mean �tness of x1;0 does not

change from 20.0 (since, by coincidence, all the individuals containing allele '0' for gene 1

remain in the population), but the mean �tness of x1;1 increases to 23.5, and now exceeds

that of allele x1;0. By restricting the population to only those individuals that contain

x3;0, the statistics calculated are now \relevant" to the remaining allele choices. Given that
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Individual Gene 1 (x1) Gene 2 (x2) Gene 3 (x3) Gene 4 (x4)
x f(x) x1='0' x1='1' x2='0' x2='1' x3='0' x3='1' x4='0' x4='1'

1100 25 - 25 - 25 25 - 25 -
1101 22 - 22 - 22 22 - - 22
0100 20 20 - - 20 20 - 20 -
f�(xi;a) 20.0 23.5 0.0 15.0 n/a n/a n/a n/a
p�(xi;a) 0.46 0.54 0.0 1.0 n/a n/a n/a n/a

Figure 4.3: Restricted Population, x3 = '0'

x3 is assigned the value '0', the conditional �tness of x1;1 is greater than its complement,

x1;0, while globally x1;1's �tness is lower than that of x1;0. Had the population not been

restricted, this change in relative �tnesses would not have been noticed. By restricting the

population to only relevant individuals, the EuA can track epistatic dependencies of various

alleles.

Through restriction, higher-order schemata statistics are being collected. The global

�tness of allele x0;1 is identical to the average observed �tness of schema '1###'. This

average of this schema is 18.0, which is lower than that of its competitor '0###'. However,

when higher-order schemata are examined, we �nd that the average observed �tness of

schema '1#0#' is 23.5, higher than that of '0#0#'. Therefore the EuA's restriction operator

allows the algorithm to calculate schema �tness averages \on demand", when these averages

are necessary to making correct allele decisions.

The algorithm still must choose alleles for genes 1 and 2. Say x1;1 is chosen for

x1. Since there is no allele diversity in the remaining unset gene, x2, there is no point to

restricting the population, since restriction will not allow us to compare the conditional

�tnesses of the alleles for x2. The restricted population only contains information for allele

'1'. At this point, the select-allele subroutine can either choose allele '1' with the hope

that it is better than the '0' allele, since the '0' allele is not present, or the algorithm can

experiment a little and choose the '0' allele. The EuA uses a parameter called \creation

rate", which is the probability that an allele that is not present in the restricted population

will be chosen (\created"). Without a \creation rate", x2 would always be set to x2;1.

With a creation rate, there is a chance that x2;0 would be chosen. Say that x2;0 is chosen,

completing the construction of the new individual. The new individual has genotype '1000',

and therefore is a completely new individual.

Once a new individual is created, the population is unrestricted|all individuals are

added back into the population. Then the EuA replaces the lowest �tness individual in

the population with the new individual. In this example, individual '1111' has the lowest

�tness, and is therefore replaced by the individual '1000' (steps L11 and L12).

This example illustrated the behavior of a \standard" EuA. Many options of the
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algorithm can be changed in order to increase performance. For example, the policy of

always replacing the lowest-�tness individual in the current population (popw) with the

new individual may be slightly modi�ed so that the new individual replaces popw only

when the new individual has equal or greater �tness than popw. In the sections to follow,

the motivation and mechanism behind each step of this algorithm are explained. Allele

selection will be discussed �rst, then population restriction, and then �nally replacement

policy.

4.2 Allele Selection

In this section, I will discuss how the EuA performs step L05, select-allele. In the EuA,

the selection of single alleles to use in the construction of new individuals is based upon

the statistical analysis of the correlations between alleles and �tness1. New individuals

are constructed one gene at a time, by choosing a single allele for each gene from several

possible allelic forms. As with BSC, there are many choices for the selection technique used

to choose new alleles, and certainly the performance of each technique is heavily, if not

completely, problem dependent. Some examples of allele selection techniques are �tness-

proportionate selection (equation 4.2) and rank selection. In �tness-proportionate selection,

the probability of selecting an allele varies directly with the proportion of that allele's �tness

to the sum of all of the allele �tnesses of that gene. In rank selection, an allele's selection

probability for a given gene varies with its rank among the other alleles corresponding to

that gene|the highest ranking allele has the greatest probability of being selected, followed

by the second rank allele, etc.. Since most GA research has dealt with �tness-proportionate

selection, this thesis will be limited to EuAs using �tness-proportionate selection.

f�(xi;a) = Mean �tness of all individuals having allele value a for gene i

= The \�tness" of allele xi;a

p�(xi;a) = Probability of selecting allele value a for gene i

=
f�(xi;a)P

b2f000;010g f�(xi;b)

1Although developed independently, this strategy is basically identical to that of BSC.
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4.2.1 De�ning Allele Fitness: Average Fitness versus Maximum Fitness

Fitness-proportionate selection methods can rely on di�erent de�nitions of allele �tness.

Two ways of de�ning allele �tness will be discussed in this section: mean allele �tness (�-

�tness) and maximum allele �tness (Xn-�tness). In �-�tness, an allele's �tness is de�ned as

the average �tness of individuals that contain that allele. When using �tness-proportionate

selection and �-�tness, the EuA's allele selection mechanism is identical to the technique

described previously in relation to BSC. In Xn-�tness, the maximum �tness of all the

individuals containing a particular allele de�nes that allele's �tness. Figure 4.4 illustrates

how the allele selection probabilities of �-�tness and Xn-�tness di�er for an example 4-bit

genotype. Note that, for this example, the Xn-�tness selection probabilities for genes 3

and 4 are much closer to 0.5 than those of �-�tness, and therefore Xn-�tness would select

alleles for these genes more randomly than �-�tness. A di�erent example could easily be

generated in which these e�ects were reversed.

One of the main reasons �-�tness has been so widely used in the past is because it

has been shown to be the best strategy for maximizing the cumulative \payo�" of repeated

trails (Holland, 1975)|�-�tness is the best choice, on average, to select \good" alleles.

Since the goal in this thesis is to design an algorithm to optimize a �tness function, instead

of �nding \good" solutions on average, Xn-�tness may be a better choice than �-�tness.

Xn-�tness focuses the search only on the best performance of each allele, whereas �-�tness

incorporates information about all aspects of a single allele's performance, including its

worst performance, its typical performance, and its best performance. Xn-�tness may lead

to more \risky" choices, as these choices are not tempered by all the information available.

In addition,Xn-�tness may be more likely to cause the EuA to prematurely converge than �-

�tness, because the alleles belonging to a single super-individual could completely dominate

every allele selection choice, and therefore every new individual created would be identical

to the super-individual. More theoretical and experiment exploration of \what allele �tness

de�nition is best" is necessary, but for the meantime, the standard EuA will use �-�tness.

After a gene in the new individual is �xed to a speci�c allele value, the next most

signi�cant gene is examined and each of its allele's probabilities of selection are calculated.

Since the domain of the current implementation of the EuA is limited to binary genotypes,

it is only required to calculate the selection probability p for one of the alleles from the most

signi�cant gene, as the probability of selecting the complementary allele would simply be

(1� p).
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x : an individual's genotype
f(x) : the �tness of individual with genotype x

xi; i 2 1:::l : the ith gene of the genotype
a 2 f000;0 10g : the possible allele values

f�(xi;a) : mean �tness of all individuals containing allele a for gene i

p�(xi;a) : using �-selection, probability of selecting allele a for gene i

fXn(xi;a) : maximum �tness of all individuals containing allele a for gene i

pXn(xi;a) : using Xn-selection, probability of selecting allele a for gene i

p�(xi;a) = f�(xi;a)
P

b2f000;010g f�(xi;b)

pXn(xi;a) = fXn(xi;a)
P

b2f000;010g fXn(xi;b)

Individual Gene 1 (x1) Gene 2 (x2) Gene 3 (x3) Gene 4 (x4)
x f(x) x1='0' x1='1' x2='0' x2='1' x3='0' x3='1' x4='0' x4='1'

1100 25 - 25 - 25 25 - 25 -
1110 23 - 23 - 23 - 23 23 -
1101 22 - 22 - 22 22 - - 22
0100 20 20 - - 20 20 - 20 -
1111 2 - 2 - 2 - 2 - 2
f�(xi;a) 20.0 18.0 0.0 15.0 22.3 12.5 22.7 12.0
p�(xi;a) 0.53 0.47 0.0 1.0 0.64 0.36 0.65 0.35
fXn(xi;a) 20.0 25.0 0.0 25.0 25.0 23.0 25.0 22.0
pXn(xi;a) 0.44 0.56 0.0 1.0 0.52 0.48 0.53 0.47

Figure 4.4: How the allele selection probabilities of �-selection and Xn-selection di�er for
an example 4-bit genotype.

4.2.2 Adaptive Allele Selection

To balance exploration and exploitation, it would be desirable for an evolutionary search

algorithm to perform a \smart mutation" when a clear winner among a gene's alleles is ap-

parent, but random mutation/search when the allele �tnesses are roughly equal. When one

of a gene's allele has a very high �tness, and the alternate alleles have very low �tness, the

high-�tness allele should be exploited. When the �tnesses of the gene's alleles are roughly

equal, the choice between them is (for the current population) probably not that important,

and so the choice should be more random. The EuA accomplishes these things automati-

cally, when using �tness-proportionate selection. With �tness-proportionate selection, the

amount of allele exploitation varies proportionately with the di�erence between a gene's

alleles' �tnesses. Alleles with equal �tnesses have equal probabilities of being selected; for

binary alleles, each has a 50% selection probability. In such a case, each allele is equally ex-

ploited and therefore the algorithm will equally explore the alternatives. However, an allele
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with x times the �tness of its alternates has x times the selection probability, and therefore

experiences x times more exploitation. The EuA explores when uncertainty among allele

choices is high, and exploits when clearly superior alleles exist. In this way, adaptive allele

selection is achieved, as the EuA adapts its selection probabilities to the di�ering situations.

This is unlike most mutation-based algorithms, which always randomly choose a gene to

mutate, no matter what information has been gathered in the past.

Note that, by relying on an explicit calculation of allele �tness, the EuA di�ers

signi�cantly from the GA. The GA implicitly records allele �tness by relying on an allele's

frequency of occurrence in its population. For example, if all the individuals in a GA

population had the same �tness, and if allele A occurred in 99 out of 100 individuals, while

allele B occurred in only a single individual, allele A would be 99 times more likely to be

used than allele B, even though the average �tness and maximum �tness of both alleles

were equal! As a result, by relying on explicit calculations of allele �tness, the EuA more

reasonably allocates trails to and pursues promising alleles.

4.2.3 Modi�cations to Fitness-Proportionate Selection

As a result of �tness-proportionate selection, alleles with relatively low �tness will infre-

quently be chosen for inclusion in a new individual. Alleles that repeatedly cause low

�tnesses in individuals containing them will eventually be eliminated from the population.

However, it is not always desirable to have a particular allele completely eliminated from

consideration. Consider two alleles, A and B. Allele A consistently has higher �tness than

allele B, which consistently has very low �tness. It may be the case that allele B is needed

to construct an optimal individual, even though it is detrimental to suboptimal individuals.

In this case, allele A would be \deceptive", as it would lead the algorithm away from the

allele that was found in the optimum. In order to avoid convergence to deceptive alleles,

the EuA must occasionally attempt to use alleles that have been eliminated from the pop-

ulation. The EuA uses a parameter called \creation rate" in order to reintroduce such

alleles. This parameter (C) speci�es the probability that an allele lost from the population

will be reintroduced by including it in a new individual being created. In addition, creation

rate allows alleles absent from restricted populations to be included in a new individual. If,

during the course of creating a new individual, the population is restricted to such an extent

that extremely little allele diversity exists|all the individuals in the restricted population

are extremely similar|the creation rate parameter allows the EuA to occasionally try out

an allele that is not found in these individuals. By doing so, the EuA is a�orded a small

measure of protection against deceptive and/or premature convergence.

In cases where the chosen selection mechanism is too exploitative, another parameter,

\selection noise" (N), can be used by the EuA to encourage exploration. Selection noise is
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the probability that the allele choice made by the allele selection operator is overridden, and

a di�erent allele is chosen. This parameter just adds noise to the allele choices made by the

particular allele selection mechanism in place. It can be increased to encourage exploration.

We shall see that this is rarely necessary, and otherwise almost always detrimental, when

using �tness-proportionate selection.

Even with adaptive allele selection probabilities and a correctly set creation rate, the

EuA still faces a possibly large obstacle to performance when dealing with large genotypes.

For many problems, even one mutation can cause large uctuations in �tness. Therefore

the number of low-�tness alleles present in an individual may be much more important than

the percentage of low-�tness alleles. As the number of genes of a genotype increases, the

number of low-�tness alleles that are included in new individuals increases (assuming that

selection probabilities remain constant with respect to genotype size). For example, if, for

each gene, there was a 10% chance of choosing a low-�tness allele instead of a high-�tness

allele, the number of low-�tness alleles appearing in a new 100-gene individual would be

ten times on average the number that would appear in a 10-gene individual, even though

the percentage of low-�tness allele would be equal between the two genotypes. Although it

may seem reasonable for exploration of low-�tness alleles to remain proportionally constant

with respect to problem size, it could easily be the case that this e�ect is detrimental to the

EuA's performance on a large number of problems. Therefore, as genotypes increase in size,

the balance of exploration and exploitation may have to be tipped in favor of exploitation.

In the standard EuA, no e�ort is made to counter the problems that may be associated with

larger genotypes. However, if desired, allele selection probabilities could easily be modi�ed

(using �tness scaling, perhaps) from problem to problem, so as to increase exploration versus

exploitation of higher �tness alleles. Selection probabilities could be based upon one-tailed

statistical tests of signi�cance, or could be adjusted based upon the observed variance in a

particular allele's �tness (H-L. Fang, 1993). Such modi�cations will not be attempted in

this thesis, as no experiments have been conducted to determine their necessity.

4.2.4 Clustering and Allele Signi�cance

The EuA needs to determine gene signi�cance for two reasons. First, the EuA sets genes

in order of their signi�cance, so that more important allele decisions are made before less

important choices. Second, the EuA uses gene signi�cance as a measure of epistasis. It then

uses this measure of epistasis to determine when to restrict the population (subsection 4.3.2.

Several di�erent measures of gene signi�cance are available to the EuA, and the choice of

this measure will heavily a�ect the EuA's behavior.

One way to quantify gene signi�cance would be to observe how well a gene's alleles

\cluster" individuals into separate groups. An individual containing a particular allele would
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belong to that allele's group. As the �tness variance of each group decreased and their �tness

means became increasingly di�erent, the clustering would improve. As the means diverged,

one group would become the \high-�tness group" and the other the \low-�tness group" for

that gene. When the di�erence between the means was high, then allele settings for that

gene would obviously have a large e�ect on �tness, and therefore the gene would be very

signi�cant. The standard EuA de�nes gene signi�cance as the distance between a gene's

alleles' means. Future versions could easily incorporate the variance of each allele group

into the de�nition of gene signi�cance.

4.3 Population Restriction

Smart recombination requires not only the identi�cation and comparison of the best geno-

typic parts, but also the determination of how to best combine these parts to form very

high-�tness individuals. Independently setting each allele value is not good enough, as

this strategy ignores the epistasis so frequently encountered in nontrivial problems. Such

a strategy is equivalent to randomly recombining o(1) schemata, without respect for the

high levels of dependence that may exist among the best settings of alleles|such a strat-

egy ignores higher-order interactions. Simple allele �tness averages do not provide enough

information to make the right decisions. What is needed is an analysis of conditional allele

�tness distributions. In one of these distributions, the �tness distribution of a single allele

is analyzed, given that other alleles have �xed values. Since the number of possible condi-

tional allele �tness distributions is more than even the number of possible schemata, not all

conditional distributions can be examined. Therefore only the most important distributions

should be examined. The EuA uses the population restriction operator to accomplish this

goal and to separate global allele �tness distributions into conditional distributions.

4.3.1 The Restriction Operator

The EuA intelligently selects sets of alleles from individuals in the population, but, unlike

the GA-crossover operator, these genotypic parts can come from the entire population,

instead of from just two parents. Due to epistasis, it is not reasonable to simply mate the

entire population, as BSC does, because doing so would ignore allele dependencies found

in each individual. Therefore, any population-wide recombination operator must determine

which genotypic parts work well together, and selectively choose individuals that contain

the most information about these parts.

