
  

Abstract—Opponent models allow software agents to assess 

a multi-agent environment more accurately and therefore 

improve the agent’s performance. This paper makes use of 

coarse approximations to game-theoretic player 

representations to improve the performance of software 

players in Limit Texas Hold ’Em poker. A 10-parameter 

model, intended to model a combination, or mixture, of various 

strategies is developed to represent the opponent. A ‘mixture 

identifier’ is then evolved using the NEAT neuroevolution 

method to estimate values of these parameters for arbitrary 

opponents. To evaluate this approach, two poker players, 

represented as neural networks, were evolved under the same 

conditions, one with the mixture identifier, and one without. 

The player trained with access to the identifier achieved 

consistently higher and more stable fitness during evolution 

compared with the player without the identifier. Further, the 

player with the identifier outplays the other in a heads-up 

match after training, winning on average 60% of the money at 

the table. These results demonstrate that opponent modeling is 

effective even with low-dimensional models and conveys an 

advantage to players trained to use these models. 

I. INTRODUCTION 

An increasing number of applications of artificial 

intelligence require the ability to build and maintain 

computational models of autonomous agents. Autonomous 

vehicles must be able to construct accurate models of 

agents in their environment quickly so that they can respond 

adaptively. Software agents managing financial transactions 

must be able to identify fraudulent behavior in a timely 

manner. As computer programs are increasingly placed in 

the role of a decision maker, computational methods are 

increasingly needed to analyze the motives and intent of the 

agents with which they interact.   

Within the field of artificial intelligence, games have 

traditionally provided a ready test bed for new ideas and 

approaches to difficult decision-making problems, since 

games allow for testing in complex and ever more realistic 

environments with relatively low start-up costs and little 

risk to human safety. Within AI, poker is perhaps the most 

appropriate target for opponent modeling, since identifying 

optimal strategies for poker has proven elusive. In poker, 
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the opponent’s behavior provides the primary window into 

the opponent’s state. Further, the natural incentives for 

deception inherent in the game make this window a rather 

opaque one, and thus any method that can effectively 

decipher a poker player’s actions in order to obtain 

therefrom a reasonable and useful model of the opponent 

should generalize well to other environments. 

There are two fundamentally different approaches to 

opponent modeling in poker and other similar games. On 

the one hand, one might seek a direct predictive model that 

would construct some probability distribution over the 

future actions or current state of the agent being modeled. A 

model of this sort might also be used to estimate hidden 

state in situations where another agent in the environment 

has access to information only available to the observer 

through that agent’s actions. In the context of poker, this 

approach might involve estimating the cards likely present 

in the opponent’s hand or perhaps attempting to guess 

whether or not the opponent is bluffing or slowplaying on a 

particular hand. Modeling opponent actions or state in this 

fashion is transparent and immediately useful; that is, the 

output has a known interpretation that impinges directly on 

the decision-making problem at hand. However, previous 

work indicates that predictive models may be unstable, and 

it is not clear a priori how to build such a model in practice 

[1, 2, 3]. 

Another approach, and the one pursued in this paper, 

would attempt to classify the opponent by type, either as 

belonging to a specific class out of some discrete set of 

categories, or as a point (or region) within a continuous 

description space. Whereas a predictive model tries to 

identify what the opponent will do next, a classification 

model will attempt to identify what the opponent is like by 

analogy with previously observed opponents. Intuitively, 

this concept resembles how people approach game strategy, 

by identifying opponents in terms of past experience, and 

reasoning forward from these analogies to anticipate 

opponent action, in essence using a classification model as 

a means to obtain a predictive one. In poker, a common 

categorization (although not used in this paper) might be to 

identify the strategy of the opponent as tight or loose, and 

passive or aggressive. One drawback of this approach is 

that classification models are not necessarily transparent or 

direct; i.e. there may be no obvious interpretation that can 

be given from the classification output to game decisions. 
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For statistical methods (including neuroevolution), 

however, transparency is irrelevant, since these methods 

cannot take into account the intensional semantics of the 

model per se. Classification models are simpler to construct 

and learn than predictive models in practice [3]. While it 

may not seem clear from the outset how to select useful 

opponent categories or how to assign actual opponents to 

these categories on-line, it is in fact quite feasible, as will 

be shown later in this paper.  

