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Abstract

This article demonstrates the advantages of a cooperative, coevolutionary search in di�cult
control problems. The SANE system coevolves a population of neurons that cooperate to form
a functioning neural network. In this process, neurons assume di�erent but overlapping roles,
resulting in a robust encoding of control behavior. SANE is shown to be more e�cient, more
adaptive, and maintain higher levels of diversity than the more common network-based popula-
tion approaches. Further empirical studies illustrate the emergent neuron specializations and the
di�erent roles the neurons assume in the population.

1 Introduction

Arti�cial evolution has become an increasingly popular method for forming control policies in
di�cult decision problems (Grefenstette, Ramsey, & Schultz, 1990; Moriarty& Miikkulainen, 1996a;
Whitley, Dominic, Das, & Anderson, 1993). Such applications are very di�erent from the function
optimization tasks to which evolutionary algorithms (EA) have been traditionally applied. For
example, it is no longer desirable to converge the population to the best solution, since convergence
will hinder adaptation of the population in dynamic environments. Also, the large number of
�tness evaluations that are freely granted to the standard EA in toy domains are not available
in real world decision problems. It is becoming clear that for complex structures such as neural
network controllers, a di�erent kind of evolutionary algorithm is necessary.

Cooperative Coevolutionary algorithms (Horn, Goldberg, & Deb, 1994; Moriarty & Miikku-
lainen, 1996a; Paredis, 1995; Potter, De Jong, & Grefenstette, 1995; Smith, Forrest, & Perelson,
1993; Whitehead & Choate, 1995) o�er a promising alternative to the canonical EA in di�cult and
dynamic problems. The key di�erence in the cooperative coevolutionary model compared to the
standard model is that each individual represents only a partial solution to the problem. Complete
solutions are formed by grouping several (or all) individuals together. The goal of an individual is
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thus to optimize one piece of the solution and cooperate with other partial solutions that optimize
other pieces. The hypothesis is that several parallel searches for di�erent pieces of the solution is
more e�cient than a single search for the entire solution. Moreover, by maintaining the di�erent
solution pieces in a single population, the population does not converge to a single individual.
Diversity is maintained and the EA can utilize its recombination operators throughout evolution.

This article demonstrates the advantages of cooperative, coevolutionary algorithms in di�cult
control problems using a new system called SANE (Symbiotic, Adaptive Neuro-Evolution). SANE
was designed as an e�cient method for building neural networks in dynamic environments (Moriarty
& Miikkulainen, 1996a). Unlike most neuro-evolutionary approaches, which operate on a population
of neural networks, SANE evolves a population of neurons. Each neuron's task involves establishing
connections with other neurons in the population to form a functioning neural network. SANE's
performance improvements over the more standard EA in neural network learning are twofold.
First, since SANE recognizes neurons as the functional components of neural networks, it can more
accurately search and evaluate the genetic building blocks. Second, since no one neuron can perform
well alone, evolutionary pressures exists to evolve several di�erent neuron types or specializations.
Thus, SANE maintains diverse populations.

The body of this article is organized as follows. The next section gives some background and
motivates SANE's coevolutionary approach to neuro-evolution. Section 3 gives the implementa-
tion details of SANE. Section 4 empirically evaluates SANE by comparing it with more standard
approaches to neuro-evolution in a mobile robotics task. Section 5 illustrates the specializations
within SANE's population and uncovers some of the di�erent roles that the neurons assume in the
networks. Work related to SANE is presented in section 6 and section 7 describes some successful
applications. We outline some future directions of symbiotic evolution in section 8 and draw our
conclusions in the �nal section.

2 Importance of Diversity

To �nd the best combination of genetic building blocks, evolutionary algorithms continually select
and breed the best individuals in the population. Through this process, populations normally lose
diversity and eventually converge around a single \type" of individual (Goldberg, 1989). Such
convergence is undesirable for two reasons: (1) populations often converge on suboptimal peaks
and (2) converged populations cannot adapt well to changes in the task environment. While these
two problems may have limited e�ect in standard function optimization, they have very large
consequences when evolving decision strategies in complex and dynamic domains.

An evolutionary algorithm in a converged population can normally only proceed by randomly
mutating the single solution representation, which produces a very slow and ine�cient search.
A genetic search with a diverse population, however, can continue to utilize recombination to
generate new structures and make larger traversals of the solution space in shorter periods of time.
In many complex problems, search e�ciency is paramount for generating e�ective decision policies
in a timely manner. Diversity is equally important when changes occur in the domain. Often in
decision tasks in dynamic or unstable environments, policies must be quickly revised to avoid costly
e�ects. A diverse population can more adeptly make the modi�cations necessary to compensate
for the domain changes.

It is clear that a convergent evolutionary algorithm is not the best kind of search strategy for
di�cult decision and control problems. Maintaining diverse populations, however, is very di�cult
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and remains an open research issue in the evolutionary algorithms community. The most common
method is to use a less aggressive genetic selection strategy or a high rate of mutation. Weak
selection strategies do not ensure diversity, but rather slow evolution and delay the convergence of
the population. Slower evolution can help prevent premature convergence, but often at the expense
of slower searches. Section 4 will present experiments that demonstrate this phenomenon. The
second strategy, increasing the mutation rate, only arti�cially injects diversity into the population
through noise. Despite their obvious disadvantages, these two methods generally produce better
search behavior than an aggressive, convergent EA, and their adoption has become commonplace.
The SANE system will demonstrate that aggressive selection and recombination strategies can work
well if tempered with e�ective diversity pressures.

Several more intelligent methods have been developed to enforce population diversity, including
�tness sharing (Goldberg & Richardson, 1987), crowding (De Jong, 1975), and local mating (Collins
& Je�erson, 1991). Each of these techniques relies on external genetic functions that prevent
convergence of the genetic material. The diversity assurances, however, are normally achieved
through very expensive operations. For example, in Goldberg's �tness sharing model, similar
individuals are forced to share a large portion of a single �tness value from the shared solution
point. Sharing decreases the �tness of similar individuals and causes evolution to select against
individuals in overpopulated niches. While �tness sharing is e�ective at maintaining diversity,
it incurs a heavy computational expense. Sharing requires O(n2) similarity comparisons each
generation, where n is the size of the population. In large populations with large chromosomes,
comparison-based diversity methods such as sharing, crowding, and local mating are simply not
practical (Smith et al., 1993).

A more recent technique for ensuring diversity has been termed implicit �tness sharing (Horn
et al., 1994; Smith et al., 1993). No comparisons are made between individuals. Instead, diver-
sity pressures are built into the task through cooperative behavior among the individuals in the
population. The individuals no longer represent complete solutions to the problem, but rather
represent only partial solutions and must cooperate with other individuals to form a full solution.
By reducing the capacity of individuals and coevolving them together, evolution searches for several
di�erent types of individuals that together solve the problem. Implicit �tness sharing also presents
a very nice side e�ect. While evolution searches for individuals that optimize di�erent aspects of
the problem, it performs several parallel searches in decompositions of the solution space, which
can greatly speed up evolution.

The core evolutionary strategy of the SANE neuro-evolution system, presented in the next
section, borrows many ideas from the implicit �tness sharing models. Speci�cally, the notion of
cooperating individuals that represent only partial solutions is incorporated in SANE to promote
diversity and search e�ciency. Several modi�cations, however, were necessary to tailor implicit
�tness sharing to evolving neural networks. These changes are highlighted in the next section and
in the related work section.

