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Abstract 

This thesis focuses on using neural networks to extract useful features from a poker game. These 

features will be used to exploit opponent behavior in playing poker. The opponent modeling 

network was built by Xun Li in prior work and this thesis is about exploring a different game 

state representation in the network. Currently, the input features are hand-made using common 

poker knowledge. The research is to let the computer figure out which features are important 

from the raw state of the poker game instead of using the hand-made features. Just as neural 

networks are proven to work better for extracting visual features for various applications, the 

project’s goal is to prove that for poker game representation. This research focuses on state 

representation only and actual gameplay (with the new representation) needs to be explored in 

future work. The model built in this thesis was able to represent most of the poker game state 

(except bet sizes) by significantly compressing it (through feature learning) while not losing 

much information. Moreover, the compressed representation is found to be similar yet better than 

the handcrafted input features because it packs more nuanced information than the latter. In the 

future, the model can be extended to include bet sizes and tested out in actual poker gameplay. 

1. Introduction 

Incomplete information games are everywhere in our economy like trading and investing, 

business and international negotiations, wars, etc. With such use cases, getting better at playing 

incomplete information games will be quite significant for our society. To study and come up 

with new algorithms for incomplete information games, one has to start with a well-defined 

experimental model. Poker is one such example. The rules are well-defined and the information 
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is incomplete (opponent’s cards are unknown). Historically, Nash equilibrium based algorithms 

like Counterfactual Regret Minimization (CFR) worked best for playing poker [Zinkevich 2007]. 

In fact, heads up limit poker is solved by these methods [​Bowling 2017​]. However, CFR plays a 

defensive strategy that does not maximize winnings and it works only for heads-up (two player) 

poker while requiring massive compute power and memory (more on this in “related work” 

section). Therefore, other methods like neural networks are worth exploring to play poker. 

Li and Miikkulainen [2018] created a dynamically adapting poker player based on 

opponent behavior. Li et al.’s poker player is called Adaptive System of Holdem (ASHE). ASHE 

is found to be more profitable than Nash equilibrium based poker agents against exploitable 

players while still being competitive against the best Nash equilibrium based players [Li 2018]. 

ASHE uses Long-Short Term Memory (LSTM) neural network modules to predict opponent 

behavior and neuro-evolution to train the LSTM modules. However, ASHE also relies on 

handcrafted features from common poker knowledge as input to the LSTM modules. This 

research aims to find out whether extracting input features using neural networks from raw poker 

game states can replace the hand-crafted input features. 

One potential benefit of using learned features over hand-crafted features is that ASHE’s 

performance can get better. When using a neural network approach, the goal has long been to 

learn useful features in the hidden units that will be used to predict the outcome. By giving 

handcrafted features instead of the raw poker state itself as the input, ASHE is being 

handicapped by not allowing it to come up with its own innovative set of features. Moreover, 

these features could be learned from factors derived from the training data that humans may not 

know about. In other applications, research has shown that extracting features from raw state 
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using neural networks works better than handcrafted features. For example, researchers have 

found that using a convolutional neural network on raw speech information is better at extracting 

human emotions than traditional systems that use “audio-based or image-based hand-crafted 

features” [Papakostas 2017]. Such results in other domains also give hope that feature learning 

will be better than human-made features for ASHE. 

Another benefit of feature learning is that the model becomes more generalizable. 

Currently to apply ASHE’s model in other incomplete information games, an expert in the field 

needs to handcraft features as input to ASHE. Finding this expert and encoding his or her 

intuitive knowledge will be difficult. If the feature learning model is used, only the raw state of 

the problem is needed to get results from ASHE. Moreover, neural networks sometimes turn out 

to be much better than experts which happened in the case of Go [Silver 2017]. So this project 

will be a success even if ASHE’s performance stays about the same after replacing the 

handcrafted features. 

2. Related Work 

The first part of this section discusses the successful poker algorithms in the past. It also 

discusses some of the newer neural network based approaches and where this thesis fits in. The 

second part of the section focuses on recurrent neural networks, a key component in this research 

and compares Long-Short Term Memory networks with Gated Recurrent Units. 