As the EuA builds a new individual, the choice of what genotypic parts will be most

appropriate depends on both gene signi�cance and the already constructed parts of the

new individual. The eugenic algorithm builds new individuals from scratch, by proceeding
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through the genes, from the most signi�cant to the least signi�cant, and probabilistically

selecting an allele value for each. At some point, gene signi�cance decreases to such a point

that the best choice between two complementary alleles becomes highly uncertain, because

the alleles have very similar �tnesses. The EuA can reduce the uncertainty in the choice of

the next allele by focusing on those individuals most relevant to this choice. It accomplishes

this by restricting the population to those individuals that contain information about the

relationship between the unset genes and the alleles already �xed in the new individual.

These individuals are those that contain the same alleles as those �xed in the new individual.

They contain information on how to best �ne tune the remaining alleles, since they belong

to the same region of the search space as the new individual. The restrict-schema, composed

of the allele �xed in the new individual, is used to identify these individuals. Individuals

that contain the restrict-schema make up the restricted population.

Once the most relevant individuals are identi�ed, allele �tness statistics are recom-

puted using only the individuals from this restricted subset. These statistics are no longer

global measures, they are conditional �tness statistics. They contain information on the per-

formance of the unset alleles in the region of space the restrict-schema de�nes; they reect

the conditional allele �tness distributions of the \don't care" genes in the restrict-schema.

The use of all of the restrict-schema's �xed positions to limit the population poses

a major problem, however; the restricted population can quickly become too small. For

diverse populations, in which alleles '0' and '1' occur with about the same frequency for

each gene, each application of the restriction operator will reduce the population size by

approximately half, since only about half the individuals will have the allele restricted on.

And so a restrict schema of order-n will limit the population to only �=2n individuals.

For even a single individual in the population to match the restrict-schema, either � must

be very large, or the restrict-schema must not contain too many �xed positions. Since

increasing population size increases the computational demands of the EuA, the latter

choice is preferable. One way to limit the number of �xed positions in the restrict-schema is

to include only those alleles that were set immediately preceding a restriction, instead of all

the alleles �xed in the new individual. Genes are �xed in order of signi�cance, from most

signi�cant to least signi�cant. Therefore the last gene to be �xed before a restriction occurs

is the least signi�cant gene of the restrict-schema. The lower the signi�cance of a gene, the

more likely good values for it depend on other alleles. Consequently, it is more likely that

less signi�cant genes take part in heavily epistatic allele interactions. More signi�cant genes

are more independent from other genes; they need less help from other allele settings. As

a result, if all the genes of the restrict-schema cannot be used to limit the population, the

least signi�cant genes should be the ones used, since the values of the remaining unset genes

should be speci�cally tuned for the alleles that need the most help. This is the strategy the

46



current implementation of the EuA employs.

4.3.2 The Probability of Restriction

The restriction operator cannot be applied after every gene that is �xed, since each re-

striction reduces the population size by roughly half. In addition, while highly signi�cant

genes remain, restriction is not necessary. Restriction is necessary when gene signi�cance

is low. When gene signi�cance is low, epistasis is high. In order to determine the necessity

of restriction, the EuA needs to estimate the level of epistasis among the unset genes in the

current restricted population. When epistasis is high, it becomes very important to calcu-

late conditional �tness distributions, since high epistasis implies that global distributions

are not that useful. In order to calculate these conditional distributions in situations of

high epistasis, the population must be restricted.

Various methods are available to measure epistasis and gene signi�cance. One mea-

sure that could be used to determine restriction necessity is �2-epistasis (see section 3.5).

Alternatively, if allele �tnesses are believed to be drawn from approximately normal distri-

butions, the t-score could be used to test the signi�cance of the di�erences in mean allele

�tnesses. However, the epistasis most relevant to determining restriction necessity is that

which prevents a clear choice from being made among competing alternatives. Therefore

probably the most appropriate measure of epistasis would be the di�erence in allele selection

probabilities (D), since the selection probabilities directly indicate how much uncertainty

is present in the remaining allele choices. For example, when D is very high, it is obvious

that there are very clear winners among the remaining unused alleles. This implies that

there is a clear dominance of particular genotypic patterns in the remaining un�xed regions

of the search space; these patterns have relatively high conditional �tnesses. If, however,

the di�erence in selection probabilities was very low, then the information contained in the

population is too contradictory to be useful to the selection method being employed. If

it has already been decided that this selection mechanism will be useful for successfully

solving the problem, then when this mechanism falters, some action (like restricting the

population) must be taken to reduce the interference among competing possibilities.

In the experiments conducted in this thesis, the EuA used this di�erence in selection

probability of a gene's alleles in its measure of epistasis, with epistasis (E) equal to (1 �

Dmax), where Dmax was the largest di�erence in allele selection probabilities for any gene.

Since E varied in the interval [0, 1], with E = 0 implying no epistasis and therefore no need

to restrict, and E = 1 implying extremely high epistasis and a great need to restrict, E

could possibly be used directly as the probability of restriction. However, it was observed

that this measure of E was often not very close to zero, and so restriction would occur very

often. As previously discussed, too much restriction can quickly lead to populations that
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are too small. Therefore, modi�cations were made to decrease the probability of restriction.

First, a basic probability of restriction was calculated|this value was just E. Then, this

value was squared, therefore mapping E = 0 to prestrict = 0, E = 0:5 to prestrict = 0:25, and

E = 1 to prestrict = 1. In addition, the probability of restriction was explicitly reduced by

half after each restriction to prevent the overuse of restriction on the most signi�cant bits.

Therefore, as the population was reduced in size by restriction, p was also reduced.

4.3.3 Consequences of Population Restriction

Incremental Schema Evaluation

What is the order of the schemata explicitly analyzed by the EuA? After each restriction,

higher and higher order schemata are analyzed by the EuA. Initially, before any restric-

tions have occurred, only o(1) schemata are compared. After the �rst restriction, at least

one allele becomes �xed in the entire population. Each allele's �tness distribution is now

measured conditionally on the value of the �xed allele. Each schemata analyzed contains

the �xed allele. Therefore, after one restriction, schemata of at least order-2 are analyzed.

In general, after r restrictions, the number of genes for which only a single allele is present

in the population is at least r, because each time the population is restricted, there can be

a corresponding loss of diversity in alleles other than the one restricted on. For example,

after 6 restrictions, it could easily be possible that 10 or 15 genes exhibit no allele diversity.

Therefore the schema being analyzed would have at least 10 to 15 �xed positions.

There is, however, an upper limit on the number of restrictions that occur when

generating a new individual. Since, on average, each restriction reduces the population

size (�) by half, only �=2r individuals will be in the population after r restrictions. This

means that, for a population size of 2r, it is highly likely that at least order-r conditional

allele �tnesses will be explicitly analyzed and compared by the EuA, and very likely that

conditional �tnesses of order even more than r will be analyzed as the search progresses

and focuses on smaller regions of the search space.

Maximization of Relevant Information

Although the relevancy of the information contained in the population is increased by

restriction, the overall amount of the information is decreased, since the number individuals

over which information is collected decreases with each restriction. How can the tradeo�

between information amount and relevancy be managed?

The EuA maintains the amount of relevant information at the highest possible level

by only restricting the population when necessary. If it is clear which alleles are associated

with higher �tness, then restriction is not necessary. In these cases, it is most likely that
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allele combinations are not as important as the presence or absence of single alleles. The en-

tire population would provide better, more statistically signi�cant information about these

alleles than a small subpopulation. However, in cases of higher epistasis, the conditional

allele �tness distributions become increasingly di�erent from the marginal (global) distribu-

tions. Larger samples of individuals are not necessarily better samples in these situations.

The most relevant information is found in subpopulations, which can be used to more ac-

curately determine conditional distributions than a large diverse population could. Larger

populations would contain less relevant information. Since the probability of restriction is

based upon the perceived level of epistasis, the EuA adaptively maximizes the amount of

relevant information in the population.

Diversity, Schemata Competition, and Subpopulations

Because of the restriction operator, the EuA can and will maintain extremely high levels of

diversity in the population, without bogging down the pace of the search with many ine�ec-

tive schemata recombinations. The restriction operator ensures successful matings among

individuals in the population. When epistasis is low, alleles can be drawn from the entire

population without ill e�ect. However, when epistasis is high, if the genotypes of a group

of mating individuals are too di�erent, their o�spring will most likely have low �tness. The

restriction operator attempts to guarantee the compatibility of prospective mates. When

high epistasis is detected, the EuA restricts the population to a group of similar individuals,

and therefore reduces the probability of incorrect schemata recombination and low-�tness

o�spring. Because of the randomness of the application of restriction, the EuA causes

many di�erent subpopulations to intermate. Unlike many GA-related methods, reproduc-

tive compatibility and the subgrouping of individuals is not limited to a single, simple overall

measure such as Hamming distance. The randomness of the application of the restriction

operator causes many di�erent population subgroups to be matched for reproduction, as

compatibility is determined by di�erent genes as each new individual is constructed. As

a result, not only does the restriction operator allow large amounts of diversity to exist

in a single population, it causes diversity to be maintained. It is a \multicultural dating

service".

Diversity is not always desirable. If it is fairly easy to generate good individuals with

very diverse genotypes, then subpopulations of individuals can and will easily coexist in a

single large population, and diversity is helpful to generate more representative statistics.

In this case, the EuA can simulate the action of a \parallel GA". A parallel GA is a set

of GAs that occasionally share individuals between their populations and, by doing so, can

collectively maintain search focus in many more regions of the space than a single-population

GA. However, there are situations in which homogeneity is preferable to diversity. In search
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spaces where the number of good individuals is extremely low, it will be di�cult to generate

even a single good individual and therefore practically impossible to generate a diverse set

of good individuals. If the �tness of the single good individual exceeds the population's

average �tness by a great enough amount, the EuA will experience a large drop in diversity

of bits with very high signi�cance with the occurrence of this �rst good individual, as

the algorithm will have no choice but to exploit the only information it has that can lead

to higher �tness. This decrease in diversity is not necessarily detrimental, as the drop

in diversity of some genes allows the algorithm to much more thoroughly explore smaller,

more promising regions of the search space. This is exactly what is needed when high-�tness

individuals are very di�cult to locate.

The EuA's smart recombination allows it to maintain much higher levels of diver-

sity in a single population than a GA could maintain. In GAs, schema �tness is implicitly

recorded by how often it is found in the population|�tness proportionate representation.

Fitness is not explicitly de�ned using averages, maximum values, or any statistics whatso-

ever. It is therefore di�cult for two or more competing schemata to exist in the population

for long, because of the positive feedback between representation and selection. As soon as

one schemata achieves higher representation than its competitors, it becomes more likely

to be included in reproduction than its competitors, and its representation increases even

more. Schemata whose representation fall below that of the others become less likely to be

propagated, and their representation falls even more until they vanish from the population.

In contrast, competition among schemata in the EuA is not won by higher amounts of rep-

resentation, but by �tness itself. As a result, a high-�tness schema can exist in just one or

two individuals in a large population, but still have a high probability of being used in the

construction of new individuals. For example, consider a situation in which 99 individuals

of a population contained schema A, and one individual contained a competing schema B.

If the mean �tness of the schema A individuals was the same as the �tness of the schema

B individual, the probability of the occurrence of each schema in new individuals would be

equal, even though only one individual contained schema B. In a �tness-proportionate GA,

schema A would be 99 times more likely to occur in o�spring than schema B, since the sum

of �tnesses of all schema A individuals would be 99 times that of the schema B individual.

As a result of the EuA's managed competition of schemata, and the restriction operator's

compatibility checking, many diverse groups of individuals can and will be maintained in the

population during the search. The experiments to follow will demonstrate this empirically,

illustrating that very genotypical di�erent individuals coexist peacefully, yet competitively,

in EuA populations.

It should be pointed out that the restriction operator performs exactly the opposite

of what has been recommended by previous researchers|\incest prevention" (Eshelman
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and Scha�er, 1991). Since the problem of premature convergence is very signi�cant in the

performance of GAs, some method such as incest prevention must be used to maintain high

levels of diversity, without introducing random mutation. When incest prevention is used

to prevent diversity loss, individuals mate only when they are signi�cantly di�erent|when

the Hamming distance between them is large. It has been demonstrated that this is a very

good heuristic for the GA, since its highly e�ective prevention of premature convergence

overshadows the increase in incompatible matings. It allows the GA's search to increase

exploration without the use of higher mutation rates. Since the amount of exploration

the EuA performs is adaptive, and diversity is promoted only when necessary, this arti�-

cial method of preventing diversity loss is not needed. Furthermore, it would most likely

be detrimental to the performance of the EuA, because it would increase the chance of

incompatible schemata being paired together.

4.4 Steady-State Replacement

Instead of generating an entirely new population from the existing population (\Genera-

tional Replacement"), the EuA uses \Steady-State Replacement" (Eshelman, 1991; Syswerda,

1991), in which only one individual from the existing population is replaced at a time. Since

feedback can be gained from the evaluation of only one new individual, Steady State Re-

placement is a superior strategy to Generational Replacement because new information can

be immediately exploited for use in new individuals. In addition, the action of the EuA is

very genotypically \disruptive", as it frequently generates new individuals that have very

high Hamming distances from those in the current population. Steady State Replacement

guarantees that good schemata found in the current population will be preserved as the

search proceeds, while at the same time allows the EuA search to be very explorative. If

Generational Replacement were used, then valuable information would be much more likely

to be lost from generation to generation, and therefore the search would have to be much

more cautious and conservative.

The choice of which individual to replace is yet another heuristic to determine for the

EuA. The current implementation of the EuA always replaces the lowest-�tness individual in

the population with the newly created individual. \Elitism" can be employed to prevent the

possibility of a lower-�tness new individual from replacing a higher-�tness individual already

in the population. Yet another variation of the replacement strategy is to probabilistically

replace individuals based on their �tness. However, such a strategy would increase the

chance that high-�tness schemata would be lost, and, given the high amount of exploration

performed by the EuA (as will be demonstrated in the experiments), the current strategy

of always replacing the worst is likely a better heuristic for most stationary problems.
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4.5 Summary of the Eugenic Algorithm

The EuA is composed of two main parts: individual creation and individual replacement.

Individual creation is composed of smart allele selection and population restriction. In the

standard EuA, �tness-proportionate selection is used to choose alleles, where an allele's

�tness is de�ned as the mean �tness of all the individuals that contain that allele. Mean

�tness selection is a superior strategy to representation-proportionate �tness selection, since

only a single instance of a high-�tness allele is necessary to guarantee its exploitation. In

addition, it allows much greater levels of schemata diversity to exist. Population restriction

is a major innovation of the EuA that is not present in any previous algorithm. Population

restriction allows the EuA to purposefully (not randomly) juxtapose compatible schemata

and also maintain many diverse subpopulations inside of a single large population. These

subpopulations allow the EuA to focus its search in many di�ering regions. By using pop-

ulation restriction, the EuA can calculate only those conditional allele �tness distributions

that are necessary. These calculations lead to the computation of increasingly higher order

schema �tnesses, and only the most important of these schemata are analyzed. Population

restriction allows epistasis to be intelligently tracked, analyzed and exploited. In e�ect,

population restriction allows the EuA to perform smart recombination. The EuA uses

Steady-State Replacement to prevent the loss of valuable genetic information|information

on high-�tness alleles and schemata. In Steady-State Replacement, a newly created indi-

vidual replaces the lowest-�tness individual in the EuA population.

In the chapter to follow, EuA performance will be compared against that of several

other optimization algorithms on six di�erent combinatorial optimization problems. We

shall see that the EuA performs extremely well in relation to the other algorithms.
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Chapter 5

Experiments

In this chapter, six combinatorial optimization problems will be attacked by several evolu-

tionary algorithms, including the EuA. Five of these problems are drawn from the genesys-

2.0 test suite1, and the sixth has been studied in simulated annealing literature comparing

the performance of simulated annealing to that of genetic algorithms (Ingber, 1993). These

problems are considered to be very hard, as even customized methods (such as direction

set, branch and bound, etc.) have great trouble �nding the global optima. At least four

are NP-complete. Trivial toy problems, such as BIT-COUNT (described in section 3.3),

will not be studied, as they would provide little feedback on how these algorithms would

perform in real-world applications. A detailed description of each of the problems will be

provided in section 5.3.

