

Abstract—Opponent models allow software agents to assess

a multi-agent environment more accurately and therefore

improve the agent’s performance. This paper makes use of

coarse approximations to game-theoretic player

representations to improve the performance of software

players in Limit Texas Hold ’Em poker. A 10-parameter

model, intended to model a combination, or mixture, of various

strategies is developed to represent the opponent. A ‘mixture

identifier’ is then evolved using the NEAT neuroevolution

method to estimate values of these parameters for arbitrary

opponents. To evaluate this approach, two poker players,

represented as neural networks, were evolved under the same

conditions, one with the mixture identifier, and one without.

The player trained with access to the identifier achieved

consistently higher and more stable fitness during evolution

compared with the player without the identifier. Further, the

player with the identifier outplays the other in a heads-up

match after training, winning on average 60% of the money at

the table. These results demonstrate that opponent modeling is

effective even with low-dimensional models and conveys an

advantage to players trained to use these models.

I. INTRODUCTION

An increasing number of applications of artificial

intelligence require the ability to build and maintain

computational models of autonomous agents. Autonomous

vehicles must be able to construct accurate models of

agents in their environment quickly so that they can respond

adaptively. Software agents managing financial transactions

must be able to identify fraudulent behavior in a timely

manner. As computer programs are increasingly placed in

the role of a decision maker, computational methods are

increasingly needed to analyze the motives and intent of the

agents with which they interact.

Within the field of artificial intelligence, games have

traditionally provided a ready test bed for new ideas and

approaches to difficult decision-making problems, since

games allow for testing in complex and ever more realistic

environments with relatively low start-up costs and little

risk to human safety. Within AI, poker is perhaps the most

appropriate target for opponent modeling, since identifying

optimal strategies for poker has proven elusive. In poker,

Alan Lockett is with the Department of Computer Sciences at the

University of Texas, Austin, TX 78712 USA (e-mail:

alockett@cs.utexas.edu).

Risto Miikkulainen is with the Department of Computer Sciences,

University of Texas, Austin, TX 78712 USA (e-mail:

risto@cs.utexas.edu).

the opponent’s behavior provides the primary window into

the opponent’s state. Further, the natural incentives for

deception inherent in the game make this window a rather

opaque one, and thus any method that can effectively

decipher a poker player’s actions in order to obtain

therefrom a reasonable and useful model of the opponent

should generalize well to other environments.

There are two fundamentally different approaches to

opponent modeling in poker and other similar games. On

the one hand, one might seek a direct predictive model that

would construct some probability distribution over the

future actions or current state of the agent being modeled. A

model of this sort might also be used to estimate hidden

state in situations where another agent in the environment

has access to information only available to the observer

through that agent’s actions. In the context of poker, this

approach might involve estimating the cards likely present

in the opponent’s hand or perhaps attempting to guess

whether or not the opponent is bluffing or slowplaying on a

particular hand. Modeling opponent actions or state in this

fashion is transparent and immediately useful; that is, the

output has a known interpretation that impinges directly on

the decision-making problem at hand. However, previous

work indicates that predictive models may be unstable, and

it is not clear a priori how to build such a model in practice

[1, 2, 3].

Another approach, and the one pursued in this paper,

would attempt to classify the opponent by type, either as

belonging to a specific class out of some discrete set of

categories, or as a point (or region) within a continuous

description space. Whereas a predictive model tries to

identify what the opponent will do next, a classification

model will attempt to identify what the opponent is like by

analogy with previously observed opponents. Intuitively,

this concept resembles how people approach game strategy,

by identifying opponents in terms of past experience, and

reasoning forward from these analogies to anticipate

opponent action, in essence using a classification model as

a means to obtain a predictive one. In poker, a common

categorization (although not used in this paper) might be to

identify the strategy of the opponent as tight or loose, and

passive or aggressive. One drawback of this approach is

that classification models are not necessarily transparent or

direct; i.e. there may be no obvious interpretation that can

be given from the classification output to game decisions.

Evolving Opponent Models for Texas Hold ’Em

Alan J. Lockett and Risto Miikkulainen

For statistical methods (including neuroevolution),

however, transparency is irrelevant, since these methods

cannot take into account the intensional semantics of the

model per se. Classification models are simpler to construct

and learn than predictive models in practice [3]. While it

may not seem clear from the outset how to select useful

opponent categories or how to assign actual opponents to

these categories on-line, it is in fact quite feasible, as will

be shown later in this paper.