2.1 Poker Algorithms 

For a long time, researchers have tried to solve poker using game theory techniques like 

finding Nash equilibria in condensed poker game states. In 2007, Zinkevich et al. introduced a 

better technique called Counterfactual Regret Minimization (CFR) for playing poker-like games 
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[Zinkevich 2007]. CFR is essentially a self-play algorithm where the program plays billions of 

rounds against itself. After each game, the algorithm evaluates which actions would make the 

program’s strategy better over all the previous games (a positive “regret”). These actions are then 

performed more often in future games. The average strategy over the billions of hands played 

will converge to a Nash equilibrium for the game [Zinkevich 2007]. CFR is successful at playing 

poker because it employs a defensive strategy which is nearly impossible to exploit.  

With the focus on playing safe, CFR does not maximize winnings against a typical 

player. So there is room for another poker playing algorithm that focuses on winning big by 

exploiting opponent behavior. As mentioned in the introduction, Xun et al. are aiming to do just 

that with ASHE. Moreover the CFR self-play algorithm is quite compute intensive for massive 

state space games like Texas hold ‘em poker (3 x 10​14​ information sets for 2 player limit hold 

‘em). So to play complex games, the successful CFR algorithms create an abstraction of the 

game like grouping “many different card dealings into buckets” [​Gibson 2011]​. Even with the 

abstractions, CFR only works for heads-up (two player) poker and is still quite memory intensive 

during actual gameplay. For example, CMU’s Tartarian that statistically tied with pro poker 

players had a 2 TB online lookup table [Yakovenko 2016]. A neural network approach (like 

ASHE) could be used to significantly reduce the memory and compute requirements at runtime. 

For example, a poker playing convolutional neural network designed by Yakovenko et al. [2015] 

fits in a 1MB file. Such low compute and memory requirements during gameplay mean that 

neural network approaches like opponent modeling can also be extended to multiple players. 

There have been attempts to model and exploit opponent behavior in poker and other 

contexts. Most of these experiments used neural network approaches. One such example is 
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University of Alberta’s poker agent Poki. They have progressed from using a generic opponent 

model (one size fits all approach) to a specific one (treating each opponent as distinct) that 

tracked the opponent hand strength based on a “table of betting frequencies for various stages 

during the hand” [Davidson 2000]. They also used a neural network to identify the most relevant 

features in predicting opponent behavior. Those features turned out to be previous action and 

previous amount to call. Although Poki has made considerable progress in opponent modeling 

and achieved close to the average winnings of a professional poker player, as Davidson et al. 

said: “the topic is far from being well-solved” [Davidson 2000]. There is still a need for better 

opponent modeling in poker because the results are not yet as decisive as results of the CFR 

approach for playing heads up no limit poker. 

This thesis aims to improve opponent modeling in general by using feature extraction 

without relying on hand-crafted features. Research has shown that neural networks are much 

better at feature extraction than hand-made features in fields like computer vision. Almost three 

decades ago, neural networks were used to extract features from raw image data that worked 

much better than “engineered feature vectors” [​LeCun 1989​]. The goal for this project is to get to 

a similar conclusion with poker game state representation. 

Recently, advances have been made by a company called DeepStack to use neural 

networks along with CFR (Nash equilibrium based) algorithms to create better approximations 

[Moravcik 2017]. However, the input to the neural network is a ratio of pot size to opponent’s 

stacks and encoding opponent hand probabilities into 1,000 buckets based on the community 

cards. This representation is nowhere close to the raw state of a poker game. If this research 
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leads to a better set of features that are built from looking at the entire raw state of the game, the 

following network could also be used to improve such Nash equilibrium approximation methods. 

Researchers like Yakovenko et al. [2015] came very close to representing the raw poker 

game state as input to a convolutional neural network. They used a 3D sparse array (31 x 17 x 

17) that captures cards, pot size, previous betting rounds, button (dealer in the game). Although 

this is a very comprehensive approach to representing the raw state, there are some unaccounted 

details like the order of bets in each betting round (like check-raises) which is very important in 

understanding opponent behavior. 