This thesis focuses on combinatorial optimization, and so all of the independent

variables of the problems were encoded using binary genotypes, even though some of these

problems might be more easily solved using a straightforward real-number representation

(F02 and F38 in particular). It is extremely important to realize that the entire topo-

logical structure of the problem search space changes with such a transformation from

m-dimensional real space to n-dimensional binary space. For example, there are a great

many points that are mutation-based neighbors in the real space, but are separated by

great (Hamming) distance in the binary space. This phenomenon is known as \Hamming

cli�s". For instance, consider 4-bit binary genotypes that encoded equidistant real numbers

in the range [0; 15]. The genotypes '0111' and '1000' would encode the real genotypes 7:0

and 8:0, respectively. While their distance in binary space is the greatest possible for a 4-bit

1The genesys-2.0 software was provided in pre-release form by Joerg Heitkoetter. In the genesys-2.0 test
suite, there are thirty-seven problems, designated F01 through F37. To aid researchers in the future, I will
use genesys-2.0's nomenclature. As a result of this nomenclature, the one test problem studied in this thesis
that was not included in the genesys-2.0 package shall be designated \F38".
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binary genotype, their genotypic distance in real space is fairly small. Therefore genotypes

that are neighbors in real space do not necessarily maintain this relationship when they are

encoded into another representation. As a result, the di�culty of an optimization problem

can be greatly increased or decreased when the representation of the inputs change. In

particular, local optima present in real space do not necessarily retain their same neighbor-

hoods of attraction in binary space, and therefore they may no longer be locally optimal,

since they are no longer superior to their immediate neighbors. Even a transformation from

one binary representation to another that maintains local neighborhoods can cause local

optima to appear or disappear, since the bit patterns that matched speci�c individuals

in the original space may no longer match the individuals in the new space. In problem

F02, we shall see that the change from real to binary space greatly increases the number

of local optima (and therefore problem di�culty). In contrast, problem F38, a problem

with a great many strong local optima in real space, seems to lose this characteristic upon

transformation of its inputs into a binary encoding. Almost all the algorithms tested were

never trapped by F38's real-space local optima. Furthermore, to make a fair comparison, all

the algorithms searched using the same genotype-phenotype mapping, since changing this

mapping could easily alter a problem's epistatic and local optima properties. By comparing

each algorithm's performance on a number of di�ering problems, it is hoped that the special

bias of each algorithm can be identi�ed and eliminated from the comparison. In order to

make this comparison, the algorithms must be tested on the same problems using the same

representation.

Since the ideas of epistasis and problem di�culty are so closely linked, one algo-

rithm (IMHC) was speci�cally designed to be the \silver bullet" for zero epistasis problems

(speci�cally 0.0 o(1) �2-epistasis). The relative speed at which IMHC solves a problem,

compared to the other algorithms used, will be considered a measure of problem triviality

(and therefore problem insigni�cance). As we shall see, IMHC easily optimized one of the

problems (F38), and very quickly solved a second problem (F32), relative to the more com-

plicated algorithms used. Hence, we may assume that F32 and F38 have little epistasis, and

are therefore \easier" problems than the other four. We shall see that the main hurdle to

IMHC's performance is not high epistasis (i.e. a great many local optima), but deception.

Finding the best solutions for these six problems is not the goal of this study. The

goal is to discover the problem-independent characteristics of the best performing algo-

rithms, and subsequently determine whether the theorized \important" characteristics of

the EuA|smart mutation and recombination|are useful when attacking hard discrete op-

timization problems, and, in addition, whether or not these characteristics are e�ciently

performed by the EuA. It will be shown that this is indeed the case. The next section will

describe what is meant by the phrase \best performing algorithm", and will be followed by
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descriptions of the algorithms tested and their performance on the test problems.

5.1 Quantifying Performance

Optimization algorithm performance is usually measured by two quantities: the quality

of solutions found and the speed at which high quality solutions are found. A standard

method of representing an optimization algorithm's performance on a particular problem has

been to construct \learning curves", which plot the change in quality of the best solutions

found versus algorithm resource expenditure. Solution quality is usually measured with an

average of the �tnesses of the best individuals discovered over a number of di�erent runs,

and resource expenditure is usually measured using raw computation time or the number

of function evaluations conducted. While computation time and function evaluations are

both very practical and valid measures of resource usage, the use of mean �tness values as

a measure of quality must be used with caution. For instance, it may be the case that the

mean �tness of the best individuals found by one algorithm was twice the mean �tness of the

best individuals found by another algorithm. In spite of this, it must not be assumed that,

the �rst algorithm performed twice as well, or even much better than the second algorithm.

For example, consider a problem in which the optimal individual had �tness of 100.0, the

second best individual had a �tness of 95.0, and all the other individuals had �tness ranging

from 0.0 to 5.0. Assume that algorithm A1 can locate the optimum in half of the runs, but

in the other runs A1 can only �nd points of �tness 5.0 or less. Algorithm A2 can locate

the second best point 100% of the time, but can never locate the optimum. If we evaluate

algorithms on the basis of the mean �tness of the best individuals they found, we would

rate algorithm A2 to perform almost twice as well as algorithm A1, even though A2 could

never �nd the optimum. Thus the use of mean �tness to judge algorithm performance can

be misleading, since it does not clearly demonstrate an algorithm's probability of �nding

optimal or almost-optimal points. This problem could be made even worse if the range of

all �tness values was small, relative to their absolute values. For example, if we added 106

to the �tness of all the individuals in the search space, then the two algorithms would seem

to perform identically, since the di�erence in their mean best �tness values would be almost

nonexistent and easily attributed to sampling error.

A better way to quantify an algorithm's performance on a particular problem might

be to compute statistics using the overall ranks of the best points found, instead of the

absolute �tnesses of these points. By using rank instead of raw �tness, relative search ca-

pabilities of the algorithms could be compared without being a�ected by order-preserving

distortions of the �tness space. However, determining the rank of each individual encoun-

tered is practically infeasible, as it would require enumeration of almost the entire search
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space. In addition, reducing performance to a simple statistic (such as an average) will

almost inevitably lead to a loss of important performance-related information. The cumu-

lative distribution function of the ranks of points found by a given algorithm after a speci�c

number of function evaluations is probably one of the best practical representations of an

algorithm's performance, as it simultaneously demonstrates both the quality and frequency

of discovery of solutions.

In spite of the problems with mean �tness values, the standard practice of plotting

mean �tness versus time (function evaluations) will be used in this thesis to represent the

behavior of the algorithms, for the sake of simplicity and ease of understanding. In future

studies, it might be practical to determine the ranks of created individuals. At this time we

will be limited to mean �tness metrics and, in a few cases, a limited study of points close to

the optima. Algorithms will be judged by how many function evaluations they require to

solve the given problems, and not by their raw computational usage, as it is assumed that,

in \real-world" optimization problems, the cost of a function evaluation is much greater

than the computational cost of a particular search algorithm.

The next section will include a detailed description for each algorithm, as well as

the algorithm parameters used in the experiments. Then, each experiment and its results

will be discussed in depth.

5.2 The Algorithms

Three mutation-based and two pattern-based algorithms are evaluated in this section. The

mutation-based algorithms are \Increasing Mutation Hill Climbing" (IMHC), \Decreas-

ing Mutation Hill Climbing" (DMHC), and simulated annealing (SA) (Kirkpatrick and

Sherrington, 1988). Both IMHC and DMHC were derived from \Random Mutation Hill

Climbing" (RMHC) (Forrest and Mitchell, 1993) especially for this thesis. The mutation

based-algorithms can be broken down into two classes|heating algorithms (IMHC) and

cooling algorithms (DMHC and SA). Heating algorithms start with a random individual

and slowly increase the \heat" (the size of mutations) using an arbitrary schedule. Heat-

ing algorithms' main emphasis is exploitation. Therefore they can quickly �nd excellent

solutions in some instances, but are prone to become trapped in local optima in others

(at least until heat increases to a point where the search can escape the local optimum's

basin of attraction). Cooling algorithms start with high mutation rates and decrease these

rates over time. Cooling algorithms are initially very explorative, with the hope of initially

avoiding the basins of attraction of local optima. It is assumed that the basins of attraction

of true optima will be stronger than those of local optima. However, high initial explo-

ration may lead to very little progress, as promising areas are ignored in favor of further
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research. Cooling algorithms also are liable to be trapped in local minima, if exploration

decreases too much at the wrong time. If this occurs, the algorithm has little chance of

escaping. The pattern-based methods studied can also be divided into two classes|genetic

and eugenic. The genetic algorithm studied relies on random mutation and recombination,

while the eugenic algorithm uses smart, statistically justi�ed mutation and recombination.

The EuA will be the only eugenic algorithm studied, although tests will be conducted with

EuAs that do not use the restriction operator, and are therefore e�ectively equivalent to

BSC (Syswerda, 1993).

Di�erent parameter settings for these algorithms were tested in the experiments.

For SA and DMHC, two settings of the \cooling rate" parameter are studied. For the GA,

two recombination methods are tested. IMHC has no parameters, and therefore it wasn't

possible to study more than one incarnation of it. The parameters varied for the EuA

were population size, selection noise, creation rate, and the use of the restriction operator.

The goal of the study was not to determine the \absolute best" algorithm for use on a

particular test problem, but to identify the prevalent biases, strengths and weakness of the

algorithms, and to develop a uni�ed theory of why a particular algorithm type would perform

well on some problems, but not on others. Therefore no e�ort was made to tune any of

the algorithms parameters used, even when hindsight suggested that some parameters were

obviously ill-chosen for a particular problem. Please note that there are many variations of

SA and GAs; the ones used for the experiments, as well as their parameters, were chosen

to represent the \standard" incarnations, for which a high level of performance should be

expected.

5.2.1 Increasing Mutation Hill Climbing (IMHC)

In IMHC, a random individual is initially chosen. Random locus mutation of varying size

(from one-bit to l-bit) is then applied to this individual. Mutations are accepted when they

increase �tness or cause no change to �tness, otherwise the individual remains unchanged.

Initially, mutation size (i) is one. Mutation size is slightly increased when no increases

in �tness are encountered after a number of attempts. In particular, when no increase in

�tness is encountered after l � 2i i-bit mutations are attempted, mutation size is increased

to i + 1 bits. For example, if l � 21 one-bit mutations cause no increases in �tness, then

l � 22 two-bit mutations are attempted, and if still no increases in �tness are encountered,

l � 23 three-bit mutations are attempted, and so on.. The number i can increase until i = l .

If this happens, i is reset to one. In order for IMHC to escape a local optimum, a point

outside that local optimum's basin of attraction must be discovered that has a �tness equal

to or greater than that of the local optimum's.

IMHC is the \silver bullet" against trivial toy problems such as BIT-COUNT. Out
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of all the algorithms tested, IMHC will �nd the optimum the fastest if a problem is 0%

epistatic, since its one-bit mutations will quickly hill climb to points of higher and higher

�tness. In such a case, the expected number of �tness evaluations it will have to perform is

O(l). However, if it encounters a very large group of genotypically similar individuals with

equal �tnesses, it can waste large amounts of function evaluations by mutating back and

forth among members of this group. A slight optimization to IMHC (and all the mutation-

based algorithms) would be to keep track of previous mutations, and prevent the algorithm

from retrying the same mutation on the same individual more than once.

5.2.2 Decreasing Mutation Hill Climbing (DMHC)

DMHC is a very simple cooling algorithm. After an initial individual is randomly chosen,

random locus mutations of decreasing size are attempted. When mutation causes no change

or an increase in �tness to current individual, the mutated individual replaces the current

individual. The mutation probability of each bit, pM , is a function of the \cooling rate" rc,

the number of function evaluations t and the maximum number of function evaluations tmax :

pM = 0:5(1:0 �
t

tmax

)rc (5.1)

At t = 0, pM is 0.5, and so half the bits in a genotype will be mutated on average. As rc is

increased, pM decreases more quickly, with a resulting decrease in exploration, in favor of

exploitation. DMHC is very similar to simulated annealing (see below), except that newly

generated points with lower �tness than the current individual have absolutely no chance

of replacing the current individual. In the discussions to follow, the notation DMHC-x will

be used to denote DMHC with a cooling rate of rc = x.

5.2.3 Simulated Annealing (SA)

The simulated annealing algorithm used in the experiments is only a rough approximation

of \true" simulated annealing. It is identical to DMHC, except that points of �tness lower

than the current individuals' �tness have a non-zero probability of being accepted and re-

placing the current individual. This probability decreases as more function evaluations are

performed. This is the \acceptance probability" (pA) is de�ned as follows:
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pA =
1:0

1:0 + exp(
�f

0:5(1:0� t
tmax

)rc
)

(5.2)

(5.3)

�f =
j f(x1)� f(x2) j

j f(x1) j
(5.4)

(5.5)

where f(x1) is the �tness of the current point, f(x2) is the �tness of the mutated point,

and rc controls the rate at which the acceptance probability and mutation size decreases.

The desired bene�t of accepting mutations that cause decreases in �tness is to decrease the

probability of being trapped in a local minima and increase exploration. For four of the six

problems (F31, F32, F33, and F38), this tactic appeared to be slightly detrimental, as SA

under-performed DMHC, and, for the three more di�cult problems (F31, F32, and F33),

the tactic was severely harmful to the SA's performance relative to DMHC's performance.

Against a problem (F2) that was speci�cally designed to have an extremely signi�cant local

minimum, this tactic was clearly bene�cial. However, it must be noted that F2 is an arti�cial

test problem created to simulate hard problems, while F31-F33 are classic combinatorial

optimization problems. In the discussions to follow, the notation SA-x will be used to

denote SA with a cooling rate of rc = x.

5.2.4 The Genetic Algorithm (GA)

The GA used in these tests was \genesys-2.0"(B�ack, 1992). Fitness-proportionate selection

and elitism were used. The population size was �xed 50 individuals, while the crossover

probability and per-bit mutation probability were set to 0.6 and 0.001, respectively. The

�tness values of the population were rescaled every 5 generations. Both simple 2-point

crossover (2X) and uniform crossover (UX) were tested independently, with UX seeming

to have a slight advantage. In all the experiments, the GA's consistently converged to

unimpressive populations, in spite of the �tness rescaling used.

5.2.5 The Eugenic Algorithm (EuA)

A complete description of the eugenic algorithm was given in chapter 4. Many di�erent

combinations of parameters were studied:

Population Size: 20,50, and 100
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Selection Noise: 0.01 to 0.25 (usually 0.05)

Creation Rate: 0.01 to 0.25 (usually 0.05)

Restriction Operator: o� or on

The primary parameters studied were population size and selection noise. Also, the

EuA was tested with the restriction operator shut o�. Removal of the restriction operator

degraded performance for all problems except for F02.

5.3 Combinatorial Optimization Experiments

In this section, six experiments are described. Each experiment features a particular com-

binatorial optimization problem and the performance and behavior of all �ve optimization

algorithms on this problem. All of the problems are minimization tasks, and so \higher

�tness" individuals produce smaller phenotypic values for these functions. For a given indi-

vidual, I shall refer to the actual function value as the individual's phenotype, while I will

use �tness to refer to the \goodness" of the individual.

All of the results were averaged over 100 runs of a particular algorithm/parameter

combination. The mean phenotypic value of the best individuals found by the 100 runs

was computed every 100 function evaluations, and learning curves were constructed that

graphed the number of function evaluations versus the average phenotypic value of the

best individual found by each run. Both axes of the learning curves are plotted using base

ten logarithms of the actual numbers encountered. This is done in order to more clearly

display di�erences in behavior. When the range of phenotypic values is huge, di�erences

in the average phenotypic values can be more easily seen on log-log plots. Also, most

of the learning curves of the experiments were highly exponential in nature, with initial

extremely large changes in phenotypic value followed by very little change for many function

evaluations. Few performance di�erences could be detected when examining linear plots.

If the logarithms of both the number of function evaluations and average phenotypic value

were not used, most of the plots would resemble many \L"-shaped curves squashed together

on the left side of the graphs. The appearance of the learning curves is more linear using

log-log plots, and behavioral di�erences are clearer.

Each experiment in this chapter will be presented with four accompanying graphs.

All the graphs show the performance of three \standard" EuAs, which use a 5.0% selection

noise and creation rate. The three standard EuAs use di�erent population sizes|20, 50

and 100 individuals. Each graph compares the performance of these three standard EuAs

with either \nonstandard" EuAs or di�erent algorithms altogether. Nonstandard EuAs are

those that have extremely high selection noise, creation rates, or do not use restriction. The
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notation EuA-� is used to denote eugenic algorithms with population size �. The variables

N and C will denote EuA selection noise and creation rates, respectively. The four graphs

presented for each experiment are:

1. Eugenic vs Genetic Search: Graphs the behavior of the standard EuAs relative to two

or more GAs that use di�erent recombination operators (uniform or simple 2-point

crossover).

