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Abstract

An approach to develop new game playing strategies based on arti�cial evolution of neural networks
is presented. Evolution was directed to discover strategies in Othello against a random-moving
opponent and later against an �-� search program. The networks discovered �rst a standard
positional strategy, and subsequently a mobility strategy, an advanced strategy rarely seen outside
of tournaments. The latter discovery demonstrates how evolutionary neural networks can develop
novel solutions by turning an initial disadvantage into an advantage in a changed environment.

1 Introduction

Game playing is one of the oldest and most extensively studied areas of arti�cial intelligence. Games
require sophisticated intelligence in a well-de�ned problem where success is easily measured. Games
have therefore proven to be important domains for studying problem solving techniques.

Most research in game playing has centered on creating deeper searches through the possible
game scenarios. Deeper searches provide more information from which to evaluate the current board
position. This approach, however, is di�erent from the play of human experts. In a psychological
study, DeGroot (1965) found that game playing experts did not search any more alternative moves
than novices. Experts in fact use a much greater knowledge of the game together with sophisticated
pattern recognition to focus the search on the important paths (Charness 1976; Frey and Adesman
1976).

This paper presents a more \human-like" approach to game playing by evolving arti�cial game-
playing neural networks through genetic algorithms. The networks were required to learn the game
of Othello without any previous knowledge of the game. Without hand-coded rules or heuristics,
the networks were free from any bias in their decision of where to move. The strategies evolved
purely from discovery through playing the game.

The networks were a�orded no search mechanism, and were thus forced to rely of pattern
recognition on the current board con�guration to achieve good play. The goal was to see what
strategies the networks would develop. The networks were �rst evolved against a random mover,
and they quickly developed a positional strategy similar to those often used by novice players of
Othello.

Connection Science, 7(3): 195-209, 1995.



A more sophisticated mobility strategy is often employed by tournament players because it
produces much stronger play. It is, however, considered to be very hard to learn (Billman and
Shaman 1990). After a positional strategy was encoded into an �-� search program and the
networks were allowed to compete with the �-� program, they evolved to exploit their initial
material disadvantage and discovered the mobility strategy.

The neural networks were encoded genetically based on a marker-based approach originally
proposed by Fullmer and Miikkulainen (1992). For an empirical comparison, another population of
networks was evolved using a �xed architecture encoding scheme, however, only the marker-based
scheme turned out su�ciently powerful in this task.

The �rst section reviews the game of Othello. The rules are presented for the reader not familiar
with the game. The next section discusses the application of genetic algorithms to this problem
and the encoding of the neural networks in the marker-based scheme. Section 4 presents the main
experimental results. The signi�cance of evolving the mobility strategy is discussed in section 5
and further research is proposed.

2 The Game of Othello

2.1 Previous work

Othello has traditionally been very popular in Japan, second only to Go. It was introduced to
America in the mid 1970's and soon attained international popularity. It is enjoyed by novices and
experts, for its rules are simple, but complex strategies must be mastered to play the game well.

Rosenbloom (1982) created one of the �rst master-level Othello programs called Iago. This
program was based on �-� search techniques with kill tables. Lee and Mahajan (1990) developed a
successor to Iago named Bill, which was based on similar search techniques, but also implemented
Bayesian learning to optimize its evaluation function. While Bill does use more knowledge in
evaluating board positions, its backbone is still the �-� search.

2.2 Rules of Othello

Othello is a two-player game played on an 8� 8 board. All pieces (or tiles) are identical with one
white side and one black side. The initial board setup is shown in Figure 1(a). Each player takes
turns placing pieces on the board with his color face up. A player may only move to an open space
that causes an opponent's piece or pieces to be anked by the new piece and another one of the
player's own pieces. Pieces may be captured vertically, horizontally, or diagonally. Figure 1(b)
shows the legal moves for black for the given board pattern. Once a move is made, the captured
pieces are ipped. Figure 1(c) shows the board layout resulting from a move by black in the sixth
row of the sixth column. The game is continued until there are no legal moves available for either
player. If a player has no legal move, he must pass. The winner is the player with the most pieces
in the �nal board con�guration.