2.2 Recurrent neural networks 

Recently, recurrent neural networks (RNNs) have gained popularity for specific use cases 

and can be explored for poker game representation too. Unlike regular feedforward networks, 

recurrent networks have a loop or cycle in the connections between units. This loop allows 

recurrent networks to work with data represented as an arbitrarily long sequence where order 

matters. This feature of RNNs is where feedforward networks lack because they assume each 

training example is independent with a fixed length [Lipton 2015]. Among all the recurrent 

neural networks, Long Short-Term Memory networks (LSTMs) and Gated Recurrent Units 

(GRUs) are the most popular mainly due to their success in natural language processing and 

machine translation respectively [Hochreiter 1997; Cho 2014]. In this research, both LSTMs and 

GRUs are explored to model the action sequence of a poker game. For this use case, GRUs were 

found to provide better accuracy than LSTMs (more on this in the next section). 

LSTMs were designed to solve the vanishing gradient problem that occurs in recurrent 

networks due to repeated backpropagation (or simply multiplication) of gradients less than one. 
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Such repeated multiplication leads to a gradient very close to zero with increasing time steps and 

the network will not be able to learn from long sequences. LSTMs solve the vanishing gradient 

problem by maintaining an internal state that is added (instead of multiplied) to the processed 

state and by forgetting unimportant states (through a concept called gating). Figure 1 describes 

the structure of an LSTM cell. 

 
Figure 1: LSTM Cell Structure [Andy 2017]. The diagram shows the flow of x​t​, a new element in 
the sequence (e.g. a word in a paragraph) and h​t-1​, the previous output to generate the output at 
current time step, h​t​. This diagram helps visualize the inner workings of an LSTM cell. 

 
An LSTM cell (described in figure 1) has an input gate which is a sigmoid activation that rates 

the importance of the input (0 means switch off input values, 1 means pass through). This gate 

helps with only “remembering” important input. ​S​t​ is the internal state variable which is delayed 

by a time step and added to the output from the input gate (this addition is important to deal with 

the vanishing gradient problem). The forget gate and output gate have a similar filtering as the 

input gate. The final output, ​h​t​ is an element-wise multiplication (denoted by the ‘X’) of tanh(​S ​t​) 

and output of output gate. From the figure, it is evident that an LSTM cell offers a lot of 
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flexibility with what is set as input, what is “remembered” in the internal state and what is set as 

output. 

GRUs were recently introduced by Cho et al. [2014]​ ​to perform neural machine 

translation. GRU is like a simplified LSTM which still solves the vanishing gradient problem 

with two gates instead of three and without an internal state S​t​. 

 

 

Figure 2: GRU Cell Structure [Kostadinov 2017]. ​The diagram shows the flow of x​t​, a new 
element in the sequence (e.g. a word in a paragraph) and h​t-1​, the previous output to generate the 
output at current time step, h​t​. This diagram helps visualize the inner workings of a GRU cell. 
As shown in figure 2, there are two gates in a GRU cell: the update gate (left sigmoid function) 

and the reset gate (right sigmoid function). The update gate determines “how much the unit 

updates its activation (h​t​)” [Chung 2014]: 
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 z​t​ = ( ​W​​z ​​x​t​ + ​U​​z ​​h​t-1​) ​.σ                                           (1) 

where ​W​​ and ​B​​ are weight matrices. The reset gate determines how much of the previous state to 

forget: 

r​t​ = ( ​W​​r ​​x​t​ + ​U​​r ​​h​t-1​) ​.​                                       ​              (2)σ  

If r​t​ is close to 0, the unit acts “as if it is reading the first symbol of an input sequence” [Chung 

2014]. An intermediate memory state is computed (similar to S​t​ in the LSTM description above) 

using the reset gate output: 

       W U                                             (3)anh(ht′ = t xt + rt ⊙  ).ht−1  

The final output from the GRU cell is given by: 

                                                     (4)1 ) .ht = zt ⊙ ht−1 + ( − zt ⊙ ht′  

There are similarities between the internal workings of LSTM and GRU cells especially 

with “the additive component of their update from t to t + 1” which helps avoid the 

vanishing/exploding gradient problem [Chung 2014].​ ​​The next section shows how RNNs are 

used in this research and how LSTMs and GRUs compare against each other for this use case. 

3. Modeling Experiments 

Ultimately, this project is successful if the learned features make ASHE more 

generalizable or improve ASHE’s performance. However, training ASHE on each variation of 

the feature extractor model in order to check the performance would be too time consuming 

(given the time available for this thesis). So there needed to be an intermediate sanity check. This 

check was to extract a handful of features from the raw representation of the game and be able to 

reconstruct the game state back from it. This would ensure that the learned features are a 

condensed and more robust version of the entire game state. Once this check is achieved, the 
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learned features can be used as input to a real poker agent like ASHE to check the performance. 