2. Eugenic vs Mutation-Based Search: Graphs the behavior of the standard EuAs relative

to SA, DMHC, and IMHC. Two cooling rates, 1.0 and 4.0, were studied with both

SA and DMHC.

3. Selection Noise and Creation Rate Tests: Graphs the behavior of the standard EuAs

relative to EuAs that use various di�ering combinations of population size, selection

noise and creation rate.

4. Restriction Operator Tests: Graphs the behavior of the standard EuAs relative to EuAs

that do not use the restriction operator.

The o(1)-epistasis (E) and �tness variation (F ) of each problem was estimated for

each problem. A random sampling of individuals was generated and then epistasis (o(1)�2-

Epistasis) and �tness variation ( Sb
Sw
) were calculated using the random sampling. For each

paired o(1)-competition, two genotypes that di�ered by a single bit were compared. Five

hundred o(1)-competitions occurred per gene (bit). Therefore the total number of random

samples taken for an l-bit problem was l � 500.

5.3.1 F02: The Two-Dimensional Rosenbrock Function

Problem Description

The two-dimensional Rosenbrock function has one global optimum and one major local

optimum, when encoded in 2-dimensional real space (De Jong, 1993). It is an arti�cial

problem that was intentionally created to have a local optimum with a basin of attraction

much larger than the global optimum's basin of attraction. It is therefore very deceptive in

real space. The two dependent variables can vary in the region [�5:12; 5:12]. This problem's

phenotypic values can range from 0 to approximately 105.

F02(y) = (100 � (y2 � y21)
2 + (y1 � 1)2) (5.6)

yi 2 [�5:12; 5:12] (5.7)
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The genotype [1:0; 1:0] yields the global optimal phenotype (0:0), while the local

optimum (0:017) occurs at [1:13111; 1:28]. When y1 = 1:13111 and y2 = 1:28, y21 � 1:28 =

y2, and therefore both the �rst term in F02 (100 � (y2�y21)
2) and the second term ((y1�1)2)

are very close to zero.

32; 000 samples were generated for the random sampling conducted for estimating

epistasis and �tness variance. The measured o(1)�2-Epistasis) was 0.70 and the �tness

variation ( Sb
Sw
) was 1.84. The average phenotypic value was 14418.5; the minimum value

encountered in the random sampling was 0.0159001 and the maximum was 97766.4.

When the two real variables are encoded in n-dimensional binary space, however, the

problem becomes rife with many additional mutation-based and pattern-based local optima

(due to hamming cli�s). Obviously, the global optimum still occurs when the both groups

of 32 bits are decoded to yield the real number 1:0. However, due to limited precision, this

number can be coded in two di�erent ways:

G1 = 00000000000000000000000010011001 (= 1:0)

G2 = 11111111111111111111111100011001 (= 1:0)

Note that the rightmost bits are the most signi�cant in this binary encoding.

In addition, the strong local optimum 0.017 still occurs when the �rst group of 32

bits decodes to 1.13111 and the second group decodes to 1.28. The coding for this local

optimum is:

y1 = 01010010010001001110001000111001 (= 1:13111)

y2 = 00000000000000000000000000000101 (= 1:28)

The reason why this is a local optimum is because a large mutation would be required

to decrease the phenotypic value, while intermediate-sized mutations would cause large

increases in the phenotypic value. As a result, even though the second group of bits di�ers

by only 4 bits from the G1 setting (causing 1.0), changing these 4 bits would require a

simultaneous change of either 11 bits (to the G1 setting) or 16 bits (to the G2 setting) in

y1's bits, so that y1's bits would also decode to the value 1.0. Therefore, to decrease the

phenotypic value from 0.017 down to 0.0 would require a fairly precise jump of (4+11) = 15

or (4 + 16) = 20 bits|roughly 25%-30% of the bits. The jump would also have to be well

coordinated, because the large �rst term in F02 causes large increases in the phenotypic

value when y21 di�ers too much from y2. Because of the transformation from a real space

genotype to a binary space genotype, many additional local optima are introduced into the

problem(including another fairly strong one at phenotypic value 1.0, requiring a perfect

12-bit mutation). Many of the optimization algorithms tested frequently converged to one

of these other local optima (see below).

62



0.001

0.01

0.1

1

100 1000 10000

EuA-20, N=0.05
EuA-50, N=0.05, C=0.05

EuA-100, N=0.05, C=0.05
GA-50, 2X, C=0.6, M=0.01
GA-50, UX, C=0.6, M=0.01

Figure 5.1: F02: Eugenic vs Pattern-Based Search. Larger populations helped the EuA to avoid
the strong local optima. UX-crossover, since it is more disruptive than 2X-crossover, resulted in
better GA performance.

Results

The local optima mentioned in the problem description dominated the landscape of the

binary search space, and therefore dominated the performance of all the search algorithms.

Over the course of their 100 runs, both EuA-20 and IMHC converged to about 40 di�erent

optima (including the global optimum at (1.0, 1.0). These optima ranged in phenotypic

value from 0.0 to 1.0000000024. Out of the 39 genotypical di�erent locally optimal individ-

uals, only 33 di�erent phenotypic values were encountered. For example, there were four

di�erent individuals whose phenotypic value was 0.0, and three whose phenotypic value was

0.0784000008. This multiplicity of individuals per phenotype was due to the limited pre-

cision of the binary encoding and the Hamming cli�s inherent in any binary encoding. As

with the major local optimum at (1.13111, 1.28) discussed earlier, very large and accurate

mutations are needed to escape the basins of attraction of these local optima.

Due to the great many local optima, exploration was far more valuable than ex-
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Figure 5.2: F02: Eugenic vs Mutation-Based Search. IMHC was frequently trapped by local optima.
SA, due to the good match between its major heuristic and the problem structure, performed well.
DMHC did not perform as well as SA, due to its determinism. Greater stochasticity clearly aided
DMHC.

ploitation. For example, very high settings of the EuA's selection noise (N) and creation

rate (C) greatly improved the chances of the EuA �nding the global optimum. In addi-

tion, EuAs with larger population sizes found the optimum more frequently than EuAs

with smaller populations. The higher diversity levels in the larger EuA populations allowed

them to more thoroughly explore a wider variety of samples, and so the larger populations

were more able to avoid local minima. Also, larger population EuAs are less likely to be

dominated by a single individual or small group of individuals, and therefore they are less

likely to prematurely converge. An initially surprising result was that the EuA performed

better without the restriction operator. This was due to the vastly increased exploration

that was performed, at the cost of greatly decreased exploitation of epistatic interactions.

When using the restriction operator, the EuA would attempt to �ne tune its settings for

each local optima, instead of making the large random jumps needed to escape local optima.

The EuAs that used the restriction operator initially performed better than those without,
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Figure 5.3: F02: Selection Noise and Creation Rate Tests. The performance of the EuA-50 was
clearly helped by greater stochasticity. With a 25% selection noise and creation rate, the EuA-50
was the best performing algorithm overall.

but their propensity to converge to local optima eventually damned their initial successes.

In summary, �nal EuA performance was determined by how well local optima were avoided,

not by how well the EuA could exploit promising schemata.

The experiments performed on this problem using non-eugenic algorithms also stressed

the importance of exploration at the expense of exploitation. The most greedy mutation-

based algorithms, IMHC and DMHC-4, and the most greedy EuA (the EuA-20) faired the

worst. By 50; 000 evaluations, IMHC had often found the same local optima as the EuA-20,

but IMHC was doing a better job of �ne tuning these solutions, and so it was still �nd-

ing better points while EuA-20 had already converged. IMHC's heuristic of taking very

small one-bit mutations was bound to fail on this problem, since it would most likely end

up exploiting local optima. As would be expected, DMHC faired better than the more

exploitative IMHC but worse than the more exploratory SA. DMHC-4 and the EuA-50 per-

formed almost identically, while DMHC-1 (with its slower cooling schedule and therefore

greater exploration) fared much better than DMHC-4 and even the EuA-100.
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Figure 5.4: F02: Restriction Operator Tests. Restriction actually harmed EuA performance, since
its epistatic tracking lead to increased exploitation of local optima.

The most exploratory mutation-based algorithms, SA-1 and SA-4, achieved excellent

results, even beating the EuA-100 (but not the EuA-50 with selection noise and creation

rates of 0.25). SA's \generous" (less greedy) strategy of allowing lower-�tness individuals

to replace the current individuals was very successful. DMHC and SA performed very well

on F02, compared to the other algorithms, but DMHC did not perform as well as SA. Both

DMHC and SA rely on decreasing size mutations which start out large enough to avoid

local optima, but the two algorithms di�er in that SA will randomly accept lower-�tness

replacements for the current individual, while DMHC never does. Because of this, SA was

more able to avoid F02's local optima.

F02, as all the other problems, demonstrated the weaknesses of the GA. Both GAs

made very slow progress initially, and then prematurely converged. The GA was clearly

the worst performing algorithm on F02. The GAs had neither the ability to maintain high

levels of \educated" exploration, nor did they have a trace of the exploitative ability of the

EuA or the mutation-based algorithms. For this problem, UX faired better than 2X most

likely because of the higher amount of disruption it caused on the 32-bit groups.
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The experiments con�rmed the hypothesis that this space was �lled with very strong

local minima, and that the best strategy for such a space is to sacri�ce exploitation for

increased exploration. The strong performance of the EuA (and in particular the winning

performance of the EuA-50 with high selection noise and creation rates) demonstrated the

versatility and exibility of the eugenic algorithm.

5.3.2 F30: Subset Sum Problem

This problem involves a set I of positive integers in the range [0,1000], and a large positive

integer M . The goal is to choose a subset of I in such a way that the sum of the integers in

the subset is as close to M as possible, but does not exceed M . If this sum does not exceed

M , then the solution is \feasible". If the sum exceeds M , then the solution is \infeasible".

The representation chosen for this problem is described in (Khuri et al., 1993). This problem

is included in the genesys-2.0 package. Each bit in the genotype represents the presence

or absence of a particular integer from the set I. The problem tested had 50 integers in

the set I, and so the genotype was 50 bits long. If a solution is feasible, its phenotype is

the di�erence between M and the sum of the chosen integers. Otherwise, the phenotype is

simply the sum of the chosen integers. Therefore, lower phenotypic values lead to higher

�tness.

F30(x) =

(
M �

Pl
i=1 Ii � xi when feasiblePl

i=1 Ii � xi otherwise
(5.8)

25; 000 samples were generated for the random sampling conducted for estimating

epistasis and �tness variance. The measured epistasis was 0.04 and the �tness variation

was 0.21. The average phenotypic value was 5561; the minimum value encountered in the

random sampling was 0 and the maximum was 24945. The overall phenotypic range of the

problem is 0 to approximately 25,000.

Results

Except for the genetic algorithms, all of the optimization algorithms tested had little dif-

�culty solving this problem. Even the random sampling discovered several optimal points.

Very few di�erences can be discerned among the various algorithms. Epistasis is fairly low

for this problem|the �2-epistasis estimated for F30 was far lower than that of F02, and,

in addition, IMHC (the algorithm speci�cally designed for low-epistasis problems) was the

second best performer.

Among the mutation-based algorithms, algorithms using faster cooling rates (and

therefore more exploitation) fared better than their more exploratory counterparts. The
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Figure 5.5: F30: Eugenic vs Pattern-Based Search. Greater exploitation and less search inertia
enabled smaller-population EuAs to initially make more speedy progress than larger-population
EuAs. However, this increase in exploitation lead to an increased tendency to prematurely converge.

eugenic algorithm lagged somewhat behind the mutation-based algorithms, but this behav-

ior would be expected for such a simple, non-epistatic problem, as the EuA was designed

for much more epistatic problems.

Larger populations slowed the search pace of the EuA, due to the smaller e�ect that

new high-�tness individuals have on the statistics of larger populations2. When the EuA-

20 actually found global optima, it did so faster than the EuAs with larger populations.

However, the EuA-20 was less likely to �nd optimal points than the EuA-50 or the EuA-

100. Compared to the EuA-20 and the EuA-100, the EuA-50 achieved a very good balance

between the speed of �nding optima and the probability of �nding optima.

Very low levels of selection noise (N = 0) made little di�erence in EuA performance,

except for the EuA-20. Initially, the EuA-20 with no selection noise made the same progress

as EuA-20 with 5.0% selection noise, but after about 10,000 evaluations, the lower level of

2A more in-depth discussion of the e�ect of population size on EuA behavior will be discussed in the
next chapter.
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Figure 5.6: F30: Eugenic vs Mutation-Based Search. The highly similar, very good performance
of all the algorithms demonstrated that F30 is a fairly easy problem. Greater stochasticity en-
abled DMHC and SA to progress slightly faster. IMHC was the second best performing algorithm,
demonstrating that a very small amount of epistasis was present.

selection noise allowed the EuA-20 to �nd optima much more frequently than all the other

EuAs, most likely due to the increased accuracy of the allele choices and recombinations

that it performed.

Without the restriction operator, EuAs were able to make fair progress (and still

outperformed the GA's tested), but were not able to compete with the EuAs using the

restriction operator. This demonstrated that, although this was a fairly easy problem, it

still had some epistasis that needed to be tracked. Since exploitation worked well on this

problem, it is not surprising that performance was decreased when the restriction operator

was not used. This is because EuAs without the restriction operator use statistics from

complete populations, instead of concentrating on groups of a few similar individuals, and

therefore being more exploitative. Population size|whether 50 or 100 individuals|seemed

to make little di�erence to the EuA's that did not use the restriction operator.

In summary, algorithms performing heavy exploitation were the clear winners. The
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Figure 5.7: F30: Selection Noise and Creation Rate Tests. Lesser stochasticity aided performance.

most exploitative two mutation-based algorithms|DMHC-4 and IMHC|did much better

than the other algorithms. The most exploitative EuA|the EuA-20 with no selection

noise|performed better than all the other EuA's. While at �rst random recombination

allowed both GAs to make fair progress, both GAs prematurely converged even though this

problem was very easily solved using greedy small mutations.

5.3.3 F31: Multiple-Knapsack Problem

Problem Description

This was the largest problem in the test suite (2105 possible solutions). Even after 50,000

evaluations, many of the algorithms were still clearly making progress. This problem is

similar to the Subset-Sum Problem. There is a set of m knapsacks, each with its own

capacity c1:::cm, and n objects, each yielding a pro�t p1:::pn. The weight of each object is

di�erent for each knapsack. Therefore there is a matrix of weight values, such that wi;j is

the weight of the ith object in the jth knapsack. The pro�t of each object remains constant,
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Figure 5.8: F30: Restriction Operator Tests. The EuAs without restriction lagged behind the
standard EuAs, but not by much. This demonstrates that some epistasis was present, but not very
much.

and either an object is placed in all the knapsacks, or not used at all. As with the Subset-

Sum Problem, each bit in the genotype denotes the presence or absence of a particular

object. A point is feasible when no knapsacks capacities are exceeded. This particular

problem analyzed was drawn from the genesys-2.0 test suite, and had 2 knapsacks and 105

objects, but the �tness function was modi�ed in order to provide a smoother transition from

infeasibility into feasibility, by indicating \how infeasible" particular infeasible points were.

There appears to be only a single optimum, as all the algorithms that found an optimal

individual found the same individual.

F31(x) =

( Pn
i=1 pi �

Pn
i=1 pixi when feasiblePn

i=1 pi +
Pm

j=1(
Pn

i=1wi;jxi � cj) otherwise
(5.9)

52; 500 samples were generated for the random sampling conducted for estimating

epistasis and �tness variance. The measured epistasis was 0.00 and the �tness variation

was 0.00. The average phenotypic value was 626992; the minimum value encountered in the
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Figure 5.9: F31: Eugenic vs Pattern-Based Search. The greater exploitation of the smaller-
population EuAs enabled them to stay ahead of the larger-population EuAs, but the log-log rate
of convergence was not a�ected by population size. The more disruptive UX-crossover operator
caused a slight increase in GA performance over the 2X-crossover operator. However, both GAs'
convergence rate was very small.

random sampling was 624811 and the maximum was 629237. The overall phenotypic range

of the problem is 0 to approximately 106.

Results

The random sampling produced no feasible points. Very low epistasis is present in the

random sampling|there are clear winners in most of the allele competitions. Most likely

the winners were the '0' alleles, as they would always produce smaller total weights, and

therefore \less infeasible" solutions. There are many infeasible points, and there is a clear

heuristic for producing feasible points|replace as many '1' alleles with '0' alleles. Therefore

the epistasis is low in this region of the space, as each gene has a clear allele winner ('0').

