

Learning Useful Features For Poker

Arjun Nagineni

December 5, 2018

Supervisor: Risto Miikkulainen

Second Reader: Gordon Novak

Departmental Reader: Robert Van De Geijn

Department of Computer Science

The University of Texas at Austin

Contents

 1 Introduction 3

 2 Related Work 5

2.1 Poker Algorithms 5

2.2 RNNs 8

 ​3 Modeling Experiments 11

3.1 Cards Model 12

3.2 Action Sequence Model 13

 ​4 Comparison Experiments 17

 5 Future Work 21

 6 Conclusion 22

2

Abstract

This thesis focuses on using neural networks to extract useful features from a poker game. These

features will be used to exploit opponent behavior in playing poker. The opponent modeling

network was built by Xun Li in prior work and this thesis is about exploring a different game

state representation in the network. Currently, the input features are hand-made using common

poker knowledge. The research is to let the computer figure out which features are important

from the raw state of the poker game instead of using the hand-made features. Just as neural

networks are proven to work better for extracting visual features for various applications, the

project’s goal is to prove that for poker game representation. This research focuses on state

representation only and actual gameplay (with the new representation) needs to be explored in

future work. The model built in this thesis was able to represent most of the poker game state

(except bet sizes) by significantly compressing it (through feature learning) while not losing

much information. Moreover, the compressed representation is found to be similar yet better than

the handcrafted input features because it packs more nuanced information than the latter. In the

future, the model can be extended to include bet sizes and tested out in actual poker gameplay.

1. Introduction

Incomplete information games are everywhere in our economy like trading and investing,

business and international negotiations, wars, etc. With such use cases, getting better at playing

incomplete information games will be quite significant for our society. To study and come up

with new algorithms for incomplete information games, one has to start with a well-defined

experimental model. Poker is one such example. The rules are well-defined and the information

3

is incomplete (opponent’s cards are unknown). Historically, Nash equilibrium based algorithms

like Counterfactual Regret Minimization (CFR) worked best for playing poker [Zinkevich 2007].

In fact, heads up limit poker is solved by these methods [​Bowling 2017​]. However, CFR plays a

defensive strategy that does not maximize winnings and it works only for heads-up (two player)

poker while requiring massive compute power and memory (more on this in “related work”

section). Therefore, other methods like neural networks are worth exploring to play poker.

Li and Miikkulainen [2018] created a dynamically adapting poker player based on

opponent behavior. Li et al.’s poker player is called Adaptive System of Holdem (ASHE). ASHE

is found to be more profitable than Nash equilibrium based poker agents against exploitable

players while still being competitive against the best Nash equilibrium based players [Li 2018].

ASHE uses Long-Short Term Memory (LSTM) neural network modules to predict opponent

behavior and neuro-evolution to train the LSTM modules. However, ASHE also relies on

handcrafted features from common poker knowledge as input to the LSTM modules. This

research aims to find out whether extracting input features using neural networks from raw poker

game states can replace the hand-crafted input features.

One potential benefit of using learned features over hand-crafted features is that ASHE’s

performance can get better. When using a neural network approach, the goal has long been to

learn useful features in the hidden units that will be used to predict the outcome. By giving

handcrafted features instead of the raw poker state itself as the input, ASHE is being

handicapped by not allowing it to come up with its own innovative set of features. Moreover,

these features could be learned from factors derived from the training data that humans may not

know about. In other applications, research has shown that extracting features from raw state

4

using neural networks works better than handcrafted features. For example, researchers have

found that using a convolutional neural network on raw speech information is better at extracting

human emotions than traditional systems that use “audio-based or image-based hand-crafted

features” [Papakostas 2017]. Such results in other domains also give hope that feature learning

will be better than human-made features for ASHE.

Another benefit of feature learning is that the model becomes more generalizable.

Currently to apply ASHE’s model in other incomplete information games, an expert in the field

needs to handcraft features as input to ASHE. Finding this expert and encoding his or her

intuitive knowledge will be difficult. If the feature learning model is used, only the raw state of

the problem is needed to get results from ASHE. Moreover, neural networks sometimes turn out

to be much better than experts which happened in the case of Go [Silver 2017]. So this project

will be a success even if ASHE’s performance stays about the same after replacing the

handcrafted features.

