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Abstract

A new method for developing good value-ordering strategies in constraint satisfaction search is
presented. Using an evolutionary technique called SANE, in which individual neurons evolve to
cooperate and form a neural network, problem-speci�c knowledge can be discovered that results in
better value-ordering decisions than those based on problem-general heuristics. A neural network
was evolved in a chronological backtrack search to decide the ordering of cars in a resource-limited
assembly line. The network required 1/30 of the backtracks of random ordering and 1/3 of the
backtracks of the maximization of future options heuristic. The SANE approach should extend
well to other domains where heuristic information is either di�cult to discover or problem-speci�c.

1 Introduction

Constraint satisfaction problems (CSP) are common in many areas of computer science such as
machine vision, scheduling, and planning. A CSP generally consists of a set of variables and a set
of possible values for them. The variables must be bound such that none of the constraints in the
problem are violated. For a survey of current CSP research see (Kumar 1992).

Most CSP methods are based on depth-�rst search with backtracking. When variables are
instantiated, constraints are propagated forward, which either constrains the possible values for
other variables or produces a contradiction. If a contradiction is found, the search backtracks and
alternative variable bindings are tried. Clearly, choosing variable and value binding wisely can have
a signi�cant impact on the time required to �nd a solution.

Most CSP applications use the search-rearrangement or �rst-fail method (Bitner and Reingold
1975; Haralick and Elliot 1980) for ordering the variable bindings. At each level of the search, the
variable with the smallest domain is chosen for instantiation. Purdom (1983) showed the search-
rearrangement heuristic to be e�ective in a variety of CSP problems. Value-ordering heuristics,
however, are more di�cult to design and evaluate. Dechter and Pearl (1988) proposed a method
in which the values that leave the CSP with the easiest solution are preferred. Their method
involves estimating the di�culty of a CSP by translating the constraint graph into a tree-structure
and counting the solutions. Another value-ordering method, the maximization of future options
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heuristic, prefers values that leave the largest number of options open for future variable assgnments
(Haralick and Elliot 1980; Kumar 1992). Using a similar heuristic, Kale (1990) was able to solve
an order of magnitude larger instances of the n-queens problem than using the standard left-right
column ordering.

One problem with devising good value-ordering heuristics is that they can be highly problem
speci�c (Kumar 1992). For example, Sadeh (1991) showed that Dechter and Pearl's approach,
which is problem general, performs poorly on job-shop scheduling problems where problem-speci�c
heuristics generally do well. It would thus be signi�cant if such speci�c heuristics could be developed
automatically for each problem.

In the experiments reported in this paper, a new method called SANE (Symbiotic, Adaptive
Neuro-Evolution) was used to discover neural networks that make good value-ordering decisions in
a given problem. SANE forms neural networks by evolving, through genetic algorithms, individual
neurons that exhibit symbiotic behavior. Arti�cial neural networks have proven very e�ective
in pattern recognition and pattern association tasks, which makes them a good candidate for
recognizing situations where value-ordering decisions can greatly a�ect solution time. Genetic
algorithms provide a powerful, general training tool for neural networks in which no previous
knowledge of the task is needed. Since the neural network extracts its knowledge from direct
interactions with the CSP, it can discover problem-speci�c, heuristic information that can lead to
more e�cient constraint satisfaction search.

Using SANE, a neural network was evolved to decide the ordering of classes of cars on an
assembly line, which is an NP-Complete problem (Van Hentenryck et al. 1992). After evolution,
the number of backtracks incurred before a solution was found was compared with random value
ordering and the maximization of future options heuristic. The network required 1/30 of the
backtracks of random value ordering and 1/3 of the backtracks of the maximization of future
options heuristic.

The car sequencing problem is brie
y described below in Section 2. Section 3 presents the im-
plementation of evolutionary neural networks for value ordering in a chronological backtrack search.
Section 4 and 5 describe the SANE method for evolving neural networks and present the speci�cs
of the evolution simulations. Comparisons of the SANE network with random value ordering and
the maximization of future options heuristic are presented in section 6. As a conclusion, future
directions for genetic decision networks are discussed in section 7.