The infeasible region was so large and exploitation was so necessary, that if an algorithm

attempted too much exploration while still in the infeasible region, it would not fair very
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Figure 5.10: F31: Eugenic vs Mutation-Based Search. IMHC was able to quickly reduce infeasibil-
ity, but was often trapped by the deceptive local optimum. DMHC initiallly made slower progress
than IMHC, but was able to catch up later in the search. Both SA algorithms were unable to any
signi�cant progress.

well. SA and the non-restricting EuA far too exploratory for this region of space, and

therefore were unable to make reasonable progress.

As would be expected, the most exploitative algorithms quickly made progress.

IMHC was by far the fastest algorithm to break into the feasible region, however it was

soon surpassed by DMHC and the better EuAs (no matter what their mutation rates),

which all discovered the feasible region at about the same time. Although IMHC and

DMHC made quick progress out of the infeasible region and into the feasible region, they

were not as able as the EuA to make fast progress in the feasible region. DMHC-4 prema-

turely converged. This indicates the existence of mutation-based local minima, from which

large mutations must be made in order to escape.

In contrast to the fairly good performance of IMHC and DMHC, SA performed

dismally. SA's nondeterministic acceptance of lower-�tness points was the clear reason

for SA's inferior performance, since DMHC and SA are otherwise functionally equivalent.
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Figure 5.11: F31: Selection Noise and Creation Rate Tests. Lower stochasticity initially aided the
convergence rate, but increased the chances of converging to a local optimum.

This is because of the bad match between the �tness variation in the infeasible region and

the formula SA used to calculate its acceptance probability of lower-�tness points. In the

infeasible region, the range of values encountered initially (and throughout the search, for

SA) was very limited. The random sampling of 52,500 individuals produced phenotypic

values only ranging from 624811 to 626992. This implies that an extremely large portion of

the space had very large values, in a very small range. Points in this range varied only 0.34%

in phenotypic value. As a result, the �tness variation in this region of the space is obviously

very small, and this is con�rmed by the fact that the ( Sb
Sw
) �tness variation measured was

zero. SA would therefore be unable to move out of this initial infeasible region, due to

its probabilistic acceptance of lower-�tness points. The probability of accepting lower-

�tness individuals is based upon the percentage di�erence of the phenotypic values of the

current and mutated points (new individuals of higher �tness than the current individual

always replace the current individual). If the new individual has a �tness lower than the

current individual, and the percentage di�erence between the new and current individual is

small, there is a high probability that SA will replace the current individual with the new

74



10000

100000

1e+06

100 1000 10000

EuA-20, N=0.05, C=0.05
EuA-50, N=0.05, C=0.05

EuA-100, N=0.05, C=0.05
EuA-50, N=0.05, C=0.05, NO RESTRICTION

EuA-100, N=0.05, C=0.05, NO RESTRICTION

Figure 5.12: F31: Restriction Operator Tests. The non-restricting EuAs were unable to make any
progress; therefore epistasis was clearly present.

individual. Therefore a mutation that causes a small (percentage) decrease in phenotypic

value from the current point will have a high probability of replacing the current point.

Initially, SA samples the space randomly, therefore the values initially encountered by SA

are very similar to those found by the test random sample. Out of these points, the largest

percentage di�erence that would have ever been encountered by SA would have been 0.34%,

and so, with high probability, every point in this region would be accepted. Even if the

best point of this region was encountered by SA, it would quickly be replaced by one of the

myriad of other points in this initial region. No progress could be made from this region,

except due to random chance, and the random sampling demonstrated that this random

chance is indeed very small. It is clear that a better choice for calculating the acceptance

probability would have greatly helped SA, and that the bias of SA was extremely unsuited

to this problem.

Lower selection noise seemed to increase the EuA's chances of being trapped by local

minima, while creation rate did not seem to have that much e�ect. The EuA-50 with 0.5%

selection noise and a 5.0% creation rate converged to the same local optimum that trapped
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DMHC-4, but not as frequently. The EuA-50 with 1.0% selection noise and a 1.0% creation

rate also was trapped by the same local optimum, but far less frequently. However, the EuA-

50 with 5.0% selection noise and 5.0% creation rate was not caught by this local optimum.

Lower selection noise seemed to slightly increase EuA-20 performance, but only late in the

search. This may be due to the fact that, initially these small populations are very diverse,

and therefore the statistics calculated are initially very rough and therefore higher selection

noise initially has little e�ect. However, later in the search, the populations become more

homogeneous, and therefore the calculated statistics become more accurate, and selection

noise's e�ect becomes more pronounced. Decreased selection noise and creation rates greatly

aided the EuA-100. Perhaps this was because the statistics computed by the EuA-100 were

very accurate, and increasing selection noise only added unnecessary noise. In general, EuAs

with lower search stochasticity were able to initially make much faster progress, although

they seemed to more often prematurely converge.

The fact that EuAs with low levels of selection noise initially made better progress

implies that �tness proportionate selection is a very good heuristic for the �rst part of

the search space, as little deceptiveness is encountered. Because of this, even the rough

estimates of schemata-�tness provided by the EuA-20's population statistics are enough to

quickly guide the creation of better and better individuals. However, �tness-proportionate

selection can be too exploitative at times, as the premature convergence of lower selection

noise EuAs demonstrates. Both GAs achieved mediocre performance, with UX seeming to

have a slight edge. Surprisingly, neither GA had converged by the time the experiment

ended.

It is clear that many of the algorithms would have bene�ted from a longer test period.

It is also clear that the EuA-20 had the greatest potential for optimizing this problem, far

greater than the mutation-based algorithms. Therefore even rough indicators of high-�tness

patterns allowed smart recombination to outperform random mutation hill climbing.

5.3.4 F32: Maximum Cut Problem

Problem Description

This was one of the hardest problems in the test suite. In this problem, a connected graph

of 100 nodes and 10000 edges must be divided into two separate sets of nodes. The sum of

the weights of the edges that connect nodes from both sets must be maximized.

This was the only function that had negative phenotypic values. The best phenotypic

value generated was about -203.5. The representation chosen for this problem matched that

described by Khuri et al. (1993). This problem was randomly generated by the genesys-2.0

package. In the graphs to follow, 205 was added to the phenotypic values in order to present
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Figure 5.13: F32: Eugenic vs Pattern-Based Search. The GAs were able to progress as fast as
the EuA-20, but prematurely converged. Smaller EuA population sizes clearly increased the EuA
convergence rate.

positive phenotypes. Please note that these graphs, unlike those of the other experiments,

are log-linear, since the range of phenotypic values was not that great.

F32(x) = �
n�1X
i=1

nX
j=i+1

wi;j � [xi(1� xj) + xj(1� xi)] (5.10)

50; 000 samples were generated for the random sampling conducted for estimating

epistasis and �tness variance. The measured epistasis was 1.00 and the �tness variation

was 0.01. The average phenotypic value was -115.9; the minimum value encountered in the

random sampling was -164.4 and the maximum was 0. The overall phenotypic range of the

problem is -205 (the best point) to 0 (the worst point).
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Figure 5.14: F32: Eugenic vs Mutation-Based Search. IMHC was clearly the best performing
algorithm, although at the very end of the search the EuA-20 seemed to be �nding better points and
improving faster than IMHC. DMHC's performance was very good, but una�ected by changes in its
cooling rate. SA performed poorly initially, but then was able to catch up to the other algorithms
when its acceptance probability decreased su�ciently.

Results

The best point ever found had a phenotypic value of -204.76. This point was found by

the EuA, with a population size of 20. The best point from each run of every algorithm

was recorded, and later compared with each other. Out of 1000's of runs, the same best

point was never discovered twice. This demonstrates that an extremely large number of

points had phenotypic values very close to the optimum. The best performer was the EuA-

100 with a very low selection noise (0.01) and creation rate (0.01). This algorithm was

most likely to eventually �nd excellent points, although other algorithms could initially �nd

good points faster. Some very slow progress was possible without restriction, indicating

that epistasis was too high for statistics computed over many dissimilar individuals to

have any meaning, but that some genes were de�nitely more signi�cant than others. The

restriction operator was necessary in order to compare \apples to apples". Lower stochascity
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Figure 5.15: F32: Selection Noise and Creation Rate Tests. Lower selection noise had no signi�cant
e�ect on the EuA-20. Lower stochasticity greatly aided both the EuA-50 and the EuA-100, making
them the best performing algorithms overall.

universally aided EuA performance, indicating that statistical patterns were de�nite and

well justi�ed in restricted regions of the search space. EuAs with smaller population sizes

generally progressed more quickly, but it could not be discerned from the experiments what

the asymptotic e�ect of population size would be.

Initially, IMHC's and DMHC's performance was extremely impressive. However,

their asymptotic performance was not as great as that of some of the EuA's. IMHC found

points close to the optimum far more quickly than any other algorithm. After only 500

function evaluations, most runs of IMHC had found almost-optimal solutions. However,

IMHC's search foundered at this point, and never was able to �nd points as good as the

ones found (albeit much more slowly) by the EuA-20, and by low noise EuA-50s and EuA-

100s. DMHC-4 and DMHC-1 performed almost identically to each other. They did not

improve as quickly as IMHC, and they usually converged to points of lower �tness than

those found by IMHC. Once again, SA's probabilistic acceptance of lower-�tness points

was detrimental to its performance, even though the �tness variation among the points it
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Figure 5.16: F32: Restriction Operator Tests. The loss of the restriction operator detrimented
EuA performance, demonstrated a medium level of epistasis in the problem.

sampled was much greater than that found in F31 (and therefore the probability of replacing

the current individual with a lower-�tness individual was much less).

A surprising result was that of the GAs, which initially performed almost as well as

the EuA-20. Both GAs converged to good points, but not to the excellent points found by

most of the other algorithms. One conclusion that may be drawn from the performance of

IMHC and the GAs is that, in situations where random recombination is a good heuristic,

highly exploitative mutation-based hill-climbing may be a better heuristic.

5.3.5 F33: Minimum Tardy Task Problem

Problem Description

This problem is a scheduling problem in which there are n tasks to be performed. Each

task has an execution duration li, a completion deadline di, and a penalty pi for late or

non-completion. All these parameters are positive integers. For the solution to be feasible,

no more than one task at a time may be scheduled, and every task must either complete
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before its deadline or remain unscheduled. A task that is scheduled but cannot be completed

before its deadline is an \infeasible job". Note the feasibility of each job depends on the

other jobs that are currently scheduled.

For these particular experiments, 100 tasks will be used. Each bit i of the genotype

indicates whether or not task i is to be scheduled. A solution is feasible if no scheduled

task's deadline is violated; this is, no infeasible jobs exist. The �tness function used to rank

phenotypes was drawn from the genesys-2.0 package.

F33(x) =

( Pn
i=1 pi(1� xi) when feasiblePn
i=1 pi(1� xi) +

Pn
i=1 pixiGi +

Pn
i=1 pi otherwise

(5.11)

When genotypes are feasible, their phenotype is simply the sum of the penalties of the

uncompleted tasks. Therefore smaller phenotypic values are associated with higher �tnesses.

When genotypes are infeasible, Gi indicates which tasks violated deadlines. Therefore the

second term of the infeasible �tness function sums the penalties all the late-completing

tasks, and the third term is a constant \infeasibility penalty" that ensures that any feasible

solution will have a lower phenotypic value than any infeasible solution. Complete details

on this problem can be found in (Khuri et al., 1993).

50; 000 samples were generated for the random sampling conducted for estimating

epistasis and �tness variance. The measured epistasis was 0.50 and the �tness variation

was 0.10. The average phenotypic value was 41582; the minimum value encountered in the

random sampling was 8175 and the maximum was 57029. The overall phenotypic range of

the problem is 200 to 105.

Results

The results of this experiment were very interesting, due to the deception present in the

�tness function. IMHC, which had performed well on all the other experiments, failed

relatively often in F33. Eight out of 100 runs of IMHC converged almost immediately to

the \maximally infeasible" solution|the solution that schedules all jobs. IMHC troubles

were caused by deception. In F33, solutions are infeasible when not all jobs scheduled

can be completed before their deadlines. In order to make an infeasible solution \more

feasible", the number of scheduled jobs must be decreased, or di�erent sets of jobs must be

substituted for the existing jobs. A penalty is assessed for jobs that are either unscheduled

or late. However, the infeasible �tness function assesses equal penalties for both conditions,

so unscheduling a job that cannot be completed on time (given the other existing jobs)

results in no change in �tness if the solution still remains infeasible. So there is no positive

feedback in the infeasible region for reducing the number of scheduled jobs. In addition,

81



1000

10000

100 1000 10000

EuA-20, N=0.05, C=0.05
EuA-50, N=0.05, C=0.05

EuA-100, N=0.05, C=0.05
GA-50, 2X, C=0.6, M=0.001
GA-50, UX, C=0.6, M=0.001

Figure 5.17: F33: Eugenic vs Pattern-Based Search. The GAs were initially able to converge at
reasonable rates, but began to prematurely converge. Greater exploitation due to smaller population
sizes allowed the EuA to progress faster.

negative feedback can arise, when an \easy" job is added to an infeasible solution. It may

be possible to complete this easy job before its deadline, in spite of the fact that some of

the already scheduled jobs cannot be completed on time. If this is the case, the penalty

associated with this easy job is no longer assessed, and �tness increases. Therefore, the

�tness of an infeasible solution is never decreased with the addition of new jobs, and it

is even possible that adding jobs to an infeasible solution can increase its �tness, if the

additional jobs are easy enough to be completed on time. So an optimization algorithm can

increase the �tness of a solution by increasing the number of jobs scheduled, even when a

solution is infeasible. This will make the infeasible solution even more infeasible. Fitness

will eventually reach a local optimum|the maximally infeasible solution|when all of the

jobs have been scheduled. This local optimum is very deceptive, as it has a very large basin

of attraction, and its genotypic distance from the globally optimal solution is very large.

Highly exploitative (\greedy") hill-climbing algorithms that rely on small mutations

(such as IMHC) will often converge to this local optimum. They may avoid this local
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Figure 5.18: F33: Eugenic vs Mutation-Based Search. IMHC converged almost immediately to
local optima on eight of its runs. Otherwise, it converged quickly to the global optimum. The
shape of its learning curve demonstrates that simple averages of �tness versus time can be clearly
misleading. SA initially converged very slowly, but then caught up with the other algorithms. DMHC
had middling performance.

optimum only if search stochasticity increases|whether due to larger mutations or the

probabilistic replacement of the current individual with lower-�tness individuals. All of the

mutation-based algorithms have one or both of these qualities. DMHC and SA both start

out with very large mutation sizes, and SA probabilistically replaces its current individual

with lower-�tness individuals. IMHC increases its mutation size when it detects no increase

in �tness after many mutation attempts. The relative performance of the mutation-based

algorithms demonstrated the relative e�cacy of their strategies in avoiding the local opti-

mum and homing in on the global optimum. SA initially had a great deal of trouble, but

was able to �nd points of average �tness by the end of its search. Most likely SA's initial

trouble was due to the acceptance of infeasible points as valid replacements for a current

feasible point. SA's nondeterministic acceptances of worse-�tness individuals once again

prevented it from making much progress until this probability had decreased su�ciently.
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Figure 5.19: F33: Selection Noise and Creation Rate Tests. For the EuA-20, there was little
di�erence in behavior when selection noise was changed. Lower selection and creation rates clearly
aided EuA performance when population sizes were larger.

Once it had decreased to a critical point, SA was able to quickly catch up to DMHC, which

had good overall performance. Both DMHC and SA consistently avoided the local opti-

mum. However, they did not converge on the global optimum as skillfully as many of the

EuAs. The behavior of IMHC was radically di�erent from that of DMHC and SA. On eight

of its 100 runs, IMHC converged almost immediately to the local optimum. On the other

92 runs, IMHC almost always found the global optimum. Therefore IMHC experienced

more \extremes" in behavior than DMHC and SA. It is likely that the best runs of IMHC

were those that either started in the feasible region or found the maximally infeasible point

quickly. If IMHC started in the feasible region, there is no chance that it would stray into

the infeasible region, as all feasible points had higher �tness than all infeasible points. If

IMHC started in the infeasible region and found the maximally infeasible point, then it

would also increase its mutation size at the greatest possible rate (since mutation size con-

tinues to increase until a point of higher �tness is found). If the local optimum was found

early in its search, IMHC had a very good chance of escaping from the infeasible region.
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Figure 5.20: F33: Restriction Operator Tests. The EuA without restriction was not able to make
good progress, once again demonstrating the presence of epistasis.

