
Evolving Neural Networks to Focus

Minimax Search �

David E. Moriarty and Risto Miikkulainen

Department of Computer Sciences

The University of Texas at Austin, Austin, TX 78712

moriarty,risto@cs.utexas.edu

Abstract

Neural networks were evolved through genetic al-
gorithms to focus minimax search in the game of
Othello. At each level of the search tree, the fo-
cus networks decide which moves are promising
enough to be explored further. The networks ef-
fectively hide problem states from minimax based
on the knowledge they have evolved about the
limitations of minimax and the evaluation func-
tion. Focus networks were encoded in marker{
based chromosomes and were evolved against a
full{width minimax opponent that used the same
evaluation function. The networks were able to
guide the search away from poor information, re-
sulting in stronger play while examining fewer
states. When evolved with a highly sophisticated
evaluation function of the Bill program, the sys-
tem was able to match Bill's performance while
only searching a subset of the moves.

Introduction
Almost all current game programs rely on the minimax
search algorithm (Shannon 1950) to return the best
move. Because of time and space constraints, search-
ing to the end of the game is not feasible for most
games. Heuristic evaluation functions, therefore, are
used to approximate the payo� of a state. Unfortu-
nately, heuristics create errors that propagate up the
search tree, and can greatly diminish the e�ectiveness
of minimax (Korf 1988). Minimax also assumes that
the opponent will always make the best move. It does
not promote risk taking. Often in losing situations the
best move may not be towards the highest min/max
value, especially if it will still result in a loss. Knowl-
edge of move probabilities could guide a search towards
a more aggressive approach and take advantage of pos-
sible mistakes by the opponent.
Recently, several algorithms have emerged that are

more selective than the standard �xed-depth minimax
search (Korf and Chickering 1994; McAllester 1988;

�Thanks to Kai-Fu Lee and Richard Korf for providing
the source code for Bill's evaluation function.

Rivest 1987). These algorithms allow moves that ap-
pear more promising to be explored deeper than others,
creating nonuniform-depth trees. While these tech-
niques have lead to better play, they still allow mini-
max to evaluate every unexplored board and are there-
fore vulnerable to errors in the evaluation function.

Most game programs overcome weak evaluation
functions by searching deeper in the tree. Presumably,
as the search frontier gets closer to the goal states,
the heuristic evaluations become more accurate. While
this may be true, there is no guarantee that deeper
searches will provide frontier nodes closer to the goal
states. Hansson and Mayer (1989) have shown that
without a sound inference mechanism, deeper searches
can actually cause more error in the frontier nodes. A
more directed search, therefore, seems necessary.

An alternative to deeper searches is to decrease the
errors in the evaluation function. Bayesian learning
has been implemented to combine several heuristic es-
timates (Lee and Mahajan 1990) and to adjust the
heuristic values based on values of other nodes in the
tree (Hansson and Mayer 1989). The new estimates
represent a measure of belief in the heuristic value.
These methods have provided stronger play, although
they do not address problems inherent in minimax such
as no risk taking.

This paper presents a novel approach using evolu-
tionary neural networks that can compensate for prob-
lems in the evaluation function as well as in the mini-
max algorithm. Arti�cial neural networks have proven
very e�ective in pattern recognition and pattern asso-
ciation tasks, which makes them a good candidate for
recognizing undesirable board situations. Genetic al-
gorithms provide a powerful, general training tool for
neural networks. Like natural evolution, arti�cial evo-
lution is very good at discerning problems and �nd-
ing ways to overcome them. Our approach is based
on a marker-based encoding of neural networks which
has been shown particularly e�ective in adapting to
new challenges in complex environments (Fullmer and
Miikkulainen 1992; Moriarty and Miikkulainen 1993).

Genetic algorithms were used to evolve Focus net-
works to direct a minimax search away from poor infor-

In Proceedings of the Twelfth National Conference on Arti�cial Intelligence (AAAI-94). Seattle, WA.



13 5 -5 6 5 5 2 18 3

-5 5 2

-4 3 -1 9 10 -3 6

-4 -3

5

6 2 4 11 12 155912-232 112 6 -2

a b c d e

Depth bound

Estimated payoffs

Actual payoffs

Figure 1: A full-width minimax search to level 2. All nodes in the shaded area are evaluated. The actual payo� values of
the leaf states are listed below the depth bound. Their heuristic estimates are shown inside the leaf nodes. Min (circles)
selects the lowest payo� and max (squares) the highest of min's choices. As a result, move b is selected for the root.

