
Multiagent Learning through Neuroevolution

Risto Miikkulainen, Eliana Feasley, Leif Johnson, Igor Karpov,
Padmini Rajagopalan, Aditya Rawal, and Wesley Tansey

Department of Computer Science
The University of Texas at Austin, Austin, TX 78712, USA

{risto,elie,leif,ikarpov,padmini,aditya,tansey}@cs.utexas.edu

Abstract. Neuroevolution is a promising approach for constructing in-
telligent agents in many complex tasks such as games, robotics, and de-
cision making. It is also well suited for evolving team behavior for many
multiagent tasks. However, new challenges and opportunities emerge in
such tasks, including facilitating cooperation through reward sharing and
communication, accelerating evolution through social learning, and mea-
suring how good the resulting solutions are. This paper reviews recent
progress in these three areas, and suggests avenues for future work.

Keywords: Neuroevolution, neural networks, intelligent agents, games.

1 Introduction

Neuroevolution, i.e. evolution of artificial neural networks, has recently emerged
as a powerful approach to constructing complex behaviors for intelligent agents
[11,24]. Such networks can take a number of simulated or real sensor values
as input, and perform a nonlinear mapping to outputs that represent actions
in the world such as moving around, picking up objects, using a tool or fir-
ing a weapon. Recurrency in neural networks allow then to integrate infor-
mation over time, and make decisions robustly even in partially observable
domains where traditional value-function based reinforcement learning tech-
niques [42] have difficulty. Neuroevolution has thus been useful in building intel-
ligent agents for e.g. video games, board games, mobile robots, and autonomous
vehicles [40,13,45,12,21,16,23].

Much of the work so far has focused on developing intelligent behaviors for
single agents in a complex environment. As such behaviors have become more
successful, a need for principled multiagent interactions has also risen. In many
domains such as video games and robotics, there are actually several agents that
work together to achieve a goal. A major part of being effective in such domains
is to evolve principled mechanisms for interacting with other agents. Neuroevolu-
tion is a natural approach to multiagent systems as well: The evolving population
provides a natural team setting, and neural networks allow implementing team
sensing and interactions in a natural manner.

It turns out the multiagent perspective brings entirely new challenges and
opportunities to neuroevolution research. This paper reviews recent progress

J. Liu et al. (Eds.): IEEE WCCI 2012, LNCS 7311, pp. 24–46, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Multiagent Learning through Neuroevolution 25

in three of them: Setting up evolution so that effective collaboration emerges,
combining evolution with learning within the team, and evaluating the team
behaviors quantitatively.

First, how should evolution be set up to promote effective team behaviors.
That is, when the team is successful, should the rewards be distributed among
team members equally, or should individuals be rewarded for their own perfor-
mance? Should the team members communicate explicitly to coordinate their
behavior, or is it sufficient to rely on changes in the environment (i.e. stigmergy)?
How much should collaboration be rewarded for it to emerge over simpler in-
dividual behaviors? Experiments illustrating these issues will be reviewed in
section 2.1.

Second, being part of a team provides an opportunity not only for coordinat-
ing actions of several team members, but also of learning from one another in
the team. How should just learning be best established? Should the population
champion be used as a teacher, or is it better to learn from any successful be-
havior in the population, in an egalitarian fashion? If everyone is learning based
on the same successful behaviors, how can diversity be maintained in the popu-
lation? Is learning useful in driving evolution through the Baldwin effect, or is
it more effective to encode the learned behaviors directly to the genome through
Lamarckian evolution? Section 3 evaluates possible solutions to these issues.

Third, given that multiagent behaviors can be particularly complex, depend-
ing on interactions between the team members, the environment, and opponents,
how can they be best characterized and evaluated? For instance in a competi-
tive environment, can a tournament be set up to evaluate the strengths of teams
quantitatively? Is there a single best behavior or are multiple roughly equally
good different solutions possible? Are best behaviors shared by everyone on the
team, or is it better to have different specialties, or even on-line adaptation?
These issues are discussed in the context of a comprehensive NERO tournament
in section 4.

