
In Proceedings of the 1998 IEEE Conference on Evolutionary Computation (ICEC-98, Anchorage, AK).
Piscataway, NJ: IEEE, 1998.

Hierarchical Evolution of Neural Networks
�

David E. Moriartyy and Risto Miikkulainen

Department of Computer Sciences

The University of Texas

Austin, TX 78712

moriarty@isi.edu,risto@cs.utexas.edu

Abstract|
Inmost applications of neuro-evolution, each individual in

the population represents a complete neural network. Re-
cent work on the SANE system, however, has demonstrated
that evolving individual neurons often produces a more ef-
�cient genetic search. This paper demonstrates that while

SANE can solve easy tasks very quickly, it often stalls in
larger problems. A hierarchical approach to neuro-evolution
is presented that overcomes SANE's di�culties by integrat-
ing both a neuron-level exploratory search and a network-
level exploitive search. In a robot arm manipulation task,

the hierarchical approach outperforms both a neuron-based
search and a network-based search.

I. Introduction

Arti�cial evolution is an e�ective method for forming
neural networks in tasks where sparse reinforcement pre-
cludes normal supervised methods such as backpropaga-
tion. The evolutionary framework frees the implementor
from generating training examples and provides a highly
adaptive mechanism for dynamic environments. Recent
work has shown evolved neuro-controllers e�ective in sev-
eral unstable, dynamic control tasks [3], [6], [8], [13]. The
bane of the evolutionary methods, however, has been the
large number of �tness evaluations that must be performed
to achieve a high level of performance.
Recently, we have developed a more e�cient evolution-

ary approach called SANE (Symbiotic, Adaptive Neuro-
Evolution) [6], which explicitly decomposes the evolution-
ary search for a complete solution into several parallel
searches for partial solutions. In most approaches to neuro-
evolution, each individual represents a complete neural net-
work that is evaluated independently of other networks in
the population [2], [5], [9], [13]. By treating each member
as a separate full solution, the genetic algorithm focuses the
search towards a single type of individual, which normally
leads to convergence on a single solution [4].
In contrast, SANE's individuals do not represent com-

plete solutions; they represent partial solutions. More
speci�cally, each individual represents a single hidden neu-
ron in a three layer neural network. Complete networks
are built by decoding several individuals' chromosomes and
neurons are co-evolved by evaluating how well they per-
form when combined with other neurons in the popula-
tion. Since a single neuron cannot perform the whole task
alone, e�ective networks must contain neurons that per-

�This research was supported in part by the National Science Foun-
dation under grant #IRI-9504317.
yNow at USC/ISI, 4676 AdmiraltyWay, Marina del Rey, CA 90292.

form di�erent functions. Inherent evolutionary pressures
are therefore present to evolve several di�erent types or
specializations of individuals within the population. Thus,
unlike the network-level evolution, the population does not
converge to a single individual, but instead remains diverse
throughout evolution.

Evolution at the neuron level provides two primary ad-
vantages. First, since the population is diverse, there will
always be a rich collection of genetic material from which
crossover operations can create new types of individuals.
In contrast, a genetic search in a converged population is
directed by the mutation operator and may progress very
slowly. Second, evolution at the neuron level more accu-
rately evaluates the fundamental building blocks of neu-
ral networks. In a network-level evolution, each neuron
is implemented only with the other neurons encoded on
the same chromosome. Consequently, a very good neuron
may exist on a chromosome but be subsequently lost be-
cause the other neurons on the chromosome are poor. In
SANE's neuron-level evolution, neurons are continually re-
combined with other neurons, to more accurately evaluate
their contribution to the neural networks.