13 5 -5 6 5 5 2 18 3

-5 5 2

-4 3 -1 9 10 -3 6

-4 -3

-3

6 2 4 11 12 155912-232 112 6 -2

a b c d e

Depth bound

Estimated payoffs

Actual payoffs

Figure 2: A focused minimax search. Only the states in the focus window (the shaded region) are evaluated. As a result,
move e appears to be max's best choice.

mation. At each state in the search, the focus network
determines which moves look promising enough to be
further explored. The focus network is able to con-
trol which moves the minimax search can see, and can
evolve to overcome limitations of the evaluation func-
tion and minimax by focusing the search away from
problem states.
A population of focus networks was evolved in the

game of Othello. The results show that the focus net-
works are capable of stronger play than full{widthmin-
imax with the same evaluation function, while examin-
ing fewer positions. Also, when evolved with the highly
sophisticated evaluation function of the Bill program
(Lee and Mahajan 1990), the focus networks were able
to maintain Bill's level of play while searching through
fewer states.
The next section describes the basic idea and imple-

mentation of the focus networks. Section 3 describes
marker-based encoding and the speci�cs of the evolu-
tion simulations. The main experimental results are
presented in section 4, and discussed in section 5.

Focus Networks

Selecting Moves for Minimax

Focus networks decide which moves in a given board
situation are to be explored. At each level, the net-
work sees the updated board and evaluates each move.
Only those moves that are better than a threshold
value will be further explored. This subset of moves
can be seen as a window to the search tree returned
by the focus network. The search continues until a
�xed depth bound is reached. A static evaluation func-

tion is applied to the leaf states, and the values are
propagated up the tree using the standard minimax
method. The �-� pruning algorithm (Edwards and
Hart 1963; Knuth and Moore 1975) is used as in a
full{width search to prune irrelevant states.
To illustrate how such control of minimax might

be bene�cial, consider the following situation. Two
moves, A and B, are considered in the current board
con�guration. Although move A returns, through min-
imax search, a higher evaluation value than move B,
both moves appear to lead to losing situations. Move
B, however, can result in a win if the opponent makes
a mistake. By assuming that the opponent will always
make the best move, minimax would choose A over
B resulting in a sure loss. Focus networks, however,
could learn that a win can sometimes be achieved by
selecting move B, and they would thus not include A
in their search window.
More generally, restricting the number of moves ex-

plored has two advantages: (1) the branching factor
is reduced which greatly speeds up the search. As a
result, searches can proceed deeper on more promis-
ing paths. (2) The focus networks are forced to de-
cide which moves the minimax search should evaluate,
and in order to play well, they must develop an under-
standing of the minimax algorithm. It is possible that
they will also discover limitations of minimax and the
evaluation function, and learn to compensate by not
allowing minimax to see certain moves.
Figures 1 and 2 illustrate the focused search process.

The current player has a choice of 5 moves (a through
e). Figure 1 shows a basic minimax search with a depth
bound of 2. The leaf states are evaluated according to



1

2

4

5

7

128

Hidden units

Network’s
moves

a1

b1

c1

d1

h8

a b c d e f g h

1

2

3

4

5

6

7

8

3

6

8

a1

b1

c1

h8

a1

b1

c1

h8

opponent’s
moves

Figure 3: The architecture of the focus networks for Othello. Two inputs are used to encode each position on the board.
The encoding of the �rst four spaces (a1, b1, c1, d1) for the given board with the network playing black are shown in the
input layer. Both input nodes 1 and 2 are o� since a1 is empty. Node 3 is on (i.e. dark) since b1 has the network's piece
in it, and nodes 6 and 8 are on since the opponent has pieces in c1 and d1 (both nodes for the same position are never
on simultaneously). The activation of the output layer is shown by the shading. The corners (such as a1 and h8) have
high activations since corners are almost always good moves. Only the input and output encoding was prespeci�ed for the
network. The input and output connectivity and the number and connectivity of the hidden nodes were all evolved using
genetic algorithms.

a static evaluation function. The actual payo� value
of each leaf is shown below the depth bound. The
di�erence between these values is the error or misin-
formation generated by the evaluation function. The
best move is e, as it will generate a payo� of at least
11. Because of the misinformation, however, full-width
minimax would choose move b. Figure 2 shows the
same search tree but with the addition of a focus win-
dow. Only the nodes in the window are evaluated. By
focusing the search away from the poor information,
the best move (e) would be selected. The question is,
how can we reliably form such a search window?
The evolutionary approach is attractive because no

previous knowledge of minimax or the evaluation func-
tion is needed. The usual neural network learning al-
gorithms such as backpropagation (Rumelhart et al.
1986) would require exact target values to be speci�ed
for each training example. Such information is very
di�cult to establish in the search focus task. In the
neuro-evolution approach, however, evolutionary pres-
sures will guide the networks toward providing good
windows for the search. Networks will discover misin-
formation by associating certain board situations with
winning and losing. Networks that prune out problem
states will win more games, allowing them to survive
and propagate their genes to future networks.