However, if IMHC took too long to �nd the local optimum, it did not have enough time

to escape it. The behavior of IMHC, DMHC, and SA on F33 demonstrate their overall

strengths and weaknesses. DMHC and SA were less likely to produce catastrophic results,

but they were also less likely to produce excellent results. IMHC's behavior was much more

\hit-or-miss", as it could consistently �nd optima, but the quality of these optima varied

greatly.

The performance of the EuA was excellent. The worst EuAs faired about as well

as the mutation-based algorithms, but the average and above-average EuAs performed

much better. Once again, small population EuAs made faster progress than equivalent

large population EuAs. Fitness proportionate exploitation seemed to be a good heuristic,

as EuAs with lower selection noise and creation rates performed much better than those

with higher stochasticity. Just as with F32, selection seemed to have no e�ect on the

performance of the EuA-20. However, the combination of lower selection noise coupled

with lower creation rates greatly increased the performance of the EuA-50 and the EuA-100.

With 1.0% selection noise and creation rate, both the EuA-50 and the EuA-100 performed
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excellently. This would imply that, for this problem, creation rate has a greater e�ect on

EuA performance than selection noise. The deception of the infeasible region was not a

problem for any of the EuAs. Very little progress was made when not using restriction,

indicating that the epistasis among the scheduled jobs was high|jobs had to be considered

in groups, not just one at a time. The relative performance of the EuAs tested in this

experiment demonstrated that the EuA can be an extremely reliable and more successful

alternative to mutation-based algorithms.

5.3.6 F38: Simulated Annealing Test Function

Problem Description

F38 was a test function in (Ingber, 1993). The real-space encoding of this problem has an

extremely large amount of local minima, for which small changes in the real parameters only

decrease �tness values. Therefore algorithms that attempt to optimize this problem by using

a simple gradient descent method in real space are almost guaranteed to converge to a local

optima. F38 is generalized so that it can have anywhere from 2 to n real parameters. For

the problem we shall study, four real parameters were used. Each of these four parameters

was encoded into a 32-bit binary number, for a total of 128 bits. Therefore the genotype

for this problem will be 128 bits, and the optimization algorithms tested will be attempting

to �nd solutions in 128 dimension binary space. We shall see that most of the algorithms

tested had very little di�culty solving this problem. Therefore, it would seem that the

myriad local optima present in the real space encoding are \smoothed out" in binary space.

F38(y) =
4X

i=1

(
(ti � sgn(zi) + zi)

2 � cdi if jyi � zij < jtij

diy
2
i otherwise;

(5.12)

zi = bj
yi
Gi

j+ 0:49999csgn(yi)Gi; (5.13)

Gi = 0:2; ti = 0:05; c = 0:15 (5.14)

di = 1; 1000; 10; 100 (5.15)

yi 2 [�1000:0; 1000:0] (5.16)

64; 000 samples were generated for the random sampling conducted for estimating

epistasis and �tness variance. The measured epistasis was 1.00 and the �tness variation

was 1.48. The average phenotypic value was 2.10946e+08; the minimum value encountered

in the random sampling was 55115.7 and the maximum was 1.09611e+09. The overall

phenotypic range of the problem is 0 to approximately 1:1�109.
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100 1000 10000

EuA-20, N=0.05, C=0.05
EuA-50, N=0.05, C=0.05

EuA-100, N=0.05, C=0.05
GA-25, 2X, C=0.6, M=0.001
GA-50, 2X, C=0.6, M=0.001
GA-50, UX, C=0.6, M=0.001

Figure 5.21: F38: Eugenic vs Pattern-Based Search. Smaller-population EuAs were able to make
faster progress than larger-population ones, but lost this edge in the latter stage of the search.
All of the EuAs were able to �nd the global optimum. All the GAs tested made slow and very
discountinuous progress, and prematurely converged.

Results

Due to limited precision encoding, this problem actually had many global minima with

phenotypic values of zero. The smallest non-zero phenotype representable in the experi-

ments was 10�10, and whenever the absolute values of all of the parameters was less than

0.05, the phenotypic value would be zero. As a result, the 32-bit binary encoding of the

real parameters allowed a great many di�erent mutation-paths to be taken to the minima,

since there are many ways for each 32-bit group (yi) to take on absolute values less than

0.05. The local minima that supposedly existed in the real-number encoding of the problem

were simply not encountered. This is a clear case were the \genetic" representation of each

part of the phenotype caused a great reduction in the problem's di�culty. Here are some

examples of how jyij < 0:05 can be coded:
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100 1000 10000

EuA-20, N=0.05, C=0.05
EuA-50, N=0.05, C=0.05

EuA-100, N=0.05, C=0.05
IMHC

DMHC-1
DMHC-4

SA-1
SA-4

Figure 5.22: F38: Eugenic vs Mutation-Based Search. IMHC clearly found the global optimum
very quickly. SA made reasonable progress, while DMHC faired a little better.

11110011001001001111111111111110 (= �0:02612300) (5.17)

11001000101011101111111111111110 (= �0:01654050) (5.18)

10010001111010011111111111111110 (= �0:01245120) (5.19)

10111101011011111111111111111110 (= �0:00115967) (5.20)

11011110001100110000000000000001 (= 0:02429200) (5.21)

01101011111100001000000000000001 (= 0:03240970) (5.22)

11010011011101101000000000000001 (= 0:04364010) (5.23)

The values of the 17 least signi�cant bits in each 32-bit group did not seem to matter, so

long as the most signi�cant 15 bits had values of \000000000000001" or \111111111111110".

Therefore the problem size was greatly reduced, as only 4�15 = 60 bits (instead of 128) were

signi�cant. As a result, only 260 genotypes had to be searched, instead of 2128. Just about

every run of every algorithm was eventually able to �nd a phenotypic value of zero.
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100 1000 10000

EuA-20, N=0.05, C=0.05
EuA-50, N=0.05, C=0.05

EuA-100, N=0.05, C=0.05
EuA-50, N=0.01, C=0.01
EuA-50, N=0.25, C=0.25

EuA-100, N=0.005, C=0.05
EuA-100, N=0.01, C=0.01

Figure 5.23: F38: Selection Noise and Creation Rate Tests. For the EuA-50, high stochasticity was
obviously harmful, while lower stochasticity initially increased the convergence rate, but then caused
premature convergence. An increased creation rate caused the EuA-100 to prematurely converge,
but a low selection noise and creation rate caused the EuA-100 to converge very quickly to the global
optimum.

Mutation-based search obviously was a good heuristic for optimizing F38. IMHC,

the algorithm most prone to being trapped by mutation-based local optima, solved the

problem the fastest. IMHC found a global optimum in just 3500 function evaluations, on

average. DMHC and SA found optima in roughly 20,000 and 30,000 function evaluations,

respectively. Therefore the extremely exploitative and small-mutating heuristic of IMHC

was obviously a great match with F38. All the mutation-based algorithms exhibited no

tendency to prematurely converge. IMHC's avoidance of local optima reinforced the sup-

position that the change of representation of the parameters of this problem (from real to

binary inputs) removed any strong local optima.

The EuA performed well, even though some of the parameter combinations exhibited

a tendency to prematurely converge on some of the runs. When selection noise and creation

rates were low (1.0%), the EuA-100 beat all the other algorithms except IMHC, �nding
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EuA-100, N=0.05, C=0.05
EuA-50, N=0.05, C=0.05
EuA-20, N=0.05, C=0.05

EuA-50, N=0.05, C=0.05, NO RESTRICTION
EuA-20, N=0.05, C=0.05, NO RESTRICTION

EuA-100, N=0.05, C=0.05, NO RESTRICTION

Figure 5.24: F38: Restriction Operator Tests. Restriction obviously aided the EuA in tracking and
exploiting epistatic interactions.

an optimum with an average of 6000 function evaluations. Lower selection noise initially

helped speed up EuA search, by helping the algorithms home in on very good regions of

the space quickly. This is most likely because random disturbances to the selection of the

most signi�cant bits could easily result in wild changes in �tness. However, without greater

creation rates or population sizes, premature convergence was a slight problem for EuAs

with lower selection noise. Even so, for the EuAs that prematurely converged at least once,

more than 95% of their runs did not prematurely converge. Creation rates could be set

at lower levels for larger-population EuAs, since larger populations reduce the chance of

getting trapped by local minima. Lower creation rates were necessary for larger-population

EuAs, since high creation rates, coupled with the higher diversity of larger populations

(which causes greater search stochasticity), caused the EuA-100 to have trouble homing in

on the optimum.

For the EuA, the large variation in �tness values lead to large drops in diversity

when \super" phenotypes were encountered. For example, when an individual of �tness 106

was found, while all the existing individuals had �tnesses hovering around 104, the super

90



individual's �tness would completely dominate the statistics the EuA uses to generate new

individuals. The population would then experience a large drop in diversity, as all the

lower-�tness individuals would be replaced by new \copy-cat" individuals similar to the

super individual. In spite of this, all the EuAs (even those that prematurely converged)

were able to maintain high diversity levels throughout the search, as even the copy-cat

individuals consistently di�ered from super individuals.

In the �rst one thousand function evaluations, the EuA-20 was a clear winner, far

out-pacing IMHC and all other algorithms. However, its eventual performance was average.

This may be because 20 individuals provided too little information on the 128-bit genotype,

even when the population was highly homogeneous. The large search inertia of 100 indi-

viduals initially worked against the EuA-100, as after it found a super individual, which

far surpassed all those in the current population, it had to \wait" for many individuals in

its population to be replaced with the better individuals it was then able to create, before

it could start producing many individuals like the super individual. Therefore, the rate

at which EuA-100 could exploit information from new super individuals was much slower

than the rate for the EuA-20 (in fact, �ve times slower). However, later on in the search,

when many individuals in the EuA-100's (or the EuA-50's) population were fairly close to

optimal, and the population was fairly homogeneous, the more accurate statistics garnered

using the larger sample sizes could be used to great avail.

Without the restriction operator, the EuA was unable to make much progress at

all, no matter what the population size. The restriction operator was obviously necessary,

due to the high amounts of initial epistasis and the great number of phenotypically equiv-

alent, but genotypic disparate, individuals. When many genotypically diverse individuals

can represent the same phenotype, the restriction operator is necessary to prevent the in-

correct mixing of very di�erent schemata. Restriction greatly helped because of the large,

competing schemata that were present. The previously-discussed 15-most signi�cant bits

\000000000000001" and \111111111111110" of each 32-bit group were a prime example of

two very large competing schemata. Without restriction, the EuA would \average" these

schemata together (just as the uniform-crossover operator of the genetic algorithm), thereby

creating a very low-�tness individual. Larger population EuAs would just average more of

these diverse individuals. Since even 100 individuals would still only be a tiny fraction of

the search space, no particular advantage was granted to non-restricting EuAs with larger

populations. The GA performed better than the non-restricting EuA, most likely because

the random two-parent recombination that the GA used would eventually pair two compat-

ible individuals. A smaller population size of 25 helped the GA, and UX seemed to work

slightly better than 2X. But still, the GA performed badly relative to the other algorithms,

and most often did not �nd an optimum.
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In chapter 3, high epistasis was associated with highly di�cult problems. The epis-

tasis measured for F38 was E = 1:0. If epistasis is truly a measure of problem di�culty,

then why did all the algorithms do so well? Most likely this is because a great number of

the o(1)-competitions measured were between very insigni�cant bits, as less than half of the

bits had to be set correctly around the optimum. Epistasis is high when the best choice of

each gene's allele depends heavily on a simultaneous complementary settings of other gene's

alleles. In high epistasis problems, there is no clear choice for the best setting of each gene,

unless the rest of the genotype is known. Epistasis is low when each gene has a de�nite

\best" allele choice, independent of the allele choices for the other genes. Therefore, when

relatively few genes have clear \best" settings, while the a majority have no systematic

e�ect on �tness (and therefore no observed \best" settings), it would seem that epistasis is

high. There would be many o(1)-competitions that had no clear winners, and so it would

appear that the allele settings were highly interdependent and therefore highly epistatic.

This observation leads to the realization that functions with many insigni�cant parameters

can appear to be very epistatic. Perhaps a measure of o(1)-epistasis that gave increased

credit to highly signi�cant bits and very little credit to genes with little e�ect on �tness

would provide more accurate measurements of epistasis as a measure of problem di�culty.

5.4 Summary

The experiments illuminate many di�erences in algorithm bias as well as problem structure.

IMHC was shown to perform well on non-deceptive problems but would often converge to

deceptive optima. DMHC and SA were less likely to converge to deceptive local optima

due to their relatively higher stochasticity (and therefore more exploration). However, this

ability to avoid deceptive optima came with a high cost|DMHC and SA were also less

likely than IMHC to converge to any attractor|local or global. Through recombination,

the GA often performed well in the initial stages of the search, but, once good building

blocks had been created, the GA mutation operator did not create enough exploration to

�nd better building blocks.

F02 was a very nontypical problem, due to the extreme amounts of exploration

needed to optimize it correctly. SA's better performance on F02, relative to DMHC, was

probably only due to its di�erent acceptance criteria, which allowed it to more readily avoid

F02's local optima. In all the problems except for F02, DMHC performed better than SA,

implying that the non-deterministic acceptance of lower-�tness individuals conducted by SA

had only limited applicability. F02's excessive need for exploration was further evidenced

in the EuA's behavior. In all the other problems besides F02, the EuA bene�ted from low

stochasticity. However, for F02, the EuA-50 with the most stochasticity|a 25% selection
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noise and creation rate|was de�nitely the best performing algorithm, always �nding the

global optimum within 20,000 iterations. The greater success of this EuA versus DMHC

and SA demonstrated that eugenic evolution is still very useful even when other algorithms'

bias has been explicitly matched to a particular problem's structure. However, if too much

faith is given to explicit measurements of allele distributions (i.e. when EuA selection noise

or creation rate is very low), the attraction of large sub-optima's becomes too great and the

EuA will converge to the wrong optimum.

F30 was a problem that was easily solved using exploitation. It demonstrated that

the EuA can optimize simple problems as well as the other algorithms. The other test

problems showed that the EuA can also optimize very di�cult problems.

F31 demonstrated what happens when there is a \mismatch" between a problem's

�tness variation and a particular algorithm. SA performed very poorly on F31 since its

acceptance probability of points with �tness lower than its current point was almost always

1.0. Therefore SA never (until the very end of its search) exploited the mutations necessary

to move out of F31's infeasible region. In spite of this, it is quite possible that SA's

acceptance probability could be changed to combat this mismatch. However, this would

still not alleviate SA's di�culty with F31, because SA's bias is mismatched with F31's

structure! Algorithms optimizing F31 must �rst be very exploitative, and then become

more explorative. SA's major design feature is for it to start out very explorative and then

become very exploitative. Therefore no amount of parameter tuning would truly make SA's

bias match F31's structure. DMHC and IMHC also su�ered on F31, since they were not as

able as the EuA to adapt their balance between exploration and exploitation.

On F32, even when IMHC found the globally optimal region far more quickly than

the other algorithms, the EuA could still eventually �nd better points. And on F33, the

EuA was clearly the best performing algorithm due to its ability to avoid the deceptive

local optimum while simultaneously being able to home-in on the global optimum.

The F38 experiments demonstrated that a problem riddled with local optima in real-

dimensional space doesn't necessarily have any local optima in Hamming space. They also

showed that, even when IMHC quickly found global optima, a EuA-100 could �nd optima

almost as quickly.

A surprising result of the experiments was that, on di�cult combinatorial optimiza-

tion problems, even a simple algorithm such as IMHC can perform far better than much

more sophisticated algorithms. Each of the optimization tasks had \silver bullet"|an al-

gorithm with performance much greater than the others. For two of the six problems (F32

and F38 - very low epistasis problems), IMHC was this silver bullet, even though it was

developed for this thesis solely for benchmark purposes. In F32, IMHC found highly-�t

points in 300 �tness evaluations that the other algorithms didn't �nd until after at least
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3000 �tness evaluations. In F38, IMHC always found the optimum within 3500 �tness eval-

uations, while it took 6000 evaluations for the next best performing algorithm (the EuA-50)

to achieve this feat. For three other problems (F02, F31, and F33), the silver bullet was the

EuA. In F02, the EuA with a 25% selection noise and creation rate always found the global

optima in 15,000 evaluations, while the second best algorithm took 25,000 evaluations. In

F31 and F33, no algorithm always found the global optima, but the EuA found the global

optima much more frequently than the other algorithms. The remaining problem (F30) was

easily optimized by all the algorithms (except the GA), but the more highly exploitative

mutation-based algorithms generally faired better.

