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Abstract

In this paper we introduce EuSANE, a novel
reinforcement learning algorithm based on
the SANE neuro-evolution method. It uses a
global genetic search algorithm, the Eugenic
Algorithm, to optimize the selection of neu-
rons to the hidden layer of SANE networks.
The performance of EuSANE is evaluated in
the 2-pole-balancing benchmark task. Eu-
SANE is several times faster than SANE in
this task, showing that it is a highly efficient
method of reinforcement learning in challen-
ging domains.

1 INTRODUCTION

Reinforcement learning has been a paradigmatic topic
in Artificial Intelligence research for a long time. The
ability to learn using just a reinforcement signal is im-
portant in many real world applications like robotics,
game playing, and traffic and process control, where
the correct actions are not known but must be found
through exploration.

There are currently two main approaches to reinforce-
ment learning: the value-function approach utilizes in-
cremental dynamic programming to learn evaluations
for possible actions in each state (Sutton and Barto
1998). The evolutionary reinforcement learning ap-
proach is based on evolving decision making systems
such as neural networks to associate the best possi-
ble action directly to each state (Moriarty 1997). The
value-function methods are theoretically well under-
stood, and also have some biological validity (Schultz
et al. 1997). However, the evolutionary approach has
proven more powerful in a number of benchmark tasks,
especially in continuous domains and domains where
the state is incompletely specified. In particular, the
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SANE neuro-evolution method has been shown to be
more than twice as fast as Q-learning in the pole-
balancing task (Moriarty 1997; Moriarty and Miikku-
lainen 1996). The power of SANE is based on evolving
neurons instead of full networks; this paper shows how
SANE can be made several times more effective by an
intelligent selection of these neurons into networks.

Pole-balancing has gradually become the standard
benchmark for reinforcement learning methods. Un-
like many other dynamical systems, it is conceptually
simple and intuitive to humans, yet a good represen-
tative of real-world control tasks (Barto et al. 1983;
Anderson 1989; Whitley et al. 1993; Pendrith 1994;
Moriarty and Miikkulainen 1996). However, it is no
longer challenging enough for modern reinforcement
learning methods and more difficult variants need to
be found.

One particularly difficult variant is a cart with
two poles of different lengths that have to be bal-
anced simultaneously. This problem has been first
solved successfully with direct neuro-evolution meth-
ods (Wieland 1990, 1991), but composite neuro-
evolution methods like Cellular Encoding (Whitley
et al. 1995; Gruau et al. 1996a,b) and symbiotic evolu-
tion (SANE) have already proven to be superior to the
direct approaches. This paper uses the SANE neuro-
evolution algorithm as a comparison, since it has al-
ready been shown to be superior to other reinforce-
ment learning methods in the pole-balancing domain
(Moriarty and Miikkulainen 1996).

We will first review the SANE method in Sec. 2, com-
prising the evolution on neuron level and the evolu-
tion of network blueprints. We will then present the
Eugenic Algorithm (EuA) as a general optimization
approach and specialize it to the optimization of the
network blueprints in EuSANE. In Sec. 3 we will apply
EuSANE to the 2-pole-balancing problem and com-
pare the results to other reinforcement learning meth-



ods. Finally, the lessons learned and potential for fu-
ture work are discussed in Sec. 4.

2 THE EUSANE APPROACH

2.1 THE SANE NEURO-EVOLUTION
METHOD

Unlike other neuro-evolution approaches, where neural
networks are realized either via direct weight encoding
(Miller et al. 1989) or via a genotype-phenotype map-
ping (Kitano 1990; Polani and Uthmann 1992, 1993;
Gruau et al. 1996a), SANE is not based on evolu-
tion of complete networks. Instead, individual neu-
rons evolve, while fitness evaluation takes place only
for complete networks. In a way, in SANE a network
is a team of neurons that is assembled to solve a task.
Thus good neurons are those that are able to cooper-
ate with other neurons well enough to solve the prob-
lem at hand. This also leads to the view of SANE
as a mechanism to support development of symbiotic
relationships between subsets of the neuron popula-
tion (Moriarty 1997; Moriarty and Miikkulainen 1996,
1997).

In SANE, neurons are evolved for the hidden layer
of a three-layer feed-forward network. Each neuron
carries its own input and output connections (encoded
as a binary string of neuron label/weight pairs). In
addition, a population of network blueprints is also
maintained in SANE, each blueprint specifying those
hidden neurons that together form a network (Fig. 1).