Implementation in Othello

Othello is a board game played on an 8 � 8 grid (�g-
ure 3). Each piece has one white and one black side.

Players (\white" and \black") take turns placing pieces
on the board with their own color facing up until
there are no further moves. For a move to be legal,
it must cause one or more of the opponent's pieces
to be surrounded by the new piece and another of
the player's pieces. All surrounded pieces are subse-
quently ipped to become the player's pieces. Sev-
eral world championship-level Othello programs have
been created using full-width minimax search (Lee and
Mahajan 1990; Rosenbloom 1982). Like most ad-
vanced game programs, they achieve high performance
through examining millions of positions per move.

In our implementation of focus networks, two input
units were used to represent the type of piece in each
board space. Each output unit corresponded directly
to a space on the board. The activation of an output
unit determined how strongly the network suggested
moving to that position. Separate output units were
used for the two players. Thus, the ranking for the
network's moves may di�er from the ranking of the
opponent's moves. This distinction is bene�cial since
an aggressive player should not assume his opponent is
equally aggressive and should take a more conservative
approach when predicting his opponent's moves. Sim-
ilarly, a defensive player should not presume defensive
play from his opponents. The separation of player and
opponent's output units allows o�ensive and defensive
strategies to develop.

The number of hidden units and connections be-
tween them were determined through evolution. Each



< start >< label >< value >< key0 >< label0 >< w0 > ::: < keyn >< labeln >< wn >< end >

< start > - Start marker.
< label > - Label of the node.
< value > - Initial value of the node.
< keyi > - Key that speci�es whether connection is from an

input unit/to an output unit or from another hidden unit.
< labeli > - Label of the unit where connection is to be made.
< wi > - Weight of connection.
< end > - End marker.

Figure 4: The de�nition of a hidden node in marker{based encoding.

hidden unit used a linear threshold of 0 to determine
it's output (either 0 or 1). Usually the networks con-
tained about 120 hidden nodes and 600 connections
with a large amount of recurrency. For each state to
be explored in a search tree an activation was prop-
agated through the network. The legal moves with
activation greater than or equal to 0 were included in
the search window.

Evolution

Each focus network's genetic representation was based
on a marker{based encoding (Fullmer and Miikkulai-
nen 1992) of the architecture and weights. The encod-
ing is inspired by markers in DNA that separate pro-
tein de�nitions. Arti�cial markers in the chromosome
are used to separate neural network node de�nitions.
Alleles serve as start markers if their absolute value
MOD 25 equals 1 and end markers if their absolute
value MOD 25 equals 2. Any integer between a start
marker and an end marker is always part of the ge-
netic code. The interpretation of non-marker alleles
depends on their location with respect to a start or an
end marker. Figure 4 summarizes the structure of the
hidden node de�nition in marker-based encoding.
Each chromosome consisted of 5000 8-bit integers

ranging from -128 to 127. Two 8-bit integers were
used for the connection de�nitions. The key integer
speci�es whether the connection is to be made with
the input/output layers or with another hidden unit.
If the key is positive, the second integer, label, speci�es
a connection from the input layer (if the label is � 0)
or to the output layer (if the label is < 0). If the key is
negative, the label speci�es an input connection from
another hidden unit. Figure 5 shows an example gene
and the network information it encodes.
The chromosome is treated as a continuous circular

entity. A node may begin on one end of the chromo-
some and end on the other. The �nal node de�nition is
terminated, however, if the �rst start marker is encoun-
tered in the node de�nition. The hidden nodes were
evaluated in the order speci�ed in the chromosome.
A population of 50 networks was evolved using

standard genetic algorithms (Goldberg 1988; Holland
1975). A two point crossover (�gure 6) was used to
produce two o�spring per mating. Only the top 15 net-

S 21 1 82 3 -5 -21 14 31 60 -51-13 E

I3 O51

H14

H21

-5 31

Hidden node 21
Initial Value = 1

-13

Figure 5: An example node de�nition in a marker-based
gene. The �rst connection has key = 82, label = 3, w = �5.
The key and label are both positive so the connection is to
be made from input unit 3.