3 Symbiotic Adaptive Neuro-Evolution

3.1 Evolving Symbiotic Neurons

In almost all approaches to neuro-evolution, each individual in the population represents a com-
plete neural network that is evaluated independently of other networks in the population (Belew,
McInerney, & Schraudolph, 1991; Koza & Rice, 1991; Nol� & Parisi, 1992; Whitley et al., 1993).
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Figure 1: An individual in SANE's population and the hidden neuron it de�nes. Hidden neurons
are de�ned by a series of weighted connections to be made from the input layer or to the output
layer. For example, the �rst gene speci�es a connection to the �rst output unit with a weight of
0.4. The encoding shown is a simpli�ed form of SANE's actual neuron encoding, which is described
in section 3.3.

As described in the previous section, by treating each member as a separate, full solution, the evo-
lutionary algorithm focuses the search towards a single dominant individual. Such concentration
can greatly impede search progress in both complex and dynamic tasks. In contrast, the SANE
method restricts the scope of each individual to a single neuron. More speci�cally, each individual
represents a hidden neuron in a 2-layer neural network (�gure 1). In SANE, complete neural net-
works are built by combining several neurons. Figure 2 illustrates the di�erence between standard
neuro-evolution and the neuro-evolution performed in SANE.

Since no single neuron can perform the whole task alone, the neurons must optimize one aspect
of the neural network and connect with other neurons that optimize other aspects. Evolutionary
pressures therefore exist to evolve several di�erent types or specializations of neurons.1 In this way,
the neurons will form a symbiotic relationship. It follows that the evolution performed in SANE
can be characterized as symbiotic evolution. We de�ne symbiotic evolution as a type of coevolution
where individuals explicitly cooperate with each other and rely on the presence of other individuals
for survival. Symbiotic evolution is distinct from most coevolutionary methods, where individuals
compete rather than cooperate to survive. A more detailed discussion of the relationship between
symbiotic and competitive coevolution is presented in the related work section.

The advantages of symbiotic evolution are twofold. First, the neuron specializations ensure
diversity which discourages convergence of the population. A single neuron cannot \take over" a
population since to achieve high �tness values, there must be other specializations present. If a
specialization becomes too prevalent, its members will not always be combined with other special-
izations in the population. Thus, redundant partial solutions do not always receive the bene�t of
other specializations and will incur lower �tness evaluations. Evolutionary pressures are therefore
present to select against members of dominant specializations. This is quite di�erent from standard
evolutionary approaches, which always converge the population, hopefully at the global optimum,
but often at a local one. In symbiotic evolution, solutions are found in diverse, unconverged popula-
tions. By maintaining diverse populations, SANE can continue to use its recombination operators
to build e�ective neural structures.

In addition to maintaining diverse populations, evolution at the neuron level more accurately
evaluates the genetic building blocks. In a network-level evolution, each neuron is implemented only

1The term specialization is used rather than species since each neuron does not represent a full solution to the
problem. Additionally, biological species do not inter-breed, whereas SANE's specializations do.
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Figure 2: An illustration of the neuro-evolution performed in SANE compared to the standard
approach to neuro-evolution. The standard approach maintains a population of neural networks
and evaluates each independently. SANE maintains a population of neurons and evaluates each in
conjunction with other neurons. Step 1 (the evaluation step) in SANE is broken into three substeps.
Neurons are continually combined with each other and the resulting networks are evaluated in the
task. Each neuron receives a normalized �tness based on the performance the networks in which it
participates.

with the other neurons encoded on the same chromosome (e.g., �gure 2). With such a representa-
tion, a very good neuron may exist on a chromosome but be subsequently lost because the other
neurons on the chromosome are poor. In a neuron-level evolution, neurons are continually recom-
bined with many di�erent neurons in the population, which produces a more accurate evaluation
of the neural network building blocks.

Essentially, a neuron-level evolution takes advantage of the a priori knowledge that individual
neurons constitute basic components of neural networks. A neuron-level evolution explicitly pro-
motes genetic building blocks in the population that may be useful in building other networks. A
network-level evolution does so only implicitly, along with various other sub- and superstructures
(Goldberg, 1989). In other words, by evolving at the neuron level the evolutionary algorithm is no
longer relied upon to identify neurons as important building blocks, since neurons are the object
of evolution.

3.2 Maintaining E�ective Neuron Collections

Neuron evolution alone, however, is not su�ciently powerful to generate the complex networks
necessary in di�cult tasks. Knowledge of the useful combinations of neurons must be maintained
and exploited. Combining neurons without such intelligent direction is undesirable for two reasons.
First, the neurons may not be combined with neurons that work well together. Thus, a very good
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Figure 3: An overview of the network blueprint population in relation to the neuron population.
Each member of the neuron population speci�es a series of connections (labels and weights) to
be made from the input layer or to the output layer within a neural network. Each member of
the blueprint population speci�es a series of pointers to speci�c neurons which are used to build a
neural network. The neuron population searches for e�ective partial networks, while the blueprint
population searches for e�ective combinations of partial networks.

neuron may be lost, because it was ine�ectively combined during a generation. The second problem
is that the quality of the networks varies greatly throughout evolution. In early generations this
works as an advantage, since the search produces many di�erent types of networks to �nd the most
e�ective neurons. However, in later generations, when the search should focus on the best networks,
the inconsistent networks often stall the search and prevent the global optima from being located.
Experiments in section 4.3 will demonstrate this phenomenon.

An outer loop mechanism is necessary to maintain knowledge of the good neuron combinations.
Many di�erent approaches could perform the necessary record keeping ranging from maintaining
complex tables which record the �tness of each neuron when combined with other neurons to
simply remembering the top neuron combinations of the previous generation. Clearly, the memory
requirements of the �rst method make it impractical. For example, if 8 neurons were used to build
a network from a population of 800 neurons, a complete record of all neuron combinations would
contain 8008 entries. Conversely, the second method maintains very little information of the history
of each neuron and may provide only limited bene�t. An intermediate solution seems appropriate.

The current method of maintaining useful neuron combinations in SANE is to evolve a layer
of neural network records or blueprints on top of the neuron evolution. The blueprint population
maintains a record of the most e�ective neuron combinations found with the current population of
neurons and uses this knowledge as the basis to form the neural networks in the next generation.
Figure 3 shows the relationship between the blueprint and neuron populations. Each blueprint
speci�es a collection of neurons that have performed well together.

Maintaining network blueprints produces more accurate neuron evaluations and concentrates
the search on the best neural networks. Since neurons are systematically connected based on past
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Figure 4: Forming an 8 input, 3 hidden, 5 output unit neural network from three hidden neuron
de�nitions. The chromosomes of the hidden neurons are shown to the left and the corresponding
network to the right. In this example, each hidden neuron has 3 connections.

performance, they are more consistently combined with other neurons that perform well together.
Additionally, better-performing neurons garner more pointers from the blueprint population and
thus participate in a greater number of networks. Biasing the neuron participation towards the
historically better-performing neurons provides more accurate evaluations of the top neurons. The
sacri�ce, however, is that newer neurons may not receive enough trials to be accurately evaluated.
In practice, allocating more trials to the top neurons produces a signi�cant improvement over
uniform neuron participation.

The primary advantage of evolving network blueprints, however, is the exploitation of the
best networks found during evolution. By evolving the blueprint population, the best neuron
combinations are also recombined to form new, potentially better, collections of neurons. The
blueprint level evolution thus provides a very exploitive search that can build upon the best networks
found during evolution and focus the search in later generations.