2 Setting up Multiagent Neuroevolution

As described below in separate sections, prey capture by a team of predators is
used as the experimental domain to study how reward structure and amount and
coordination mechanism affect multiagent evolution. An advanced neuroevolu-
tion method of multi-component-ESP will be used to evolve the controller neural
networks.

2.1 Predator-Prey Environment

A significant body of work exists on computational modeling of cooperation in
nature. For instance, flocking behaviors of birds and schooling of fish have been
modeled extensively using rule-based approaches [6,31,37]. Cooperative behav-
ior of micro-organisms like bacteria and viruses has been modeled with genetic



26 R. Miikkulainen et al.

algorithms [22,33]. Ant and bee colonies have been the subject of many stud-
ies involving evolutionary computation as well [9,29,47]. Similarly, as a research
setting to study how cooperation can best emerge in multiagent neuroevolution,
predator-prey simulation environment was constructed to model hunting behav-
iors of hyenas. This environment provides immediate motivation and insight from
nature; it is also easy to simulate with quantifiable results.

In this environment, a team of predators (hyenas) is evolved using cooperative
coevolution to capture fixed-behavior prey (a gazelle or a zebra). The world in
this simulation is a discrete toroidal environment with 100 × 100 grid locations
without obstacles, where the prey and predators can move in four directions:
east, west, north and south. They move one step at a time, and all the agents
take a step simultaneously. To move diagonally, an agent has to take two steps
(one in the east-west direction and one in the north-south direction). A predator
is said to have caught a prey if it moves into the same location in the world as
the prey. The predators are aware of prey positions and the prey are aware of
predator positions. Direct communication among predators (in terms of knowl-
edge of other predators’ positions) is also introduced in some cases. In all other
cases, the predator agents can sense only prey movements and have to use that
to coordinate their actions (stigmergic communication). There is no direct com-
munication among the prey. Each predator has as its inputs the x and y offsets
of all the prey from that predator. In the case of communicating predators, they
also get as input the x and y offsets to the other predators. When fitness re-
wards from prey capture are shared, all the predators gain fitness even when
only one of them actually catches the prey. In cases with individual fitness, only
the particular predator that captures the prey gets the reward.

There are two types of prey in the environment - a smaller prey (gazelle) that
moves with 0.75 times the speed of the predator and a larger prey (zebra) that
has the same speed as the predator. The prey behaviors in these experiments
are hard-coded and do not evolve. Each prey simply moves directly away from
the current nearest predator. The predators can therefore catch the smaller prey
individually, but cannot catch the larger prey by just following the prey around,
because their grid world is toroidal. The predators have to surround a zebra from
different directions before they can catch it. In cases where both types of prey
exist in the field simultaneously, the predators need to decide whether to catch
the small prey individually or to coordinate and hunt the larger prey together.
The larger prey give more reward than the smaller prey, and the relative reward
amounts can be varied.

Thus, three parameters are progressively modified in these experiments: (1)
whether only the individual actually catching the prey receives the fitness, or
whether it is shared by all individuals, (2) whether the predators can observe
one another or not (direct vs. stigmergic communication), and (3) the size of the
fitness reward from catching a prey. These experiments are used to contrast the
role of each of these parameters in the evolution of cooperation.



Multiagent Learning through Neuroevolution 27

Fig. 1. Multi-Component ESP in the predator-prey domain for predator agent in Ex-
periment 1. A single predator agent (shown in (b)) is composed of five neural networks.
Four of these sense one of the prey agents. Their outputs are given to a fifth combiner
network that outputs the next move for that predator. Each network is evolved in a
separate ESP process, where one subpopulation is evolved for each of the neurons in
the network (a). The predator is evaluated in the domain simulation with prey and
other predator agents (c). Its fitness is distributed equally among all the networks and
among all the neurons that participated in it. In this manner, evolution can discover
neurons and networks that cooperate well to form an effective agent.

2.2 The Multi-Component ESP Neuroevolution Method

Coevolution is defined as the simultaneous evolution of two or more individuals
whose fitness is measured based on their interactions with each other [25]. In
cooperative coevolution, the individuals have to evolve to cooperate to perform
a task. They share the rewards and punishments of their individual actions
equally. It turns out that it is often easier to coevolve components that cooperate
to form a solution, rather than evolve the complete solution directly [15,26]. The
components will thus evolve different roles in the cooperative task.