This paper demonstrates the successful application of a 

continuous classification approach to opponent modeling in 

Texas Hold ’Em poker. The models use a coarse 

approximation to game-theoretic opponent representations 

to provide a parameterized description of a large subclass 

of poker players. It is important to note that in this research, 

classification is performed in a continuous space rather than 

over some discrete set of opponents. Evolutionary 

algorithms are shown to be able to train a neural network to 

reliably associate a model with an adversary. In addition, 

poker players are trained using neuroevolution both with 

and without access to the estimated models. The players 

with the models conclusively outperform the players 

without models in three distinct aspects: (1) they attain 

higher maximum and average fitness under the same fitness 

function, (2) their fitness is more stable, i.e. it varies less 

across generations, and (3) they routinely outplay the non-

opponent modeling players in heads-up matches after 

equivalent training.  

II. RELATED WORK 

A significant body of opponent modeling work has been 

done in poker, much of it using an explicit approach [4, 5]. 

For instance, Billings et al. [1] used statistical methods to 

estimate the strength of the opponent’s hand given his 

history of calling, raising, or folding.  They also developed 

predictive models to assess what decision a specific 

opponent would make when holding a given hand.  

Although the original predictor was only 51% accurate, 

Davidson et al. [2], [6] used a neural network trained with 

backpropagation to increase its accuracy to 81%. These 

data are especially interesting since their poker player, 

Loki, gathered statistics on actual human players by playing 

online poker games. However, the approach required a 

significant history of data for training and therefore could 

not be used online. In contrast, the mixture-based approach 

does not require additional training in order to generalize to 

new players, since previously unseen opponents can be 

interpolated from the training experience using the mixture 

models. 

More recently, Bard and Bowling [7] formulated 

opponent modeling as a dual state estimation problem in 

Kuhn poker, a simplified, three-card version of two-player 

poker. There are only five non-dominated strategies: three 

for the first player and two for the second. These opponent 

models represent mixed strategies, a feature held in 

common with this current work.  

In substance, the mixture method of this paper shares 

broad similarities with what Bard and Bowling term ‘static’ 

opponent models. In fact, it provides a first approach to a 

reasonably-sized approximation of complete opponent 

models for poker, a development which they suggest as a 

next step. It differs significantly, however, in how the 

mixture models are used once obtained. Rather than trying 

to solve explicitly for a mixed strategy to exploit the 

opponent, this work uses neuroevolution in order to search 

for effective game players. This is a fundamentally distinct 

methodology, based on the point of view that the opponent 

models will invariably have some stochastic bias or error 

that is best handled by using stochastic methods for 

interpreting them. Exact computations based on the 

outcome of the mixture identification problem could lead a 

computer player astray, turning an attempt to exploit the 

opponent’s weaknesses into a trap. An algorithm that makes 

use of stochastic measurements should also be able to 

assess and mitigate risk. An exact computational method 

affords no such flexibility.    

The mixture approach to opponent modeling is based on 

that applied by Lockett et al. [3] in a simpler card game 

called Guess It. In their approach, a set of four cardinal 

opponents was used to define an opponent space, with all 

possible opponents being represented as probability 

distributions over these four basic opponents.  These 

distributions were termed mixture opponents, and at each 

turn, the distribution was sampled to decide which of the 

four cardinal opponents would make the decision for that 

turn. A mixture identifier was trained to estimate the 

sampling distribution of a mixture opponent from the 

current game state. Using neuroevolution, Lockett et al. 

were able to train the mixture identifier to an accuracy of 

about 85 percent.  Two separate neural networks were then 

trained, one of which took in the game state plus the output 

of the mixture identifier, and another that took in the game 

state only. While the network with only the game state 

achieved greater fitness against the mixture opponents, the 

authors found that the networks with both the games state 

and the mixture identifier consistently won against a bank 

of previously unseen players, including the network with 

just the game state. The players that were trained to use the 

mixture identifier were able to generalize to unseen 

opponents because they developed an exhaustive and 

continuous representation of opponents encoded in the 

mixture identifier. 