2.3 Strategies

A game of Othello can be broken down into three phases: the beginning game, the middle game,
and the end game. The beginning game can be adequately handled by an opening book. The
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Figure 1: The Othello board: (a) The initial setup. (b) After four moves (the legal moves for black
are marked with X's). (c) After black has moved to the rightmost X.

end game is simply played by maximizing your pieces while minimizing your opponent's. A good
strategy for the middle game, however, is much more elusive. The goal of the middle game is to
strategically position your pieces on the board so that they can be converted into a large number
of permanent pieces during the end game.

There are two basic midgame strategies in Othello. A positional strategy stresses the importance
of speci�c positions and piece con�gurations on the board. Places such as corners and edges are
considered valuable, while others are avoided. Corners are especially valuable because once taken,
they can never be recaptured. Normally, a person using a positional strategy tries to maximize his
valuable pieces while minimizing his opponent's. Positional strategies are easily understood and
implemented; they are often developed independently by beginners studying the game.

A much more powerful set of midgame strategies exist under the name \mobility". Even the
most sophisticated positional strategy will fail against a basic understanding of mobility ideas.
Here, corner capture is still considered an important mid-term goal, while taking edges and other
speci�c formations is not. Mobility strategies are built around the idea that the easiest way to
capture a corner is to force your opponent to make moves that surrender that corner. Mobility
strategies often involve short term goals such as keeping a low piece count and clustering pieces.
Mobility is one of the core ideas that forms the basis of all modern tournament play.

Mobility has been shown to be much harder to learn than a positional strategy (Billman and
Shaman 1990). Unlike many good ideas that are often discovered independently by several people,
it is widely believed that mobility was discovered only once in Japan and has since been introduced
to America and Europe through American players in contact with the Japanese (Billman and
Shaman 1990). Being able to independently discover a mobility strategy through evolutionary
neural networks would therefore be a signi�cant demonstration of the potential power of neuro-
evolution.

3 Implementation

3.1 Game-playing Neural Networks

Our approach was to evolve a population of neural networks in the game of Othello. Each network
sees the current board con�guration as its input and indicates the goodness of each possible move
as the output. In other words, instead of searching through the possible game scenarios for the best
move, the neural networks rely on pattern recognition in deciding which move appears the most
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< start >< label >< value >< key0 >< label0 >< w0 > ::: < keyn >< labeln >< wn >< end >

< start > - Start marker.
< label > - Label of the node.
< value > - Initial value of the node.
< keyi > - Key that speci�es whether connection is from/to an

input/output unit or from another hidden unit.
< labeli > - Label of the unit where connection is to be made.
< wi > - Weight of connection.
< end > - End marker.

Figure 2: The de�nition of a hidden node in marker-based encoding. Nodes are separated by start
and end markers.

promising in the current situation.

For each board space there are three possible states: it may be occupied by the network's piece,
it may be occupied by the opponent's piece, or it may be unoccupied. For each board space, two
input units were used. If the �rst unit is on, the space is occupied by the network's piece. If the
second input unit is on, the space is occupied by the opponent's piece. If they are both o�, the
space is unoccupied. The two input units are never both on. The total number of input units was
therefore 128.

Each network contained 64 output units. Each output unit corresponded directly to a space on
the board. The activity of each output unit was interpreted as how strongly the network suggested
moving into that space.

The network architectures were encoded in arti�cial chromosomes and evolved through genetic
algorithms (Goldberg 1989; Holland 1975). Each chromosome was a string of 8-bit integers ranging
from -128 to 127. A marker-based encoding scheme was used to encode the topology and weights
of each neural network.

3.2 Marker-based Encoding

The marker-based encoding scheme is inspired by the biological structure of DNA. In DNA, strings
of nucleotide triplets specify strings of amino acids that make up a protein. Since multiple proteins
may be de�ned on the same DNA strand, certain nucleotide triplets have a special status as markers
that indicate the start and the end of a protein de�nition (Gri�ths et al. 1993).

Arti�cial genes can similarly use markers to de�ne separate nodes in a neural network. Each
node de�nition contains a start integer and an end integer. The integers in-between specify the
node. Figure 2 outlines the node de�nition in the marker-based scheme. The start and end markers
are determined by their absolute value. If the value of an integer MOD 25 equals 1, it is a start
marker. If the value MOD 25 equals 2, it is an end marker. Any integer between a start marker
and an end marker is always part of the genetic code. Therefore, an integer whose value MOD 25
equals 1 may exist between two markers and will not be treated as a marker.