Empirically, we have found SANE's neuron-level evolu-
tion to perform very well in simple benchmarks. For exam-
ple, in the well-known inverted pendulum problem, SANE
found solutions much faster than temporal di�erence meth-
ods such as the Adaptive Heuristic Critic [1] andQ-learning
[12], and other neuro-evolution systems such as GENITOR
[13]. SANE is e�ective in these problems because solutions
are plentiful and generally found in the �rst 10 generations
[6]. Unfortunately, in more di�cult problems that require
high precision within the solution space, SANE is unable
to capitalize on the top neuron combinations to improve
the population in later generations. We have found that a
converged network-level population operating through mu-
tation eventually catches up to SANE and �nds better so-
lutions. Thus, an important research question is how to
combine the early e�ciency of a neuron-level search with
the �ne tuning of a network-level search.

This paper presents a hierarchical approach to neuro-
evolution that incorporates the explorative nature of a
neuron-based search with the exploitive feature of a
network-based search. The approach maintains and simul-
taneously evolves two populations: a population of neurons
and a population of network blueprints. In a sophisticated
robot arm task, the hierarchical approach �nds better solu-
tions than a neuron-based search and is more e�cient than

a network-based search. These results suggest that a hier-
archical approach to neuro-evolution may be appropriate
for solving large scale problems.

II. Hierarchical Neuro-Evolution

Our hierarchical approach incorporates ideas from a
standard network-level evolutionary search and SANE's
neuron-level search. Two populations are maintained and
evolved: a population of neurons and a population of neural
network blueprints. Each individual in the neuron popu-
lation speci�es a set of connections to be made within a
neural network. Each individual in the network blueprint
population speci�es a set of neurons to include in a neu-
ral network. Conjunctively, the neuron evolution searches
for e�ective partial networks, while the blueprint evolution
searches for e�ective combinations of the partial networks.
The basic �tness evaluation algorithm for the hierarchi-

cal approach is given in the following pseudo-code, which
is explained in the next two sections.

for each neuron n in population Pn
n:fitness 0
n:participation 0

for each blueprint b in population Pb
nn decode(b)
b:fitness task(nn)
for each n in b

n:fitness n:fitness + b:fitness
n:participation n:participation+ 1

for each neuron n in population Pn
n:fitness n:fitness / n:participation

A. The Neuron Population

The neuron-level evolution uses the same basic strategy
as SANE [6] for evaluating and recombining good individ-
ual neurons. Neurons are evaluated based on the average
performance of the networks in which they participate.
The population consists of a large collection of hidden

neuron de�nitions for a three-layer feedforward network
(�gure 1). A neuron is represented by a series of connection
de�nitions that describe the weighted connections routed
through that neuron from the input layer and to the output
layer. Each neuron has a �xed number of connections, but
may allocate them arbitrarily among the units in the input
and output layers. A connection de�nition consists of a
label and weight pair. The label is an integer value that
speci�es a speci�c input or output unit, and the weight
speci�es the strength of the connection. Figure 1 gives
three example hidden neuron de�nitions and the resulting
neural network.
The neurons are evolved using a generational evolution-

ary algorithm that iterates over two phases: an evaluation
phase and a reproduction phase. During the evaluation
stage, neuron subpopulations of size � are selected for par-
ticipation and combined to form a neural network. The
participation selection method depends on the blueprint

0.3
-0.7

0.4

-0.6

-1.2

-0.8
0.1 1.1 -1.4

1 2 3 4 5

6 7

Input Layer

Output Layer

4 1.1 6 -0.7 7 0.4

1 -0.8 5 -1.4 7 0.3

2 0.1 4 -0.6 7 -1.2

Label Weight

Fig. 1. A three-layer feedforward network is created from 3 neurons
de�nitions. The neurons are shown on the left, and the corre-
sponding network is shown on the right.