In this paper, the mixture approach provides a continuous 

classification system for opponents that should generalize 



well because unseen opponents can be viewed as 

interpolations of previously seen opponents. This work 

extends the mixture approach from Guess It [3] to the 

domain of poker by clarifying the nature of approximate 

opponent representations and providing a means to generate 

such representations for new domains with minimal effort. 

These improvements make the approach theoretically clear 

and scale it up to two-player Limit Texas Hold ’Em poker, 

a more complex and difficult domain. 

The neural networks are trained to play poker using 

NeuroEvolution of Augmenting Topologies (NEAT), 

developed by Stanley and Miikkulainen [8].  In this 

approach, only inputs and outputs are specified for the 

neural network. The appropriate internal topology is 

discovered through a search using a genetic algorithm. 

Connections and hidden nodes are added and changed with 

a given probability, and are retained in the population if 

they improve the performance of the network against a 

fitness function.  In theory, the capability of the algorithm 

to iteratively add structure (or complexify) allows it to 

adjust to new situations without losing old capabilities.  The 

details of NEAT will not be discussed here (see [8] 

instead), partly because the opponent modeling architecture 

advocated in this paper is independent of the particular 

algorithm used to implement it. However, since NEAT has 

been used effectively in various game-playing approaches 

in the past, it was a natural choice for the opponent 

modeling approach as well. 

As a final note, similar opponent representations for 

poker have been previously employed by Barone and While 

[9]. Their emphasis, however, was on using evolution to 

find good poker players from among these representations, 

whereas the players evolved in this work are not limited to 

the mixture representations, which are only used to model 

opponents encountered by the automated player.   

III. TEXAS HOLD ’EM POKER 

Texas Hold ’Em poker is currently the most popular 

version of poker in casinos and tournaments. In this, and in 

most poker research, the actual game studied is Limit Texas 

Hold ’Em, where the bets are of predetermined fixed size. 

The game begins when each player buys in to the table by 

presenting a fixed amount of money for play. In Texas Hold 

’Em, one player is always designated as the dealer, and the 

dealer position rotates with each hand. In a hand, each 

player is initially dealt two cards face down, called the hole 

cards. Before seeing the cards, the player to the left of the 

dealer must add a forced bet to the pot called the small 

blind, and the player to that player’s left  must place a bet 

usually twice this size called the big blind. 

Once the hole cards have been dealt, a betting round 

ensues, starting with the player placing the small blind. 

Each player in turn has the choice to fold, conceding the 

game and losing all prior bets in the hand, to call, matching 

the largest bet in the pot at the time (initially the size of the 

big blind), or to raise the cost of playing for the pot by the 

size of the big blind. If any player raises, then all prior 

players have the opportunity to take another turn.  

Once all the players have placed their bets, then the 

round advances to the flop, where three community cards 

are dealt face up. Another betting round follows, this time 

starting with the player to the dealer's left. Two additional 

options become available: this player can check, passing the 

opportunity to bet but leaving open the option to meet 

future raises, or bet, adding money to the pot and placing a 

cost on remaining in the game.  

After the flop, the cost of a bet doubles, and there are two 

more betting rounds, the turn and the river, with one 

community card added during each. If at any point only one 

player remains in the hand, then that player wins the pot, 

which is then added to his bankroll. If more than one player 

remains in the hand after the river, then each player must 

show his or her two private cards, and the player with the 

best five-card poker hand formed from all seven cards in 

play wins. This step is called the showdown.  

In this research, all games consist of 250 hands of two-

player poker with a buy-in of $200 and $2 blinds. 

Automated players are judged according to how much of 

the $400 at the table they own at the end of 250 hands. For 

practical purposes, check and call are identical, as well as 

bet and raise, so that the players here have three strategies 

available at each turn: fold, call, or raise. 