2 The Car Sequencing Problem

Car sequencing is an instance of the general job-shop scheduling problem (Fox 1987). In an auto-
mobile factory, a continuously moving assembly line is used to put options such as power windows
and sun roofs on cars. When a car enters an option station, the workers walk along with the car
until the option has been installed. Some options take longer to install than others. The capacity of
the option station is indicated by \r out of s": For example, an option station that has a capacity
of 2 out of 5 can handle a maximum of 2 cars for every 5 that pass on the assembly line. If 3 cars
require that option, the option station is said to be overdriven.

Di�erent classes of cars require di�erent options. The problem is to �nd an ordering of cars
on the assembly line such that no option station is overdriven. In a CSP formulation, the slots
represent the variables and the car classes represent the possible values for the variables. Previous
approaches to this problem have used constraint logic programming to perform a depth-�rst search
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Classes 1 2 3 4 5 6 Capacity (r=s)

Option 1 + - - - + + 1/2
Option 2 - - + + - + 2/3
Option 3 + - - - + - 1/3
Option 4 + + - + - - 2/5
Option 5 - - + - - - 1/5

Table 1: The car-sequencing problem with 6 classes and 5 options. The options required by each
class are indicated with a +. The capacities are shown in the form of r cars out of s slots (r=s).

Slots 1 2 3 4 5 6 7 8

Class 1 + - -
Class 2 -
Class 3 -
Class 4 -
Class 5 - - -
Class 6 - -

Table 2: A partial solution to a problem with 8 cars. The assignment of class 1 (chosen arbitrarily)
to slot 1 is indicated by the +. The constraints after instantiation of the �rst slot are shown by -.
Classes 1 and 5 cannot be placed in slots 2 or 3 because of the capacity limit of option station 3.
Since class 1 (assigned to slot 1) requires option 3 and option station 3 has a capacity of 1 out of
3 slots, no class that requires option 3 may be placed in slots 2 or 3. Class 6 cannot be placed in
slot 2 because of the capacity of option 1. The slot with most constrained domain is slot 2: it can
only be instantiated with classes 2, 3, or 4.

(Van Hentenryck et al. 1992) and automated reasoning to produce near-optimal solutions (Parrello
et al. 1986).

Table 1 shows a particular car sequencing problem taken from (Van Hentenryck et al. 1992).
The number of classes, number of options, capacities of the option stations, and options required
by each class were �xed. The number of each cars in each class and total number of cars to schedule
were varied in di�erent instances of the problem.

In our implementation, the �rst-fail heuristic was used to decide the order of slot instantiations.
Thus, at each level of the search, the slot with the smallest domain is chosen for instantiation. Slot
1 is designated (arbitrarily) as the �rst slot to instantiate because initially there are no constraints
and all domains are equally large. Once slot 1 is instantiated, the slot with the smallest domain
will be slot 2, since any capacity constraints on later slots must also be in e�ect for slot 2 (table 2).
Similarly, after instantiating slot 2 and subsequent slots, the next slot on the assembly line will
always have the smallest domain. In other words, the �rst-fail heuristic results in instantiating the
slots in increasing order. However, it is not as easy to decide the order in which the di�erent car
classes should be assigned to the slots.

3 Genetic Decision Networks for Value Ordering

In a sequential decision task (Barto et al. 1990; Grefenstette et al. 1990), an agent observes a state
of the system and chooses from a �nite set of actions. The system then enters a new state upon
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Figure 1: A partial sequence instantiation and the corresponding input to the network. The network
receives the previous 12 assignments as input. For example, a car of class 3 has been assigned to
slot 4. The �rst input unit is always 1 to allow the network to produce good initial choices. The
next slot to be scheduled is slot 16.

which the agent must select another action. The system may return a payo� for each decision made
or a payo� for a sequence of decisions. The objective is to choose the sequence of decisions such
that the total payo� is maximized.

Previously, evolutionary neural networks have been shown to be very good at sequential decision
tasks such as selecting game moves and focusing minimax search (Moriarty and Miikkulainen 1993,
1994a). The usual neural network learning algorithms such as backpropagation (Rumelhart et al.
1986) are impractical in such tasks since they require that the correct decision is known at each
step. Such information is very di�cult to establish in sequential decision tasks, because it is not
always obvious how individual decisions a�ect the �nal outcome. In the neuro-evolution approach,
however, evolutionary pressure guides the networks toward wise decisions. Networks that make
better decisions receive higher �tness scores, allowing their genes to survive and propagate to
future generations.