3.3 SANE Implementation

SANE2 maintains and evolves two populations: a population of neurons and a population of network
blueprints. Each individual in the neuron population speci�es a set of connections to be made within
a neural network. Each individual in the network blueprint population speci�es a set of neurons
to include in a neural network. Conjunctively, the neuron evolution searches for e�ective partial
networks, while the blueprint evolution searches for e�ective combinations of the partial networks.

Each individual in the neuron population represents a hidden neuron in a 2-layer feed-forward
network. Neurons are de�ned in bitwise chromosomes that encode a series of connection de�nitions,
each consisting of an 8-bit label �eld and a 16-bit weight �eld. The absolute value of the label
determines where the connection is to be made. The neurons only connect to the input and the
output layer. If the decimal value of the label, D, is greater than 127, then the connection is made
to output unit D mod O, where O is the total number of output units. Similarly, if D is less than
or equal to 127, then the connection is made to input unit D mod I , where I is the total number
of input units. The weight �eld encodes a 
oating point weight for the connection. Figure 4 shows
how a neural network is formed from three sample hidden neuron de�nitions.

2The source code can be obtained from the UTCS Neural Networks' home page:
http://www.cs.utexas.edu/users/nn/.
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1. Clear �tness value of each neuron and blueprint.

2. Select � neurons from the population using a blueprint.

3. Create a neural network from the selected neurons.

4. Evaluate the network in the given task.

5. Assign the blueprint the evaluation of the network as its �tness.

5. Repeat steps 2-4 for each individual in the blueprint population.

7. Assign each neuron the evaluation of the best 5 networks in which it participated.

8. Perform crossover and mutation operations on the both populations.

Table 1: The basic steps in one generation of SANE.

Each individual in the blueprint population contains a series of neuron pointers. More specif-
ically, a blueprint chromosome is an array, of size �, of address pointers to neuron structures.
Figure 3 illustrates how the blueprint population is integrated with the neuron population. Ini-
tially, the chromosome pointers are randomly assigned to neurons in the neuron population. During
the neuron evaluation stage, subpopulations of neurons are selected based on each blueprint's array
of pointers.

Since SANE operates on bit strings and uses both mutation and recombination, its search
strategy fall under the genetic algorithm (Holland, 1975; Goldberg, 1989) method of evolutionary
computation. SANE uses a generational genetic algorithm which operates over two main phases:
evaluation and recombination. In the evaluation phase, the goal is to evaluate the �tness of each
neuron and network blueprint in the populations. Blueprints are evaluated based on the perfor-
mance of the neural network that they specify. Neurons are evaluated through combinations with
other neurons.

The basic steps in the evaluation phase are as follows (listed table 1): during the evaluation
stage, each blueprint is used to select neuron subpopulations of size � to form a neural network.
Each blueprint receives the �tness evaluation of the resulting network and each neuron receives the
summed �tness evaluations of the best �ve networks in which it participated. Calculating �tness
from the best �ve networks, as opposed to all of the neuron's networks, discourages selection against
neurons that are crucial in the best networks, but ine�ective in poor networks. For example in a
robot arm manipulation task, a neuron that specializes in small movements near the target would
be e�ective in networks that position the arm close to the target, but useless in networks that do
not get anywhere near the target. Such neurons are very important to the population and should
not be penalized for the poor networks that they cannot help.

After the evaluation stage, the neuron population is ranked based on the �tness values. For each
neuron in the top 25% of the population, a mate is selected randomly among the top 25%. Each
mating operation creates two o�spring: a child created through a one-point crossover operation
and a copy of one of the parent chromosomes. In SANE, one of the o�spring produced by crossover
is chosen at random to enter the population. Copying one of the parents as the second o�spring
reduces the e�ect of adverse neuron mutation on the blueprint-level evolution. This e�ect will be
further explained in the context of the blueprint evolution later in this section. The two o�spring
replace the worst-performing neurons (according to rank) in the population. In each generation,
50% of the population is replaced by new o�spring. Mutation at the rate of 0.1% per bit position
is performed on the entire population as the last step in each generation.

Such an aggressive, elitist breeding strategy is not normally used in evolutionary applications,
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since it leads to quick convergence of the population. SANE's neuron evolution, however, performs
quite well with such an aggressive selection strategy, since it contains strong evolutionary pressures
against convergence.

In the blueprint population, since the chromosomes are made up of address pointers instead of
bits, crossover only occurs between pointers. The new o�spring receive the same address pointers
that the parent chromosomes contained. In other words, if a parent chromosome contains a pointer
to a speci�c neuron, one of its o�spring will point to that same neuron (barring mutation). The
current evolutionary algorithm on the blueprint level is identical to the aggressive strategy used at
the neuron level, however the similarity is not essential and a more-standard evolutionary algorithm
or other methods of evolutionary computation could be used. Empirically, the aggressive strategy
at the blueprint level coupled with the strong mutation strategy described below, has outperformed
many of the more-standard evolutionary algorithms.

To avoid convergence problems at the blueprint level, a two-component mutation strategy is
employed. First, a pointer in each o�spring blueprint is randomly reassigned to another member of
the neuron population at a rate of 1%. This strategy promotes participation of neurons other than
the top neurons in subsequent networks. Thus, a neuron that does not participate in any networks
can acquire a pointer and participate in the next generation. Since the mutation only occurs in the
blueprint o�spring, the neuron pointers in the top blueprints are always preserved.

The second mutation component is a selective strategy designed to take advantage of the new
structures created by the neuron evolution. Recall that a breeding neuron produces two o�spring:
a copy of itself and the result of a crossover operation with another breeding neuron. Each neuron
o�spring is thus similar to and potentially better than its parent neurons. The blueprint evolution
can use this knowledge by occasionally replacing pointers to breeding neurons with pointers to
o�spring neurons. In the experiments described in this paper, pointers are switched from breeding
neurons to one of their o�spring with a 50% probability. Again, this mutation is only performed
in the o�spring blueprints, and the pointers in the top blueprints are preserved.

The selective mutation mechanism described above has two advantages. First, because pointers
are reassigned to neuron o�spring that are the result of crossover, the blueprint evolution can
explore new neuron structures. Second, because pointers are also reassigned to o�spring that were
formed by copying the parent, the blueprints become more resilient to adverse mutation in the
neuron evolution. If pointers were not reassigned to copies, many blueprints would point to the
same exact neuron, and any mutation to that neuron would a�ect every blueprint pointing to it.
When pointers are occasionally reassigned to copies, however, such mutation is limited to only a
few blueprints. The e�ect is similar to schema promotion in standard evolutionary algorithms. As
the population evolves, highly �t schema (i.e. neurons in this case) become more prevalent in the
population, and mutations to one copy of the schema do not a�ect other copies in the population.

4 Performance Evaluation

The coevolutionary search in SANE is quite di�erent from those of standard neuro-evolution, and it
is important to evaluate the performance improvements. This section empirically evaluates SANE
through comparisons with more standard neuro-evolutionary approaches. The experiments show
the advantages of SANE's symbiotic search strategy in terms of search e�ciency, diversity, and
adaptability.
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Figure 5: The interface to the Khepera 1.0 simulator (Michel 1995). The window shows a view of
Khepera and the con�guration of its arti�cial world.

4.1 The Khepera Robot Simulator

The domain chosen for evaluation of SANE was mobile robotics, or more speci�cally, controlling
the Khepera mobile robot (Mondada, Franzi, & Ienne, 1993).3 Michel (1995) has developed a
simulator of the Khepera robot, which contains useful X window utilities for visualizing neural
network controllers. Network architectures and activations can be viewed during the simulation
along with the activation of the robot's sensors and motors. These utilities, along with the real
world sensory input and motor output, make the Khepera simulator an excellent utility to evaluate
many of the features and components of SANE.