If poker were a game of pure chance with completely 

stochastic outcomes, it would be possible over the long 

term to maintain positive winnings simply by playing 

according to the statistics. The expected winnings for an 

individual turn of poker can be computed as 

( ) ( )cpprWE −−= 1  

where p is the probability of having the best cards at the 

table, termed here the win probability, r is the amount of 

money in the pot, c is the cost of betting, and W is a random 

variable for the amount of money won on this decision, 

equal to r in case of a win, and –c in case of a loss. Often, 

the equation above is transformed into a ratio by setting it 

equal to zero and shifting terms. This leads to the familiar 

concept of pot odds, which are basically an estimate of the 

statistical breakpoint between earning and losing money on 

a bet. 

In order to estimate the pot odds, it is necessary to have 

available an estimate of the win probability, p. For human 

players, this estimate is usually obtained by considering the 

number of cards needed in order to complete specific hands 

(termed outs), keeping in mind the opponent’s likely best 

hand as well. It is possible to compute p exactly under the 



assumption of a fair deck with uniform probability over the 

cards. However, an exact computation is too involved to 

compute directly, so the win probability must be estimated. 

In this paper, an approximation to a roll-out of the current 

state is used, estimating the win probability assuming that 

no players will fold prior to the showdown. This estimate is 

obtained by combining the probability of each player’s best 

hand belonging to one of 315 exact hand types with the 

probability of wining the match given these hand types. 

The neural networks trained to play poker all possess the 

same basic input structure consisting of: 

 
(1) The estimated win probability, p, 

(2) The ratio of expected winnings if CALL is selected, 

(3) The ratio of expected winnings if RAISE is selected, 

(4) The current round, 

(5) The size of the pot, 

(6) The size of their own bankroll, 

(7) The number of raises made by the opponent this round, 

(8) The required cost of a bet. 

 

These eight inputs are collectively considered to be the 

game state for poker from the point of view of the network. 

While it might be desirable to provide the network with 

greater visibility into the cards held than just that provided 

by the win probability, it is also necessary to keep the 

number of parameters as small as possible in order for 

training to be feasible, and there is no obvious compact 

parameterization of the cards that would be sufficiently 

small and useful enough to justify including them as inputs 

to the network. Notable among these inputs is the number 

of raises this round by the opponent (7), which provides the 

network with its strongest clue as to the value of the cards 

held by the opponent. This representation contains 

sufficient detail to evaluate the effectiveness of opponent 

modeling in Texas Hold ’Em. 

IV. A MIXTURE-BASED APPROACH 

In this paper, low-dimensional approximations to a full 

model will be developed that can then be used both to 

generate training opponents and to incorporate knowledge 

of the opponent into an automated player. In terms of 

classical game theory, these opponent models represent 

approximations to mixed strategies, whence these 

opponents are termed as mixture opponents. An 18-

parameter model for poker opponents is developed for this 

research, which is later pared down to 10 parameters.  

As discussed above, for both practical and theoretical 

reasons, useful opponent models need to be relatively 

compact, so that parameters describing the current 

opponent can be identified quickly, and so that the models 

can be trained accurately in reasonable time. The mixture 

parameters were obtained by partitioning the poker game 

state.  As shown in Figure 1, the state space was broken into 

nine independent regions based on the win probability p 

and the expected winnings, E(W). In each region there are 

two degrees of freedom initially, but more useful models 

are obtained by deterministically folding losing hands, 

leaving 10 parameters corresponding the probability of 

betting or calling in the remaining five state regions. 

This partition was chosen to classify players based on 

how they utilize two pieces of information: the win 

probability and the expected winnings. These two pieces of 

information were chosen because they represent criteria that 

human poker players often use to judge the value of a hand; 

other metrics could also be used if desired. In each state 

region, the player has the option to FOLD, CALL, or RAISE. 