This paper demonstrates the successful application of a

continuous classification approach to opponent modeling in

Texas Hold ’Em poker. The models use a coarse

approximation to game-theoretic opponent representations

to provide a parameterized description of a large subclass

of poker players. It is important to note that in this research,

classification is performed in a continuous space rather than

over some discrete set of opponents. Evolutionary

algorithms are shown to be able to train a neural network to

reliably associate a model with an adversary. In addition,

poker players are trained using neuroevolution both with

and without access to the estimated models. The players

with the models conclusively outperform the players

without models in three distinct aspects: (1) they attain

higher maximum and average fitness under the same fitness

function, (2) their fitness is more stable, i.e. it varies less

across generations, and (3) they routinely outplay the non-

opponent modeling players in heads-up matches after

equivalent training.

II. RELATED WORK

A significant body of opponent modeling work has been

done in poker, much of it using an explicit approach [4, 5].

For instance, Billings et al. [1] used statistical methods to

estimate the strength of the opponent’s hand given his

history of calling, raising, or folding. They also developed

predictive models to assess what decision a specific

opponent would make when holding a given hand.

Although the original predictor was only 51% accurate,

Davidson et al. [2], [6] used a neural network trained with

backpropagation to increase its accuracy to 81%. These

data are especially interesting since their poker player,

Loki, gathered statistics on actual human players by playing

online poker games. However, the approach required a

significant history of data for training and therefore could

not be used online. In contrast, the mixture-based approach

does not require additional training in order to generalize to

new players, since previously unseen opponents can be

interpolated from the training experience using the mixture

models.

More recently, Bard and Bowling [7] formulated

opponent modeling as a dual state estimation problem in

Kuhn poker, a simplified, three-card version of two-player

poker. There are only five non-dominated strategies: three

for the first player and two for the second. These opponent

models represent mixed strategies, a feature held in

common with this current work.

In substance, the mixture method of this paper shares

broad similarities with what Bard and Bowling term ‘static’

opponent models. In fact, it provides a first approach to a

reasonably-sized approximation of complete opponent

models for poker, a development which they suggest as a

next step. It differs significantly, however, in how the

mixture models are used once obtained. Rather than trying

to solve explicitly for a mixed strategy to exploit the

opponent, this work uses neuroevolution in order to search

for effective game players. This is a fundamentally distinct

methodology, based on the point of view that the opponent

models will invariably have some stochastic bias or error

that is best handled by using stochastic methods for

interpreting them. Exact computations based on the

outcome of the mixture identification problem could lead a

computer player astray, turning an attempt to exploit the

opponent’s weaknesses into a trap. An algorithm that makes

use of stochastic measurements should also be able to

assess and mitigate risk. An exact computational method

affords no such flexibility.

The mixture approach to opponent modeling is based on

that applied by Lockett et al. [3] in a simpler card game

called Guess It. In their approach, a set of four cardinal

opponents was used to define an opponent space, with all

possible opponents being represented as probability

distributions over these four basic opponents. These

distributions were termed mixture opponents, and at each

turn, the distribution was sampled to decide which of the

four cardinal opponents would make the decision for that

turn. A mixture identifier was trained to estimate the

sampling distribution of a mixture opponent from the

current game state. Using neuroevolution, Lockett et al.

were able to train the mixture identifier to an accuracy of

about 85 percent. Two separate neural networks were then

trained, one of which took in the game state plus the output

of the mixture identifier, and another that took in the game

state only. While the network with only the game state

achieved greater fitness against the mixture opponents, the

authors found that the networks with both the games state

and the mixture identifier consistently won against a bank

of previously unseen players, including the network with

just the game state. The players that were trained to use the

mixture identifier were able to generalize to unseen

opponents because they developed an exhaustive and

continuous representation of opponents encoded in the

mixture identifier.

In this paper, the mixture approach provides a continuous

classification system for opponents that should generalize

well because unseen opponents can be viewed as

interpolations of previously seen opponents. This work

extends the mixture approach from Guess It [3] to the

domain of poker by clarifying the nature of approximate

opponent representations and providing a means to generate

such representations for new domains with minimal effort.

These improvements make the approach theoretically clear

and scale it up to two-player Limit Texas Hold ’Em poker,

a more complex and difficult domain.