Khepera is a tiny robot (5 cm diameter) designed for research and teaching purposes. Khepera
contains both infrared and light sensors positioned around its circumference. Despite its size, the
robot is not easy to control. Khepera provides real world sensory information and requires a strong
grounding to the motor outputs to e�ectively maneuver the robot (Mondada et al., 1993). The I/O
resources of the simulator were designed to accurately re
ect those of the real robot. The eight
infrared sensors detect the proximity of objects by light re
ection and return values between 0 and
1023 depending on the color level. A value of 0 indicates that no object is sensed, and a value of
1023 indicates an object almost touching the sensor. Khepera has two wheels, controlled by two
separate motors, which can receive speed ranges from -10 to 10.

Figure 5 shows a snapshot of the simulator window and the layout of Khepera's world.4 The
Khepera robot was placed in the world with the following goal: within a speci�c allotted time, move
as far away (in Euclidean distance) from your starting position as possible without colliding with
obstacles. Thus, an e�ective controller must accurately translate the infrared sensory information
into speci�c motor outputs to both move the robot forward (or backward) and maneuver the robot
around obstacles.

3Information on Khepera can be found at http://wwwi3s.unice.fr/ om/khep-sim.html.
4The speci�c world that was used was the lab0.world from the Khepera 1.0 simulator package.
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4.2 Experimental Setup

The �rst experiments were designed to compare SANE's symbiotic evolution to more standard
neuro-evolution techniques. Four evolutionary approaches were tested in the Khepera simulator:
(1) SANE, (2) a standard neuro-evolution approach using the same aggressive selection strategy
as SANE, (3) a standard neuro-evolution approach using a less aggressive, tournament selection
strategy, and (4) a version of SANE without the network blueprint population.

The standard neuro-evolution approaches evolve a population of neural networks. Each indi-
vidual's chromosome consisted of 8 neuron de�nitions, encoded in the same fashion as in SANE.
The di�erence in the two standard approaches is in the underlying genetic selection strategies. The
�rst approach, Standard Elite, uses the same aggressive, elitist selection strategy as SANE. Thus,
the only di�erence between SANE and standard elite is the level of evolution. SANE performs
evolution on the neuron level and the standard elite approach on the network level. Comparisons
of SANE to the standard elite approach demonstrate how the diversity pressures in the neuron
evolution allow for aggressive searches that perform poorly in standard evolutionary algorithms
because of premature convergence.

The second standard neuro-evolution approach uses a less aggressive binary tournament selec-
tion strategy called Standard Tournament. Two random individuals are selected from the popu-
lation, and the individual with a higher �tness is used for recombination. This strategy creates a
selection bias towards the top individuals but does not preclude recombination of poor individuals.
Contrasted with SANE's elitist approach, where the top 10% of the population participates in over
half of the recombination operations, binary tournament selection is much less aggressive. Recent
research has shown tournament selection to be the preferred method of genetic selection in terms
of its growth ratios for discouraging premature convergence (Goldberg & Deb, 1991). Comparisons
of SANE to the standard tournament neuro-evolution approach demonstrate the performance of
the symbiotic search relative to a more \state of the art" genetic search strategy.

The fourth evolutionary approach, Neuron SANE, is a symbiotic neuron search without the
higher-level blueprint evolution. Instead of using a population of network blueprints to form the
neural networks, Neuron SANE forms networks by randomly selecting subpopulations of neurons.
Comparisons of SANE to Neuron SANE can thus e�ectively gauge the contribution of the blueprint-
level evolution.

To focus the comparison on the di�erent strategies of neuro-evolution, rather than the choice of
parameter settings, several preliminary experiments were run to discover e�ective parameter values
for each approach. Table 2 summarizes the parameter choices for each method. With the standard
approaches, a population size of 100 networks was found to be more e�ective than populations of 50
or 200. Keeping the number of network evaluations per generation constant across each approach,
a neuron population size of 800 for SANE and 200 for Neuron SANE performed well. A 0.1%
mutation rate was used for all four approaches.

Neuron SANE requires a smaller population than SANE because its neurons are evaluated
through random combinations. The population must be small enough to allow neurons to par-
ticipate in several networks per generation. For example, randomly selecting 8 neurons for 100
networks in a 200 neuron population gives each neuron an expected network participation rate
of 4 networks per generation. In SANE, the neuron population is not as restricted, since neuron
participation is dictated by the network blueprints. SANE skews the participation rate towards the
best neurons and leaves many neurons unevaluated in each generation. An unevaluated neuron is
normally garbage, since no blueprint uses it to build a network.
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SANE Neuron SANE Standard Elite Standard Tournament

Neuron Population 800 200 - -

Network Population 100 - 100 100

Table 2: Implementation parameters for each method.

> 100 > 150 > 200 > 250 > 300

SANE 1 6 14 26 41
Neuron SANE 1 8 14 34 64
Standard Elite 3 13 37 65 -

Standard Tournament 2 10 21 40 79

Table 3: The average number of generations to reach the desired level of distance over the 50
position test set. For example, SANE required 26 generations on average to generate a network
that averaged over 250 cm of distance on the test set. SANE's evolution was the most e�cient
requiring half of the evaluations of the standard approaches to reach the top level of performance.

Three experiments were run to compare the four approaches: a performance analysis, a diversity
analysis, and an adaptive analysis. The results of each of the experiments were averaged over 20
simulations.

4.3 Performance Analysis

The �rst experiment tested the learning speed and solution quality of each evolutionary approach.
Populations were evolved in the Khepera simulator for 80 generations. During each network eval-
uation, the robot was placed in a random position in the Khepera world, and the network was
allowed to move the robot until it hit an obstacle or the maximum number of moves, 200, was
exhausted. The �tness of each network was the maximum Euclidean distance the robot moved
from its starting position.

To generate a learning curve, the best network of each generation (according to �tness) was
tested on a 50 start-position test set. The average distance on the test set de�nes the performance
of that generation. For each generation, the learning curve plots the best performance found at or
before that generation. The learning curve thus shows the quality of solution that can be expected
by each generation.

Figure 6 shows the learning curve from the performance analysis and table 3 shows the average
number of generations to reach the speci�c levels of distance over the test set. As expected,
the standard approach with the elite, aggressive selection strategy performed poorly. The search
was inconsistent; it either found very good networks or stalled with very poor networks, which
is characteristic of an aggressive, convergent search. If the search converged on a good network,
it could often tweak it with mutation into a great network. Otherwise, it remained stuck with a
suboptimal solution. These experiments con�rmed that for a network level evolution, tournament
selection is a better selection strategy.

SANE performed the most e�cient search, �nding networks that averaged 300 cm of distance
in half as many generations as the standard tournament search and less than half of the generations
of the standard elite search. Unlike the standard elite approach, SANE's aggressive searches were
very consistent. Only one of the SANE simulations out of the 20 returned a �nal network that
averaged less than 300 cm. SANE's neuron-based searches, thus, do not appear as susceptible to
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Figure 6: Comparison of the learning speeds of the di�erent evolutionary approaches. The distance
refers to the average distance over a 50 position test set for the best network found at or before
each generation. The distances are averaged over 20 simulations. Simulations were run for 80
generations, because at that point the standard approaches began to plateau. The learning curve
demonstrates the e�ciency gain from the neuron and blueprint populations.

premature convergence as an aggressive evolutionary algorithm operating on a population of neural
networks.