These choices are represented by two parameters, the 

probability of raising and the probability of calling; the fold 

probability is fully determined by these two. In addition, the 

model is simplified by assuming the player will 

deterministically fold when holding a very bad hand, 

leaving five regions of the state space where the opponent 

may take a probabilistic action. This reasoning results in a 

10-parameter model generally expressing the opponent’s 

willingness to bet based on the strength of his hand. There 

are numerous other aspects of poker players that one could 

wish to model,   e.g. aggressiveness vs. passivity. Such 

aspects are beyond the scope of the current research; the 

current goal is to validate the mixture-based approach for 

poker in general terms. Using this approach, potential 

opponents can be sampled in a straightforward manner. 

These opponents can be chosen to provide a diverse 

training set from the outset, which represents an 

improvement over training by self-play or against a set of 

manually constructed opponents. With genetic algorithms, 

these generated opponents can be used exclusively, as is 

done in this paper, or in conjunction with competitive 

coevolution to provide greater diversity and robustness to 

the fitness function from the start.   

Mixture opponents were initially generated uniformly at 

random within these 10 parameters, subject to the constraint 

that the pair of parameters corresponding to each of the 

nine state regions must sum to a number between zero and 

one. However, many of these mixtures did not produce 

viable opponents. To surmount this difficulty, a sample of 

1000 uniformly generated mixtures was played against 

randomly generated neural networks taking the game state 

as input.  Out of these networks, a sub-sample of 84 

mixtures was kept, all of which had managed to retain at 

least $10 out of an initial $200 after 250 hands. These 84 

mixtures were used to construct a 10-dimensional 

multivariate Gaussian using the sample mean of the 84 

mixtures along with the sample covariance. This Gaussian 

effectively   restricted   the   generated  opponents   to  more  



 
Fig 1. A 10-dimensional opponent space for poker. Vertical 

axis is expected winnings. Horizontal axis is the probability 

of winning the hand based on the visible cards. Only five of 

the nine regions have more than one viable action, and a 

probability distribution over each of these has two degrees 

of freedom, for a total of 10 parameters in the model.  

 

viable mixtures, mainly by reducing the likelihood of 

generating mixtures that fold strong hands or bet poor 

hands. Most of the 10 components varied significantly in 

value. Their variances were between 0.03 and 0.04, or 

about 20% on either side of the mean, with most 

components having virtually zero correlation with other 

components. This Gaussian virtually eliminated mixtures 

with a propensity for folding an extremely strong hand or 

betting an extremely weak hand. Outside of these two 

extreme states, both the parameter means stayed close to 

their raw expectation of 0.33. Using this Gaussian to 

sample mixture opponents, the first generation average 

winnings for random networks fell to about 60 percent of 

the money in play, so that although several random 

networks were still stronger than random mixtures, there 

was still plenty of room for training.  

V. TRAINING THE MIXTURE IDENTIFIER 

The purpose of developing the opponent models is to 

provide computer players with a view into the nature of 

their opponent. In order to make this goal possible, there 

must be a module that can map the observable portion of 

the game state and the opponent’s actions into an estimated 

opponent model. This module is the mixture identifier. 

Opponent models cannot be estimated directly because the 

crucial part of the game state – the win probability – is 

hidden from the player. The goal, then, is to find the best 

approximation to the opponent model given the information 

that is available to the player. The longer the match, the 

more information becomes available, including the win 

probability in the case where a hand reaches the showdown, 

since players must then reveal cards. 

One possibility would be to use a particle filter in order 

to estimate the parameters. However, since both the win 

probability and the opponent model are hidden, this 

approach is not practically feasible until multiple hands 

reach the showdown, at which point one could construct a 

reasonable observation model using the definitions of the 

model parameters.  Also, a large number of particles would 

be required to obtain an accurate estimate in a 10-

dimensional space, which would make the player sluggish, 

especially if used online during play. 

A neural network was therefore trained to estimate the 

mapping using NEAT. While this approach requires 

significant time for training, during online play, an estimate 

of the opponent model can be obtained simply by activating 

the network. 