Starting with a population of randomly initialized neu-
rons and blueprints, subsequent SANE steps are per-
formed until a network is found that solves the task. In
a SANE step, a set of neurons (a team) is selected from
the population according to each blueprint to form the
hidden layer of a feedforward network. The network
is then used to solve the task in a ¢rial and attains a
fitness reward, depending on its performance.

For every neuron in the current team a trial counter
is incremented and the network fitness is added to the
neuron’s fitness count. After enough trials have been
performed that a neuron participates in — say, an aver-
age of 10 trials — each neuron’s average fitness is eval-
uated dividing its fitness count by its trial count. This
calculation assigns appropriate credit to each neuron
in the population. The neurons are then sorted ac-
cording to their average fitness and each neuron in the
top quartile is recombined with a higher-ranking neu-
ron by one-point crossover. The offspring replace the
lower-ranking half of the population.

In addition to the neuron evolution, a second level
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Figure 1: The SANE neuro-evolution method. Net-
work blueprints are evolved to pick good combinations
of neurons from the evolving neuron population. The
resulting network is evaluated in the task, and the fit-
ness is distributed to the blueprint and the participat-
ing neurons.

of evolution takes place in a population of network
blueprints. From the team point of view one would
prefer not to select random neurons to form a hid-
den layer, but to assemble neuron teams that — ac-
cording to experience — manage to work well together.
Blueprints are chromosomes that specify good neuron
team configurations.

If k£ is the required number of neurons in the hid-
den layer (a quantity fixed before optimization), a
blueprint is an array containing pointers to k£ neurons
from the population. Its fitness is directly the per-
formance of the neural network it defines. Therefore,
a GA can be performed on blueprint level in paral-
lel to the GA on neuron level. Because of the par-
ticular semantics of the blueprints, a specialized mu-
tation is used that shifts a pointer from a neuron to
one of its offspring. This kind of mutation only takes
place in offspring blueprints to avoid disruption of well-
performing blueprints.

The power of the SANE method originates from the
fact that good networks require several different kinds
of neurons. The genetic algorithm therefore automati-
cally maintains diversity, which in turn results in more
efficient search. SANE has been shown to be a very
powerful reinforcement learning method, especially in
continuous domains and domains with hidden state in-
formation like game playing and robotic control (Mo-
riarty 1997; Moriarty and Miikkulainen 1996, 1997).
It therefore forms a good platform for further devel-
opment of reinforcement learning methods.



2.2 THE EUGENIC ALGORITHM

In this paper we present a powerful new way to select
the neuron teams in SANE. We use a search mecha-
nism inspired by the Eugenic Algorithm (EuA) (Prior
1998). Unlike in the standard GA, where recombi-
nation takes place between two chromosomes of the
population, in EuA the offspring is constructed based
on a statistics over the entire population. In this sec-
tion we present the general EuA algorithm, and in the
next we will apply it to the optimization of the SANE
neuron teams.

The core idea of EuA is to select every allele of the off-
spring separately, based on explicit analysis of the al-
lele fitness distributions in the population. It further-
more contains a restriction operator that focuses the
analysis on members of the population most relevant
for determining the next allele. In every generation
only one new individual is generated, implementing a
steady-state replacement.

The EuA algorithm works in the following way: An
initial population of random chromosomes is first cre-
ated!. EuA steps are then performed until the ter-
mination condition holds. An EuA step has the fol-
lowing structure: It starts with the set of all genes
U = {x1,%2,...,2n}, where z, denotes the gene g.
From this set the most significant gene xi; is then se-
lected, that is, the gene most strongly correlated with
the fitness of the individuals. The most significant
gene is found by computing | f(2,,1) — f(24,0)| for each
gene x4, where f(z,,,) is the average fitness of all those
individuals having allele a at gene z,. The assumption
is that the larger this difference, the stronger the gene’s
influence on fitness is. For x,, the algorithm selects
an allele value zgz o according to the selection proba-
bility f(zg,q4)/(f(24,0)+ f(24,1)) that favors those val-
ues that are more likely to lead to good individuals.
In addition, the allele selection is subject to certain
degree of mutation noise to maintain diversity. After
selecting the allele the current gene is removed from
U.

Next, a value E roughly approximating epistasis is
computed for the population. Epistasis is a measure
of how strongly the fitness of each allele depends on
the alleles of the other genes. If the epistasis is high,
the alleles for the different genes should not be cho-
sen independently. Therefore, with a probability pro-
portional to the epistasis, the population is restricted
to all individuals having the allele zg, , at gene ;.