Parent 1
Parent 2

Offspring 1
Offspring 2

Crossover

Figure 6: Two point crossover. Each o�spring receives the
front and rear part of one parent's chromosome and the
middle of the other parent's chromosome.

works were allowed to mate with each other, creating
30 new o�spring per generation. The new o�spring re-
placed the least �t networks in the population. Traits
that previously led to high �tness levels were passed
to future generations, whereas traits that led to poor
performance were selected against. Mutation, at the
rate of 0.4%, was implemented at the integer level by
adding a random value to an integer allele. The top 3
networks were not mutated.
To determine a network's �tness, it was inserted into

an �-� search program and played against a full-width,
�xed-depth minimax-�-� search. Both players were
allowed to search through the second level. To optimize
�-� pruning, node ordering was implemented based on
the values of the evaluation function (Pearl 1984).
Both players always used the same evaluation func-



tion. One population was evolved based on the posi-
tional strategy of Iago (Rosenbloom 1982), one of the
�rst championship-level Othello programs. Such an
evaluation function is relatively weak as it only consid-
ers the merits of single spaces without taking mobility
into account1. The goal was to see how well the focus
networks could evolve to make use of weak heuristic
information, and also to provide enough errors so that
the e�ect of focus networks would be easily seen.
A separate population was evolved using the evalua-

tion function from the Bill program (Lee and Mahajan
1990). Bill's evaluation has been optimized through
Bayesian learning and is believed to be one of the best
in the world. The goal was to see if the focus networks
could achieve any improvement over such an already
strong heuristic.
To create di�erent games, an initial state was se-

lected randomly among the 244 possible board posi-
tions after four moves. To prevent networks from ex-
pecting certain moves, the opponents moved randomly
10% of the time. The random moves also make risk
taking a viable option in a losing situation since the op-
ponent will not always make the best move. If the op-
ponent's evaluation function returned the same value
for two or more moves, a random selection was made
between the equal-valued moves, further discouraging
expectations. The number of wins over ten games de-
termined each network's �tness.

Results

The networks were evolved for 1000 generations, which
took about four days on a Sun Sparcstation 1. Af-
ter evolution, the best focus network was again played
against the full{width search program, but this time
the programmade no randommoves. The performance
was measured by the percentage of games won over all
244 opening games.
In the �rst test (�gure 7), the focused search level

was �xed at 2, and the full{width opponent's was var-
ied. As a control, a 2-level, full{width minimax search
was also played against the full{width opponent. Note
that the focused (shaded bars) and full{width (white
bars) searches are not playing against each other, but
against another full{width opponent. The results show
that a focused search to level 2 appears to be as strong
as a full{width search to level 4.
In the second test (�gure 8), the focused search level

was increased with the full-width opponent's. The
control full{width search (white bars) performs con-
sistently at 50% because it is simply playing itself at
each level. The results show that the focused search
consistently outplays the full{width search even as the
search level increases far beyond its training. The per-
formance is strongest at level 2, where the focused net-
work was actually trained, and is otherwise approx-
imately constant at 65%. This result is important

1Iago also included a complex mobility strategy.

1 2 3 4 5

Search Level of Opponent

0

20

40

60

80

100

78 76

64

51

29

Focused

54
50

46

34

22

Full-Width

Figure 7: The winning percentage of two level search with
and without a focus network against a variable-level full{
width opponent.

1 2 3 4 5 6

Search Level of Both Players

0

20

40

60

80

100

59

76

69
65 64 66

Focused

50 50 50 50 50 50

Full-Width

Figure 8: The winning percentage of a variable-level search
with and without a focus network against a variable-level
full{width opponent.

because it suggests that the focus network could be
trained at any level, and would generalize well to other
search depths.
It is also important to note that the focused searches

were winning while looking at only a subset of the
states that the full-width searches are examining. Fig-
ure 9 shows the average number of board positions ex-
amined per game for each search bound. Of all avail-
able legal moves, only 79% were included in the focus
window. The full-width search must be receiving poor
information from minimax, causing it to choose bad
moves. Since the focused search is using the same eval-
uation function and is searching to the same depth, it
appears that the focus network is shielding the root
from this misinformation.
To better understand how the stronger play was

achieved, the moves included in the focus window were
further analyzed. 100 test games were played against a
full{width search using the same evaluation function.