In the car sequencing problem, a genetic decision network was evolved to decide which type
of car to place in the next slot on the assembly line. The network was implemented as part of a
chronological backtrack search program. At each level of the search, the network received a window
of the 12 previous slot assignments as input (�gure 1). Each slot was represented by six input units,
one for each car class (i.e. for each value assignment for the slot). Initially, all the input units would
be 0 because no assignments have been made. Since the neural network needs some activation in
the input layer to produce output, an extra (bias) input unit which was always 1 was included to
allow the network to generate initial choices. The entire input layer, thus, consisted of 73 units.
Figure 1 shows an example instantiation of the assembly line and the input the network receives.

The output layer consisted of six units, one for each class. The activation of each output unit
(computed as a weighted sum of its input activations) indicates how strongly the network suggests
assigning that class to the next slot. The output layer, thus, represents a ranking of the classes
and determines the order in which classes are assigned to the slots during search, unless the choice
violates either of the following two constraints:

1. There must be a car of that class remaining to be assigned, and

2. The assignmentmust must not violate any option station's capacity.

The network has no knowledge of the number and types of cars to schedule. Its output layer
merely represents the order in which values should be tried given the current slot assignments. If
there are no cars left of the highest ranked class or the assignment would cause an option station
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to be overdriven, the class with the next highest output unit is tried, unless it too violates one of
the two constraints.

Implementing these two simple constraints outside the network serves to essentialize the problem
and relieve it of much of the trivial overhead. The primary task is to di�erentiate between good
and bad choices. By not requiring the network to identify which classes are valid, it can more
easily learn the value-ordering task. This approach is analogous to removing the requirement of
legal move identi�cation from a move-evaluating network in game playing, which also proved to be
a good strategy (Moriarty and Miikkulainen 1993).

A simple forward-checking algorithm was also implemented to prune the search space early. For
each option station, the total number of cars requiring that option was counted. If the number
exceeds the capacity of the option station over all remaining slots, the search path was terminated.

4 Symbiotic Evolution with SANE

The value-ordering network was evolved using a novel neuro-evolution method called (SANE; Mo-
riarty and Miikkulainen 1994b). Most neuro-evolution methods operate on a population of neural
networks, where the �tness of each network is determined independently of other networks in the
population. Unfortunately, this approach can often cause the population to prematurely converge
to a single dominant network. Instead of multiple parallel searches through the encoding space,
the search becomes a random walk using the mutation operator. Several approaches have been
developed to help keep diversity in the population. These include �tness sharing (Goldberg 1989),
adaptive mutation (Whitley et al. 1990), crowding (Dejong 1975), and local mating (Collins and
Je�erson 1991; Davidor 1991). Each of these techniques relies on external genetic functions that
prevent convergence of the genetic material.

SANE achieves population diversity by making it an essential part of the task. SANE evolves
a population of neurons, where each neuron's task involves making connections with other neurons
in the population to form a functioning neural network. The �tness of each neuron is determined
by how well it cooperates with other neurons in the population. To evolve a network capable of
performing a task, the neurons must form a symbiotic relationship. Since no one neuron will perform
well alone, evolution will guide the population towards diverse, symbiotic neurons. Premature
convergence is thus avoided, and the population can discover better solutions to more di�cult
problems.

The basic steps in one generation of SANE are as follows (table 3): During the evaluation
stage, random subpopulations are selected and combined to form a neural network. The network
is evaluated in the task and assigned a score. The score is added to each selected neuron's �tness
value. The process continues until each neuron has participated in a su�cient number of networks.
The average �tness value of each neuron is then computed by dividing the sum of its �tness values
by the number of networks it participated in. The neurons that have a high average �tness value
have cooperated well with other neurons in the population. Networks that do not cooperate and
are detrimental to the networks that they participate in receive low �tness evaluations and are
selected against. Once each neuron has an average �tness value, crossover operations are used to
combine the chromosomes of the neurons with the best average �tness values. Mutation is also
used to prevent the loss of key genetic material.