The neural networks are trained to play poker using

NeuroEvolution of Augmenting Topologies (NEAT),

developed by Stanley and Miikkulainen [8]. In this

approach, only inputs and outputs are specified for the

neural network. The appropriate internal topology is

discovered through a search using a genetic algorithm.

Connections and hidden nodes are added and changed with

a given probability, and are retained in the population if

they improve the performance of the network against a

fitness function. In theory, the capability of the algorithm

to iteratively add structure (or complexify) allows it to

adjust to new situations without losing old capabilities. The

details of NEAT will not be discussed here (see [8]

instead), partly because the opponent modeling architecture

advocated in this paper is independent of the particular

algorithm used to implement it. However, since NEAT has

been used effectively in various game-playing approaches

in the past, it was a natural choice for the opponent

modeling approach as well.

As a final note, similar opponent representations for

poker have been previously employed by Barone and While

[9]. Their emphasis, however, was on using evolution to

find good poker players from among these representations,

whereas the players evolved in this work are not limited to

the mixture representations, which are only used to model

opponents encountered by the automated player.

III. TEXAS HOLD ’EM POKER

Texas Hold ’Em poker is currently the most popular

version of poker in casinos and tournaments. In this, and in

most poker research, the actual game studied is Limit Texas

Hold ’Em, where the bets are of predetermined fixed size.

The game begins when each player buys in to the table by

presenting a fixed amount of money for play. In Texas Hold

’Em, one player is always designated as the dealer, and the

dealer position rotates with each hand. In a hand, each

player is initially dealt two cards face down, called the hole

cards. Before seeing the cards, the player to the left of the

dealer must add a forced bet to the pot called the small

blind, and the player to that player’s left must place a bet

usually twice this size called the big blind.

Once the hole cards have been dealt, a betting round

ensues, starting with the player placing the small blind.

Each player in turn has the choice to fold, conceding the

game and losing all prior bets in the hand, to call, matching

the largest bet in the pot at the time (initially the size of the

big blind), or to raise the cost of playing for the pot by the

size of the big blind. If any player raises, then all prior

players have the opportunity to take another turn.

Once all the players have placed their bets, then the

round advances to the flop, where three community cards

are dealt face up. Another betting round follows, this time

starting with the player to the dealer's left. Two additional

options become available: this player can check, passing the

opportunity to bet but leaving open the option to meet

future raises, or bet, adding money to the pot and placing a

cost on remaining in the game.

After the flop, the cost of a bet doubles, and there are two

more betting rounds, the turn and the river, with one

community card added during each. If at any point only one

player remains in the hand, then that player wins the pot,

which is then added to his bankroll. If more than one player

remains in the hand after the river, then each player must

show his or her two private cards, and the player with the

best five-card poker hand formed from all seven cards in

play wins. This step is called the showdown.

In this research, all games consist of 250 hands of two-

player poker with a buy-in of $200 and $2 blinds.

Automated players are judged according to how much of

the $400 at the table they own at the end of 250 hands. For

practical purposes, check and call are identical, as well as

bet and raise, so that the players here have three strategies

available at each turn: fold, call, or raise.

If poker were a game of pure chance with completely

stochastic outcomes, it would be possible over the long

term to maintain positive winnings simply by playing

according to the statistics. The expected winnings for an

individual turn of poker can be computed as

() ()cpprWE −−= 1

where p is the probability of having the best cards at the

table, termed here the win probability, r is the amount of

money in the pot, c is the cost of betting, and W is a random

variable for the amount of money won on this decision,

equal to r in case of a win, and –c in case of a loss. Often,

the equation above is transformed into a ratio by setting it

equal to zero and shifting terms. This leads to the familiar

concept of pot odds, which are basically an estimate of the

statistical breakpoint between earning and losing money on

a bet.

In order to estimate the pot odds, it is necessary to have

available an estimate of the win probability, p. For human

players, this estimate is usually obtained by considering the

number of cards needed in order to complete specific hands

(termed outs), keeping in mind the opponent’s likely best

hand as well. It is possible to compute p exactly under the

assumption of a fair deck with uniform probability over the

cards. However, an exact computation is too involved to

compute directly, so the win probability must be estimated.

In this paper, an approximation to a roll-out of the current

state is used, estimating the win probability assuming that

no players will fold prior to the showdown. This estimate is

obtained by combining the probability of each player’s best

hand belonging to one of 315 exact hand types with the

probability of wining the match given these hand types.