Since 8-bit integers for the connection labels only allow for 256 distinct connection labels, using
128 for the input units and 64 for the output units would only leave 64 labels for the hidden units.
To avoid this restriction, in our implementation of the marker-based encoding each connection label
consists of two 8-bit integers. The key integer speci�es whether the connection is to be made with
the input/output layers or with another hidden unit. If the key is positive, the second integer, label,
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Figure 3: An example node de�nition in a marker-based gene. For example, the �rst connection
has key = 82, label = 3, w = �5. The key and label are both positive so the connection is to be
made from input unit 3. The last connection wraps around to the beginning of the chromosome.

speci�es a connection from the input layer (if the label is > 0) or to the output layer (if the label
is < 0). If the key is negative, the label speci�es an input connection from another hidden unit.
For the input and output layer connections, the identity of the input or output unit is determined
by the value of the label MOD N, where N is the number of units in the layer. For the connections
within the hidden layer, the connection is made from the hidden unit whose label value is closest
to the connection label. If two or more hidden units have the same label, the �rst hidden unit on
the chromosome is chosen for the connection.

The chromosome is treated as a continuous circular entity. A node de�nition may begin at the
end of the chromosome and wrap around to the beginning. Such a node de�nition is terminated by
an end marker or when the �rst start marker in the chromosome is encountered. Figure 3 shows
an example gene and the network information it encodes.

The hidden units are activated once per network activation in the order speci�ed on the chro-
mosome. Hidden units are allowed to retain their values after each activation. This allows the
networks to possibly use their hidden units as short-term memory.

The power of the marker-based scheme, compared to other neuro-evolution techniques, comes
from two sources. The �rst is the ability to evolve the network architecture along with the weights.
Some environments may be best served by a large number of hidden units with few connections per
unit. Other environments may require less hidden units with a larger number of connections per
unit. The marker-based encoding can adapt the network architecture to best �t the environment.
The second advantage is that the interpretation of each allele is not dependent on its absolute
location (locus) on the chromosome. In most neuro-evolution approaches, each position on the
chromosome corresponds directly to a weight in the network (Belew et al. 1991; Je�erson et al.
1991; Werner and Dyer 1991; Whitley et al. 1990). A marker-based system, however, evaluates
alleles according to their position relative to a start marker, which gives the genetic algorithm more
freedom to explore useful schemata. For example, two particular hidden neuron de�nitions may
together form an extremely useful building block. In the standard approach, the two de�nitions
may be spread out over a large portion of the chromosome making them di�cult to propagate to
future generations. In the marker-based approach, however, the two neurons can be evolved in
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sequential node de�nitions, which results in a much smaller schema de�ning length. Short, highly
functional schemata of this kind are hypothesized to be essential for e�cient operation of genetic
algorithms (Goldberg 1989).

The marker-based scheme presented above is a successor of Fullmer and Miikkulainen (1992).
Whereas they de�ned output nodes explicitly like all other nodes in the network, our version of
marker-based encoding only requires the de�nition of hidden nodes. The connections to output
units are given as part of the hidden node de�nitions, resulting in a more compact encoding when
the output layer is large.

3.3 Evolution

A Population of 50 networks was evolved, each with a 5000 integer chromosome. A two point
crossover was employed to mate the top 12 networks. A mate for each network was selected
randomly among all networks with a greater or equal �tness value. Two o�spring were produced
per mating resulting in 24 new networks per generation. The new networks replaced the worst
networks in the population. Mutation, at the rate of 0.4%, was implemented at the integer level
rather than the bit level by adding a random value to an allele if mutation was to occur. A number
that exceeded the [-128,127] range was \wrapped around."

The networks were given the current board con�guration as input. Out of all output units that
represented a legal move in a given situation, the one with the highest value was selected as the
network's move. In other words, the networks were not required to decide which moves were legal,
but only to di�erentiate between legal moves. This strategy turned out to speed up the evolution
a great deal, while still allowing the networks to evolve good game-playing skills.

The networks were initially evolved against a random move maker and later against an �-�
search program. To create di�erent games, an initial state was selected randomly among the 244
possible board positions after four moves. Each network's �tness was determined by the number of
games won out of ten played against the �-� search program searching three levels down. The �-�
program used a positional strategy similar to Iago's (Rosenbloom 1982). Iago's evaluation function
also contained a complex mobility strategy, which was purposely left out to provide a weakness
that the networks could exploit. The networks' hidden units were reset to their initial values after
each game.