The neuron-only version of SANE was as e�cient as SANE in early generations, but was unable
to maintain the same e�ciency in later generations. Without a mechanism to propagate knowledge
of the good networks that are formed, it is di�cult for Neuron SANE to build upon the best
networks. The poor late performance gives strong evidence to this problem and e�ectively shows
the contribution of the network blueprint evolution. Neuron SANE performed comparably to the
standard tournament approach.

To show that the di�erence in the curves are statistically signi�cant, we applied a single tailed
t-test to �nd 95% con�dence intervals over the di�erences between SANE and the other approaches.
With 95% con�dence, the di�erences in average distance after 80 generations are in the following
ranges: Neuron SANE, [39:5; 5:3], Standard Elite [84:9; 51:2], Standard Tournament [57:4; 20:1].
Thus, there is a statistically signi�cant di�erence (p < :05) between the performance of SANE after
80 generations and the other three approaches.

4.4 Diversity Analysis

The second experiment tested the diversity level of the populations throughout evolution. The
goal of this test was to demonstrate the population-level di�erences between the coevolutionary
and standard approaches. Populations were evolved for 80 generations as in the �rst experiment,
but after each generation, the population diversity was measured. A diversity metric, �, can be
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Figure 7: The population diversity for each simulation. The neuron-based approaches maintain
very high levels of diversity, while the network-based approaches converge to a single solution.

generated by taking the average Hamming distance between every two chromosomes, divided by
the length of the chromosome:

� =
2
Pn

i=1

Pn
j=i+1Hi;j

n(n� 1)l
;

where n is the population size, l is the length of each chromosome, and Hi;j is the Hamming distance
between chromosomes i and j. The value � represents the probability that a given bit at a speci�c
position on one chromosome is di�erent from a bit at the same position on a di�erent chromosome.
Thus, a random population would have � = 0:5 since there is a 50% probability that any two bits
in the same position di�er.

Figure 7 shows the average diversity levels at each generation. The convergence of the standard
elite approach is quite dramatic. Within 10 generations, 95% of the bit positions were identical.
It is this phenomenon that leads most evolutionary algorithm implementors away from aggressive
selection strategies and towards more conservative approaches like tournament selection. The
tournament standard approach did converge much slower, but after 60 generations 90% of its bit
positions were identical as well. Both SANE and Neuron SANE maintained very diverse populations
throughout evolution, which con�rms our hypothesis that SANE can perform a very aggressive
search while maintaining a high level of diversity. Aggression balanced with diversity is the core
of SANE's search strategy and is what sets it apart from current neuro-evolution approaches.
Diversity allows SANE to improve its networks in later generations and, as demonstrated in the
next experiment, adapt in changing environments.

14



-120

-100

-80

-60

-40

-20

0

20

40

80 85 90 95 100 105 110 115 120

D
iff

er
en

ce
 fr

om
 B

es
t D

is
ta

nc
e

Generation

SANE
Neuron SANE
Standard Elite

Standard Tournament

Figure 8: Adaptive comparisons. After evolving for 80 generations, a back sensor is �xed at 1.0. The
graph plots the di�erence in performance from the best performance in the previous 80 generations.

4.5 Adaptive Analysis

The third experiment tested the ability of each approach to adapt to changes in the domain.
Populations were evolved for 80 generations as in the �rst experiment. After 80 generations, the
right back sensor of the khepera robot was \damaged", and the populations were evolved for 40
more generations. The sensor was set to a constant value of 1.0, which gives the illusion of an
immediate obstacle to the rear of the robot. To adapt, the populations must learn to ignore the
malfunctioning sensor and rely on the other back sensor. This experiment was designed to give a
realistic situation for which adaptive behavior is necessary.

Figure 8 plots a learning curve for the simulations in the adaptive analysis. The y axis represents
the di�erence in performance relative to the performance level achieved before the malfunctioning
sensor. The horizontal line at 0 on the y axis represents the point where the search achieves the same
performance as before the domain change. The relative distance is plotted rather than the absolute
distance because each approach achieves a di�erent level of performance after 80 generations.

As expected, the converged populations were much less adaptive than the diverse populations.
After the sensor malfunctioned, each of the approaches lost about the same amount of performance,
approximately 120 cm of distance on average. SANE quickly matched and surpassed its previous
performance in an average of 15 generations. Neuron SANE required 25 generations to fully adapt.
On average, neither of the standard approaches were able to achieve the performance level they
had reached with the correct sensor within 40 generations. The performance of SANE and Neuron
SANE demonstrates how evolution in diverse populations is capable of quickly generating new
solutions when the task or environment changes. Without diversity, evolution is seriously limited
and cannot generate new structures in a timely manner.
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5 Analysis of Symbiotic Neurons

In section 2, we hypothesized that SANE's neurons will not converge to a single type, but will
instead form several subpopulations that each �ll an important role in a neural network. The
experiments described in this section illustrate this process and, in the context of the Khepera
simulator, describe how and why certain neuron specializations emerge.

5.1 Principal Component Analysis

In order to visualize SANE's populations, a method for displaying the neurons in 2-D is needed.
Principal component analysis (PCA) (see e.g., Jolli�e, 1986) is a useful tool for visualizing the
relative distances between high-dimensional vectors. PCA performs a coordinate transformation
on a set of data points. The �rst dimension is chosen along the direction with the most variance
in the data. The second is chosen perpendicular to the �rst, accounting for as much remaining
variance as possible. Each new dimension or principal component is chosen in a similar fashion.
The �nal result is a new coordinate system that is ordered according to variance. PCA can be used
to perform a dimensionality reduction on high-dimensional data. To reduce the data points to M

dimensions, PCA is run to determine the dimensions of maximum variance. The data points are
then plotted along the �rst M coordinates. Since the coordinates are ordered, the resulting plot
accounts for as much of the data variance as possible in M dimensions.

PCA can be used to reduce the high-dimensional genetic chromosomes into two or three dimen-
sions, which can then be plotted. There are several problems, however, with this approach. First, in
PCA reductions on several 240-dimensional vector populations, the �rst two principal components
were able to capture only 60% of the data variance. More components are needed to accurately
represent this data, but such representations cannot be plotted. Second, a PCA plot of the raw
genetic chromosomes may not accurately represent functional similarities among the neurons. Sim-
ilar genotypes (chromosomes) may not always produce similar phenotypes (neural network hidden
units). For example, two neurons may have identical bits in their weight alleles, but a few di�ering
bit positions in their label alleles can create vastly di�erent network architectures. A PCA plot
based on the chromosomes of these two neurons would place them close to each other, when they
actually function quite di�erently.

A more appropriate strategy is to compute a function vector for each neuron that describes
its role in a neural network. The function vector can then be reduced using a PCA and plotted,
resulting in a more accurate visualization of the di�erent neuron roles. To generate such a vector,
a neuron is implemented as the only hidden unit in a network and the network's output layer
activations are recorded (table 4). The function vector captures the neuron's responses to each
input unit activation. Thus, unlike the basic chromosome vector, the function vector represents the
direct behavior of each neuron in a neural network.

The function vector can be post-processed further to produce a functional representation in
terms of the task. For example, in the Khepera task the output layer activations can be interpreted
as motor commands. Using the output layer de�nition of section 4.1, activations [0:4; 1:0; 0:6; 0:2]
translate into motor commands of [2;�8]5. Post-processing the function vector in this way creates
a more accurate representation of the e�ect each neuron has on the robot. The �nal function vector

5For each motor (left and right) take the di�erence in the positive and negative direction and multiply by the
maximum motor activation: (0:6� 0:4)� 10 = 2; (0:2� 1:0)� 10 = �8.
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1. Initialize the function vector to nil.