This thesis shows results where the intermediate check is achieved for most of the poker game 

state and the extracted features are similar yet more powerful than ASHE’s hand-crafted features. 

To model the intermediary check, an autoencoder approach was used where the hidden 

layers have fewer units than the input layer and the output layer is same as the input layer. The 

hidden layer with least number of units will be the learned features. First the poker game state 

was split into cards (the community and hole cards) and action sequence (all the actions along 

with bet sizes that lead to the current round). Features for each of them were extracted in separate 

neural networks because both have distinct input representations that required different models. 

3.1 Cards Model 

For the cards part of the poker game state, the model took seven cards (five community 

cards and two hole cards) as input, each represented as a 52 element one-hot vector. So the total 

number of input features for the cards model was 364. Some of these 52-element cards could be 

all zeros which indicated that the card has not been drawn yet. The undrawn cards were 

important to model because not all community cards are known in a poker game until the final 

betting round. The card input then went through three densely connected layers where the feature 

set was compressed from 364 to 100 to 50 to 20 features. This architecture is the encoding part 

of the network. To decode back to the input, the 20 learned features were passed through another 

three densely connected layers that went from 20 to 50 to 100 to 364 features. A sigmoid 

activation function was applied at the output layer to introduce nonlinearities and to restrict the 

output between 0 and 1 which made it consistent to compare with the one-hot encoded input 
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vectors. A crossentropy loss was used between the predicted input (the output) and the actual 

input to improve the model. 

The card model was trained on input batches of 32 on a data set with one million 

randomly generated card sets. The accuracy of the model was measured on a validation dataset 

(20% of the original dataset) by checking if each card was predicted correctly in the output rather 

than checking every single feature. The model yields a 99.9%+ accuracy for 20 extracted 

features. The accuracy drops for fewer learned features. For example, the accuracy was around 

70% for 15 learned features. The relation between accuracy and extracted features is shown 

better in figure 3. The accuracy fell drastically as extracted features were reduced. 

 
Figure 3: Cards Model: Accuracy vs Extracted Features. A graph that shows the relation 
between accuracy of the cards model and the number of extracted features. 
 

3.2 Action Sequence Model 

For the action sequence part of the poker game state, another model was built that was 

quite different from the first one. In the card model, the cards were represented as 52 element 
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one-hot vectors. This was a straightforward representation but the action sequence was trickier 

because of its variable length (there could be one action (i.e. a fold) to tens of actions in a single 

poker game). Hence, there have been multiple iterations to find the model that works best and 

some of them are discussed below. As mentioned in the related work section, feedforward 

networks could not be used for variable length sequences and RNNs (LSTMs and GRUs) were 

used instead. To keep the model simple for initial experiments, the action sequence data only 

contained actions (check, call, bet, raise, fold to be precise) without accompanying bet sizes. 

Variable length action sequences were generated strictly based on poker rules for training the 

model where each action was a 5-element one hot encoded vector.  

The first model built was a simple two layer LSTM network (one layer was the encoder 

and the other was the decoder) shown in figure 4.  

 
Figure 4: Initial Action Sequence Model. Each circle indicates input/output from an LSTM layer 
and arrows indicate data flow through an LSTM layer. This diagram shows the simplicity of the 
first model built. 
 
An action was fed into the encoder per time step which compressed the five features into one 

extracted feature. Then, the output at each time step was fed into the decoder to get the predicted 

input. The decoder had a sigmoid activation instead of the usual tanh activation in a LSTM cell 
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to normalize the predicted input between 0 and 1. The accuracy for this model was measured by 

checking if each action (5 element one-hot encoded vector) was predicted correctly. This model 

achieved a 99.9%+ action accuracy while reducing the action state space by five times. However, 

the main problem with this model was that it only learned features per time step (per action) 

instead of learning from the entire sequence. A good poker agent needs to learn from the entire 

sequence because it has information about betting behavior like check-raises. 