For example, in the Enforced SubPopulations (ESP) architecture [15], neurons
selected from different subpopulations are required to form a neural network
whose fitness is then shared equally among them. Such an approach breaks a
complex task into easier sub-tasks, avoids competing conventions among the
component neurons and makes the search space smaller. These effects make
neuroevolution faster and more efficient.

Similarly, Multi-Component ESP extends this approach to evolve a team of
agents (Figure 1). Each agent comprises multiple ESP-type neural networks to
sense different objects in the environment. The team’s reward from fitness eval-
uations is shared equally by the component networks of all the agents [30].
The cooperative coevolution approach has been shown to be effective when



28 R. Miikkulainen et al.

Fig. 2. Average number of prey (zebras) caught (out of four possible) in Experi-
ments 1, 2, 3 and 4. The total number of prey caught by the three predators was
averaged over 6000 trials for each generation. Cooperation is slow to evolve with indi-
vidual rewards and without communication, and is less efficient (Experiment 1). Intro-
duction of reward sharing results in faster and more effective evolution of cooperation
(Experiment 2). Knowledge of positions of other predators makes it easier to evolve
coordinated hunting strategies (Experiment 3). Evolution of cooperation is strongest
when reward sharing and communication are combined (Experiment 4).

coevolving teams of agents. First, Yong and Miikkulainen [51] showed that a
team of predators that share fitness can evolve to cooperate to catch prey with
or without communication. In their experiments, without communication, the
roles the predators evolve are more rigid but more effective; with communication,
their roles are less efficient but more flexible. Second, Rawal et al. [30] showed
that the Multi-Component ESP architecture can coevolve a team of predators
with a team of prey. The individuals cooperate within the team, but the preda-
tor team competes with the prey team. Therefore, the Multi-Component ESP
architecture will be used to evolve the predators in this paper as well.

In prior work, the outputs of the neural networks within a predator or prey
agent were summed to get the final output action. However, preliminary experi-
ments showed that including a combiner network to combine the outputs of these
networks was more powerful and resulted in the emergence of more complex be-
haviors. Hence, this technique was used in this paper (Figure 1). The combiner
network weights were evolved using the same technique as the other networks.

2.3 Experimental Setting Results

In the control experiment (Experiment 1), the predators neither communicate
nor share fitness. Cooperation does not evolve initially and as a result, they



Multiagent Learning through Neuroevolution 29

Fig. 3. Average number of zebras caught in Experiments 5 and 6. The total number
of prey (out of one possible) caught by the three predators was averaged over 6000
trials for each generation. When the payoff on capturing a zebra is low with respect to
the difficulty of catching it (Experiment 5), the predators prefer to hunt the easy-to-
catch gazelles individually. When the net return for capturing the zebra is high enough
(Experiment 6), the predators evolve to discover cooperative strategies to hunt it. Once
it is caught, they continue by hunting gazelles.

rarely catch any zebras. On the other hand, adding reward sharing (Experi-
ment 2) increases the number of prey caught as the predators efficiently evolve
to cooperate over the early generations. The average number of zebras caught
in each generation in Experiments 1 and 2 are contrasted in Figure 2.

Similarly, adding communication to predators with individual fitness in Ex-
periment 3 results in the predators easily evolving to cooperate, leading to more
prey captures (Figure 2). This effect is even stronger with both communication
and fitness sharing enabled (Experiment 4; Figure 2), suggesting that these two
factors affect different aspects of the evolution process, i.e. how easy it is to
establish cooperation, and how worthwhile it is.

Experiments 5 and 6 were designed to answer the question: If there are both
gazelles, which can be caught easily but give a lower fitness, and zebras, which
need all the predators to cooperate to catch them but give higher fitness, which
one is preferred? In Experiment 5, the predators prefer to hunt gazelles instead of
evolving to cooperate to capture the zebra. The reward for catching the zebra is
not large enough for cooperative behaviors to be selected during evolution. In con-
trast, in Experiment 6, it is large enough, and the predators slowly evolve to team
up to capture this more difficult prey, thus verifying the hypothesis that net return
is important in the evolution of cooperation (Figure 3). Interestingly, they are still



30 R. Miikkulainen et al.

able to hunt gazelles as well, but only do it when there are no zebras around even
though zebras are still hard to catch. This result is important because it suggests
that cooperative strategies include individual strategies as a special case.