2. Build a neural network with the neuron as the only hidden unit.

3. For each input unit i:

a. Set input i to 1.0 and all others to 0.0

b. Propagate the activation through the output layer

c. Append the output layer activations to the function vector

Table 4: The steps to compute a functional representation of a neuron. The function vector
represents the actual function the neuron performs within the neural network.

consists of only 18 dimensions which can be reduced to 2 dimensions through PCA while preserving
95% of the variance.

Figures 9 plots the two-dimensional functional representations of the neuron populations from a
simulation in the Khepera task. Other simulations produced similar plots (Moriarty, 1997). Snap-
shots of the populations were taken at generations 0, 10, 20, 40, and 80. Generation 0 shows a fairly
uniform distribution re
ective of the initially random populations. As the populations evolve, neu-
rons begin to cluster together and form subpopulations or specializations. In the �nal generation,
the specializations are very distinct. The last graph plots the neurons that were included in the
top three networks of the last generation. The graph shows that the best networks utilized neurons
from several di�erent subpopulations. Such diversity demonstrates that each of the specializations
plays an active role in the best neural networks.

In addition to the subpopulation clusters, each plot contains several examples of neurons that
are located between clusters and isolated from other neurons. Such neurons are created by inter-
breeding two members of di�erent specializations and thus contain some of the functionality of
each. The isolated neurons in the PCA demonstrates how SANE can build new neuron roles
through inter-breeding existing roles. In other words, these neurons are the pioneers that explore
new neuron roles. If an e�ective role is found, a new subpopulation of neurons will form around
the isolated neuron. An example of this phenomenon can be seen in �gure 9. In generation 10, a
single neuron exists around the point (27,2). As the population evolves, more and more neurons
begin to cluster around this area, which leads to the conclusion that the original neuron discovered
a valuable neuron role.

The PCA analysis con�rms the hypothesis that SANE evolves several di�erent types of neurons
in a single population. As the populations evolve, neurons merge into several di�erent specializa-
tions that optimize di�erent aspects of the neural networks. Moreover, the specializations provide
su�cient diversity to form new neural structures by inter-breeding between specializations. This
phenomena is quite unique in evolutionary algorithms, since most approaches to coevolution evolve
separate species in segregated subpopulations or islands. In contrast, SANE forms its specializa-
tions naturally in a single population and takes advantage of the inherent diversity to produce a
more explorative search.

5.2 Lesion Studies

While the emergence of specializations is clear from the PCA studies, the function of each and the
overall division of labor is not. To better understand the role of each specialization in the neural
networks, simulated lesion studies were conducted. Lesions are used in biological neural networks
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Figure 9: PCA of simulation 1. The position on one PCA graph does not necessarily correspond to the

same position on another PCA graph because dimensions are determined separately in each plot. However

in these experiments, this has in general held true. Thus, the neurons around point 25,2 in generation 10

are similar in function to the neurons around point 25,2 in generation 80.

18



-30

-20

-10

0

10

20

30

-30 -20 -10 0 10 20 30

A

B

E

D

C

A

B

E

D

C

Figure 10: The principle components analysis (PCA) of the neuron population in the �nal genera-
tion. The specializations that are included in the top network are labeled A through E.

to identify functions or functional areas of the brain. If a lesion results in a loss of a brain function,
it can be concluded that the lesioned area was involved in carrying out that function. Similar
experiments can be performed in arti�cial neural networks, by removing neurons and observing the
behavior of the modi�ed network.

Figure 10 shows a close up of the �nal PCA of the population for the �rst simulation. The
specializations that are represented in the best network of the �nal generation are labeled A through
E. While other groupings of neurons are also present, the current lesion experiments are only
interested in the specializations included in the top neural network.

Two types of lesion experiments were conducted for a speci�c neuron or specialization: a neuron
capability test and a neuron necessity test. In the capability test, a neuron is implemented alone
and thus forms the entire hidden layer. Such experiments are designed to show how functional each
neuron is without aid from other neurons in the population. The capability test will e�ectively
demonstrate that a single neuron can not perform the entire task on its own. The second test is
a necessity test, where a neuron in a functioning neural network is removed. The necessity test
shows how crucial a speci�c neuron is in the performance of a neural network.

Table 5 shows the neurons included in the �nal network (numbered by �tness rank), their
corresponding specializations, and the performance in the two lesion tests. The network contains
two neurons from specialization B and two from E. Neuron number 1, which is represented by the
single point at (19,11) in �gure 10, does not appear to be a member of a well-de�ned specialization
and is therefore not given a specialization label.

As expected, no neuron formed an e�ective hidden layer by itself. In the capability test, the
highest scoring neuron only achieved a performance level of 64.5 (average Euclidean distance in
the Khepera task), which is 1/6 of the performance of the entire network of neurons. The neurons
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Neuron Rank Specialization Capability Necessity

48 C 64.5 382.9
16 A 6.0 305.7
11 E 11.8 402.6
46 B 12.3 341.6
1 - 10.8 294.6
38 E 12.3 326.0
40 D 44.2 381.4
39 B 13.3 293.0

Table 5: Lesion results from simulation 1. Each of the neurons in the top network are implemented
alone (Capability) and lesioned from the network (Necessity). The resulting network is tested in
the Khepera task. The complete (non-lesioned) network achieved a performance level of 409.5. The
capability test shows that no neuron can perform the entire task alone. The necessity test shows
that while the network is quite robust to damage, each neuron plays an important role.

Lesioned Specialization Performance

A 305.7
B 207.0
C 382.9
D 381.4
E 145.3

Table 6: Specialization Lesions. All members of a specialization are removed from the network. The
resulting network is tested in the Khepera task. The complete (non-lesioned) network achieved a
performance level of 409.5. Each specialization is crucial to achieve the network's top performance.

generally spun the robot rapidly in either direction. Neurons 48 and 40, however, did not spin the
robot, but rather moved in a straight line. Unfortunately, these two neurons also moved straight
into the nearest wall. The capability test numbers clearly illustrate the symbiotic nature of SANE's
neuron population. The specializations that each represent cannot function without the presence
of the other neurons in the hidden layer.

The necessity tests show the importance of each neuron to the network. Each neuron lesion
caused a performance drop, in some cases as much as 25%. This consistent drop demonstrates
that each neuron serves an important role. Interestingly, neurons of similar specializations did not
exhibit similar performance degradations when lesioned. For example, neurons 11 and 38 are both
members of specialization E. When lesioned from the network, the resulting performances are 402.6
without neuron 11 and 326.0 without neuron 38.

An explanation for this disparity is that neuron 38 encompasses neuron 11's function and that
neuron 11 is a weak member of specialization E. To con�rm this hypothesis, experiments were
conducted where entire specializations were lesioned from the network. Figure 6 summarizes the
performance numbers of the specialization lesion experiments. When both members of specializa-
tion E were lesioned, the network experienced a dramatic performance drop. The di�erence between
the performance when both members are lesioned (145.3) and the performance when only neuron
38 is lesioned (326), con�rms that neuron 11 does provide some of the function of specialization E.
However, given the results of the previous necessity test, the function is not enough to compensate
for the loss of neuron 38. Thus, neuron 11 does appear to be a weak member of specialization E.
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Motor Activation from Speci�c Sensors
Neuron Rank Specialization None Left Forward Right Rear

48 C +3,+3 0,0 +3,+3 +3,+3 +3,+3
16 A -10,+8 -4,+2 -10,+8 -10,+8 -10,+8
11 E +9,-5 +9,-5 +5,-3 +1,-1 +9,-5
46 B -5,+8 -5,-6 -5,+8 -5,+8 -5,+8
1 - +4,-7 +4,-9 +4,-9 +1,-4 +4,-8
38 E +9,-5 +9,-5 +9,-5 0,-1 +9,-5
40 D +9,+4 +9,+4 0,0 +5,+2 +9,+4
39 B -5,+8 -3,+3 -5,+8 -5,+9 -5,+9

Table 7: Individual neuron responses to speci�c sensory inputs. The output numbers refer to the
speed at which the neuron drives the left and right motors. For example, when neuron 11 receives
input from its front sensors, it generates motor outputs of +5 and -3.