The neural networks trained to play poker all possess the

same basic input structure consisting of:

(1) The estimated win probability, p,

(2) The ratio of expected winnings if CALL is selected,

(3) The ratio of expected winnings if RAISE is selected,

(4) The current round,

(5) The size of the pot,

(6) The size of their own bankroll,

(7) The number of raises made by the opponent this round,

(8) The required cost of a bet.

These eight inputs are collectively considered to be the

game state for poker from the point of view of the network.

While it might be desirable to provide the network with

greater visibility into the cards held than just that provided

by the win probability, it is also necessary to keep the

number of parameters as small as possible in order for

training to be feasible, and there is no obvious compact

parameterization of the cards that would be sufficiently

small and useful enough to justify including them as inputs

to the network. Notable among these inputs is the number

of raises this round by the opponent (7), which provides the

network with its strongest clue as to the value of the cards

held by the opponent. This representation contains

sufficient detail to evaluate the effectiveness of opponent

modeling in Texas Hold ’Em.

IV. A MIXTURE-BASED APPROACH

In this paper, low-dimensional approximations to a full

model will be developed that can then be used both to

generate training opponents and to incorporate knowledge

of the opponent into an automated player. In terms of

classical game theory, these opponent models represent

approximations to mixed strategies, whence these

opponents are termed as mixture opponents. An 18-

parameter model for poker opponents is developed for this

research, which is later pared down to 10 parameters.

As discussed above, for both practical and theoretical

reasons, useful opponent models need to be relatively

compact, so that parameters describing the current

opponent can be identified quickly, and so that the models

can be trained accurately in reasonable time. The mixture

parameters were obtained by partitioning the poker game

state. As shown in Figure 1, the state space was broken into

nine independent regions based on the win probability p

and the expected winnings, E(W). In each region there are

two degrees of freedom initially, but more useful models

are obtained by deterministically folding losing hands,

leaving 10 parameters corresponding the probability of

betting or calling in the remaining five state regions.

This partition was chosen to classify players based on

how they utilize two pieces of information: the win

probability and the expected winnings. These two pieces of

information were chosen because they represent criteria that

human poker players often use to judge the value of a hand;

other metrics could also be used if desired. In each state

region, the player has the option to FOLD, CALL, or RAISE.

These choices are represented by two parameters, the

probability of raising and the probability of calling; the fold

probability is fully determined by these two. In addition, the

model is simplified by assuming the player will

deterministically fold when holding a very bad hand,

leaving five regions of the state space where the opponent

may take a probabilistic action. This reasoning results in a

10-parameter model generally expressing the opponent’s

willingness to bet based on the strength of his hand. There

are numerous other aspects of poker players that one could

wish to model, e.g. aggressiveness vs. passivity. Such

aspects are beyond the scope of the current research; the

current goal is to validate the mixture-based approach for

poker in general terms. Using this approach, potential

opponents can be sampled in a straightforward manner.

These opponents can be chosen to provide a diverse

training set from the outset, which represents an

improvement over training by self-play or against a set of

manually constructed opponents. With genetic algorithms,

these generated opponents can be used exclusively, as is

done in this paper, or in conjunction with competitive

coevolution to provide greater diversity and robustness to

the fitness function from the start.

Mixture opponents were initially generated uniformly at

random within these 10 parameters, subject to the constraint

that the pair of parameters corresponding to each of the

nine state regions must sum to a number between zero and

one. However, many of these mixtures did not produce

viable opponents. To surmount this difficulty, a sample of

1000 uniformly generated mixtures was played against

randomly generated neural networks taking the game state

as input. Out of these networks, a sub-sample of 84

mixtures was kept, all of which had managed to retain at

least $10 out of an initial $200 after 250 hands. These 84

mixtures were used to construct a 10-dimensional

multivariate Gaussian using the sample mean of the 84

mixtures along with the sample covariance. This Gaussian

effectively restricted the generated opponents to more

Fig 1. A 10-dimensional opponent space for poker. Vertical

axis is expected winnings. Horizontal axis is the probability

of winning the hand based on the visible cards. Only five of

the nine regions have more than one viable action, and a

probability distribution over each of these has two degrees

of freedom, for a total of 10 parameters in the model.

viable mixtures, mainly by reducing the likelihood of

generating mixtures that fold strong hands or bet poor

hands. Most of the 10 components varied significantly in

value. Their variances were between 0.03 and 0.04, or

about 20% on either side of the mean, with most

components having virtually zero correlation with other

components. This Gaussian virtually eliminated mixtures

with a propensity for folding an extremely strong hand or

betting an extremely weak hand. Outside of these two

extreme states, both the parameter means stayed close to

their raw expectation of 0.33. Using this Gaussian to

sample mixture opponents, the first generation average

winnings for random networks fell to about 60 percent of

the money in play, so that although several random

networks were still stronger than random mixtures, there

was still plenty of room for training.