2. Related Work

The first part of this section discusses the successful poker algorithms in the past. It also

discusses some of the newer neural network based approaches and where this thesis fits in. The

second part of the section focuses on recurrent neural networks, a key component in this research

and compares Long-Short Term Memory networks with Gated Recurrent Units.

2.1 Poker Algorithms

For a long time, researchers have tried to solve poker using game theory techniques like

finding Nash equilibria in condensed poker game states. In 2007, Zinkevich et al. introduced a

better technique called Counterfactual Regret Minimization (CFR) for playing poker-like games

5

[Zinkevich 2007]. CFR is essentially a self-play algorithm where the program plays billions of

rounds against itself. After each game, the algorithm evaluates which actions would make the

program’s strategy better over all the previous games (a positive “regret”). These actions are then

performed more often in future games. The average strategy over the billions of hands played

will converge to a Nash equilibrium for the game [Zinkevich 2007]. CFR is successful at playing

poker because it employs a defensive strategy which is nearly impossible to exploit.

With the focus on playing safe, CFR does not maximize winnings against a typical

player. So there is room for another poker playing algorithm that focuses on winning big by

exploiting opponent behavior. As mentioned in the introduction, Xun et al. are aiming to do just

that with ASHE. Moreover the CFR self-play algorithm is quite compute intensive for massive

state space games like Texas hold ‘em poker (3 x 10​14​ information sets for 2 player limit hold

‘em). So to play complex games, the successful CFR algorithms create an abstraction of the

game like grouping “many different card dealings into buckets” [​Gibson 2011]​. Even with the

abstractions, CFR only works for heads-up (two player) poker and is still quite memory intensive

during actual gameplay. For example, CMU’s Tartarian that statistically tied with pro poker

players had a 2 TB online lookup table [Yakovenko 2016]. A neural network approach (like

ASHE) could be used to significantly reduce the memory and compute requirements at runtime.

For example, a poker playing convolutional neural network designed by Yakovenko et al. [2015]

fits in a 1MB file. Such low compute and memory requirements during gameplay mean that

neural network approaches like opponent modeling can also be extended to multiple players.

There have been attempts to model and exploit opponent behavior in poker and other

contexts. Most of these experiments used neural network approaches. One such example is

6

University of Alberta’s poker agent Poki. They have progressed from using a generic opponent

model (one size fits all approach) to a specific one (treating each opponent as distinct) that

tracked the opponent hand strength based on a “table of betting frequencies for various stages

during the hand” [Davidson 2000]. They also used a neural network to identify the most relevant

features in predicting opponent behavior. Those features turned out to be previous action and

previous amount to call. Although Poki has made considerable progress in opponent modeling

and achieved close to the average winnings of a professional poker player, as Davidson et al.

said: “the topic is far from being well-solved” [Davidson 2000]. There is still a need for better

opponent modeling in poker because the results are not yet as decisive as results of the CFR

approach for playing heads up no limit poker.

This thesis aims to improve opponent modeling in general by using feature extraction

without relying on hand-crafted features. Research has shown that neural networks are much

better at feature extraction than hand-made features in fields like computer vision. Almost three

decades ago, neural networks were used to extract features from raw image data that worked

much better than “engineered feature vectors” [​LeCun 1989​]. The goal for this project is to get to

a similar conclusion with poker game state representation.

Recently, advances have been made by a company called DeepStack to use neural

networks along with CFR (Nash equilibrium based) algorithms to create better approximations

[Moravcik 2017]. However, the input to the neural network is a ratio of pot size to opponent’s

stacks and encoding opponent hand probabilities into 1,000 buckets based on the community

cards. This representation is nowhere close to the raw state of a poker game. If this research

7

leads to a better set of features that are built from looking at the entire raw state of the game, the

following network could also be used to improve such Nash equilibrium approximation methods.