population and will be described in section II-B. The net-
works are evaluated in the task and the �tness is added
to each participating neuron's �tness variable. At the end
of the evaluation stage, each neuron's �tness is normalized
by dividing the sum of its �tness scores by the number of
networks in which it participated. The result is a mea-
sure of average �tness of the networks in which the neuron
participated.
In the reproduction phase, genetic operators, such as se-

lection by rank, one point crossover, and mutation, are
used to obtain new neurons. For each neuron in the top
25% of the population (according to �tness rank), a mate
is selected randomly among the top 25%. Each mating op-
eration creates two o�spring: a copy of one of the mates
and a child created through one-point crossover. The sec-
ond child created by crossover is discarded. Copying one
of the parents reduces the e�ect of adverse neuron mu-
tation on the blueprint-level evolution, as will be further
explained in section II-B. The two o�spring replace the
worst-performing neurons in the population. Finally, Mu-
tation at the rate of 1% per chromosome position is per-
formed on the entire population as the last step in each
generation.
Such an aggressive, elitist breeding strategy is not nor-

mally used in evolutionary applications, since it leads to
quick convergence of the population. A neuron evolution,
however, performs quite well with this aggressive selection
strategy, since it contains strong evolutionary pressures
against convergence.

B. The Network Blueprint Population

The purpose of the blueprint population is twofold: to
organize the neurons into workable groups and to assign
more trials to the better-performing neurons. In original
SANE, networks are formed by randomly combining sub-
populations of neurons. Here, the network blueprints spec-
ify which neurons should be connected together. As e�ec-
tive neuron combinations are found, they are preserved in
the blueprint chromosomes and propagated to future gen-
erations.
Maintaining network blueprints produces more accu-

rate neuron evaluations and concentrates the search on
the best networks. Since neurons are connected system-
atically based on past performance, they are more con-
sistently combined with other neurons that perform well
together. Additionally, better-performing neurons gar-

ner more pointers from the blueprint population and thus
participate in a greater number of networks. Biasing
the neuron participation towards the historically better-
performing neurons provides more accurate evaluations of
the top neurons. The sacri�ce, however, is that newer neu-
rons may not receive enough trials to be accurately evalu-
ated. In practice, allocating more trials to the top neurons
produces a signi�cant improvement over uniform neuron
participation.

The primary advantage of evolving network blueprints,
however, is the exploitation of the best networks found dur-
ing evolution. Original SANE fosters no memory of the
previous networks formed, and good neuron combinations
found in one generation often never occur in subsequent
generations. Such behavior causes the quick, explorative
search to stall, because it cannot exploit the best neu-
ron combinations. The hierarchical approach maintains
the pro�cient collections of neurons in the blueprint chro-
mosomes and ensures that the best networks are recon-
structed. By evolving the blueprint population, the best
neuron combinations are also recombined to form new, po-
tentially better, collections of neurons. Hierarchical neuro-
evolution thus provides a more exploitative search that can
build upon the best networks found during evolution and
focus the search in later generations.

Each individual in the blueprint population contains a
series of neuron pointers. More speci�cally, a blueprint is
an array, of size �, of address pointers to neuron structures.
Figure 2 illustrates how the blueprint population is inte-
grated with the neuron population. Initially, the blueprint
pointers are randomly assigned to neurons in the neuron
population. During the neuron evaluation stage, subpop-
ulations of neurons are selected based on each blueprint's
array of pointers. Thus unlike original SANE which forms
networks by randomly selecting subpopulations of neurons,
hierarchical neuro-evolution forms networks by following
pointers in each blueprint.

Blueprints receive the �tness score of the neural network
that they specify. After each blueprint has been evaluated,
the blueprint population is ranked and crossover operations
are applied to the top blueprints. The new o�spring receive
the same address pointers which the parent chromosomes
contained. In other words, if a parent chromosome con-
tains a pointer to a speci�c neuron, one of its o�spring will
point to that same neuron (barring mutation). The current
genetic algorithm on the blueprint level is identical to the
aggressive strategy used at the neuron level, however the
similarity is not essential and a more-standard genetic algo-
rithm could be used. Empirically, the aggressive strategy
at the blueprint level coupled with the strong mutation
strategy described below, has outperformed many of the
more-standard genetic algorithms.