V. TRAINING THE MIXTURE IDENTIFIER

The purpose of developing the opponent models is to

provide computer players with a view into the nature of

their opponent. In order to make this goal possible, there

must be a module that can map the observable portion of

the game state and the opponent’s actions into an estimated

opponent model. This module is the mixture identifier.

Opponent models cannot be estimated directly because the

crucial part of the game state – the win probability – is

hidden from the player. The goal, then, is to find the best

approximation to the opponent model given the information

that is available to the player. The longer the match, the

more information becomes available, including the win

probability in the case where a hand reaches the showdown,

since players must then reveal cards.

One possibility would be to use a particle filter in order

to estimate the parameters. However, since both the win

probability and the opponent model are hidden, this

approach is not practically feasible until multiple hands

reach the showdown, at which point one could construct a

reasonable observation model using the definitions of the

model parameters. Also, a large number of particles would

be required to obtain an accurate estimate in a 10-

dimensional space, which would make the player sluggish,

especially if used online during play.

A neural network was therefore trained to estimate the

mapping using NEAT. While this approach requires

significant time for training, during online play, an estimate

of the opponent model can be obtained simply by activating

the network.

The task of the mixture identifier is to estimate an

opponent model describing the opponent. Random mixture

models generated according to the scheme above can

provide a supervised data set against which candidate

mixture identifiers can be evaluated. A deterministic poker

player with a conservative strategy of betting based on

expected winnings was created to serve as a harness. Each

time the generated mixture opponents made a decision, the

mixture identifier was queried for an estimate of the correct

model. Whenever the showdown was reached, the mixture

identifier would be allowed to revise its estimates for that

round using the estimated win probability based on the

opponent’s cards. The average of the models obtained in

this way over the course of play was considered to be the

candidate mixture identifier’s best guess of the correct

mixture model.

While this style of evaluation suggests that a supervised

training strategy might be more effective, there are good

reasons to use a semi-supervised method such as NEAT

instead. First, a correct value needs to be found by settling

over a sequence of network activations, which requires

recurrency. Common supervised training methods for

neural networks do not work well on recurrent structures,

whereas NEAT naturally develops recurrent networks when

these networks are better than competing non-recurrent

networks. The inputs given to the mixture identifier are the

same 8 inputs given to the poker players. The starting

topology for the mixture identification problem in this case

was a fully connected network with 8 inputs and 10 outputs,

for a total of 8 x 10 = 80 parameters. NEAT efficiently

tunes these parameters with relatively few evaluations. The

best networks found by evolution included additional

inhibitory links between competing output nodes, and

excitatory links between mutually reinforcing nodes. Thus

solutions to the mixture identification problem were helped

FOLD
FOLD

CALL

RAISE

FOLD

CALL

RAISE

FOLD

CALL

RAISE

FOLD

CALL

RAISE

FOLD

FOLD FOLD

 FOLD
 CALL
 RAISE

p < .35 p > .65 .35 < p < .65

E (W|bet) > 0

E (W|call) > 0

E (W) < 0

by recurrency.

In the mixture identifier experiment, then, a mixture

identifier network was trained to guess the mixture

governing a generated opponent on average. In each

generation, each candidate mixture identifier was evaluated

against 50 sampled mixtures, playing 250 hands against

each mixture. The fitness of the candidate was determined

by calculating the Euclidean distance d of the candidate’s

average estimate from the actual mixture parameters

controlling the generated opponents. To give better mixture

identifiers higher fitness, this distance was subtracted from

a distance of 3.5, chosen to be greater than the Euclidean

distance from the origin to the farthest corner of the unit

hypercube in 10 dimensions. The 50 values of (3.5 – d)

were added up and scaled to a percentage value. In 11 trials

of 50 generations each, the average maximum percentage

achieved was 84.6%, or d = 0.56, an average component-

wise error of 0.16. All trials except one achieved maximum

fitness > 82%. In other words, the probability estimates for

opponent behavior were off by approximately 16 percent on

average for each of the 10 parameters, a strong performance

given the difficulty of the task. A graph of a typical run of

the experiment is given in Figure 2. In this run, the

maximum fitness grew from 77.8% to 84.6%, with

percentages calculated based on the average Euclidean

distance of mixture estimates from actual mixture values for

generated opponents.