2.4 Experimental Setting Conclusions

The experiments confirmed that predator coordination mechanism, reward struc-
ture, and net return on prey capture are important factors in the evolution of
efficient cooperative hunting behaviors. When hyenas survive on gazelles, they
do not need to cooperate. However, if the zebras are available and tasty enough,
they will. These results are intuitive, but this is the first time easily replicable
experiments were constructed to verify them. The same factors that were estab-
lished to be important in the evolution of cooperation in this domain can be
manipulated in more complex artificial environments to build interesting behav-
iors for other intelligent agents in the future.

3 Combining Evolution with Social Learning

After a brief motivation for social learning in multiagent neuroevolution, the
robot foraging domain and the NEAT neuroevolution method are briefly de-
scribed, followed by results answering the questions posed in section 1.

3.1 Motivation for Social Learning

Evolutionary algorithms (EAs) [14] evaluate agents either in isolation or in di-
rect competition with a subset of the other members of the population. Social
and cultural learning algorithms [32] extend EAs by enabling agents to leverage
observations of other members of the population to improve their own perfor-
mance during their lifetime. By learning from others without having to directly
experience or acquire knowledge, social learning algorithms have been able to
improve the learning rate of EAs in many challenging domains [8,17,46,1,7,48].

Traditionally in social learning algorithms, each agent is either a student or
a teacher [28,2]. All actions of the teacher agents are considered to be good
examples from which to learn, as they are derived from a high-fitness strategy
(i.e. the teacher’s policy). However, an agent with high overall fitness may not
always choose good actions and agents with low overall fitness may actually
perform well in some limited scenarios. Filtering potential observations based on
their own merit may therefore be more appropriate and lead to both improved
learning rate and stronger final strategies.

This paper presents Egalitarian Social Learning (ESL) as an alternative to
the student-teacher paradigm. Agents in ESL are divided into subcultures at
the start of each generation and can learn from any other agent in their subcul-
tural group. Learning examples are determined by a user-defined acceptability
function that filters out examples leading to low rewards. When an action is ac-
cepted, agents mimic it in order to learn a policy similar to that of the observed



Multiagent Learning through Neuroevolution 31

agent. ESL differs from other social learning algorithms in that the quality of a
training example is measured by the reward received rather than the fitness of
the agent generating the example.

3.2 The Foraging Domain

The domain used to evaluate ESL is a foraging world in which agents move freely
on a continuous toroidal surface. The world is populated with various plants,
some of which are nutritious and bear positive reward, while others are poisonous
and bear negative reward. These plants are randomly distributed over the surface
of the world. The foraging domain is non-competitive and non-cooperative; each
agent acts independently of all other agents, with the exception of the teaching
signals that pass between them. At the start of each generation, all individuals
begin at the center of the world, oriented in the same direction, and confronted
with the same plant layout and configuration. Every agent then has a fixed
number time steps to move about the surface of the world eating plants— which
happens automatically when an agent draws sufficiently close to one— before
the evaluation is over.

Agents “see” plants within a 180◦ horizon via a collection discretized sensors.
Each agent has eight sensors for each type of plant, with each sensor covering
a different 12.5◦ sector of the 180◦ ahead of the agent. Agents cannot see other
individuals or plants they have already eaten— all they can see is edible food.
The strength of the signal generated by each plant is proportional to its proximity
to the agent. Agents also have a sensor by which they can detect their current
velocity. As agents can only turn up to 30◦ in a given timestep, knowledge
of velocity is necessary for agents to accurately plan optimal trajectories (e.g.
agents may need to slow down in order to avoid overshooting a plant). Each
agent is controlled by an artificial neural network that maps from the agent’s
sensor readings to the desired change in orientation and velocity.