To better understand the actual function of each neuron, the motor outputs, in response to
speci�c sensory input, were analyzed. Table 7 shows the motor responses of each neuron given
sensor activations on the left, in front, on the right, and behind the robot. The motor outputs
given no activation are also shown. The two output numbers represent the activation of each of
the robot's motors.

Each neuron appears to give attention to a single sensor direction and change its output only
when that particular sensor becomes active. For example, neuron 48 produces a consistent motor
activation of +3 for both the left and right motors, except when the left sensors are active. Such
output changes are very illustrative of the neuron's function, because they demonstrate the sensors
to which the neuron responds and the type of response that is elicited.

As described in the capability test, neurons 40 and 48 cause the robot to move in a straight line
when implemented alone. This behavior is represented in their motor output activations in table 7.
Both neurons provide consistent positive activations to both motors, which causes the robot to
move forward. The di�erence between the two neurons, which constitutes the di�erence between
specialization C and D, is that they are sensitive to di�erent sensory input. Neuron 40 reduces its
positive motor activations when a left sensor is activated and neuron 48 does so when a forward
sensor is activated. The elicited response of both neurons is to slow the robot when the sensor is
activated. These two neurons provide the thrust of the robot on long straightaways and then slow
the robot when obstacles are present. Neither of the neurons provide actual obstacle avoidance
behavior; they are merely responsible for slowing the robot. Another specialization performs the
turning.

Neurons 11 and 38, members of specialization E, and neuron 1 provide strong positive impulses
to the left motor and strong negative impulses to the right motor. Naturally, these activations
cause the robot to spin very fast in a clockwise direction. Specialization E, however, has evolved a
symbiotic relationship with specializations A, B, and D, which spin the robot in a counterclockwise
direction. The net result is a robot that does not spin. The balance that is attained between all of
the motor activations explains the performance drop o� when any one neuron is excluded.

Specialization E responds to activations of the front and right sensors by reducing the left motor
and increasing the right motor. Such activations reduce the clockwise spin impulse and the robot
begins to turn in a counterclockwise direction. The e�ect of specialization E is thus to veer the
robot to the left to avoid objects in front of and to the right. Specialization A is a mirror of
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specialization E, veering the robot to the right to avoid objects on the left.

Neuron 1 was not placed in a speci�c specialization, because in the PCA graph it was not
plotted in a distinct subgroup. Its proximity to specialization E on the PCA, however, is exhibited
in its motor responses. Like specialization E, it reduces its normal clockwise spin impulse when the
right sensors are active. The normal spin impulse and modi�ed spin impulse of neuron 1, however,
are not nearly as strong as specialization E. Neuron 1 was likely a mutant of specialization E that
has increased the spin impulses just enough to make the robot make right turns in response to
objects on the left. As shown in the necessity test, the network performs poorly when neuron 1 is
removed.

Specialization B has a similar relationship to specialization A as neuron 1 does to specialization
E. Like specialization A, B neurons spin the robot in a counter clockwise direction and reduce the
spin impulse when a left sensor is active. The magnitude of the spin reduction, however, is much
less than specialization A and appears to be more of a �ne tuning of the right turn.

In summary, the roles of the neurons in the top network are:

48 Provides forward activations and slows down when object is sensed
on the left.

16 Veers the robot right to avoid objects to the left.
11 Veers the robot left to avoid objects to the right.
46 Provides small right impulse when objects are sensed to the left.
1 Provides additional spin impulses for specialization E.
38 Veers the robot left to avoid objects to the right.
40 Provides forward activations and balances the spin caused by

the other neurons. Slows robot when an object is sensed in
front and to right.

39 Veers the robot right to avoid objects to the left.

Lesion studies conducted in other Khepera simulations produced similar results (Moriarty,
1997). In almost all cases, separate specializations evolved to control the forward thrust, right
turns, and left turns. At least one simulation evolved a neuron specialization that produced a 0,0
motor activation across all sensory inputs. These \no-op" neurons have no e�ect on the network
behavior and may have evolved as �llers, since the existing specializations were su�cient for solving
the task.

It is also important to note that neuron roles were often redundant across several specializations
and within the neural networks. For example, specializations A and B both maneuver around
objects to the left of the robot, and members of both are included in the �nal network. This
suggests that SANE does not develop a minimal set of behaviors, but instead distributes important
functions across several neurons and multiple specializations. This produces a much more robust
controller, since damage to a single neuron can be overcome by the redundant function of the
other neurons. As shown in table 5, the loss of one neuron does not result in a dramatic drop in
performance.

The lesion studies demonstrate the symbiotic nature of SANE's neurons. No neuron could
perform well alone, and every neuron was necessary to achieve the network's top performance level.
The studies also con�rm the hypothesis that SANE performs a parallel search in several di�erent
subgroups of its neuron population. Analysis of the roles of the di�erent specializations show a
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clear division of labor with the largest division between forward motor neurons, left turn neurons,
and right turn neurons. Several subpopulations within specializations appear to be re�nements of
the major roles, which allow SANE to continue to improve each specialization. It is this parallel
search that sets SANE apart from existing neuro-evolution approaches and should allow SANE to
more e�ciently solve di�cult problems.

6 Related Work

This section relates SANE's symbiotic evolution to other cooperative, coevolutionary approaches.
While there are numerous examples of coevolution in the literature, we highlight those methods
that maintain diversity and/or decompose the problem by evolving partial solutions that cooperate
to form a global solution.

The search behavior of symbiotic evolution is similar to the implicit �tness sharing in the
coadaptive genetic algorithms of Smith et al. (1993) and Smith and Gray (1993). In their immune
system model, Smith and Gray (1993) evolved arti�cial antibodies to recognize or match arti�cial
antigens. Since each antibody can only match one antigen, a diverse population of antibodies is
necessary to guard against a variety of antigens.

The coadaptive genetic algorithm model is based more on competition than cooperation. Each
antibody must compete for survival with other antibodies in the subpopulation to recognize the
given antigen. The �tness of each individual re
ects how well it matches its opposing antigen,
not how well it cooperates with other individuals. The antibodies are thus not dependent on
other antibodies for recognition of an antigen and only interact implicitly through competition.
Horn et al. (1994) characterize this di�erence as weak cooperation (coadaptive GA) vs. strong
cooperation (symbiotic evolution). Since both approaches appear to have similar e�ects in terms of
population diversity and speciation, further research is necessary to discover the relative strengths
and weaknesses of each method.

Smith and Cribbs (1994) have proposed a method where a learning classi�er system (LCS) can
be mapped to a neural network. Each hidden node represents a classi�er rule that must compete
with other hidden nodes in a winner-take-all competition. Like SANE, the evolution in the LCS/NN
is performed on the neuron level instead of at the network level. Unlike SANE, the LCS/NN is a
pure \Michigan" approach where the entire population of neurons represents the �nal solution. In
SANE, subpopulations represent the solution.