!We will implicitly assume that these are bitstrings, al-
though, in principle, the alphabet used is not limited to

{0,1}.

When calculating the most significant gene and the se-
lection probabilities for the remaining genes in U, this
restricted population is used. Gene and allele selec-
tion is repeated until all genes are set, that is, until U
is empty. At this point, the specification for the new
individual is complete. The EuA step is completed by
replacing the individual with the worst fitness in the
population by this newly defined one.

Although other methods for constructing individuals
based on population fitness statistics have been pro-
posed (Syswerda 1992; Baluja 1994), EuA is unique
in its restriction operation. A small epistasis indicates
that the alleles are not very selective; in this case us-
ing the full population to determine allele averages will
yield good estimates for the right allele choice. In
the case of large epistasis the population should be
restricted to the already selected alleles so that more
accurate estimates for the fitness averages conditional
to the alleles already set can be obtained. The re-
striction operator therefore allows EuA to make more
efficient use of population statistics.

The epistasis is estimated in EuA by the value E which
is based on the maximum difference D, of selection
probabilities for 0 and 1 alleles over all genes. If it
is small, the selection probability differences are small
and all allele choices seem equally good. This indi-
cates high epistasis, since in this case it is necessary to
look at several genes at once to determine whether fit-
ness will be high or low. If D, is large, at least one
gene has a very clear selectivity, suggesting low depen-
dency on other genes, i.e. low epistasis (Prior 1998). A
rough measure for epistasis can therefore be obtained
as F =1 — Dpax. Though E is only an approximate
epistasis measure (the dominance of certain allele pat-
terns in the population can modify the meaning of E),
nevertheless this choice proves to be practical and re-
sults in a powerful restriction operator.

EuA has been tested in a number of classical optimiza-
tion benchmarks such as the 2-D Rosenbrock, sub-
set sum, multiple knapsack, maximum cut, minimum
tardy task, and multiple local minima. Comparisons
with several variants of hillclimbing, simulated anneal-
ing, and GA methods show that EuA is superior to
them in many tasks, and generally more consistent
(Prior 1998). It therefore forms a good starting point
for improving the neuron selection in the SANE neuro-
evolution method as well.

2.3 EUSANE

In EuSANE, EuA is applied to the task of optimizing
the neuron teams in SANE. In the current implemen-
tation of EuSANE, each neuron of the population is



represented by one gene in the blueprints. A neuron
is included in the hidden layer of the network if the
corresponding gene in the blueprint is set to one. This
coding requires a slight modification of EuA to en-
sure that exactly (say) k neurons are selected in the
hidden layer. After k alleles in the offspring are set
to 1, the rest of the alleles are simply set to 0. If
there are fewer than k 1-alleles after all genes have
been set by EuA, randomly chosen alleles are set to 1.
A blueprint mutation is introduced similar to that of
SANE, where randomly chosen neurons are replaced
by their offspring.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

The effectiveness of EuSANE was evaluated experi-
mentally in the 2-pole-balancing task. To be able
to compare its performance to a method of known
strength, we ran the same simulations also with the
SANE algorithm. As inputs, the network was given
the six state variables: the angle 8; of the polesi = 1,2
(8; = 0° indicates an upright pole), the angular ve-
locity 6;, position z (z = Om is the center of the
track) and the velocity & of the cart. Gravity was
g = —9.8 m/s?, the mass of poles m; = 0.1 kg and
mo = 0.01 kg, the mass of the cart m = 1 kg, the
half length of the poles I;= 0.5 m and [3=0.05 m.
Output of the network consisted of a single neuron,
whose value within [0, 1] was scaled to [-10 N, 10 N]
to control the system. The simulation of the physical
system was based on Euler’s method with a time step
of 0.01 s. The number of time steps the pole angles
stayed within 15° (i.e. |6;| < 15°) and the cart within
the track ([—1.5,1.5] m) was taken as the fitness of the
network?.

Ten different initial positions were used, chosen ran-
domly from an interval of width 0.2 m around zero
for the length variables and 0.2 - 180° /7 for the an-
gular variables. A single trial was considered success-
ful when the network could balance the poles from
the given initial position for 120,000 time steps (corre-
sponding to a simulation of 1200 seconds). A network
was then considered successful if it was successful in
all ten positions, which is a very demanding criterion.