To avoid convergence problems at the blueprint level, a
two-component mutation strategy is employed. First, one
pointer in each o�spring blueprint is randomly reassigned
to another member of the neuron population. This strat-
egy promotes participation of neurons other than the top
neurons in subsequent networks. Thus, a neuron that does

ll lw w w

ll lw w w

ll lw w w

ll lw w w

ll lw w w

Network Blueprint Population

ll lw w w

ll lw w w

ll lw w w

Neuron Population

Fig. 2. An overview of the network blueprint population in relation
to the neuron population. Each member of the neuron popula-
tion speci�es a series of connections (labels and weights) to be
made within a neural network. Each member of the blueprint
population speci�es a series of pointers to speci�c neurons which
are used to build a neural network.

not participate in any networks can acquire a pointer and
participate in the next generation. Since the mutation only
occurs in the blueprint o�spring, the neuron pointers in the
top blueprints are always preserved.

The second mutation component is a selective strategy
designed to take advantage of the new structures created
by the neuron evolution. Recall that a breeding neuron
produces two o�spring: a copy of itself and the result of
a crossover operation with another breeding neuron. Each
neuron o�spring is thus similar to and potentially better
than its parent neurons. The blueprint evolution can use
this knowledge by occasionally replacing pointers to breed-
ing neurons with pointers to o�spring neurons. In the ex-
periments described in this paper, pointers are switched
from breeding neurons to one of their o�spring with a 50%
probability. Again, this mutation is only performed in the
o�spring blueprints, and the pointers in the top blueprints
are preserved.

This selective mutation mechanism has two advantages.
First, because pointers are reassigned to neuron o�spring
resulting from crossover, the blueprint evolution can ex-
plore new neuron structures. Second, because pointers are
also reassigned to o�spring that were formed by copying
the parent, the blueprints become more resilient to adverse
mutation in the neuron evolution. If pointers were not reas-
signed to copies, many blueprints would point to the same
exact neuron, and any mutation to that neuron would a�ect
every blueprint pointing to it. When pointers are occasion-
ally reassigned to copies, however, such mutation is limited
to only a few blueprints. The e�ect is similar to schema
promotion in standard genetic algorithms. As the popula-
tion evolves, highly �t schema (i.e. neurons) become more
prevalent in the population, and mutation to one copy of
the schema do not a�ect other copies in the population.

3

1

2

Fig. 3. The Simderella robot arm simulation of the OSCAR robot.

III. Evaluation: Manipulating a Robot Arm

Much of our research is currently directed at applica-
tions of neuro-evolution for robot control. Speci�cally, we
are evolving neural networks to control a robot arm us-
ing visual input. Most neural network applications to this
problem learn hand-eye coordination through supervised
training methods which require examples of correct be-
havior. Unfortunately, the current approaches for gener-
ating training examples for robot arm control are very lim-
ited and ine�ective in uncertain or obstacle-�lled domains.
Neuro-evolution, however, does not require input/output
examples and can learn the intermediate joint rotations
necessary for avoiding obstacles in uncertain environments.
Thus, neuro-evolution provides a promising framework for
the automatic development of robot arm controllers in re-
alistic domains.
Three neuro-evolutionary approaches were used to de-

velop controllers in this domain: a neuron-based search,
a network-based search, and the hierarchical search. The
particular robot arm simulator used in these experiments
was the Simderella 2.0 package written by van der Smagt
[10]. Simderella, shown in �gure 3, is a simulation of the
OSCAR 6 degree-of-freedom anthromoporphic arm.
The goal of the network controller is to maneuver the arm

to a position within ten centimeters of a randomly-placed
target object (A secondary network, not described in this
paper, can learn the smaller, �nite movements necessary
to grasp the object [7]). The controller moves the arm by
specifying joint rotations to the �rst three joints at each
time step. The arm contains a camera, located in the end
e�ector (hand), that provides the x, y, and z distances of
the target object from the current end e�ector position.
At each time step, the neural network controller receives
its current joint positions and the target distances as it's
input and generates the degrees to which each of its three
controllable joints are to be rotated as its output.