So the next model was built to learn from the entire sequence (shown in figure 5). As the 

encoder, this model had an RNN layer that took in a game sequence (batch size of one with 

variable time steps) and gave out a 50-element vector. This vector was passed through a densely 

connected feedforward layer which also output a 50-element vector and it constituted the learned 

features. As the decoder, the learned features were passed through another RNN layer 

length-of-input-sequence times. The output at each time step from the decoder RNN was the 

five-element action in the input sequence. The model was trained on 100,000 poker game 

sequences with a 80-20 training and validation split. 
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Figure 5: Final Action Sequence Model. The model took one game sequence at a time as input 
and encoded it into a 50-element vector. This 50-element vector was turned into a sequence 
length x 50 element vector (in the Repeat Layer) by simply copying it sequence-length times. This 
output was finally fed into the decoder RNN to get the original game sequence back. 
 

The reported accuracy for this model was measured from a separate test dataset with 

10,000 game sequences and a total of 29,541 actions. The accuracy was just a percentage of 

correctly predicted actions over the total number of actions. While using LSTMs, the model 

achieved an accuracy of 85.6% whereas the model using GRUs yielded an accuracy of 93.1% 

(figure 6 gives the confusion matrices for both the models). Moreover, the model with GRUs 

took 20% less training time than the model with LSTMs (633 seconds vs 796 seconds per 

epoch). These results were in line with what Chung et al. [2014] found in their comparison 

between LSTMs and GRUs.  
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(a) LSTM Model’s Confusion Matrix                     (b) GRU Model’s Confusion Matrix 

Figure 6: Confusion Matrix Comparison. This comparison shows a more uneven distribution of 
errors (especially between check and bet) in LSTM model than the GRU model. 
 
Although GRUs are simpler than LSTMs, it is interesting to note that they performed 

significantly better than LSTMs. GRUs were introduced to perform neural machine translation 

which uses a similar encoder-decoder (sequence-to-sequence) model as the action sequence 

model [Cho 2014]. The machine translation use case could explain why GRUs were better suited 

for this model than LSTMs. 

4. Comparison Experiments 

As mentioned in the beginning of this section, the ultimate goal with the extracted 

features is to see if they are better than ASHE’s hand-crafted features. Due to time and resource 

constraints, the extracted features from the above two models could not be incorporated in ASHE 

within this thesis project for a direct comparison with the hand-crafted features. However, they 

could still be compared by seeing how much information they contain and how they are 

correlated. To do this comparison, hand-crafted and extracted features were generated for a 
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sample poker game sequence and then a principal component analysis (PCA) was performed on 

both the feature sets to reduce the dimensionality to two. Then, the principal components were 

compared against each other through clustering. Table 1 contains the poker game sequence used 

for comparison. 

Action Hole Cards Community Cards Round 

1. Opponent: bet 
 

 Pre-flop 

2. Agent: call 
  

Flop 

3. Opponent: bet 
  

Flop 

4. Agent: raise 
  

Flop 

5. Opponent: raise 
  

Flop 

6. Agent: raise 
  

Flop 

7. Opponent: call 
  

Turn 

8. Opponent: bet 
  

Turn 

9. Agent: raise 
  

Turn 

Table 1: Poker Game Sequence. This table shows a game sequence used for comparison between 
extracted (learned) features and handcrafted features. This sequence is not complete but it is just 
long enough to see the differences between the two feature sets. 
 

Before going into the results, first let us look at ASHE’s hand-crafted features. ASHE 

uses a total of ten features as input to its opponent modeling networks out of which six are 
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related to the current game state. Two of these six hand-crafted features are ASHE’s total bet and 

opponent’s total bet [Li 2018]. Since the extracted features did not consider bet sizes, these two 

features were excluded from the comparison. Therefore, the considered handcrafted features 

were narrowed down from ten to four (explained in table 2):  

Feature Name Definition 

Flush and Straight Draw Probability of a random hand hitting flush or straight given 
the board. 

Pair(s) 0: no pair on board, 0.5: one pair on board, 1.0: two pairs on 
board. 

Betting Round One-hot encoding of the betting rounds i.e. preflop, flop, 
turn and river. 

Raw Hand Strength Probability of ASHE’s hand beating a random hand given 
the board 

Table 2: ASHE’s Handcrafted Features. These are the descriptions of ASHE’s handcrafted 
features considered in this comparison. 
 