Two separate configurations of the robot foraging world are used in the experi-
ments. The first two experiments use a “simple” world where the toroidal surface
is 2000 by 2000 units, with a single plant type of value 100 and 50 randomly dis-
tributed instances of the plant. In this world, the agents have a straightforward
task of learning to navigate efficiently and gather as many plants as possible. The
third set of experiments uses both the simple world and a second, more complex
world to evaluate performance. The “complex” world has a surface of 500 by 500
units, with five different plant types of value -100, -50, 0, 50, and 100. For each
plant type, 20 instances are created and randomly distributed across the surface.
This world presents the agents with a more difficult task as they must efficiently
gather nutritious food while simultaneously avoiding the poisonous food.

In all four experiments, 100 different agents are created in each generation.
All networks are initialized with fully-connected weights with no hidden neurons
and a learning rate of 0.1 is used when performing backpropagation. Agents au-
tomatically eat any plant within five units. Each evaluation lasts 1000 timesteps



32 R. Miikkulainen et al.

and the results for each experiment are the average of 30 independent runs. The
acceptability function for all experiments is to learn from any action yielding a
positive reward.

3.3 The NEAT Neuroevolution Method

NeuroEvolution of Augmenting Topologies (NEAT)[39] is an evolutionary algo-
rithm that generates recurrent neural networks. Through a process of adding
and removing nodes and changing weights, NEAT evolves genomes that unfold
into networks. In every generation, those networks with the highest fitness repro-
duce, while those with the lowest fitness are unlikely to do so. NEAT maintains
genetic diversity through speciation and encourages innovation through explicit
fitness sharing.

In the foraging domain, NEAT is used to generate a population of individual
neural networks that control agents in the world. The input to each network is the
agent’s sensors, and the outputs control the agent’s velocity and orientation. The
fitness of each network is determined by the success of the agent it controls—
over the course of a generation, networks that control agents who eat a good
deal of rewarding food and very little poison will have high fitness and those
that control agents with less wise dietary habits will have low fitness.

In standard NEAT, the networks that are created do not change within one
generation. To facilitate social learning, we must perform backpropagation [34]
on the networks that NEAT creates in order to train agents on accepted exam-
ples. Since NEAT networks are recurrent, ESL enhances NEAT with backprop-
agation capabilities using the backpropagation through time algorithm [49].

The final fitness of each phenome, then, reflects the performance of the individ-
ual that used that phenome and elaborated on it over the course of a generation.
This elaboration drives evolution in two alternate ways. In Darwinian evolution,
the changes that were made to the phenome only affect selection and are not
saved; in Lamarckian, the genome itself is modified.

3.4 Social Learning Results

Three experiments were performed: ESL was first applied to the entire popula-
tion (without subcultures), and the best way to make use of learning (Darwinian
vs. Lamarckian) determined. The effect of maintaining diversity through explicit
subcultures was then evaluated. In the third experiment, ESL was compared to
the traditional student-teacher model of social learning.

Figure 4 shows the results of applying a monocultural egalitarian social learn-
ing algorithm to the foraging domain in both the Lamarckian and Darwinian
paradigms. The performance of both algorithms quickly converges, with Lamar-
ckian reaching a higher-fitness solution than Darwinian evolution. In the context
of on-line evolutionary learning algorithms, previous work [50] showed that Dar-
winian evolution is likely to be preferable to Lamarckian evolution in dynamic
environments where adaptation is essential and the Baldwin effect [38] may
be advantageous. However, as adaptation is not necessary for foraging agents



Multiagent Learning through Neuroevolution 33

Fig. 4. The effects of Darwinian and Lamarckian evolution when using a monocul-
tural variant of ESL. While both evolutionary paradigms converge rapidly Lamarck-
ian evolution is more effective than Darwinian in the foraging domain. Consequently,
Lamarckian evolution is the paradigm used in all remaining experiments.

(i.e. the rewards of each plant type are the same in every generation), in this
experiment Lamarckian evolution outperforms Darwinian evolution. Neverthe-
less, in both cases performance converges to a lower score than that of simple
neuroevolution.

On the other hand, monocultural Lamarckian social learning is likely to pro-
vide redundant information that may result in getting stuck in local optima. In
order to address this problem, subcultural version of egalitarian social learning
was designed to promote and protect diversity. At the start of each genera-
tion, the population is divided into 10 subcultures of 10 agents each, with each
agent’s subculture decided at random. During the evaluation, agents only teach
and learn from other agents in their own subculture.