A. Experimental Setup

To test the advantages of each approach, the three ap-
proaches (neuron-based, network-based, and hierarchical)
were implemented in the Simderella simulator to evolve the
hidden layer connections and weights of a neuro-control

network. The neural network controller contained 6 input,
8 hidden, and 7 output units. The input units correspond
to the x, y, and z relative distances returned by the hand
camera and the current joint positions of the �rst three
joints normalized between 0 and 1. The rotation of each
joint was interpreted from two unique output units. The
�rst unit speci�es the direction of rotation (positive or neg-
ative) based on the sign of its total activation. The second
output unit is a sigmoidal unit that speci�es the amount
of rotation, normalized between 0.0 and 5.0 by multiplying
the sigmoid output by 5.0. Limiting each joint rotation
to +/- 5 degrees forces the network to make several small
joint rotations to reach the target. Thus a bad rotation in
one time step can be more easily corrected in a subsequent
time step. A �nal threshold output unit is included as an
override unit that can prevent movement regardless of the
activations of the other output units.

Each network contained 8 hidden units with 12 con-
nections per unit. Connection de�nitions were decoded
from the chromosomes as described in section II-A. In the
neuron-based search, each individual consisted of a single
hidden unit, while in the network-based search, an individ-
ual consisted of 8 hidden units concatenated on a single
chromosome.

To focus the comparison on the di�erent strategies of
neuro-evolution, rather than the choice of parameter set-
tings, several preliminary experiments were run to discover
e�ective parameter values for each approach. With the
network-based approach, a population size of 100 networks
was found to be more e�ective than populations of 50 or
200. Keeping the number of network evaluations per gener-
ation constant across each approach, a neuron population
size of 200 was used for the neuron-based approach and 800
for the hierarchical approach.

A neuron-based search requires a smaller population
than our hierarchical approach because neurons are evalu-
ated through random combinations. The population must
be small enough to allow neurons to participate in several
networks per generation. For example, randomly select-
ing 8 neurons for 100 networks in a 200 neuron population
gives each neuron an expected network participation rate
of 4 networks per generation. In the hierarchical approach,
the neuron population is not as restricted since neuron par-
ticipation is dictated by the network individuals. The hier-
archical approach skews the participation rate towards the
best neurons and leaves many neurons unevaluated in each
generation. An unevaluated neuron is normally garbage,
since no network individual uses it to build a network.

Not surprisingly, the aggressive genetic selection strategy
described in section II-A performed poorly in the network-
based search. Some good solutions were found quickly,
however, the populations often converged to suboptimal so-
lutions and essentially became stuck. A binary tournament
selection strategy produced more consistent and better av-
erage results for the network-based search.

Each neural network evaluation began with random, but
legal, joint positions and a random target position. A total
of 450 target positions were created and separated into a

0

10

20

30

40

50

60

70

0 20 40 60 80 100

cm

Generation

Neuron-Based
Network-Based

Hierarchical

Fig. 4. The average distance from 50 randomly placed targets per
generation for each level of evolution. The distances are averaged
over 20 simulations.

400 position training set and a 50 position test set. During
each trial, a network was allowed to move the arm until one
of the following conditions occurred: the network stopped
the arm, the arm is in an illegal position, or the maximum
number of moves (25) is exceeded.
The score for each trial was computed as the percent-

age of distance that the arm covered from its initial start-
ing point to the target position. For example, if the arm
started 120 cm from the target and its �nal position was
20 cm from the target, the network received a score of
(120�20)=120 = 0:83. The percentage of distance covered,
instead of the absolute �nal distance, provides a fairer com-
parison between a network that receives a close target and
a network that receives a distant target.
Twenty simulations of each approach were run, each for

100 generations, which requires 10,000 network evaluations.
The best network of each generation (according to �tness)
was then tested on the 50 target test set.

B. Learning Speed Results

Figure 4 plots the average distance from the targets in
the test set per generation. The distance refers to the best
distance found at or before each generation during a sin-
gle simulation. The average distance refers to the best
distances averaged over 20 simulations. The graph e�ec-
tively illustrates the problems of the neuron search. Good
solutions are found early, but the population eventually
stalls and cannot generate better solutions. The slower
network search eventually surpasses the neuron search and
continues to improve to the best solutions. The hierarchical
search, however, achieves the same early e�ciency of the
neuron search and continues to generate better solutions
throughout the evolution.