The EuA proved to be an extremely robust, reliable and exible combinatorial op-

timization algorithm, relative to the other algorithms tested. All the mutation-based algo-

rithms (including SA) encountered \killer" problems, on which they performed very poorly.

The genetic algorithm, the only pattern-based algorithm tested, consistently performed

poorly, due to premature convergence caused by a lack of exploitation and mutation rate

tuning. The EuA, the only eugenic algorithm tested, performed the best on several prob-

lems, but still performed very well in the others. In no case did a standard EuA perform

poorly, although in several cases nonstandard EuA's (those with extremely high mutation

rates, or those that did not use population restriction) performed poorly. The resistance of

the EuA to premature convergence allowed it to continue to improve where other algorithms

had failed. In most cases, the eugenic algorithm was still �nding better individuals long

after the other algorithms had converged to less-�t points.

More in-depth analysis of what these experiments illuminated about particular as-

pects of problem structure and algorithm bias will be included in the next section.
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Chapter 6

Discussion and Future Work

The relative performance of the various algorithms on the test problems in chapter 5 demon-

strated many of their strengths and weaknesses, in addition to illuminating much of the test

problems' structure. This chapter will discuss the results of these experiments and outline

possible future enhancements to the EuA and new directions of research.

6.1 The Eugenic Algorithm versus the Genetic Algorithm

In order to evaluate the EuA's abilities, many evolutionary algorithms were discussed and

studied in this thesis. Of these, the genetic algorithm was the major inspiration for the

design of the EuA. While the GA has repeatedly been demonstrated to be an excellent

general optimization algorithm, it does not rely upon any explicit analysis of the correlations

between schemata and �tness, and the experiments in this thesis showed that the GA can

fall far short of an algorithm that performs such an analysis|the EuA. The EuA di�ers

from the GA in every important aspect of genetic selection and construction. First, GAs

do not select alleles only on the basis of �tness of the individuals containing them, but

also on the frequency of the alleles in the population. It is therefore possible for the GA

to choose alleles from lower �tness individuals more frequently than alleles from higher

�tness individuals, if the ratio of the numbers of lower �tness individuals to higher �tness

individuals is high enough. In contrast, the EuA allocates trials to alleles based directly

upon the average �tness of the individuals containing them; it makes no di�erence how often

the individuals are found in the population. Therefore even a single individual can greatly

aid allele selection, even if this individual does not have an extremely low or high �tness.

Second, the GA combines randomly selected genotypic parts to form new individuals, while

the EuA deliberately promotes genetic combinations that have proven themselves in the

past, using explicit analysis of conditional �tness distributions. As a result, the EuA more
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e�ectively and intelligently exploits the information at it disposal. And third, while the

GA makes no use of di�ering gene importance, the EuA speci�cally attempts to optimize

genes in order of their signi�cance and therefore tunes its solutions to regions of the search

space that are determined by the most signi�cant genes. This ability of the EuA is a

direct result of its restriction operator and its speci�c ordering of gene optimizations (from

genes of greatest importance down to genes of least importance). With this ability, the

EuA can accurately explore and exploit optima, without having to wait for its population

to converge into (and possibly become trapped in) the optima's basin of attraction. For

the GA to thoroughly explore a particular region of the search space, its population must

be signi�cantly composed of individuals from this region. But such GA populations lack

genetic diversity and therefore become highly susceptible to premature convergence to this

region.

It is never necessary to preserve schemata when optimizing non-epistatic problems.

However, it is obvious that any powerful combinatorial approximation algorithm must have

some method of preserving the epistatic interactions in schemata even on low-epistasis prob-

lems. It is typically thought that one of the major bene�ts of the recombination operator

is that it preserves and promotes these epistatic interactions, by allowing di�ering solutions

to share schemata. However, although the GA recombination operator may appear to be

helpful for epistatic problems, this does not mean that recombination is necessary for these

problems. For example, the GA outperformed the non-restricting EuA on problems F02 and

F30, demonstrating that random recombination can be bene�cial for such epistatic prob-

lems. However, the mutation-based algorithms, which make no e�ort to combine di�ering

schemata, consistently outperformed the GA. This cast doubt on whether it is necessary to

share epistatic allele groups among solutions, and therefore whether recombination is neces-

sary. For instance, DMHC and SA optimized both F02 and F30 much more often than the

GAs tested. This result would suggest that recombination is unnecessary for both epistatic

(F02) and non-epistatic (F30) problems. Mutation-based algorithms preserve and exploit

epistasis by other means. When a mutation-based algorithm changes only some of its cur-

rent individual's genes, all the epistatic interactions that are present in the unmutated genes

are preserved. Therefore mutation-based algorithms need not resort to recombination, since

they already have a method for exploiting signi�cant epistatic combinations.

6.2 Problem Structure

This section will discuss what was learned about the structure of combinatorial optimiza-

tion problems through the use of both the new measurements developed in chapter 3 and

empirically through the experiments.
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6.2.1 Fitness Variation

The one method used to calculate �tness variation, F = Sb
Sw
, was successful at �nding the two

problems that had large variations in gene signi�cance. F was relatively high (above 1.47)

for F02 and F38, and relatively low (less than 0.21) for the other four problems. F02 and

F38 were the only two problems whose genes had a de�nite hierarchy of signi�cance, since

they were the only two problems in which real number parameters were encoded as binary

parameters. All the other problems had genotypes that represented set membership of one

sort or another, where all genes had equivalent coding signi�cance (although not equivalent

functional signi�cance!). This result suggests that F = Sb

Sw
is a very good measure of the

variation in gene signi�cance. However, the use of F as a measure of global �tness variation

turned out to be unreliable. The reason is that the distribution of the sample points used in

its calculation can be very unrepresentative of the entire distribution. In F31, for example,

the points encountered in the random sampling represented less than 0:34% of the range of

the full search space. Therefore the �tness variation of the random sampling was entirely

unrepresentative of the global �tness variation of the function, even though the statistics

gathered were a good approximation of typical distribution. In addition, F seemed to

have little predictive value when used to determine which of the optimization algorithms

would perform better. This was because F makes no attempt to estimate local optima and

deception, which both seemed to have a much larger inuence on algorithm performance

than �tness variation.

6.2.2 Epistasis

The epistasis measure E (paired �2-epistasis) turned out to be an ine�ective measure of

epistasis. A very e�ective measure of epistasis was the relative performance of EuAs with

the restriction operator versus those without. Paired �2-epistasis had little predictive use

for determining problem structure or algorithm performance. There was no apparent con-

nection between the E measured for a particular problem and the relative performances of

the di�erent algorithms. In spite of this, we could still conclude that epistasis de�nitely

exists and is measurable through other means. For instance, there was a vast di�erence

in performance of the EuA with and without the restriction operator. EuAs that did not

use restriction ignored epistasis. Removing the restriction operator from the EuA ruined

its performance on F31, F32, F33, and F38, indicating that these problems had high levels

of epistasis, at least in regions around the optima. However, on F02, non-restricting EuAs

actually performed better than most EuAs that used restriction. The less-than-impressive

performance of restricting EuAs was due to their pro�ciency in recombination, which al-

lowed them to quickly �nd and exploit strong suboptima and lead them to prematurely
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converge. Non-restricting EuAs found F02's global optimum more frequently because they

did not attempt to associate interdependent alleles; they only exploited global gene signi�-

cance and were not attracted to the epistatic allele combinations of local optima. However,

the restriction operator was still very useful if search randomness was high enough, as

demonstrated by the fact that the EuA-50 with restriction and a 25% selection noise and

creation rate easily outperformed all the other algorithms tested on this problem.

Therefore the exploitation of epistatic combinations always seems to be useful for

epistatic problems, even when there are many strong local optima. Non-restricting EuAs

do not maintain any epistatic interactions, and therefore are of limited use for optimizing

epistatic problems, but it is this failing that allows them to be used to estimate the amount

of a problem's epistasis.

6.2.3 Local Optima and Deception

Deception is increased by larger genotypic distances between local optima and global optima

and larger/stronger suboptimal basins of attraction. Local optima played a large role in two

of the problems, F02 and F33, but F33 was a much more deceptive problem than F02, since

the local optima in F02 did not lead algorithms away from its global optimum; they merely

caused algorithms to end their search fairly close to the optimum. For example, F02's

local optima di�ered from its global optimum by about 18 bits, on average. In contrast,

F33's local optima were radically di�erent from the global optima, and therefore highly

deceptive. F33's major local optimum (the maximally infeasible solution) di�ered from

its global optimum by more than 40 bits. Therefore F33's local optimum was much more

misleading (deceptive) than F02's. In addition, F33's local optimum was much stronger

than the local optima of F02 - the basin of attraction of F33's local optimum was the entire

infeasible region1|much larger than the basins of attraction of the local optima in F02.

Therefore the attraction of F33's local optimum was much greater than that of F02's local

optima.

Overall, IMHC's performance was a good indication of deception. IMHC performed

well on all the problems except F02 and F33 (the two most deceptive problems), as it

frequently converged quickly to the sub-optima of both F02 and F33. The hypothesis

that F33 was more deceptive than F02 was reinforced by the fact that IMHC prematurely

converged much more often in F33 than in F02, and therefore F33's local optima's attraction

was stronger than that of F02.

1The basin of attraction did not include the infeasible points on the boundary of the feasible and infeasible
regions|infeasible points that were one bit away from being feasible.
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6.3 Eugenic Algorithm Parameters

The experiments provided a wealth of information on how to the EuA's parameters a�ected

its behavior. This section will discuss the e�ects of population size, selection noise, and the

restriction operator on the performance of the EuA.

6.3.1 Population Size

The experiments clearly demonstrated the e�ects of population size on the EuA. Smaller

EuA populations were clearly bene�cial to quickly �nding very good points. For every

problem except F02, the EuA-20 was initially the fastest eugenic algorithm. However, larger

population EuAs were more easily able to avoid local optima, and often �nal performance

depended on this. F02 was obviously a problem with extremely many local optima, and

there was a direct increase in asymptotic performance when population size was increased.

Larger populations performed better on F02 due to their decrease exploitation. F30 and

F38 had somewhat confusing results about the e�ect of population size on eventual EuA

performance, with the EuA-50 beating both the EuA-20 and the EuA-100 on these two

problems. This could be because the EuA-50 struck the right balance between exploration

and exploitation for these two problems. F30 and F38 were the easiest problems tested,

as most runs of all the algorithms found global optima within 50,000 function evaluations,

and since IMHC did so well on both of them. Therefore, the middling size population of

the EuA-50 might never be that useful, because the problems for which it helps can be

more easily solved by other algorithms. For the other three problems (F31, F32, and F33),

smaller population size was de�nitely a great bene�t (at least up through 50,000 function

evaluations). However, these three problems were so large and di�cult that most EuAs

had not begun to converge, and so the asymptotic relationship between performance and

population size was not fully established. It could have been the case that the greater initial

performance of the small population EuAs was once again eventually defeated by the �nal

performance of the larger population EuAs. If this were the case, then a strong argument

for EuAs that increase their population sizes as the search slows could easily be made.

It would seem that by increasing the size of an EuA's population, allele-�tness dis-

tributions could be more accurately approximated. Larger populations can support more

diversity, and so larger populations would be able to contain more representative samplings

of the search space than smaller populations. More accurate statistics could be collected

using larger populations, and an EuA armed with these statistics should easily be able to

identify the best alleles and quickly generate highly-�t individuals. Therefore EuAs with

larger populations could conserve precious function evaluations by avoiding the needless

generation of low-�tness individuals. However, three key issues prevent this line of reason-
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ing from being entirely true|immense problem search spaces, search focus \inertia", and

(most importantly) epistasis. Because of these issues, increasing the population size does

not necessarily improve the performance of the Eugenic Algorithm. These issues will now

be discussed.

Problem Size and Sampling Error

The search space of the typical combinatorial optimization problem is usually far too large

for statistically representative samples to be taken. Even for a fairly small, 50-bit problem,

a standard GA population size of 100 samples represents only one ten-trillionth of the

search space ((250 � 1015; 1015=100 = 1013). Even a huge population of 106 individuals is

still only one-billionth of the search space. Since the sample size of any reasonably sized

population would be in�nitesimal compared to the problem size, statistics collected using

such populations will be highly unrepresentative of the search space as a whole, as such

statistics would most likely be highly abnormal with respect to the global distributions of

the search space. This e�ect is called \sampling error". Normative inferences (such as which

alleles are the \best") made using such statistics are prone to error. As a result, statistics

computed over typical population sizes (from one to several hundred individuals) can only

serve to point to better regions of the search space, instead of pointing to the best solutions.

Only through the repeated application of its search operators will an algorithm be able

to \hill-climb" or \boot-strap" to better regions of the search space. It is therefore it is

unreasonable to expect that simply increasing population size (even by huge proportions)

will increase the accuracy of the collected statistics to such a point that the search becomes

trivial.

Search Focus Inertia

Most of the problems studied in the experiments demonstrated that larger populations

resulted in slower search than smaller populations. This is because EuAs with smaller

populations have lower \search inertia" than those with larger populations - in general,

the statistics of smaller populations can change more rapidly than larger populations. An

individual in a small population has a larger e�ect on the statistics of its population than

an individual in a larger population. Fewer replacements of individuals are necessary to

radically change the search focus of a smaller population. In contrast, the e�ect of each

new individual is less pronounced on the statistics of a larger population. As a result, each

time a point of relatively high �tness is encountered, EuA's with smaller populations can

more quickly exploit the new information, while in larger populations, the overwhelming

numbers of existing individuals drown out the newly gained information.
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Epistatic Interference

For non-trivial problems, the statistics collected over the population will contain little useful

information about the entire problem space; their purpose is to provide a direction for the

search to proceed in|\where to go next". When the region searched contains intermediate

or high levels of epistasis, increasing the population size can actually detriment the search,

since a larger population will likely contain more conicting instances of interdependence

among allele �tnesses than a smaller population. Sampling error can therefore be bene�cial

to the search! For instance, a larger population will be more likely to contain individuals

from di�ering optima's basins of attraction, and therefore the simple single-allele statistics

collected will be more \confused" than those of a smaller population, which would be more

likely to contain individuals from only one optimum's basin of attraction. As a result,

when epistasis is high, statistics of large populations will no longer point to better regions;

they will just be oversimpli�ed descriptors of the current population. Only through the

use of the restriction operator can the complex schemata dependencies be untangled, as

the restriction operator allows the identi�cation and computation of the most important

conditional �tness distributions. After couple of restrictions, population size is reduced

enough that interference is no longer a problem. Therefore, epistatic interference due to

overly large populations may slow down searches, but most likely will not cause premature

convergence since restriction allows a large population to act like a small population. This

is evidenced by the very good performance of the EuAs with the restriction operator, and

the relatively poor performance of those without.

Exploration versus Exploitation: The \Best" Population Size

Although the lower search inertia of smaller populations may often be helpful, EuA's with

smaller populations were more likely to be trapped in local optima than larger population

EuA's. As stated previously, a few individuals will not inuence larger population EuA

statistics as much as they would inuence smaller population EuA statistics. Therefore the

larger EuAs continue to perform high amounts of exploration even after �nding very good

individuals. Conversely, smaller populations will be more exploitative of the information

contained in the high-�tness individuals. Since larger populations perform more exploration

and less exploitation than smaller population EuAs, they are less likely to converge to

sub-optimal points. Larger populations increase the EuA's resistance to local optima by

decreasing exploitative behavior, but this comes at the cost of increasing the time it takes

for the EuA to take advantage of information leading to global optima. As a result, the

\best" population size for a EuA would be the smallest one possible that can avoid local

optima. Such a population would rapidly respond to new information, without the risk
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inherent in exploiting harmful information that leads to sub-optima.

6.3.2 Selection Noise and Creation Rate

Just as smaller populations often sped up initial performance of the EuA, so did lower

search stochasticity in the form of lower selection noise and creation rates. In most cases,

lower search stochasticity aided eventual performance more often than smaller population

size, but in other cases (particularly for F02), lower search stochasticity caused premature

convergence just as often as small populations did. Once again, there is a clear relationship

between exploration and exploitation: greater exploitation aided in all problems except for

the one (F02) that was speci�cally contrived to defeat exploitative algorithms. More study

is needed to fully establish the relationship between premature convergence, selection noise,

and creation rate.