Overall, these results demonstrate that for a reasonably

selected set of mixture parameters, it is possible to train a

mixture identifier that provides a usable approximation of

the mixed strategies employed by an opponent. The next

step is to train a player to use this approximation.

VI. TRAINING THE POKER PLAYERS

Once the mixture identifier has been trained successfully,

the main experiment is to validate whether this module can

provide an advantage to a computer player learning to play

poker. In order to test this hypothesis, two separate

networks were trained: one, termed the mixture-based

player, took both the game state and the mixture identifier’s

output as an input, and another, termed the control player,

took the only the game state as an input. Both networks

were trained using NEAT. In each generation, each network

was required to play 250 hands against each of 50 randomly

generated mixture opponents. During each of the matches,

blinds were fixed at $2 and each player started with $200.

The fitness of each candidate network was assigned as a

percentage of the $400 won on average against all

opponents.

The two networks were trained for 100 generations on 11

separate trials. At the end of training, the control player

achieved an average maximum fitness of 93.0% (variance

Avg & Max Mixture Identifier Fitness

65

70

75

80

85

90

95

100

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation

F
it
n
e
s
s
,
P
e
rc

e
n
t
o
u
t
o
f
1
0
0
.0

0

Fig 2. Average and maximum fitness graphs for a typical

run of mixture identifier training. Fitness is based on the

average Euclidean distance of the mixture identifier’s

estimate of the opponent’s parameters from the actual

parameters. These values are then scaled to percentage

values, with 100% indicating zero distance. This training

process produced mixture identifiers with an average error

of about 16% for each of the opponent’s parameters.

0.005%) while the mixture-based player achieved an

average maximum fitness of 95.4% (variance 0.011%), with

percentages indicating the percent of money won. A paired,

two-tailed t-test shows an 80% chance that the mixture-

based player achieves greater maximum fitness in general.

Typical graphs of fitness growth for both types of players

are shown in Figure 3. The fitness values are stochastic,

depending both on the opponents selected and the hands

drawn. Despite such stochasticity, the mixture-based

player’s fitness is remarkably stable, especially compared

with the rather choppy oscillation observed for the control

players. This result suggests that the mixture-based player’s

access to the mixture identifier helps smooth out the

stochasticity of the fitness function. By contrast, control

players had a spike in fitness (as observed in generation 66

in Figure 3) in all eleven trials, and as such control players

with fitness over 90% were somewhat anomalous and failed

to take over the population. Overall, during a typical

training run, the maximum fitness of the mixture-based

player rarely dropped below 90% after the first few

generations, whereas the maximum fitness of the control

player rarely exceeded 90%.

After the mixture-based and control players were trained,

the two networks were played against each other. This is the

true test of the mixture-based player, since the original goal

for this research was to develop poker players that could

model their opponents’ behavior in order to generalize to

unseen opponents. The competition consisted of 150

matches of 250 hands each, again starting with $200 each

and $2 blinds. Each match was played twice with the two

players holding opposite hands to eliminate any advantage

due to luck. Over the 11 trials, the mixture-based player

won an average 61.4% of the money, with the control

player taking the remaining 38.6% (this result is significant

with p < 0.02). The actual numbers are shown in Table 1.

While the margins vary considerably, the mixture based

player did manage to win more than half the money in all

but one trial. These results strongly indicate that the mixture

identifier does indeed allow the player to adjust to unseen

opponents, significantly improving its performance.

VII. DISCUSSION

These results demonstrate a mixture-based approach that

creates low-dimensional opponent models by partitioning the

state space. The 10-parameter opponent model significantly

strengthens play in Texas Hold ’Em poker. In particular,

using a mixture identifier improves fitness against

generated opponents conforming to the model. Beyond just

improving fitness, however, the mixture identifier – even a

somewhat noisy one – smoothes out stochastic effects of

evaluation in a random environment.