4 Results

Experiments on arti�cial evolution are computationally expensive, and many di�erent populations
were evolved throughout this research. Typically, the populations required 24 hours of CPU time
on an IBM RS6000 25T workstation to evolve signi�cant behavior.

The networks playing against a random mover immediately began to develop a positional strat-
egy. Whenever possible they would maximize their edge pieces, while trying to minimize those of
their opponent's. The networks' middle games consisted of taking edge and corner pieces with lit-
tle regard to the middle squares. Besides recognizing valuable positions, the networks also learned
which positions should be avoided, like those next to corners. These positions are undesirable if the
corner is not already captured because they immediately lead to corner capture by the opponent.
Within 100 generations, the best networks could defeat a random mover 97% of the time.

To better determine how the networks were playing, ten games in which a network won were
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Figure 4: The average number of pieces throughout the game for the randommover and the network
evolved through 100 generations against a random mover. There are 60 total moves in a game.
The network and random mover monotonically increase their piece count until move 45, when the
network's stronger positions allow it to e�ciently capture the random mover's pieces.

chosen at random and analyzed. Figure 4 shows the average number of pieces at each point of
the game for the network and the random mover. Throughout most of the game, the network and
random mover monotonically increased their piece counts, which is typical of most games played
using a positional strategy. However, since the random mover does not prefer stronger positions,
it is unable to provide a strong defense of its pieces in the end game. Thus, around move 45 the
random mover's piece count begins to decline and the network's piece count rises more rapidly.
The network's strategically anchored positions allow e�cient capture of the random mover's pieces
without the need to sacri�ce many of the network's own pieces.

The same population of networks obtained against the random mover was further evolved
against the �-� search program (also called the searcher below). Initially the networks performed
very poorly. As the populations evolved, however, their performance began to improve, and after
2000 generations the best networks were winning 70% of their games against the searcher. An
analysis of the networks' games showed that the networks' strategies had changed drastically.
They were not as interested in taking edge pieces as before. Instead, their attention was focused
on moves that captured fewer discs and controlled the center of the board position. However, the
value attached to corner squares had not changed, and if presented a legal corner move the networks
would immediately capture it.

Figure 5 shows the average piece counts throughout the game for the network and the searcher
during ten games won by the network. The results show that the networks have indeed changed their
strategy from that used against the random mover and are playing a remarkably di�erent middle
game than the searcher. While the searcher is taking a greedy positional approach maximizing
its positions, the networks are keeping the number of their pieces relatively small. The turning
point in the games come around move 54, which is normally when strategic mobility advantages
are converted into stable, permanent discs. As shown in �gure 5 the network's pieces dramatically
increase while the searcher's decrease.
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Figure 5: The average number of pieces throughout the game for the �-� search program and the
network further evolved through 2000 generations against the �-� program. Throughout most of
the game, the searcher attempts to maximize its positions and consequently its piece count, while
the network keeps a relatively low piece count. A dramatic shift in power occurs near the end of
the game, which is typical in mobility play.

Such a dramatic change could only have resulted from the searcher making a vulnerable move.
Since the searcher does not normally give up good positions, it must have had no alternative.
Figure 6 shows that during the crucial middle and end games the network had an average of twice
as many moves to choose from than the searcher.

Figure 7 shows an actual game the authors played against one of the networks with the network
playing white. Figure 7(a) shows the board con�guration near the end of the middle game with
white to move next. From a positional sense, the game looks very good for black. Black has
conquered almost all of the edge pieces (although no corners) and is dominating the board. However,
while black is positionally strong, his mobility is very limited. After white moves to f2, the only
legal moves for black are b2, g2, and g7, which each lead to a corner capture by the network. By
limiting the available moves (mobility), the network forces black to make a bad move. Figure 7(b)
shows the �nal board where the network has taken every corner and captured all of black's edge
pieces. The �nal score was 48-16 in the network's favor. The statistical results and the analysis
of individual games clearly indicate that the network is using the mobility strategy to defeat the
weaker positional strategy.