1 2 3 4 5 6
Focus 189 662 3440 12172 63304 230487
Full 226 842 4042 16684 75696 330453

Figure 9: The average number of states examined per
game for each depth bound.

1 2 3 4 5 6

Minimax Search Level

60

68

76

84

92

100

Network Opponent

Figure 10: The percentage of moves returned by minimax
as its choice that the focus network considers.

At each board position the moves in the focus window
were compared with the move a full{width minimax
search would return at the same position. Figure 10
shows the percentage of full{width minimax's moves
that were included in the focus network's window. The
graph thus reects how often the focus network agrees
with full{width minimax. The results show that the
focus network is e�ectively looking far ahead. The
moves in the network's window are similar to moves
that a deep{searching, full{width minimax would re-
turn (black triangles in �gure 10). However, since
the network has only been evolved against a shallow{
searching opponent, its predictions of the opponent's
moves become less accurate as the opponent searches
deeper (white circles in �gure 10). The focus network's
moves are strong because they are not tied to the moves
that a full{width minimax search would choose. In-
stead, they reect moves that have led to wins. It is
this strong o�ense that allows the networks to scale
with the search level. It is conceivable that eventually
the network's diminishing defense will leave it vulner-
able to a powerful opponent, however that was never
observed in our experiments.
In the second population, evolved using the eval-

uation function from Bill, the best focus networks
achieved a winning percentage of 51% over the full{
width searches to the same level. Apparently, since
Bill's evaluation function has very few errors, the focus
networks were not able to improve the play very much.
However, it is signi�cant that the focused searches
achieved this performance while examining only 84% of
the moves that full-width Bill evaluated. It seems the
focus networks were able to discover and prune unnec-
essary nodes even with a Bayes-optimized heuristic. In

a game playing setting where time constraints must be
taken into account, such an improved e�ciency trans-
lates directly to better performance.

Discussion and Future Work

The results show that better play can be achieved
through more selective search. Much like humans, fo-
cus networks selectively dismiss moves that have pre-
viously led to adverse situations. Whereas full-width
minimax is very sensitive to inconsistencies in the eval-
uation function, focused searches can actually discover
and discard unreliable information. The approach will
be most useful in improving performance in domains
where it is di�cult to come up with good evalua-
tion functions. The evolution system can take a weak
heuristic and discover how to best use the informa-
tion it provides. In this sense, the approach is similar
to other recent improvements in game playing such as
Bayesian optimization of evaluation functions (Hans-
son and Mayer 1990; Lee and Mahajan 1990). A com-
parison of these techniques and a study of how they
perhaps could be combined would be most interesting.
In an earlier implementation of focus networks,

a �xed-size focus window that always included the
three best moves was used (Moriarty and Miikkulai-
nen 1994). This strategy achieved performance com-
parable to the threshold-based window with an even
more dramatic reduction in the number of states eval-
uated. However, the �xed window system was not
able to generalize well to better opponents such as Bill.
When evolved with Bill's evaluation function, the �xed
window pruned too many nodes and performed very
poorly. On the other hand, the threshold-based win-
dow allows the system to adjust the extent of pruning
according to how much reliable information there is in
the tree.
It seems to make little di�erence how deep the sys-

tem is allowed to search during training (�gure 8).
The focus networks should therefore perform well in
real game-playing situations where the search depth
may vary signi�cantly depending on the available time.
However, the training opponent's search depth (and
evaluation function) may have a signi�cant e�ect on
performance. It might be possible to evolve better play
by improving the opponent gradually during training.
If the opponent gets stronger as the networks evolve,
the networks would have to compensate by improv-
ing their defensive strategy, and superior overall play
should result.
In our implementation, focus networks searched only

through uniform{depth trees. Focus networks could
also be implemented with algorithms such as best{�rst
minimax (Korf and Chickering 1994), where the tree is
grown in non-uniform depths allowing more promising
moves to be searched deeper. Whereas the standard
best{�rst minimax considers all unexplored board po-
sitions in the decision of where to explore next, a se-
lective window of the most important positions could



be maintained to focus the search.
Another application of neuro-evolution to game

playing is to evolve networks to serve as the evalua-
tion function. Interestingly, the results have been dis-
couraging so far. Whereas the focus networks' output
values only need to indicate above or below a thresh-
old, the evaluation networks' output units must reect
an absolute value comparable to other board evalua-
tions. It has proven very di�cult for the networks to
discover such global values.
While focus networks may be well suited for Othello,