This work compares favorably with the results previously

obtained in Guess It by Lockett et al. [3]. The mixture

identifiers developed for poker have higher accuracy than

those developed for Guess It, despite a three-fold increase

in the number of mixture parameters. This improvement

results from a rigorous scheme for generating the parameter

space, as opposed to the somewhat ad hoc introduction of a

fixed bank of cardinal opponents. The cardinal opponents

in [3] are not independent, in that two of their four

parameters overlap, whereas the 10-parameter model allows

only one set of action probabilities to be active for each

distinct state. Thus distinct 10-parameter models play from

distinct probability distributions and can therefore be

identified uniquely. Interestingly, Lockett et al. found that

the mixture-based players for Guess It attained lower fitness

than the control players, ostensibly because there are more

parameters to tune. By contrast, in poker, the mixture-based

players have higher fitness during training than the control

players. One explanation is that poker inherently rewards

opponent modeling more strongly when playing against

non-optimal opponents, further strengthening the claim that

opponent modeling is an important part of playing poker.

A possible criticism of opponent modeling in general is

that it is only intended to maximize winnings against weak

or average opponents, and not intended to produce optimal

players. Opponent modeling is thus used to obtain maximal

strategies in contradistinction to optimal strategies that are

intended to play well against all opponents generally.

However, this distinction does not hold in general, or

specifically for the kind of opponent modeling in this paper.

In essence, such modeling extends the game state space by

appending parameters that classify the opponent. The

training of the opponent-modeling player then optimizes

play against representative opponents. While such methods

may find local rather than global optima, the goal is still to

Avg & Max Mixture-Based Fitness

65

70

75

80

85

90

95

100

1 10 19 28 37 46 55 64 73 82 91 100

Generations

F
it

n
e
s
s
,

%
 o

u
t

o
f

1
0
0
.0

0

Avg & Max Control Player Fitness

65

70

75

80

85

90

95

100

1 10 19 28 37 46 55 64 73 82 91 100

Generations

F
it

n
e
s
s
,
%

 o
u

t
o

f
1
0
0
.0

0

Fig 3. Fitness graphs for the mixture-based and control

players on a sample trial run. Fitness is the average

percentage of money won by the player. Average and

maximum fitness for the mixture-based player is higher and

more stable in general.

develop optimal players. In the context of game theory,

Nash equilibria on the standard state space may or may not

defeat Nash equilibria on the state space extended with the

opponent model, depending on the game and the quality of

the opponent models. For instance, Lockett et al. [3]

present a situation in Guess It where the optimal strategy on

the non-extended state space is much worse than even sub-

optimal strategies on the extended state space. Thus, it is

not clear that an optimal strategy in poker will defeat an

opponent modeling strategy in general.

VIII. FUTURE WORK

The mixture-based approach to opponent modeling can be

further validated by taking more parameters into account.

The 10-parameter opponent model only represents the

TABLE 1. PERCENTAGE OF MONEY WON BY THE

MIXTURE-BASED PLAYER IN 11 TRIALS

% won

51.6 49.2 77.5 55.1 53.2 80.2 53.2 59.6 51.2 59.4 85.1

Averageaa 61.4

immediate statistical aspects of the game. If the goal is to

train poker players that can model opponents in tournament

play with humans, much more refined models will be

needed. These models would vary their play depending on

the round, the size of their bankroll, the actions of the

opponent and more.

Looking further forward, there are several ways to build

on this promising approach. One obvious area is to develop

models automatically from records of human play.

Transcripts of poker matches are widely available online,

and the premier event of the game, the World Series of

Poker, has been televised for several years. It may be

possible to develop an algorithm that partitions the state

space according to some objective criterion drawn from data

sets of human play, such as maximizing the Kullback-Leibler

divergence between distinct regions on a given data set. This

method would allow more realistic opponents to be

generated, and the techniques employed by a human

player to be measured more accurately, which should lead

to stronger automatic poker players.

Another point of departure involves using higher

dimensional parameter spaces with a small set of opponent

clusters within this space. The higher dimensional space can

be used to generate mixture opponents that can play more

refined strategies. The mixture identifier would map

opponents according to its likelihood of belonging to each of

the clusters. These clusters would represent certain

normative playing patterns, balancing the need to generate

more detailed opponents with the need for low-dimensional

opponent representations. In this way, more complex models

could be naturally handled using the methods of this paper.