6.3.3 The Restriction Operator

As was seen in the F02 experiments, the use of the restriction operator could increase

the possibility of getting trapped in local optima, since its major e�ect is to cause the

EuA to �ne tune the genotypes generated for a particular region of the space. This allows

the EuA to quickly home-in on optima, but it also increases the EuA's vulnerability to

local optima. Without the restriction operator, EuAs become very explorative, completely

ignoring the epistasis information contained in the conditional �tness distributions. This

resulting increased search stochasticity causes the non-restricting EuA to avoid all but

very large largest basins of attraction. That is why the non-restricting EuA was able

to outperform all but the most stochastic restricting EuAs. In general, the relationship

between the size of an attractor's basin of attraction and the attractor's optimality will

determine a non-restricting EuA's success. If very bad attractors have very large basins

of attraction, then a non-restricting EuA will have an advantage against EuA that use

restriction, unless the restricting EuA also have very high settings of selection noise and

creation rate. Since EuAs using the restriction operator, in one form or another, beat EuAs

without the restriction operator, a pro�table approach to approximating a problem with

unknown properties would be to just vary a restricting EuA's selection noise in a wide

range, from 0% to 25% for example. The only usefulness in employing a non-restricting

EuA would be to gauge the amount of epistasis or the prevalence of large sub-optima in the

problem.
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6.4 Extensions and Future Work

This section will describe three major areas of EuA enhancement. These include automatic

parameter tuning, more e�ective statistical descriptions of epistasis and schemata �tness,

and �nally the extension of the EuA to continuous optimization.

6.4.1 Adaptive Parameters and the \Multi-EuA"

The hit-or-miss performance of SA, compared to DMHC, demonstrated that even very small

changes to an algorithm can cause huge di�erences in performance. This phenomena was

also exhibited by the EuA, for which there usually was a \best" combination of parameter

settings that yielded greatly superior performance. This section will discuss how the EuA

could determine its own most e�ective parameter settings.

The parameters of the EuA determine its bias. Lower population size and selection

noise cause the algorithm to be more exploitative, while large populations or high selection

noise cause it to become more explorative. An exploitative algorithm is more likely to �nd

optima faster than an explorative algorithm, but it is also more likely to become trapped by

local optima, if they exist. In order take best advantage of the strengths of both exploitation

and exploration, the EuA could automatically adapt its search bias to respond to its pace of

improvement. In e�ect, such an algorithm could \change" its bias in mid-search when not

enough progress is made in a certain amount of function evaluations. Determining whether

more exploration or exploitation would be fairly straightforward. If little progress was be-

ing achieved, and newly created individuals were not genotypically \di�erent enough" from

existing individuals, then exploration could be increased by enlarging the population and

increasing selection noise. Conversely, if new individuals were too genotypically \di�erent"

from existing individuals, exploitation could be increased by shrinking the population by

removing the worst individuals deterministically or by using (un)�tness proportionate se-

lection. In addition, selection noise could be decreased to increase the exploitation of higher

�tness alleles and schemata.

Although straightforward, this scheme for adapting EuA parameters faces several

major problems. First, the relationships among exploration, exploitation, population size,

and selection noise do not always follow concrete patterns. For example, increasing pop-

ulation size may not always increase exploration. Second, de�ning genotypic similarity is

highly problematic. Would the similarity measure depend on gene signi�cance? Would new

individuals be compared against the best existing individual, or some sort of genotypic \av-

erage" of the existing individuals? Fortunately, both of these problems can be completely

avoided by the use of multiple EuAs running in parallel|a \Multi-EuA". Each EuA would

have a distinct combination of parameter settings. EuAs that were not performing as well
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as their counterparts would modify their parameter combinations in order to become more

like those combinations found in the better performing EuAs, while the better performing

EuAs would modify their parameters in order to become more unlike the under-performing

combinations. For example, if a EuA with a population size of 20 was outperforming its

competitor whose population size was 100, then it could decrease its population size to 15

and the competitor could decease its population size to 50. If further search showed that

the larger population size EuA was outperforming the smaller one, then the smaller one's

population could increase its population to 30 individuals and the larger population could

increase to 60 individuals.

For each parameter that is to be adapted, there would be a pair of EuAs|one with a

low parameter setting, and one with a high parameter setting. Therefore if both population

size and selection noise were being adapted, four di�erent parameter combinations would be

tested, and therefore four di�erent EuAs would compose the Multi-EuA. The four parameter

combinations would be: low selection noise and small population, high selection noise and

small population, low selection noise and large population, and high selection noise and

large population. Then, for example, if the average performance for large populations was

greater than that of small populations, then all population sizes would be increased. The

same type of analysis and modi�cation would be performed for selection noise. In this way,

the Multi-EuA could adapt EuA parameters to exactly the right combinations at the right

time.

A Multi-EuA could be implemented using only a single population. For instance, if

selection noise was being tuned, two individuals could be created each iteration. The �rst

individual would be created using a low selection noise and the next would be created using

a high selection noise. A record would be kept of which selection noise setting resulted in the

most improvements, and the two selection noise settings could then be changed accordingly.

The same EuA could simultaneously optimize for population size, by creating individuals

using smaller and larger subsets of the complete population. In this case, four individuals

would be created each iteration.

Since the number of combinations of parameter settings doubles with each addi-

tional parameter, it is imagined that only two or three parameters would be adapted at a

time (resulting in four or eight separate EuAs, respectively). In addition, each additional

parameter would roughly double the number of function evaluations necessary. However,

in light of the fact that many parameter combinations never achieve the same levels of

performance as others, the cost of the additional function evaluations would come with

the bene�t that the parameters would always be tuned to roughly the right combinations.

Therefore a Multi-EuA would be much more likely to �nd the very best individuals possible

than a sequence of runs of individual EuAs with �xed parameters. Whether the value of a
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more robust, better optimizing search outweighed the cost of a more extensive search is a

question left to the practitioner.

The concept of the Multi-EuA could be easily extended to other algorithms for that

parameter optimization is desired, resulting in Multi-IMHC, Multi-SA, etc..

6.4.2 The Statistics used by the EuA

The statistics calculated by the EuA determine its success, and the composition of the

population (whether restricted or unrestricted) determine the statistics. This section will

discuss how these statistics might better calculated, or how the composition of EuA pop-

ulations can be altered to generate di�erent and/or better statistics. These modi�cations

would most likely yield greater improvements than simply replacing �tness-proportionate

selection with max-�tness proportionate selection or some other similar simple method of

allele selection.

Information-Theoretic Measures

Instead of using \traditional" statistics to quantify the relationship between schemata and

�tness, information-theoretic analysis could be used to determine the important quantities

used by the EuA, such as the probabilities of selection and restriction. For example, the

amount of mutual information between particular alleles and �tness values could be used to

determine gene signi�cance or to measure the level of epistasis. This could be accomplished

by calculating the allelic entropy (the average amount of information conveyed per allele)

present in the current population. Information-theoretic analysis may lead to a more dis-

ciplined approach of generating and analyzing algorithm heuristics and bias, not only for

the EuA but for other algorithms as well. For a more complete discussion of information-

theoretic measures and machine learning, see (Haykin, 1994).

The mention of information-theoretic measures brings to light a di�erent view of the

EuA's restriction operator. The restriction operator causes the EuA to probabilistically

traverse paths of decision-tree separating high �tness individuals from low �tness individ-

uals. The EuA basically reconstructs one path (from root to leaf) of a decision tree each

iteration. The nodes of this decision-tree correspond to genes, and the branches from each

node correspond to alleles. Nodes higher in the tree have greater gene signi�cance, and

branches weighted by allele �tness. Since gene-signi�cance varies across the search space,

the use of a dynamic tree structure is necessary. Due to the similarities with between the

EuA and decision trees, improvements to the EuA might be gained by a greater integration

of the two methods.
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The Unrestriction Operator

When restriction causes the restricted population to become \too small", an operator com-

plementary to the restriction operator, the \unrestriction operator", could be used to add

individuals from the unrestricted population back into the restricted population. How small

is \too small" could be determined by the information content of the restricted subset. For

example, the unrestriction operator could be used when a large drop in gene signi�cance or

allelic diversity was encountered. The use of the unrestriction operator would help prevent

the EuA making decision based on too little information.

Replacement Policy and Learning for Negative Examples

The standard replacement strategy of the EuA is to always replace the worst existing indi-

vidual with the newly created individual, regardless of the fact that the existing individual

may have a higher �tness than the new individual. Furthermore, in all of the optimiza-

tion problems studied, the average �tness of new individuals generated by the EuA was

extremely low relative to the average �tness of individuals already in the population, As

a result of these two facts, the EuA population would almost always contain one \low

outlier"|an individual whose �tness was much worse than the mean population �tness.

This individual would heavily bias the allele-�tness statistics by signi�cantly detrimenting

the average �tness of any allele found in this individual. Since new individuals are more

likely to share alleles with the best individuals than with the average or worst individuals,

and since these new individuals were frequently extremely low �tness (low outliers), it was

often the case that a new individual would severely detriment the statistics of many of

the alleles found the in best individuals! As a result, alleles in the best individuals would

randomly have extremely low average �tnesses, while alleles found in average individuals

would remain una�ected by the low outlier. The EuA would then select against the set

of alleles shared between the best individuals and the low outlier, and thus the next child

produced would have a lower probability of having these alleles. But for the EuA to �nd

good solutions, alleles found in high �tness individuals should not be selected against! Two

solutions to this problem are immediately obvious: either use statistics that ignore the low

outliers altogether (as Xn-selection does) or use the low outliers to the EuA's advantage.

Next, we will discuss a method for implementing the second solution.

The GA implicitly learns from negative samples by decreasing the rate at which low

�tness schemata are sampled. In contrast, PBIL learns explicitly from negative examples.

In PBIL, only the alleles that di�er between the very worst and best individuals are selected

against, while alleles that are shared remain una�ected by the information gained from the

low �t individual (Baluja and Caruana, 1995). In order to identify low �tness alleles, it is
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not necessary to explicitly search for alleles shared among the best and worst individuals. In

fact, it is not necessary to depart from the standard statistical basis of the EuA at all. Only

the replacement procedure of the EuA needs to be slightly modi�ed to make this search

automatic. The normal replacement procedure is to replace the worst individual in the

population with the newly created individual. As explained above, most new individuals are

\low outliers", and so most often the new individual immediately becomes the lowest �tness

individual in the population|a new low outlier replaces the existing low outlier. However,

if any new individual is protected from replacement for one cycle, then the EuA must

replace the second-most low �tness individual in the population when the next individual is

created. This next created individual, like the previously created individual, will probably

have much lower �tness than most of the other individuals in the population. Therefore,

the population will most often contain two very low �tness individuals, by simply protecting

individuals from replacement for one cycle after their creation. By increasing the minimum

\lifespan" of an individual - i.e. the number of cycles a new individual is allowed to exist

without being replaced|a \replacement queue" consisting of very low �tness individuals is

created.

The replacement queue could have a very bene�cial e�ect on the EuA. By maintain-

ing several low �tness individuals in the population, it would become much easier for the

EuA to distinguish bad alleles from good alleles through the use of simple averages. When

only one very low �tness individual was contained in the population, any allele in this low

outlier would be selected against. But as more low outliers are added to the population,

the number of alleles shared among all of them decreases quickly. It becomes more appar-

ent what alleles are \really" responsible for the extremely low �tnesses of the low outliers.

Alleles that di�er among bad individuals are all penalized roughly equally, and so their se-

lection probabilities are relatively una�ected. Only those alleles that demonstrate repeated,

consistent very low �tness would be heavily selected against. It would still be possible that

alleles found in highly �t individuals would be selected against, but this would happen only

when all of the low outliers share this allele with the highly �t individual.

The size of this replacement queue may have to be adjusted when the problem

size changes. As genotypic length increases, the less likely it is for two individuals from

a diverse population to share a �xed percentage of their alleles. It becomes increasingly

di�cult to di�erentiate \bad" alleles from \good" ones as the number of schemata matching

each individual increases. Because of this, it may be necessary to increase the size of the

protection queue (in addition to the size of the population) when the number of genes in

each individual increases.

It is important to note that the use of a replacement queue would probably be a

superior strategy to simply enforcing a policy of elitism|i.e. disallowing an individual's
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entrance into the population if that individual's �tness is less than the worst existing in-

dividual. Elitism would prevent low outliers from entering the population, and therefore

the population would remain static for many iterations, since most new individuals are low

outliers. Such elitism does not have the bene�t of allowing the EuA to learn from negative

examples, and could greatly increase the chances of premature convergence.

6.4.3 Continuous Optimization

The EuA in this thesis was speci�cally designed to optimize combinatorial problems, for

which each gene is a discrete variable. The EuA could be enhanced to attack continuous

or mixed optimization problems, where at least some of the genes are real variables. To

make the EuA suitable for continuous optimization tasks, several changes would have to

be made. The allele-�tness computations would have to be modi�ed, since there would

be an in�nite choice of allele values for each real-valued gene, as opposed to �nite number

of choices for combinatorial optimization. A clustering technique could be used to �nd

regions of high �tness (and therefore high selection probability) in each allele's observed

range of values. The determination of gene signi�cance would have to be modi�ed to more

e�ciently gauge a gene's e�ect on �tness. Gene signi�cance could be based upon cluster

distinctness, simple linear correlations, or more complex measures such as factor analysis

(Haykin, 1994). Modi�cations would also have to be made to the restriction operator.

Currently, the restriction operator simply searches for individuals containing a particular

allele to include in the restricted population. For continuous genes, the restriction operator

would have to be given the ability to identify allele values \close to" the target allele

value; this could be accomplished simply by setting a distance threshold between the allele

value of the individual under consideration and the target value, or by using a \restriction

probability" that varied with the di�erence between the two values.
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Chapter 7

Conclusion

No single algorithm can be superior in performance to all other algorithms over all possi-

ble problems (Radcli�e and Surry, 1995), and therefore algorithms must be designed with

particular specializations in mind. It was shown in the experiments that the EuA's ma-

jor design goals allowed it to perform reliably on a variety of combinatorial optimization

problems, ranging from medium to extreme di�culty. Its robustness, coupled with the suc-

cess of its explicit design considerations, has advanced the state-of-the-art in combinatorial

optimization. No attempt was made to evaluate the EuA's performance on trivial prob-

lems, such as BIT-COUNT, since this type of problem can easily be solved by such simple

algorithms as IMHC1.

Using \standard" parameter settings, the EuA consistently performed very well

across all the problems, and, on some of the problems (F02 in particular), the EuA per-

formed the best out of all the algorithms even when it used \extreme" parameter settings.

The EuA's exibility was most obviously demonstrated in the experiments for F02, where

a change in the selection noise (from roughly 1% to 25%) allowed the EuA to move from

the ranks of middling performance to become the best performer. This exibility will allow

the EuA to be the algorithm of choice for approximating di�cult problems of unknown

structure. As discussed in the previous chapter, many improvements and enhancements to

the EuA are possible that could further expand its robustness and applicability, in addition

to advancing its performance.

A new form of evolution was introduced in this thesis|eugenic evolution. Eugenic

evolution replaces the random, undirected variation of Darwinian evolution with purpose-

1The EuA was speci�cally designed to optimize hard problems. Evaluating the EuA's performance on
trivial problems would be akin to rating a jet �ghter's ability as a crop duster, an aircraft carrier's e�ectiveness
as a �shing boat, or a CEO's ability to balance his checkbook. Such evaluations would not suitable in light
of the specialized design considerations used in the creation of the EuA.
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ful, deliberate actions designed to increase �tness. Where Darwinian evolution grants a

di�erential propagation advantage to higher �tness individuals, and therefore indirectly

promotes schemata of higher �tness, eugenic evolution directly attempts to identify, select

and promote higher �tness schemata. The EuA accomplished these tasks by calculating al-

lele �tness distributions, and through the use of the restriction operator, conditional allele

�tness distributions. The experiments with non-restricting EuAs demonstrated that it is

essential to calculate conditional schemata �tness distributions in order to account for the

epistasis found in more di�cult problems. Without information on conditional �tness dis-

tributions, performance of the EuA was often severely impaired, except in exceptional cases

where exploration was an extreme necessity. In all cases, EuA progress towards optima

(whether global or local) was steady and e�cient. By implementing a evolutionary process

of reasoned and purposeful creation, \eugenic evolution", the EuA has taken a large step

toward bringing sight to the \blind watchmaker" of Darwinian evolution.
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