Researchers like Yakovenko et al. [2015] came very close to representing the raw poker

game state as input to a convolutional neural network. They used a 3D sparse array (31 x 17 x

17) that captures cards, pot size, previous betting rounds, button (dealer in the game). Although

this is a very comprehensive approach to representing the raw state, there are some unaccounted

details like the order of bets in each betting round (like check-raises) which is very important in

understanding opponent behavior.

2.2 Recurrent neural networks

Recently, recurrent neural networks (RNNs) have gained popularity for specific use cases

and can be explored for poker game representation too. Unlike regular feedforward networks,

recurrent networks have a loop or cycle in the connections between units. This loop allows

recurrent networks to work with data represented as an arbitrarily long sequence where order

matters. This feature of RNNs is where feedforward networks lack because they assume each

training example is independent with a fixed length [Lipton 2015]. Among all the recurrent

neural networks, Long Short-Term Memory networks (LSTMs) and Gated Recurrent Units

(GRUs) are the most popular mainly due to their success in natural language processing and

machine translation respectively [Hochreiter 1997; Cho 2014]. In this research, both LSTMs and

GRUs are explored to model the action sequence of a poker game. For this use case, GRUs were

found to provide better accuracy than LSTMs (more on this in the next section).

LSTMs were designed to solve the vanishing gradient problem that occurs in recurrent

networks due to repeated backpropagation (or simply multiplication) of gradients less than one.

8

Such repeated multiplication leads to a gradient very close to zero with increasing time steps and

the network will not be able to learn from long sequences. LSTMs solve the vanishing gradient

problem by maintaining an internal state that is added (instead of multiplied) to the processed

state and by forgetting unimportant states (through a concept called gating). Figure 1 describes

the structure of an LSTM cell.

Figure 1: LSTM Cell Structure [Andy 2017]. The diagram shows the flow of x​t​, a new element in
the sequence (e.g. a word in a paragraph) and h​t-1​, the previous output to generate the output at
current time step, h​t​. This diagram helps visualize the inner workings of an LSTM cell.

An LSTM cell (described in figure 1) has an input gate which is a sigmoid activation that rates

the importance of the input (0 means switch off input values, 1 means pass through). This gate

helps with only “remembering” important input. ​S​t​ is the internal state variable which is delayed

by a time step and added to the output from the input gate (this addition is important to deal with

the vanishing gradient problem). The forget gate and output gate have a similar filtering as the

input gate. The final output, ​h​t​ is an element-wise multiplication (denoted by the ‘X’) of tanh(​S ​t​)

and output of output gate. From the figure, it is evident that an LSTM cell offers a lot of

9

flexibility with what is set as input, what is “remembered” in the internal state and what is set as

output.

GRUs were recently introduced by Cho et al. [2014]​ ​to perform neural machine

translation. GRU is like a simplified LSTM which still solves the vanishing gradient problem

with two gates instead of three and without an internal state S​t​.

Figure 2: GRU Cell Structure [Kostadinov 2017]. ​The diagram shows the flow of x​t​, a new
element in the sequence (e.g. a word in a paragraph) and h​t-1​, the previous output to generate the
output at current time step, h​t​. This diagram helps visualize the inner workings of a GRU cell.
As shown in figure 2, there are two gates in a GRU cell: the update gate (left sigmoid function)

and the reset gate (right sigmoid function). The update gate determines “how much the unit

updates its activation (h​t​)” [Chung 2014]:

10

 z​t​ = (​W​​z ​​x​t​ + ​U​​z ​​h​t-1​) ​.σ (1)

where ​W​​ and ​B​​ are weight matrices. The reset gate determines how much of the previous state to

forget:

r​t​ = (​W​​r ​​x​t​ + ​U​​r ​​h​t-1​) ​.​ ​ (2)σ

If r​t​ is close to 0, the unit acts “as if it is reading the first symbol of an input sequence” [Chung

2014]. An intermediate memory state is computed (similar to S​t​ in the LSTM description above)

using the reset gate output:

 W U (3)anh(ht′ = t xt + rt ⊙).ht−1

The final output from the GRU cell is given by:

 (4)1) .ht = zt ⊙ ht−1 + (− zt ⊙ ht′

There are similarities between the internal workings of LSTM and GRU cells especially

with “the additive component of their update from t to t + 1” which helps avoid the

vanishing/exploding gradient problem [Chung 2014].​ ​​The next section shows how RNNs are

used in this research and how LSTMs and GRUs compare against each other for this use case.