C. Adaptation Results

The second set of experiments tested the ability to adapt
to changes in the domain. Populations were evolved as
described above until a network was found that averaged
less than 10 cm over the test set. The domain was then
changed by removing the information of the position of the

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20

cm
.

Generation

Network-Based
Hierarchical

Fig. 5. Adaptation comparisons between the hierarchical and
network-based searches

�rst joint. van der Smagt [11] showed that correct control
decisions can be generated without knowledge of the �rst
joint position; there is su�cient information from the hand
camera and remaining joints to compute the position of the
�rst joint. Thus, by evolving with the �rst joint informa-
tion and then removing it, the population must adapt its
network controllers to identify the �rst joint information
from the other input units.
Figure 5 shows the adaptive performance of the network

level and hierarchical approaches. The neuron-based search
is not plotted since it failed to reliably �nd solutions aver-
aging less than 10 cm. While the hierarchical search was
able to adapt its control policy to reach the 10 cm target
within 10 generations, the network-based search adapted
much more slowly, requiring 24 generations on the average.
Increasing the mutation rate did produce faster adapta-
tion in the standard approach, but it hindered the original
learning rate.

D. A Look Inside the Hierarchical Approach

As described earlier, one of the advantages of the hi-
erarchical approach is that neuron participation is biased
towards the top performing neurons. In other words, the
best neurons will participate in more networks than the
newer or poorer neurons. Figure 6 shows the typical rate
of participation in the neuron population in the last gen-
eration. The data was collected from a single simulation,
however, other simulations exhibited very similar behav-
ior. Of the 800 opportunities for participation,1 40% were
�lled by neurons ranked in the top 6% of the population
and 78% by neurons in the top 25%. Neurons ranked from
300 to 750 did not participate in any networks. Neurons
ranked at the bottom of the population were evaluated but
performed so poorly (e.g. moving the arm away from the
target) that they were ranked below neurons which had no
participations.
Table I shows the neurons of the top 20 network

blueprints during the last generation of a single simulation.
The neuron pointer numbers refer to the rank of that neu-

1100 networks are formed per generation, each with 8 neurons.

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800

P
ar

tic
ip

at
io

n

Ranking

Fig. 6. The number of network participations for each neuron in the
neuron population using the hierarchical approach.

Network Rank Neuron Pointers

1 121 134 0 13 2 135 38 17

2 12 133 34 41 136 137 29 9

3 132 138 0 13 46 18 67 17

4 40 75 72 28 27 106 61 187

5 40 82 74 115 33 39 10 23

6 76 4 144 16 30 1 140 11

7 42 24 37 6 7 8 64 3

8 32 48 0 13 2 18 38 17

9 58 147 139 84 148 36 146 3

10 129 88 72 145 87 128 130 22

11 52 45 29 16 30 1 5 11

12 56 142 34 49 85 20 10 141

13 76 4 21 66 7 14 99 113

14 150 24 37 6 153 83 64 3

15 42 24 151 73 152 104 5 79

16 59 60 52 28 149 1 51 22

17 81 156 78 95 100 49 160 158

18 70 26 55 6 103 57 43 9

19 56 35 155 6 154 161 159 157

20 105 62 8 90 2 1 35 3

TABLE I

The neurons in the top blueprints in the last generation of

a simulation using the hierarchical search. The table shows

a very diverse collection of neurons and several examples

of offspring neurons present in the best networks.

ron in the population after the �tness had been distributed.
For example, the top blueprint included the 122nd ranked
neuron, the 135th ranked neuron, the top ranked neuron,
and so on. The �rst conclusion from the table is that the
blueprint population is quite diverse. Blueprints 1 and 8
are the most similar, but they only share 5 out of the 8
neuron pointers. Thus the mutation strategy presented in
section II-B appears to provide su�cient diversity, allowing
the blueprint population to sample many di�erent combi-
nations of neuron pointers.
Table I also shows that many neurons ranked in the 100-

150 range are included in the top networks. Interestingly,
these neurons only participate in 1 or 2 networks per gener-
ation (�gure 6). Closer inspection reveals that the majority
of these neurons are new, o�spring neurons generated dur-
ing the previous generation. Thus, from the prevalent use
of these neurons in the top blueprints, it can be concluded
that the blueprint evolution is making e�ective use of the
new neural structures created by the neuron evolution.