One can easily observe that these features only changed between betting rounds (all of them 

depend on cards on the table). So without bet sizes, the hand-crafted features did not provide 

additional information on actions within a betting round (like checks, bets and raises). This can 

be clearly seen in the PCA comparison between the two feature sets for the above game sequence 

(shown in table 3). 

Action Round Hand-crafted PCA Extracted PCA 

1. Opponent: bet Pre-flop [ 0.1412,  1.101] [16.49, 0.4526] 

2. Agent: call Flop [-0.5835, -0.1144] [-1.065, -2.365] 

3. Opponent: bet Flop [-0.5835, -0.1144] [-1.133, -2.306] 

4. Agent: raise Flop [-0.5835, -0.1144] [-1.143, -2.175] 

5. Opponent: raise Flop [-0.5835, -0.1144] [-1.157, -2.105] 
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6. Agent: raise Flop [-0.5835, -0.1144] [-1.169, -2.05] 

7. Opponent: call Turn [ 0.9255, -0.1762] [-1.677, 0.612] 

8. Opponent: bet Turn [ 0.9255, -0.1762] [-1.672, 0.631] 

9. Agent: raise Turn [ 0.9255, -0.1762] [-1.669, 0.632] 

Table 3: Principal Components Of Feature Sets. This table shows the two principal components 
yielded from a PCA of the handcrafted features and the extracted features of the sample poker 
game sequence in table 1. Doing a PCA simplifies comparing the two feature sets due to lowered 
dimensionality. 
 

The hand-crafted features were reduced from seven dimensions (betting round has four 

dimensions) and the extracted features were reduced from 70 dimensions (50 from action 

sequence model and 20 from card model) to two principal components. A PCA comparison in 

this context was just a comparison of the clusters formed in principal components (like 

measuring distances within a cluster) of both the feature sets. Due to the low dimensionality and 

sample size, the clusters for these principal components could be seen without applying any 

clustering algorithms. Table 3 and figure 7 show that the extracted features were clustered in a 

similar way as the hand-crafted features (based on the betting round). However, the extracted 

features offered some variability within a cluster (or betting round) whereas the hand-crafted 

features converged to the same point within a betting round. This showed that extracted features 

capture more fine-grained information than the hand-crafted features. This finer grained 

information was coming from the action sequence model. 
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(a) PCA of handcrafted features                                   (b) PCA of extracted features 

Figure 7: PCA Comparison. Shows the principal components of both the feature sets plotted on a 
2D graph. This graph helps to see the clusters and the variability within a cluster. 

 
This comparison shows that the extracted features are meaningful because they are 

clustered on betting round (just like the hand-crafted features) and they are also better than the 

hand-crafted features because they contain more information within each cluster or betting 

round. 

5. Future Work 

The learned features took the entire poker game state into account except for bet sizes. 

Learning from bet sizes could give important information like does the opponent want the agent 

to call or fold, whether it is an all-in, etc. The action sequence model can be modified to include 

bet sizes. However, making this modification will be challenging because calculating loss for bet 

sizes (a regression problem) will be different from calculating loss for actions (a classification 

problem). One possible solution could be to group bet sizes into buckets that are multiples of the 

pot size. 
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After the entire game state is represented in the extracted features, the model can be 

tested out with real poker gameplay. This evaluation can be done either by switching out the 

handcrafted features in ASHE with the new model or by building a simple poker agent that can 

be tested with and without the model. The former may take longer than building a simple poker 

agent due to the training required to integrate this model into ASHE’s LSTMs. However, testing 

on ASHE would give more decisive results than on a simple poker agent. 

6. Conclusion 

This research is about learning useful features from raw poker game state. These learned 

features have the potential to improve the performance of ASHE and other neural network 

approaches to playing poker. Moreover, it can make ASHE more generalizable to use in other 

incomplete information games. The results show that it is possible to extract a handful of features 

without losing much information about the game. The results also show that the extracted 

features are similar to hand-crafted features but they also contain more fine grained information 

than the latter. This shows that the extracted features are more useful than the hand-crafted 

features. Although this conclusion is a sign of progress, the model still needs to be tested on 

actual poker gameplay to see if it works. The finish line is not crossed yet. 
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