their implementation in more complex games like chess
is not as straightforward. In our implementation, the
output layer represented the entire move space. This
is feasible in Othello, since there are only 60 possi-
ble moves. It is unrealistic to try to represent the en-
tire move space of a game such as chess in a single
output layer. A possible solution is to use two focus
networks in the decision process. The �rst network's
output layer would represent each piece and would de-
cide which pieces to consider. The second network's
output layer would represent each space on the board
(as in the Othello networks). Given the current board
and the piece to be moved, the second network could
decide which moves of a given piece to consider. Such
an extension constitutes a most interesting direction of
future research.

Conclusion

Arti�cial evolution of neural networks is a promising
paradigm for developing better search strategies. It is
possible to identify unreliable information in the search
tree and �nd ways to avoid it. Focus networks can
overcome not only errors in the evaluation function but
aws inherent in minimax itself. Focused searches are
cognitively more appealing since they produce more
human-like search rather than systematic exhaustive
search. In Othello, a focused search consistently out-
played full{width minimax while examining a subset of
the moves. Even with a highly sophisticated evaluation
function, the focus networks were able to create a more
e�cient search by pruning irrelevant nodes. Applica-
tions to more complex domains are more challenging,
but not infeasible.

References

Edwards, D., and Hart, T. (1963). The alpha-beta
heuristic. Technical Report 30, MIT.

Fullmer, B., and Miikkulainen, R. (1992). Evolving
�nite state behavior using marker-based genetic
encoding of neural networks. In Proceedings of
the First European Conference on Arti�cial Life.
Cambridge, MA: MIT Press.

Goldberg, D. E. (1988). Genetic Algorithms in Search,
Optimization and Machine Learning. Reading,
MA: Addison-Wesley.

Hansson, O., and Mayer, A. (1989). Heuristic search
as evidential reasoning. In Proceedings of the Fifth
Workshop on Uncertainty in AI.

Hansson, O., and Mayer, A. (1990). Probabilistic
heuristic estimates. Annals of Mathematics and
Arti�cial Intelligence, 2:209{220.

Holland, J. H. (1975). Adaptation in Natural and Arti-
�cial Systems: An Introductory Analysis with Ap-
plications to Biology, Control and Arti�cial Intel-
ligence. Ann Arbor, MI: University of Michigan
Press.

Knuth, D. E., and Moore, R. W. (1975). An analysis of
alpha-beta pruning. Arti�cial Intelligence, 6:293{
326.

Korf, R. E. (1988). Search: A survey of recent results.
In Shrobe, H. E., editor, Exploring Arti�cial In-
telligence. San Mateo, California: Morgan Kauf-
mann.

Korf, R. E., and Chickering, D. M. (1994). Best-�rst
minimax search: Othello results. In AAAI-94.

Lee, K.-F., and Mahajan, S. (1990). The development
of a world class Othello program. Arti�cial Intel-
ligence, 43:21{36.

McAllester, D. A. (1988). Conspiracy numbers for min-
max search. Arti�cial Intelligence, 35:287{310.

Moriarty, D. E., and Miikkulainen, R. (1993). Evolv-
ing complex Othello strategies using marker-based
genetic encoding of neural networks. Technical Re-
port AI93-206, Department of Computer Sciences,
The University of Texas at Austin.

Moriarty, D. E., and Miikkulainen, R. (1994). Improv-
ing game tree search with evolutionary neural net-
works. In Proceedings of the First IEEE Confer-
ence on Evolutionary Computation.

Pearl, J. (1984). Heuristics: Intelligent Search Strate-
gies for Computer Problem Solving. Reading, MA:
Addison-Wesley.

Rivest, R. L. (1987). Game tree searching by min/max
approximation. Arti�cial Intelligence, 34:77{96.

Rosenbloom, P. (1982). A world championship-level
Othello program. Arti�cial Intelligence, 19:279{
320.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986). Learning internal representations by error
propagation. In Rumelhart, D. E., and McClel-
land, J. L., editors, Parallel Distributed Process-
ing: Explorations in the Microstructure of Cog-
nition, Volume 1: Foundations, 318{362. Cam-
bridge, MA: MIT Press.

Shannon, C. E. (1950). Programming a computer for
playing chess. Philisophical Magazine, 41:256{275.