3. Modeling Experiments

Ultimately, this project is successful if the learned features make ASHE more

generalizable or improve ASHE’s performance. However, training ASHE on each variation of

the feature extractor model in order to check the performance would be too time consuming

(given the time available for this thesis). So there needed to be an intermediate sanity check. This

check was to extract a handful of features from the raw representation of the game and be able to

reconstruct the game state back from it. This would ensure that the learned features are a

condensed and more robust version of the entire game state. Once this check is achieved, the

11

learned features can be used as input to a real poker agent like ASHE to check the performance.

This thesis shows results where the intermediate check is achieved for most of the poker game

state and the extracted features are similar yet more powerful than ASHE’s hand-crafted features.

To model the intermediary check, an autoencoder approach was used where the hidden

layers have fewer units than the input layer and the output layer is same as the input layer. The

hidden layer with least number of units will be the learned features. First the poker game state

was split into cards (the community and hole cards) and action sequence (all the actions along

with bet sizes that lead to the current round). Features for each of them were extracted in separate

neural networks because both have distinct input representations that required different models.

3.1 Cards Model

For the cards part of the poker game state, the model took seven cards (five community

cards and two hole cards) as input, each represented as a 52 element one-hot vector. So the total

number of input features for the cards model was 364. Some of these 52-element cards could be

all zeros which indicated that the card has not been drawn yet. The undrawn cards were

important to model because not all community cards are known in a poker game until the final

betting round. The card input then went through three densely connected layers where the feature

set was compressed from 364 to 100 to 50 to 20 features. This architecture is the encoding part

of the network. To decode back to the input, the 20 learned features were passed through another

three densely connected layers that went from 20 to 50 to 100 to 364 features. A sigmoid

activation function was applied at the output layer to introduce nonlinearities and to restrict the

output between 0 and 1 which made it consistent to compare with the one-hot encoded input

12

vectors. A crossentropy loss was used between the predicted input (the output) and the actual

input to improve the model.

The card model was trained on input batches of 32 on a data set with one million

randomly generated card sets. The accuracy of the model was measured on a validation dataset

(20% of the original dataset) by checking if each card was predicted correctly in the output rather

than checking every single feature. The model yields a 99.9%+ accuracy for 20 extracted

features. The accuracy drops for fewer learned features. For example, the accuracy was around

70% for 15 learned features. The relation between accuracy and extracted features is shown

better in figure 3. The accuracy fell drastically as extracted features were reduced.

Figure 3: Cards Model: Accuracy vs Extracted Features. A graph that shows the relation
between accuracy of the cards model and the number of extracted features.

3.2 Action Sequence Model

For the action sequence part of the poker game state, another model was built that was

quite different from the first one. In the card model, the cards were represented as 52 element

13

one-hot vectors. This was a straightforward representation but the action sequence was trickier

because of its variable length (there could be one action (i.e. a fold) to tens of actions in a single

poker game). Hence, there have been multiple iterations to find the model that works best and

some of them are discussed below. As mentioned in the related work section, feedforward

networks could not be used for variable length sequences and RNNs (LSTMs and GRUs) were

used instead. To keep the model simple for initial experiments, the action sequence data only

contained actions (check, call, bet, raise, fold to be precise) without accompanying bet sizes.

Variable length action sequences were generated strictly based on poker rules for training the

model where each action was a 5-element one hot encoded vector.

The first model built was a simple two layer LSTM network (one layer was the encoder

and the other was the decoder) shown in figure 4.

Figure 4: Initial Action Sequence Model. Each circle indicates input/output from an LSTM layer
and arrows indicate data flow through an LSTM layer. This diagram shows the simplicity of the
first model built.