In the current implementation, each neuron is de�ned in a bitwise chromosome that encodes a
series of connection de�nitions. Each de�nition consisted of an 8-bit label �eld and a 16-bit weight
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1. Clear all neuron �tness values.
2. Select � neurons randomly from the population.
3. Create a neural network from the selected neurons.
4. Evaluate the network in the given task.
5. Add the network's score to each selected neuron's �tness value.
6. Repeat steps 2-5 a su�cient number of times.
7. Calculate each neuron's average �tness value by dividing its total �tness value by the

number of networks it participated in.
8. Perform genetic operations on the population based on the �tness value of each neuron.

Table 3: The basic steps in SANE.

�eld. The absolute value of the label determines where the connection is to be made. The neurons
connect only to the input and the output layer. If the decimal value of the label, D, is greater than
127, then the connection is made to output unit D mod O, where O is the total number of output
units. Similarly, if D is less than or equal to 127, the connection is made to input unit D mod I ,
where I is the total number of input units. The weight �eld encodes a 
oating point weight value
for the connection.

5 Evolution Simulations

A population of 800 linear threshold neurons, each with a threshold of 0, was evolved to decide
value ordering in the car sequencing problem. The subpopulation size � was 100, and 40 networks
were formed during each generation of neurons. Each neuron thus participated in an average of 5
networks per generation. The neurons were encoded in 240-bit chromosomes which contained ten
24-bit connection de�nitions.

To evaluate each network, 5 scheduling problems were selected from a database of 1000 problem
instances and the network was used to perfrom class ordering in a chronological backtrack search.
The problem instances contained between 10 to 25 cars. The option requirements and option
station capacities were as shown in table 1. The number of backtracks during the search was used
as the score for each network.

After the evaluation the neurons were sorted in non-decreasing order of their �tness values.
The top 200 neurons were genetically combined using a two-point crossover operation, giving each
o�spring the beginning and tail of one parent's chromosome and the middle of the other parent's.
A mate for each of the top neurons was selected randomly among all neurons with equal or higher
average �tness values. Two o�spring were formed per mating, resulting in 400 new neurons per
generation. The new neurons replaced the 400 worst neurons in the population. Mutation at the
rate of 0.1% was performed on the entire population as the last step in each generation.

6 Results

The population was evolved for 100 generations requiring approximately 40 minutes on an IBM
RS6000 25T. The best network in each generation was evaluated using a 50 problem validation set.
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Figure 2: The average number of backtracks for each problem in the 50 problem test set.

As the �nal result, the best network over all generations was selected and tested on a di�erent 50
problem test set. For comparison, random value ordering and the maximization of future options
heuristic (Haralick and Elliot 1980; Kale 1990) were also run on the test set. The maximization of
future options heuristic was implemented to prefer the class that leaves the most option stations
free.

Figure 2 shows the average number of backtracks for each problem for random value ordering,
the maximization of future options heuristic, and the SANE network. The graph clearly shows the
advantage of problem-speci�c knowledge acquired through the SANE method. While the problem-
general heuristic did reduce the number of backtracks signi�cantly over random ordering, it required
3 times more backtracks than the SANE network.

Figure 3 illustrates the actual choices the network was making. The graph shows the distribution
of the classes for each rank; for example, class 1 was ranked �rst 100% of the time in the network's
output and class 4 second 91% of the time. As seen from the graph, the network suggested the class
ordering 1,4,6,5,3,2 the majority of the time, with positions 3 and 4 having the most variability.
Thus, the network appears to be taking a �rst-fail approach to value ordering by preferring classes
that place the most demand on the system through their option requirements. This approach is
most obvious in the case of class 1, and constitutes the biggest di�erence between the network's
ordering and that of the maximization of future options heuristic. The network always preferred
to schedule cars of class 1 as soon as possible, whereas the maximization of future options heuristic
normally tried it last. Intuitively, cars of class 1 should be di�cult to schedule, because they
require the most options. Thus, it seems sensible that if a car of class 1 needs to be scheduled
and it can �t without causing any immediate con
icts, it should be placed in the next slot. The
maximization of future options heuristic, however, will not schedule it because it will limit the
remaining options available to future cars. This approach delays the scheduling of class 1 cars and
can incur large backtracks if they cannot �t later. The maximization of future options is normally
a good approach because it directs the search toward areas in the search space with high solution
densities (Kale 1990). In this particular case, however, SANE discovered a better ordering through
problem-speci�c knowledge.
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Figure 3: The distribution of the network's choices for each rank.