To verify that the network would apply the same strategy against other opponents as well, it
was also played against the random mover. Figure 8 shows the number of pieces throughout a game
for the mobility network and random mover averaged over 10 games. The network continued to
keep a low piece count until move 52 when a shift in power occurred. Since the random mover has
no built-in strategy to maximize its pieces, its high piece count must be the result of the mobility
network's strategy to keep its own piece count low. This strategy is quite di�erent from the original
(positional) network's games against the random mover (�gure 4). For example, at move 40 the
positional network averaged 25 pieces compared to 20 pieces for the random mover, whereas the
mobility network averaged only 16 pieces compared to 29 for the random mover. Since the random-
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Figure 6: The average number of available moves for each player. Each player makes 30 moves
throughout the game. During the middle and end game, the searcher's move choices become more
limited.
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Figure 7: A game the authors played against a network. (a) A situation in the middle game with
the network playing white. (b) The �nal board con�guration. The network allowed the authors
to dominate the board and forced us to make a vunerable move. The network then systematically
captured the majority of our pieces.

mover is playing at the same level in both cases, we can conclude that the two networks (positional
and mobility) are indeed employing di�erent middle game strategies to beat the same opponent.

Although such quantitative observations are illuminating, it is also important to look at indi-
vidual games and verify that the networks are indeed following a recognizable strategy. To this
end, transcripts of the mobility network's games were analyzed by David Shaman, the 1993 world
Othello champion. To help characterize the networks' play, Shaman divides middle game moves
into 6 types:
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Figure 8: The average number of pieces for the mobility network and the random mover. The
mobility network is the best network found after evolving against the �-� search program. The
network continues to keep a low piece count, while allowing the opponent to monopolize the board
during the beginning and middle game. Comparisons to �gure 4 show that the networks are indeed
using a di�erent strategy.

1. Moves that all world class players would agree are best.

2. Moves that are good for mobility and have no obvious disadvantages.

3. Moves that look good from a mobility standpoint, but must be ruled out for other reasons.

4. Moves that are bad from a mobility standpoint, but have some other legitimate justi�cation.

5. Moves that are bad from a mobility standpoint, but may have positional justi�cations.

6. Moves that are bad and inexplicable based on any known ideas.

From the game transcripts against the �-� search program, Shaman concluded that the networks
did indeed exhibit play based on mobility. Most of the time the networks favored moves of type 2,
occasionally selecting moves of type 1, but also sometimes types 3 and higher. The middle games
were characterized by a low piece count, connected pieces, and control of the center, which all
support mobility. Finally, if told that the games were played by a human, Shaman would would
characterize the player as follows:

This is someone who has been playing for a while and thought about the game. They've
just been introduced to the idea of mobility. They are not very good yet. They are
usually choosing the right type of move, but only occasionally choosing the best move.
Unfortunately, sometimes they seem at a bit of a loss as to what to do { they then often
revert to positional play or even just play an inexplicable bad move.

Unlike a human, however, these networks were not introduced to the idea of mobility, but rather
discovered it independently by playing against an imperfect opponent. It is the ability to discover
di�cult, counterintuitive strategies that makes the neuro-evolution approach signi�cant.
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5 Discussion

Marker-based encoding turned out crucial for evolving the desired behavior. As a baseline com-
parison, another population of game-playing networks was evolved with a more standard �xed-
architecture encoding. The networks consisted of three layers (input, output, and one hidden layer)
that were fully connected. To keep the chromosomes the same relative length as with the marker-
based encoding, 40 hidden units were used, resulting in a chromosome length of 5160 integers.
Each hidden unit had a recursive connection to itself to allow short-term memory to develop. The
chromosome was simply the concatenation of the weights in the network. Similar �xed architecture
encoding techniques have been shown to be e�ective in domains such as evolving communication
(Werner and Dyer 1991), processing sonar signals (Montana and Davis 1989), and trail-following
(Je�erson et al. 1991). However, �xed encoding turned out inadequate for this task. The �xed-
architecture networks achieved similar performance (97% winning percentage) against a random
mover, although it took 1000 generations. Against the �-� search program, the best network was
able to win only 7% of its games after 2000 more generations. It seems that in the �xed-architecture
encoding approach, the genetic algorithm was less successful in generating novel solutions, which
is required to turn the initial disadvantage into a winning strategy.