An action was fed into the encoder per time step which compressed the five features into one

extracted feature. Then, the output at each time step was fed into the decoder to get the predicted

input. The decoder had a sigmoid activation instead of the usual tanh activation in a LSTM cell

14

to normalize the predicted input between 0 and 1. The accuracy for this model was measured by

checking if each action (5 element one-hot encoded vector) was predicted correctly. This model

achieved a 99.9%+ action accuracy while reducing the action state space by five times. However,

the main problem with this model was that it only learned features per time step (per action)

instead of learning from the entire sequence. A good poker agent needs to learn from the entire

sequence because it has information about betting behavior like check-raises.

So the next model was built to learn from the entire sequence (shown in figure 5). As the

encoder, this model had an RNN layer that took in a game sequence (batch size of one with

variable time steps) and gave out a 50-element vector. This vector was passed through a densely

connected feedforward layer which also output a 50-element vector and it constituted the learned

features. As the decoder, the learned features were passed through another RNN layer

length-of-input-sequence times. The output at each time step from the decoder RNN was the

five-element action in the input sequence. The model was trained on 100,000 poker game

sequences with a 80-20 training and validation split.

15

Figure 5: Final Action Sequence Model. The model took one game sequence at a time as input
and encoded it into a 50-element vector. This 50-element vector was turned into a sequence
length x 50 element vector (in the Repeat Layer) by simply copying it sequence-length times. This
output was finally fed into the decoder RNN to get the original game sequence back.

The reported accuracy for this model was measured from a separate test dataset with

10,000 game sequences and a total of 29,541 actions. The accuracy was just a percentage of

correctly predicted actions over the total number of actions. While using LSTMs, the model

achieved an accuracy of 85.6% whereas the model using GRUs yielded an accuracy of 93.1%

(figure 6 gives the confusion matrices for both the models). Moreover, the model with GRUs

took 20% less training time than the model with LSTMs (633 seconds vs 796 seconds per

epoch). These results were in line with what Chung et al. [2014] found in their comparison

between LSTMs and GRUs.

16

(a) LSTM Model’s Confusion Matrix (b) GRU Model’s Confusion Matrix

Figure 6: Confusion Matrix Comparison. This comparison shows a more uneven distribution of
errors (especially between check and bet) in LSTM model than the GRU model.

Although GRUs are simpler than LSTMs, it is interesting to note that they performed

significantly better than LSTMs. GRUs were introduced to perform neural machine translation

which uses a similar encoder-decoder (sequence-to-sequence) model as the action sequence

model [Cho 2014]. The machine translation use case could explain why GRUs were better suited

for this model than LSTMs.

4. Comparison Experiments

As mentioned in the beginning of this section, the ultimate goal with the extracted

features is to see if they are better than ASHE’s hand-crafted features. Due to time and resource

constraints, the extracted features from the above two models could not be incorporated in ASHE

within this thesis project for a direct comparison with the hand-crafted features. However, they

could still be compared by seeing how much information they contain and how they are

correlated. To do this comparison, hand-crafted and extracted features were generated for a

17

sample poker game sequence and then a principal component analysis (PCA) was performed on

both the feature sets to reduce the dimensionality to two. Then, the principal components were

compared against each other through clustering. Table 1 contains the poker game sequence used

for comparison.

Action Hole Cards Community Cards Round

1. Opponent: bet

 Pre-flop

2. Agent: call

Flop

3. Opponent: bet

Flop

4. Agent: raise

Flop

5. Opponent: raise

Flop

6. Agent: raise

Flop

7. Opponent: call

Turn

8. Opponent: bet

Turn

9. Agent: raise

Turn

Table 1: Poker Game Sequence. This table shows a game sequence used for comparison between
extracted (learned) features and handcrafted features. This sequence is not complete but it is just
long enough to see the differences between the two feature sets.

Before going into the results, first let us look at ASHE’s hand-crafted features. ASHE

uses a total of ten features as input to its opponent modeling networks out of which six are

18

related to the current game state. Two of these six hand-crafted features are ASHE’s total bet and

opponent’s total bet [Li 2018]. Since the extracted features did not consider bet sizes, these two

features were excluded from the comparison. Therefore, the considered handcrafted features

were narrowed down from ten to four (explained in table 2):

Feature Name Definition

Flush and Straight Draw Probability of a random hand hitting flush or straight given
the board.