IV. Conclusion

Evolving neural networks at the neuron level o�ers im-
portant advantages over the more standard evolution of
complete neural networks. Neuron evolution maintains
population diversity and provides more accurate evalua-
tion of the genetic building blocks, which produces a faster,
more e�cient genetic search. Unfortunately, neuron evo-
lution alone, as in the SANE system, often cannot build
upon the top neural networks in later generations and has
di�culty pinpointing the best solutions. In contrast, the
slower network-based search is more pro�cient at �ne tun-
ing and can more reliably reach the best solutions. Incor-
porating an outer-loop network blueprint evolution on top
of SANE's neuron evolution combines the advantages of
both approaches by focusing the search on the best neuron
combinations. Demonstrated in a sophisticated robot arm
manipulation task, Hierarchical SANE consistently reached
the desired level of pro�ciency in half as many generations
as a network-based search. Hierarchical neuro-evolution
is an important extension of the SANE system, since it
makes it possible to tackle more challenging tasks that re-
quire both timely and precise solutions.

References

[1] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson.
Neuronlike adaptive elements that can solve di�cult learning
control problems. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13:834{846, 1983.

[2] Richard K. Belew, J. McInerney, and N. N. Schraudolph. Evolv-
ing networks: Using genetic algorithm with connectionist learn-
ing. In J. D. Farmer, C. Langton, S. Rasmussen, and C. Taylor,
editors, Arti�cial Life II, Reading, MA, 1991. Addison-Wesley.

[3] Dave Cli�, Inman Harvey, and Phil Husbands. Explorations in
evolutionary robotics. Adaptive Behavior, 2:73{110, 1993.

[4] David E. Goldberg.Genetic Algorithms in Search, Optimization
and Machine Learning. Addison-Wesley, Reading, MA, 1989.

[5] John R. Koza and James P. Rice. Genetic generalization of both
the weights and architecture for a neural network. In Interna-
tional Joint Conference on Neural Networks, volume 2, pages
397{404, New York, NY, 1991. IEEE.

[6] David E. Moriarty and Risto Miikkulainen. E�cient reinforce-
ment learning through symbiotic evolution. Machine Learning,
22:11{32, 1996.

[7] David E. Moriarty and Risto Miikkulainen. Evolving neuro-
controllers for hand-eye coordination and obstacle avoidance in
a robot arm. In From Animals to Animats: Proceedings of the
Fourth International Conference on Simulation of Adaptive Be-
havior (SAB-96), Cape Cod, MA, 1996.

[8] Stefano Nol�, Dario Floreano, Orazio Miglino, and Francesco
Mondada. How to evolve autonomous robots: Di�erent ap-
proaches in evolutionary robotics. In Arti�cial Life IV, Cam-
bridge, MA, 1994.

[9] Stefano Nol� and D Parisi. Growing neural networks. In Arti�-
cial Life III, Reading, MA, 1992. Addison-Wesley.

[10] Patrick van der Smagt. Simderella: A robot simulator for neuro-
controller design. Neurocomputing, 6(2), 1994.

[11] Patrick van der Smagt. Visual Robot Arm Guidance using Neu-
ral Networks. PhD thesis, The University of Amsterdam, Ams-
terdam, The Netherlands, 1995.

[12] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD
thesis, University of Cambridge, England, 1989.

[13] Darrell Whitley, Stephen Dominic, Rajarshi Das, and
Charles W. Anderson. Genetic reinforcement learning for neu-
rocontrol problems. Machine Learning, 13:259{284, 1993.