The task of the mixture identifier is to estimate an 

opponent model describing the opponent. Random mixture 

models generated according to the scheme above can 

provide a supervised data set against which candidate 

mixture identifiers can be evaluated. A deterministic poker 

player with a conservative strategy of betting based on 

expected winnings was created to serve as a harness. Each 

time the generated mixture opponents made a decision, the 

mixture identifier was queried for an estimate of the correct 

model. Whenever the showdown was reached, the mixture 

identifier would be allowed to revise its estimates for that 

round using the estimated win probability based on the 

opponent’s cards. The average of the models obtained in 

this way over the course of play was considered to be the 

candidate mixture identifier’s best guess of the correct 

mixture model. 

While this style of evaluation suggests that a supervised 

training strategy might be more effective, there are good 

reasons to use a semi-supervised method such as NEAT 

instead. First, a correct value needs to be found by settling 

over a sequence of network activations, which requires 

recurrency. Common supervised training methods for 

neural networks do not work well on recurrent structures, 

whereas NEAT naturally develops recurrent networks when 

these networks are better than competing non-recurrent 

networks. The inputs given to the mixture identifier are the 

same 8 inputs given to the poker players. The starting 

topology for the mixture identification problem in this case 

was a fully connected network with 8 inputs and 10 outputs, 

for a total of 8 x 10 = 80 parameters. NEAT efficiently 

tunes these parameters with relatively few evaluations. The 

best networks found by evolution included additional 

inhibitory links between competing output nodes, and 

excitatory links between mutually reinforcing nodes. Thus 

solutions to the mixture identification problem were helped 
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by recurrency.  

In the mixture identifier experiment, then, a mixture 

identifier network was trained to guess the mixture 

governing a generated opponent on average. In each 

generation, each candidate mixture identifier was evaluated 

against 50 sampled mixtures, playing 250 hands against 

each mixture. The fitness of the candidate was determined 

by calculating the Euclidean distance d of the candidate’s 

average estimate from the actual mixture parameters 

controlling the generated opponents. To give better mixture 

identifiers higher fitness, this distance was subtracted from 

a distance of 3.5, chosen to be greater than the Euclidean 

distance from the origin to the farthest corner of the unit 

hypercube in 10 dimensions. The 50 values of (3.5 – d) 

were added up and scaled to a percentage value. In 11 trials 

of 50 generations each, the average maximum percentage 

achieved was 84.6%, or d = 0.56, an average component-

wise error of 0.16. All trials except one achieved maximum 

fitness > 82%. In other words, the probability estimates for 

opponent behavior were off by approximately 16 percent on 

average for each of the 10 parameters, a strong performance 

given the difficulty of the task. A graph of a typical run of 

the experiment is given in Figure 2. In this run, the 

maximum fitness grew from 77.8% to 84.6%, with 

percentages calculated based on the average Euclidean 

distance of mixture estimates from actual mixture values for 

generated opponents.  

Overall, these results demonstrate that for a reasonably 

selected set of mixture parameters, it is possible to train a 

mixture identifier that provides a usable approximation of 

the mixed strategies employed by an opponent.  The next 

step is to train a player to use this approximation.  

VI. TRAINING THE POKER PLAYERS 

Once the mixture identifier has been trained successfully, 

the main experiment is to validate whether this module can 

provide an advantage to a computer player learning to play 

poker. In order to test this hypothesis, two separate 

networks were trained: one, termed the mixture-based 

player, took both the game state and the mixture identifier’s 

output as an input, and another, termed the control player, 

took the only the game state as an input. Both networks 

were trained using NEAT. In each generation, each network 

was required to play 250 hands against each of 50 randomly 

generated mixture opponents. During each of the matches, 

blinds were fixed at $2 and each player started with $200. 

The fitness of each candidate network was assigned as a 

percentage of the $400 won on average against all 

opponents.  

The two networks were trained for 100 generations on 11 

separate trials. At the end of training, the control player 

achieved an average maximum fitness of 93.0% (variance  
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Fig 2. Average and maximum fitness graphs for a typical 

run of mixture identifier training. Fitness is based on the 

average Euclidean distance of the mixture identifier’s 

estimate of the opponent’s parameters from the actual 

parameters. These values are then scaled to percentage 

values, with 100% indicating zero distance. This training 

process produced mixture identifiers with an average error 

of about 16% for each of the opponent’s parameters. 