Pair(s) 0: no pair on board, 0.5: one pair on board, 1.0: two pairs on
board.

Betting Round One-hot encoding of the betting rounds i.e. preflop, flop,
turn and river.

Raw Hand Strength Probability of ASHE’s hand beating a random hand given
the board

Table 2: ASHE’s Handcrafted Features. These are the descriptions of ASHE’s handcrafted
features considered in this comparison.

One can easily observe that these features only changed between betting rounds (all of them

depend on cards on the table). So without bet sizes, the hand-crafted features did not provide

additional information on actions within a betting round (like checks, bets and raises). This can

be clearly seen in the PCA comparison between the two feature sets for the above game sequence

(shown in table 3).

Action Round Hand-crafted PCA Extracted PCA

1. Opponent: bet Pre-flop [0.1412, 1.101] [16.49, 0.4526]

2. Agent: call Flop [-0.5835, -0.1144] [-1.065, -2.365]

3. Opponent: bet Flop [-0.5835, -0.1144] [-1.133, -2.306]

4. Agent: raise Flop [-0.5835, -0.1144] [-1.143, -2.175]

5. Opponent: raise Flop [-0.5835, -0.1144] [-1.157, -2.105]

19

6. Agent: raise Flop [-0.5835, -0.1144] [-1.169, -2.05]

7. Opponent: call Turn [0.9255, -0.1762] [-1.677, 0.612]

8. Opponent: bet Turn [0.9255, -0.1762] [-1.672, 0.631]

9. Agent: raise Turn [0.9255, -0.1762] [-1.669, 0.632]

Table 3: Principal Components Of Feature Sets. This table shows the two principal components
yielded from a PCA of the handcrafted features and the extracted features of the sample poker
game sequence in table 1. Doing a PCA simplifies comparing the two feature sets due to lowered
dimensionality.

The hand-crafted features were reduced from seven dimensions (betting round has four

dimensions) and the extracted features were reduced from 70 dimensions (50 from action

sequence model and 20 from card model) to two principal components. A PCA comparison in

this context was just a comparison of the clusters formed in principal components (like

measuring distances within a cluster) of both the feature sets. Due to the low dimensionality and

sample size, the clusters for these principal components could be seen without applying any

clustering algorithms. Table 3 and figure 7 show that the extracted features were clustered in a

similar way as the hand-crafted features (based on the betting round). However, the extracted

features offered some variability within a cluster (or betting round) whereas the hand-crafted

features converged to the same point within a betting round. This showed that extracted features

capture more fine-grained information than the hand-crafted features. This finer grained

information was coming from the action sequence model.

20

(a) PCA of handcrafted features (b) PCA of extracted features

Figure 7: PCA Comparison. Shows the principal components of both the feature sets plotted on a
2D graph. This graph helps to see the clusters and the variability within a cluster.

This comparison shows that the extracted features are meaningful because they are

clustered on betting round (just like the hand-crafted features) and they are also better than the

hand-crafted features because they contain more information within each cluster or betting

round.

5. Future Work

The learned features took the entire poker game state into account except for bet sizes.

Learning from bet sizes could give important information like does the opponent want the agent

to call or fold, whether it is an all-in, etc. The action sequence model can be modified to include

bet sizes. However, making this modification will be challenging because calculating loss for bet

sizes (a regression problem) will be different from calculating loss for actions (a classification

problem). One possible solution could be to group bet sizes into buckets that are multiples of the

pot size.

21

After the entire game state is represented in the extracted features, the model can be

tested out with real poker gameplay. This evaluation can be done either by switching out the

handcrafted features in ASHE with the new model or by building a simple poker agent that can

be tested with and without the model. The former may take longer than building a simple poker

agent due to the training required to integrate this model into ASHE’s LSTMs. However, testing

on ASHE would give more decisive results than on a simple poker agent.