The LCS/NN implementation uses a variant of the cascade correlation algorithm (Fahlman &
Lebiere, 1990) to compute �tness levels for each neuron. Neuron �tness levels are increased if
their activations correlate with correct output from the neural network. However, by basing credit
assignment on the known correct behavior, the current LCS/NN implementation cannot be used
for reinforcement learning, which is the primary direction of SANE. In most sequential decision
tasks, correct behavior is unknown.

Potter and De Jong have developed a symbiotic evolutionary strategy called Cooperative Coevo-
lutionary Genetic Algorithms (CCGA) and have applied it to both neural network and rule-based
systems (Potter, 1997; Potter & De Jong, 1995; Potter et al., 1995). The CCGA evolves partial
solutions much like SANE, but distributes the individuals di�erently. Whereas SANE keeps all
individuals in a single population, the CCGA evolves specializations in distinct subpopulations or
islands. Members of di�erent subpopulations do not inter-breed across subpopulations, which elim-
inates haphazard, destructive recombination between dominant specializations, but also removes
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information-sharing between specializations.

Evolving in distinct subpopulations places a heavier burden on a priori knowledge of the num-
ber of specializations necessary to form an e�ective complete solution. In SANE, the number and
distribution of the specializations is determined implicitly throughout evolution. For example, a
network may be given eight hidden neurons but may only require four types of hidden neurons.
SANE would evolve four di�erent specializations and redundantly select two from each for the
�nal network. While two subpopulations in the CCGA could represent the same specialization,
they cannot share information and therefore are forced to �nd the redundant specialization in-
dependently. Potter and De Jong (1995) have proposed a method that automatically determines
the number of partial solutions necessary by incrementally adding random subpopulations. This
approach appears promising, and motivates further research comparing the single population and
incremental subpopulation approaches.

7 Applications of SANE

In practice, the evolutionary search in SANE appears to scale well to real world applications.
This section describes three such applications that demonstrate SANE's scope and its scale up
potential. Each of these applications have used the same approach described in this paper. The
only domain-speci�c engineering occurred in the input and output layer representations.

Game Tree Search (Moriarty & Miikkulainen, 1994). Minimax search is currently the standard
method for game tree searching. Unfortunately, minimax relies on heuristic evaluation functions
that are often inaccurate and misleading. They generate errors that propagate through the tree
and can cause minimax to select poor moves. SANE was implemented to generate neural networks
that serve as �lters for minimax, allowing it to see only information that lead to good decisions.
The SANE networks were implemented in the former world champion Othello program Bill (Lee &
Mahajan, 1990) and signi�cantly improved its performance. SANE's application to game playing
demonstrates how it may be used to develop new advances in widely studied problems.

Controlling Chaos (Weeks & Burgess, 1997). Weeks and Burgess applied SANE to the di�cult
task of controlling chaos in unstable systems. Chaos is dynamical behavior that is unpredictable
over long periods of time, but obeys simple laws. Chaos can be controlled by applying small
perturbations to system variables to achieve stability around a �xed point. Once the chaotic
behavior is controlled, future system behavior can be more easily and accurately predicted. Weeks
and Burgess demonstrated how SANE can e�ciently evolve neural networks to control chaos in
several unstable systems. Unlike existing methods that require knowledge of the underlying system
dynamics, SANE's formed networks simply through trial and error experimentation using only
the relative stability of the system as feedback. Moreover, SANE is the only method that has
been shown to stabilize a system that is far from its stable state. The results show that SANE is
quite e�ective at controlling chaotic behavior and should be applicable to many unstable systems
including systems that are poorly understood.

Robot Arm Control (Moriarty & Miikkulainen, 1996b). Most neural network applications to
robot arm control learn hand-eye coordination through supervised training methods such as back-
propagation or conjugate gradient descent. Supervised learning, however, requires training ex-
amples that demonstrate correct mappings from input to output. The current approaches for
generating training examples for robot arm control are limited and ine�ective in uncertain or
obstacle-�lled domains. Thus, neuro-controllers that learn from supervised techniques cannot in-
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tegrate target reaching with obstacle avoidance. SANE, however, does not require input/output
examples and can learn the intermediate joint rotations necessary for avoiding obstacles simply by
trial and error movements. Applied to a simulation of the OSCAR-6 robot arm, SANE learned to
maneuver around random obstacles to reach randomly place targets. To our knowledge, SANE is
the only learning system that has successfully combined both target reaching and obstacle avoidance
strategies for a robot arm.

8 Future Work

Symbiotic evolution is not unique to connectionist systems, but may provide useful insight in other
areas of machine learning as well. One application is to employ symbiotic evolution to evolve a
rule base for multi-category classi�cation. Current machine learning techniques do not directly
induce shared intermediate concepts between multiple categories, but instead typically re-invent
intermediate states for each category. For example, in an animal classi�cation domain, the mammal
concept is normally not shared between zebra and gira�e, but is learned separately for each speci�c
mammal. Shared concepts, however, are advantageous because they can increase the classi�cation
accuracy for each category by applying general knowledge attained about one category to a related,
but possibly more unfamiliar category (Ourston & Mooney, 1994).

Symbiotic evolution, however, is capable of forming shared intermediate concepts by simulta-
neously evolving rules which are used to classify multiple categories. From an initially random rule
base, subpopulations of rules could be selected to form a domain theory. The domain theory could
then be evaluated through theory re�nement (Ourston & Mooney, 1994) which measures both the
accuracy of the domain theory and the amount of re�nement necessary. The evaluation score of the
domain theory would be given to each participating rule and the process of selecting and evaluat-
ing random subpopulations would repeat. Once each rule has an average utility measure, crossover
and mutation operators would be applied to form a new rule base. Since sharing intermediate
states generally requires less theory re�nement and can produce more accurate classi�ers, evolu-
tionary pressures will select cooperative rules which connect together and form shared intermediate
concepts.

While we believe that symbiotic evolution is a general principle, applicable not only to neural
networks but to other representations as well, not all representations may be compatible with
this approach. Symbiosis emerges naturally in the current representation of neural networks as
collections of hidden neurons, but preliminary experiments with other types of encodings, such
as populations of individual network connections, have been unsuccessful (Steetskamp, 1995). An
important facet of SANE's neurons is that they form complete input to output mappings, which
makes every neuron a primitive solution in its own right. SANE can thus form subsumption-
type architectures (Brooks, 1991), where certain neurons provide very crude solutions and other
neurons perform higher-level functions that �x problems in the crude solutions. Preliminary studies
in simple classi�cation tasks have uncovered some subsumptive behavior among SANE's neurons.
An important focus for future research will be to further analyze the functions of evolved hidden
neurons and to study other symbiotic-conducive representations.
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9 Conclusion

Cooperative, coevolutionary algorithms o�er a promising alternative to the standard EA methods
in dynamic control tasks. Coevolutionary methods allow for more aggressive searches for solutions,
while discouraging convergence on suboptimal solutions. Moreover, the diverse populations adapt
more readily to any 
uctuations in the environment. The SANE system incorporates a coevolution-
ary search strategy called symbiotic evolution to form neural networks in di�cult decision tasks.
Compared to standard neuro-evolutionary approaches in a mobile robotics task, SANE formed solu-
tions faster, maintained higher level of population diversity, and was more adaptive in domain shifts.
Principal component analysis and lesion studies illustrate how SANE's neurons specialize within
the single population and �ll several di�erent roles. This specialization is the heart of SANE's
search e�ciency. By reducing the solution space for each individual, SANE searches in parallel
decompositions of the complete neural network space, while maintaining high levels of diversity.
This coevolutionary search coupled with the outer loop blueprint evolution is quite promising and
should extend well to more di�cult problems.
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