 

0.005%) while the mixture-based player achieved an 

average maximum fitness of 95.4% (variance 0.011%), with 

percentages indicating the percent of money won. A paired, 

two-tailed t-test shows an 80% chance that the mixture-

based player achieves greater maximum fitness in general. 

Typical graphs of fitness growth for both types of players 

are shown in Figure 3. The fitness values are stochastic, 

depending both on the opponents selected and the hands 

drawn. Despite such stochasticity, the mixture-based 

player’s fitness is remarkably stable, especially compared 

with the rather choppy oscillation observed for the control 

players. This result suggests that the mixture-based player’s 

access to the mixture identifier helps smooth out the 

stochasticity of the fitness function. By contrast, control 

players had a spike in fitness (as observed in generation 66 

in Figure 3) in all eleven trials, and as such control players 

with fitness over 90% were somewhat anomalous and failed 

to take over the population. Overall, during a typical 

training run, the maximum fitness of the mixture-based 

player rarely dropped below 90% after the first few 

generations, whereas the maximum fitness of the control 

player rarely exceeded 90%.  

After the mixture-based and control players were trained, 

the two networks were played against each other. This is the 

true test of the mixture-based player, since the original goal 

for this research was to develop poker players that could 

model their opponents’ behavior in order to generalize to 

unseen opponents. The competition consisted of 150 

matches of 250 hands each, again starting with $200 each 

and $2 blinds.  Each match was played twice with the two 

players holding opposite hands to eliminate any advantage 

due to luck. Over the 11 trials, the mixture-based player 

won an average 61.4% of the money, with the control 



player taking the remaining 38.6% (this result is significant 

with p < 0.02). The actual numbers are shown in Table 1. 

While the margins vary considerably, the mixture based 

player did manage to win more than half the money in all 

but one trial. These results strongly indicate that the mixture 

identifier does indeed allow the player to adjust to unseen 

opponents, significantly improving its performance. 

VII. DISCUSSION 

These results demonstrate a mixture-based approach that 

creates low-dimensional opponent models by partitioning the 

state space. The 10-parameter opponent model significantly 

strengthens play in Texas Hold ’Em poker. In particular, 

using a mixture identifier improves fitness against 

generated opponents conforming to the model. Beyond just 

improving fitness, however, the mixture identifier – even a 

somewhat noisy one – smoothes out stochastic effects of 

evaluation in a random environment. 

This work compares favorably with the results previously 

obtained in Guess It by Lockett et al. [3]. The mixture 

identifiers developed for poker have higher accuracy  than  

those developed for Guess It, despite a three-fold increase 

in the number of mixture parameters. This improvement 

results from a rigorous scheme for generating the parameter 

space, as opposed to the somewhat ad hoc introduction of a 

fixed bank of cardinal opponents. The cardinal opponents 

in [3] are not independent, in that two of their four 

parameters overlap, whereas the 10-parameter model allows 

only one set of action probabilities to be active for each 

distinct state. Thus distinct 10-parameter models play from 

distinct probability distributions and can therefore be 

identified uniquely. Interestingly, Lockett et al. found that 

the mixture-based players for Guess It attained lower fitness 

than the control players, ostensibly because there are more 

parameters to tune. By contrast, in poker, the mixture-based 

players have higher fitness during training than the control 

players. One explanation is that poker inherently rewards 

opponent modeling more strongly when playing against 

non-optimal opponents, further strengthening the claim that 

opponent modeling is an important part of playing poker. 

A possible criticism of opponent modeling in general is 

that it is only intended to maximize winnings against weak 

or average opponents, and not intended to produce optimal 

players.  Opponent modeling is thus used to obtain maximal 

strategies in contradistinction to optimal strategies that are 

intended to play well against all opponents generally. 

However, this distinction does not hold in general, or 

specifically for the kind of opponent modeling in this paper. 