3.2 RESULTS

Hundred runs with SANE and EuSANE were per-
formed with the same set of initial conditions. For

2Except for our slightly smaller track size, the settings
are the same as in (Wieland 1990, 1991).
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Figure 2: Probability of finding a 2-pole-balancing so-
lution by SANE and EuSANE in a given number of
evaluations, estimated from 100 runs of each type. The
y-value of a curve gives the probability that the task
is solved in fewer than x evaluations. The dashed line
shows the result for SANE, the solid line for EuSANE.
A hidden layer size of kK = 10 was used in both types
of runs.

every run the number of network evaluations required
to solve the problem were determined. The results are
compared in Fig. 2. The plot shows the cumulative
distribution function of the number of evaluations re-
quired for the solution obtained during the 100 runs;
in other words, y shows that fraction of the 100 runs
that were solved in fewer than z evaluations?.

Fig. 2 shows clearly that EuSANE (solid line) solves
the 2-pole-balancing problem much faster than SANE
and to a higher percentage. In fact, 99 from 100 runs
are solved by 100,000 evaluations (requiring =~ 19,000
evaluations on average), when SANE solved only 30%
of them in that time. Only slightly less than 50% of the
SANE runs solved the problem at all in the allocated
simulation time.

EuSANE is robust with respect to parameter values
and does not require much optimization. In a number
of simulations, the number of hidden units and the

3Notice that this plot is different from the standard
learning curves that show fitness over time, averaged over
a number of runs. The fitness curves of individual runs
often vary a lot, because large jumps in fitness take place
at different times. Averaging them does not give an accu-
rate picture of the progress of the algorithm. On the other
hand, the distribution of evaluations until solution (such
as those in Fig. 2) clearly indicate how long the solution
can be expected to take.



mutation rates were varied, and found to have little
effect, as long as they were in a reasonable range. For
example, hidden layers of 5 to 15 hidden units were
tried; the performance was somewhat weaker below 8
hidden units, but very similar for larger hidden layer
sizes. Such robustness is very useful in applying Eu-
SANE to new applications.

3.3 PERFORMANCE COMPARISONS

In prior work, SANE was shown twice as fast as Q-
learning and an order of magnitude faster than AHC
on tasks like single pole balancing and mobile robot
control (Moriarty and Miikkulainen 1996; Moriarty
1997). Since EuSANE is several times more effective
that SANE on the 2-pole-balancing problem, it should
also dominate the standard reinforcement learning ap-
proaches in similar tasks.

The standard neuro-evolution approach of Wieland
(Wieland 1990, 1991) required 150 regular GA genera-
tions with a population size of 2048. It is unclear what
generation gap was used, but, assuming 0.5, Wieland’s
system required approximately 150,000 evaluations to
find a network balancing the two poles from a single
starting position or about an order of magnitude more
than EuSANE.

The Cellular Encoding method of Gruau et al.
(19964a,b) used only single initial positions and a more
complicated fitness function, which makes a compar-
ison somewhat difficult. To get a rough idea, Gruau
et al. reported 34,000 evaluations to find a successful
network on average, whereas EuSANE required 19, 000
evaluations on average. EuSANE therefore performs
better on a harder version of the problem.

4 FUTURE WORK

Enforced Subpopulations (ESP) is another extension of
SANE that is currently being developed (Gomez and
Miikkulainen 1997). It is based on enforcing speciation
among the SANE neurons. First comparisons with
ESP indicate that it is stronger on long runs needing
many evaluations; EuSANE, however, has a clear ad-
vantage on shorter runs. This result suggests utilizing
a restarting policy (Mossinger 1995) with EuSANE: it
is possible to calculate an optimal time for termination
and restart of an EuSANE run if a solution is not found
quickly enough, thereby minimizing the expected value
for the total time until solution. This approach gives
a clear advantage to methods that find quick solutions
in a reasonable percentage of the runs, but need longer
time for the rest of the runs, and therefore could im-
prove EuSANE performance even further. We plan to

study this approach in future work. Another possi-
bility is to combine EuSANE with ESP; EuA would
be used to select neurons from the ESP subpopula-
tions. Finally, many improvements of the EuA itself
are possible, including gene significance and epistasis
based on the quantification of the mutual information
of the allele distributions, thereby allowing even better
interpretation of the optimization dynamics.

5 CONCLUSIONS

In this paper, we presented EuSANE, a method com-
bining the of the SANE method using the Eugenic Al-
gorithm as a strong combinatorial search method for
the blueprint-level optimization. Experimental com-
parisons showed that it is capable at solving very dif-
ficult reinforcement learning problems, such as the 2-
pole-balancing problem, faster than other current re-
inforcement learning approaches. In future work, we
aim at further improving the strategy by introducing
a restart policy and extending EuA by information-
theoretic methods.
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