The best marker-based networks in the 10 experiments had an average of 110 hidden units
organized in multiple layers with a high degree of recurrency. In general, recurrent connections
are advantageous because they allow the network to incorporate knowledge of previous activations
into the current activation. In this task, however, only pattern recognition based on the current
activation is required, and good performance can be evolved even with a marker-based encoding
of feed-forward networks. Recurrency was allowed in these simulations to determine whether a
more general encoding would produce e�ective networks. Recurrent connections may emerge as a
powerful asset if the networks are required to play against a wide range of opponents. The short-
term memory, provided by the recurrent connections, could help identify the opponent's strategy
and incorporate this knowledge into future move decisions.

Since the networks were not required to learn the concept of legal moves, at �rst glance it seems
that they would not evolve to play the game correctly. For example, often a network would output
a high value in a position (e.g. in a corner) which would otherwise be a good move, but illegal in
the current con�guration and therefore not deserve consideration. Interestingly, such behavior has
a counterpart in human play. Humans will often look at a board position and recognize desirable
moves that are illegal. They realize that certain moves, such as corners in Othello, are almost
always advantageous and keep them in mind until they become legal. Through ranking all moves
legal or illegal, the networks' play seems to go through a similar process.

The networks develop a positional strategy very much like human beginners. Most novices
recognize the importance of corner pieces early on and somewhat later that of other pieces that can
also be stabilized. Such positional strategy is very concrete and easy to understand. It is also easier
to learn and su�cient to defeat a random mover and was thus employed by the networks early on.
The mobility strategy, however, is di�cult for humans to discover because it is counterintuitive.
Intuitively, most human game players feel they should try to conquer as much territory as possible.
The arti�cial networks have no such bias, and are much more exible in considering alternative
strategies.

The mobility strategy evolved quite naturally as a response to the environment. The �-�
search program used a strong positional strategy and was allowed to search several moves ahead.
The networks' positional strategy was developed against a random mover and was not nearly as
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sophisticated. As a result, the networks' piece count remained low throughout the game. However,
the networks discovered that they could often win in such situations by improving their mobility
instead of their positional game. E�ectively, the networks turned around the search program's
strategy and used it against itself. The evolution was able to turn the initial disadvantage into a
novel advantage. A similar process often appears to take place in successful natural evolution and
adaptation into a changing environment.

Such novel strategies are very di�cult for human players to discover. Human novices often try
to mimic the strategies of better players to achieve better play. A human in the same situation
would have tried to improve his positional strategy to make the games closer, preventing him from
seeing the advantages of mobility. If neuro-evolution had been applied to Othello in the early
1970's, it is possible that the positional strategy could have been shown vulnerable years before
any human discovered its weaknesses.

Discovering a known counterintuitive strategy demonstrates the power of neuro-evolution. In
principle it should be possible to develop truly new strategies as well. In preliminary experiments,
we have replaced the positional opponent described in this paper with the Bill program (Lee and
Mahajan 1990), which contains sophisticated positional and mobility strategies optimized through
Bayesian learning. To date, the networks have been unable to discover a strategy that can defeat
Bill. This result suggests that there may be no novel strategy in Othello that can exploit weaknesses
in players with strong positional and mobility components. The neuro-evolution approach, however,
is certainly not limited to Othello or even game playing. Domains like natural language processing,
planning, and automatic theorem proving also rely on extensive search. By forcing neural networks
to compete with current heuristic search methods, better evaluation techniques could be discovered
and implemented to better guide a search.

Another question to explore in future research is whether networks can evolve signi�cant play
by playing each other. Co-evolving populations would preclude the need for a strong, searching
opponent, which is typically the bottleneck in these simulations. Additionally, the networks should
evolve more general game-playing strategies since the opponent's strategy is not constant. A di�cult
issue that must be addressed, however, is how to judge performance of one network relative to other
networks in the population. Since the strength of the opponents will vary, a weak network may
exhibit strong play simply because its opponents were sub-par. Such �tness evaluation noise could
be averaged out by playing each network against more opponents, however, this would greatly
increase the time needed for evolution.

6 Conclusion

Arti�cial evolution of neural networks provides a promising new paradigm for developing new
problem-solving strategies. In Othello, a strategy that eluded experts for years was evolved in
a week. The marker-based approach for encoding neural networks proved to very e�ective at
discovering novel solutions and adapting to changes in the environment. It should be possible to
use this same approach to �nd new strategies and heuristics in other domains such as planning,
theorem proving, and natural language processing as well.
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