6. Conclusion

This research is about learning useful features from raw poker game state. These learned

features have the potential to improve the performance of ASHE and other neural network

approaches to playing poker. Moreover, it can make ASHE more generalizable to use in other

incomplete information games. The results show that it is possible to extract a handful of features

without losing much information about the game. The results also show that the extracted

features are similar to hand-crafted features but they also contain more fine grained information

than the latter. This shows that the extracted features are more useful than the hand-crafted

features. Although this conclusion is a sign of progress, the model still needs to be tested on

actual poker gameplay to see if it works. The finish line is not crossed yet.

22

Acknowledgements

I would like to thank my thesis supervisor, Dr. Miikkulainen for all the brainstorming and

planning sessions which were instrumental in guiding this thesis in the right direction. I would

also like to thank Xun Li for spending countless hours on building my foundational knowledge

about neural networks, poker and ASHE. Finally, I would like to thank my thesis committee, Dr.

Novak and Dr. Van De Geijn for their time and feedback on my tech report.

23

References

Li, X., & Miikkulainen, R. (2018). Dynamic adaptation and opponent exploitation in computer

poker (unpublished doctoral dissertation). University of Texas, Austin, TX.

Zinkevich, M., Johanson, M., Bowling, M., & Piccione, C. (2007). Regret minimization in

games with incomplete information. ​Conference on Neural Information Processing Systems.

Bowling, M., Burch, N., Johanson, M., & Tammelin, O. (2017). Heads-up limit hold’em is

solved. ​Communications of the ACM, 65​(11), 81-88.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., . . . Hassabis,

R. (2017). ​Mastering the game of go without human knowledge. ​Nature, 550​, 354-359.

Papakostas, M., Spyrou, E., Giannakopoulos, T., Siantikos, G., Sgouropoulos, D., Mylonas, P.,

& Makedon, F. (2017). Deep visual attributes vs. hand-crafted audio features on multidomain

speech emotion recognition. ​Computation, 5​(2), 26.

Gibson, R., Szafron, D. (2011). On strategy stitching in large extensive form multiplayer games.

Conference on Neural Information Processing Systems.

Yakovenko, N. (2016). Poker and AI: Reporting from the 2016 Annual Computer Poker

Competition. ​Poker News​. Retrieved from

https://www.pokernews.com/strategy/poker-ai-2016-annual-computer-poker-competition-24

246.htm

Andy. (2017). Recurrent neural networks and LSTM tutorial in Python and TensorFlow.

Adventures in Machine Learning.​ Retrieved from

http://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/

24

Davidson, A., Billings, D., Schaeffer, J., Szafron, D. (2000). Improved opponent modeling in

poker. ​International Conference on Artificial Intelligence,​ 1467-1473.

Lipton, Z. C., Berkowitz, J., Elkan, C. (2015). A critical review of recurrent neural networks for

sequence learning. ​University of Cornell Library (arxiv)​.

Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory. ​Neural Computation​, 9(8),

1735-1780.

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., & Jackel,

L. D. (1989). Handwritten digit recognition with a back-propagation network. ​Conference on

Neural Information Processing Systems.

Moravcik, M., Schmid, M., Burch, N., Lisy, V., Morrill, D., Bard, N., . . . Bowling, M. (2017).

DeepStack: Expert-level artificial intelligence in heads-up no-limit poker. ​Science,

355​(6320).

Yakovenko, N., Cao, L., Raffel, C., & Fan, J. (2015). Poker-CNN: A pattern learning strategy

for making draws and bets in poker games. ​AAAI'16 Proceedings of the Thirtieth AAAI

Conference on Artificial Intelligence​, 360-367.

Cho, K., Merrienboer, B. V., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural

machine translation: Encoder-decoder approaches. ​Eighth Workshop on Syntax, Semantics

and Structure in Statistical Translation.

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent

neural networks on sequence modeling. ​University of Cornell Library (arxiv)​.

Kostadinov, S. (2017). Understanding GRU networks. ​Towards Data Science​. Retrieved from

https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be

25