In essence, such modeling extends the game state space by 

appending parameters that classify the opponent. The 

training of the opponent-modeling player then optimizes 

play against representative opponents. While such methods 

may find local rather than global optima, the goal is still to  
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Fig 3. Fitness graphs for the mixture-based and control 

players on a sample trial run. Fitness is the average 

percentage of money won by the player. Average and 

maximum fitness for the mixture-based player is higher and 

more stable in general. 

 

develop optimal players. In the context of game theory, 

Nash equilibria on the standard state space may or may not 

defeat Nash equilibria on the state space extended with the 

opponent model, depending on the game and the quality of 

the opponent models.  For instance, Lockett et al. [3] 

present a situation in Guess It where the optimal strategy on 

the non-extended state space is much worse than even sub-

optimal strategies on the extended state space.  Thus, it is 

not clear that an optimal strategy in poker will defeat an 

opponent modeling strategy in general. 

VIII. FUTURE WORK 

The mixture-based approach to opponent modeling can be 

further validated by taking more parameters into account. 

The  10-parameter   opponent   model   only  represents  the  

 

TABLE 1. PERCENTAGE OF MONEY WON BY THE 

MIXTURE-BASED PLAYER IN 11 TRIALS 

% won 

51.6 49.2 77.5 55.1 53.2 80.2 53.2 59.6 51.2 59.4 85.1 

Averageaa  61.4 



 

 

 

immediate statistical aspects of the game. If the goal is to 

train poker players that can model opponents in tournament 

play with humans, much more refined models will be 

needed. These models would vary their play depending on 

the round, the size of their bankroll, the actions of the 

opponent and more. 

Looking further forward, there are several ways to build 

on this promising approach. One obvious area is to develop 

models automatically from records of human play. 

Transcripts of poker matches are widely available online, 

and the premier event of the game, the World Series of 

Poker, has been televised for several years. It may be 

possible to develop an algorithm that partitions the state 

space according to some objective criterion drawn from data 

sets of human play, such as maximizing the Kullback-Leibler 

divergence between distinct regions on a given data set. This 

method would allow more realistic opponents to be  

generated,  and  the  techniques  employed  by  a human 

player to be measured more accurately,  which  should  lead 

to stronger automatic poker players. 

Another point of departure involves using higher 

dimensional parameter spaces with a small set of opponent 

clusters within this space. The higher dimensional space can 

be used to generate mixture opponents that can play more 

refined strategies. The mixture identifier would map 

opponents according to its likelihood of belonging to each of 

the clusters.  These clusters would represent certain 

normative playing patterns, balancing the need to generate 

more detailed opponents with the need for low-dimensional 

opponent representations. In this way, more complex models 

could be naturally handled using the methods of this paper. 

A fourth category of extensions examines probability 

distributions over opponents. For instance, a data set 

including play from average poker players would likely have 

very different characteristics from a set of  tournament 

transcripts. When training a computer to play poker, it is 

important that generated opponents represent the set of 

players the computer is likely to encounter, possibly with 

greater weight placed on more difficult opponents. One 

might also develop a training program that increases in 

difficulty over time, with simpler opponents appearing more 

often in lower generations, and with successive generations 

moving through a Pareto dominance hierarchy. 

Extensions such as these may eventually lead to computer 

players that play at human levels and even exceed them. 

Similar techniques of opponent modeling could also bear 

fruit in other games and in multi-agent systems generally, 

leading to intelligent agents that interact more effectively 

with other agents in their environment to improve their 

decision making ability. 

IX. CONCLUSION 

This study shows that opponent modeling using the 

mixture approach is practical and beneficial, resulting in 

increased fitness of players trained to play Texas Hold ’Em 

poker. The mixture approach consists of identifying and 

defeating previously unknown opponents by representing 

them as a mixture over a low-dimensional parameter space 

that approximates objective aspects of the opponent’s play. 

Mixture-based opponent models are effective because they 

give computer players insight into aspects of the game that 

would otherwise be hidden from them, such as deceptive or 

misleading play. The same process leveraged to obtain these 

results should apply not only to poker, but also to many 

environments where there is a need to understand the intent 

or purpose of other agents, making opponent modeling an 

increasingly important component of AI research in general.  
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