A fourth category of extensions examines probability

distributions over opponents. For instance, a data set

including play from average poker players would likely have

very different characteristics from a set of tournament

transcripts. When training a computer to play poker, it is

important that generated opponents represent the set of

players the computer is likely to encounter, possibly with

greater weight placed on more difficult opponents. One

might also develop a training program that increases in

difficulty over time, with simpler opponents appearing more

often in lower generations, and with successive generations

moving through a Pareto dominance hierarchy.

Extensions such as these may eventually lead to computer

players that play at human levels and even exceed them.

Similar techniques of opponent modeling could also bear

fruit in other games and in multi-agent systems generally,

leading to intelligent agents that interact more effectively

with other agents in their environment to improve their

decision making ability.

IX. CONCLUSION

This study shows that opponent modeling using the

mixture approach is practical and beneficial, resulting in

increased fitness of players trained to play Texas Hold ’Em

poker. The mixture approach consists of identifying and

defeating previously unknown opponents by representing

them as a mixture over a low-dimensional parameter space

that approximates objective aspects of the opponent’s play.

Mixture-based opponent models are effective because they

give computer players insight into aspects of the game that

would otherwise be hidden from them, such as deceptive or

misleading play. The same process leveraged to obtain these

results should apply not only to poker, but also to many

environments where there is a need to understand the intent

or purpose of other agents, making opponent modeling an

increasingly important component of AI research in general.

ACKNOWLEDGMENTS

The authors wish to thank Charles L. Chen for his

assistance and contributions to this research. This research

was supported in part by NSF grant IIS-0757479 and

THECB grant 003658-0036-2007.

REFERENCES

[1] Billings, D., Papp, D., Schaeffer, J., and Szafron, D. Opponent

Modeling in Poker. Proceedings of 15th National Conference of the

American Association on Artificial Intelligence. AAAI Press,

Madison, WI, 1998, 493-498.

[2] Davidson, A., Billings, D., Schaeffer, J., and Szafron, D. Improved

Opponent Modeling in Poker. Proceedings of the 2000 International

Conference on Artificial Intelligence (ICAI'2000). 1999, 1467-1473.

[3] Lockett, A., Chen, C., and Miikkulainen, R. Evolving Explicit

Opponent Models in Game Playing. Proceedings og the Genetic and

Evolutionary Computation Conference (GECCO-07). Kaufmann, San

Francisco, 2007, 2106-2113.

[4] Korb, K., Nicholson, A., and Jitnah, N. Bayesian Poker. Proceedings

of the Conference on Uncertainty in Artificial Intelligence (UAI-99).

1999, 343-350.

[5] Southey, F., Bowling, M., Larson, B., Piccione, C., Burch, N., and

Billings, D. Bayes’ Bluff: Opponent Modeling in Poker. Proceedings

of the 21st Conference on Uncertainty in Artificial Intelligence (UAI-

05). 2005, 550-558.

[6] Davidson, A. Using Artificial Neural Networks to Model Opponents

in Texas Hold ’Em. Unpublished manuscript;

http://spaz.ca/aaron/poker/nnpoker.pdf. 1999.

[7] Bard, N. and Bowling, M. Particle Filtering for Dynamic Agent

Modeling in Simplified Poker. Proceedings of the 22nd Conference on

Artificial Intelligence. AAAI Press, Madison, WI, 2007, 515-521.

[8] Stanley, K. and Miikkulainen, R. Continual Coevolution Through

Complexification, Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO-2002). Kaufmann, San Francisco,

2002, 113-120.

[9] Barone, L. and While, L. Adaptive Learning for Poker. Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO-

2000). Kaufmann, San Francisco, 2000, 566-573.

[10] DiPietro, A., Barone, L., and While L. Learning In RoboCup

Keepaway Using Evolutionary Algorithms. Proceedings of the

Genetic and Evolutionary Computation Conference (GECCO-2002).

Kaufmann, San Francisco, 2002, 1065-1072.

[11] Hoehn, B., Southey, F., Holte, R. C., and Bulitko, V. Effective Short-

Term Opponent Exploitation in Simplified Poker. Proceedings of the

20th National Conference on Artificial Intelligence. AAAI Press,

Madison, WI, 2007, 783-788.

[12] Riley, P., and Veloso, A. Planning for Distributed Execution Through

Use of Probabilistic Opponent Models. IJCAI-2001 Workshop PRO-

2: Planning under Uncertainty and Incomplete Information. 2001.