7 Discussion and Future Work

The search strategy that the value-ordering network was embedded in was a simple, chronological,
depth-�rst search. Chronological search, however, can be ine�cient because it can lead to nu-
merous recombinations of variable bindings that together cause failure. This is commonly known
as thrashing (Mackworth 1977). A more intelligent approach is to use dependecy-directed back-
tracking (Stallman and Sussman 1977; Dechter 1990), where the search backtracks to the variable
binding that caused failure. Despite the improvements to the backtracking algorithm, the search
remains vulnerable to poor value ordering. Genetic decision networks should therefore similarly
increase e�ciency in more intelligent backtracking schemes.

The constraint propagation algorithm could also be improved. For example, Van Hentenryck
et al. (1992) implemented additional \surrogate" constraints in the car sequencing problem to
prune large areas of the search space. Surrogate constraints are redundant, that is, they do not
further constrain the problem. Operationally, however, they can make the search space much
smaller by exploiting properties that must be satis�ed by all solutions. Since the decision networks
adapt directly to the search environment, the networks would learn to make use of the surrogate
constraints as well in their decision evaluation.

Using a sliding window of the previous 12 slots for the input assumes that e�ective decisions
can be based on a limited view of the problem. The 12-slot window appeared to perform well in
this problem, but there is no guarantee that for larger problems, good decisions could still be made.
If an upper bound on the input size is known, at least approximately, an appropriate window size
can be chosen. Another possible solution is to encode the input space with continuous values. A
simple recurrent network could be used to superimpose representations on the same set of real-
valued units. Similar sequences would have similar representations, which should help the network
generalize to new and larger sequences.

Each of the problem instances was feasible in that no option station needed to be overdriven. In
a real assembly plant, however, it may be necessary to schedule a set of cars even when no feasible
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schedules exist. In this case, which stations to overdrive becomes the central decision. Parrello
et al. (1986) proposed a method based on overdrive penalties. Stations that could recover quickly
produced lower penalties than stations that became saturated. The problem thus reduces to �nding
a schedule with the minimum total penalty, which is an NP-hard problem. Evolutionary neural
networks could be very e�ective in such minimization problems as well. Instead of the number of
backtracks, the total overdrive penalty would determine the �tness of the networks. The genetic
search minimizes the �tness function, and networks that produce low average overdrive penalties
would evolve.

Genetic decision networks perform best when their output units represent a ranking of the
possible choices based only on the current activation of the network. The networks are less successful
when their decisions must be based on absolute values or previous activations. For example,
Moriarty and Miikkulainen (1994a) showed that the decision networks were very good at choosing
the best path for a minimax search. Such decisions can be e�ectively made based only on the
current state and the current network activation. Evolutionary neural netorks, however, performed
poorly when evolved to evaluate board positions and to produce an absolute value of goodness
for each board. This task requires decisions that are based on global information, namely the
evaluation of other boards in other parts of the search tree. Thus, to make e�ective evaluations the
network would have to take into account previous activations (board evaluations) before assigning
an absolute value. Such behavior has proven very di�cult to evolve.

We are currently studying the application of genetic decision networks to a broad range of do-
mains including very complex systems such as communication networks and neurocontrol problems.
Genetic decision networks should be able to optimize virtually any decision point through direct
interactions with the system or a model of the system. Some tasks where decision networks could
prove useful include routing, scheduling, parsing, and control of discrete systems.

8 Conclusion

Neural networks, evolved through the SANE method, provide a new mechanism for value-ordering
in constraint satisfaction problems. Problem-speci�c, heuristic knowledge is discovered through
direct interaction with the problem and implemented in a neural network that can generalize to
new situations. In the car sequencing problem, a decision network was evolved that reduced the
number of backtracks signi�cantly over a problem-general heuristic. Genetic decision networks
should similarly increase e�ciency in a variety of other domains where good decision strategies are
not easily realized.
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