Figure 5 shows results comparing monocultural and subcultural learning.
Subcultural learning not only reaches a higher peak than the monocultural
method, but also arrives at this level of fitness more rapidly than the simple
neuroevolution approach. When every mutated organism has the opportunity to
train every other, as is the case in monocultural learning, the entire population
may be negatively impacted by any one individual. By preventing agents that
lead the population towards local optima from impacting the remainder of the
population, subcultural learning provides safety and protection from premature
convergence.

In the third set of experiments, subcultural ESL is compared to an on-line
student-teacher learning algorithm inspired by the NEW TIES system [17].



34 R. Miikkulainen et al.

Fig. 5. Monocultural agents learning from the entire population and subcultural agents
learning only from their subcultures. Subcultural agents outperform monocultural
agents, converging to a much higher ultimate fitness.

The system utilizes a steady-state evolution in which at every timestep each
agent probabilistically teaches the lowest-fitness member of the population within
some radius, effectively forming geographical subcultures.

Figures 6 and 7 show the results of the subcultural ESL algorithm compared
to the student-teacher variant of NEW TIES and simple neuroevolution. Subcul-
tural ESL converges to a near-optimal solution faster than the student-teacher
variant in both the simple and the complex world. While in the simple world
(Figure 6) this speed-up is slight, in the complex world (Figure 7) the egalitarian
approach is more than an order of magnitude faster, reaching a higher fitness by
generation 50 than either the student-teacher or simple neuroevolution methods
achieve by generation 500.

3.5 Social Learning Conclusions

Unlike traditional social learning algorithms that follow a student-teacher model,
ESL teaches agents based on acceptable actions taken by any agent in its subcul-
ture. By constraining teaching samples to those from the same subcultural group,
ESL promotes diversity in the overall population and prevents premature con-
vergence. Experiments in a complex robot foraging domain demonstrated that
this approach is highly effective at quickly learning a near-optimal policy with
Lamarckian evolution. The results thus suggest that egalitarian social learning
is a strong technique for taking advantage of team behaviors that exist in the
evolving population.



Multiagent Learning through Neuroevolution 35

Fig. 6. ESL compared to simple neuroevolution, and student-teacher learning in the
simple world. All strategies converge to solutions of similar quality, with egalitarian
learning converging in the fewest evaluations.

4 Evaluating Multiagent Performance

4.1 Motivation

The NERO video game [40] was originally developed to demonstrate that neu-
roevolution could be a powerful tool for constructing solutions to open-ended
design problems. A human player provides increasingly challenging goals, and a
team of NPCs evolves to meet those goals, eventually excelling in the game. Com-
plex behavior was demonstrated in a number of different challenge situations,
such as running a maze, approaching enemy while avoiding fire, and coordinat-
ing behavior of small sub-teams. However, the final behavior of entire teams was
never evaluated, so it is not clear how complex the behaviors could become in
this process and what successful behavior in the game might actually look like.
Also, it is not clear whether there is one simple winning strategy that just needs
to be refined to do well in the game, or whether there are multiple good ap-
proaches; similarly, it is unclear whether winning requires combining individuals
with different skills into a single team, or perhaps requires on-line adaptation of
team composition or behaviors.

In any case, such evaluations are difficult for two reasons: (1) designing teams
takes significant human effort, and covering much of the design space requires
that many different designers participate; (2) evaluation of the resulting behav-
iors takes significant computational effort, and it is not clear how it can be
best spent. This paper solves the first problem by crowd-sourcing, i.e. running
a NERO tournament online. Students in the 2011 Stanford online AI course1

1 www.ai-class.com

www.ai-class.com
http://www.ai-class.com/


36 R. Miikkulainen et al.

Fig. 7. ESL compared to simple neuroevolution, and student-teacher learning in the
complex world. ESL is more than an order of magnitude faster, reaching a higher fitness
by generation 50 than either comparison method achieves by generation 500.

were invited to participate. About 85 of them did, many spending considerable
effort to produce good teams, thereby resulting in a wide selection of approaches
and solutions. The second problem was solved by first testing out different tour-
nament structures, and eventually running a comprehensive round robin tour-
nament of 24,180 games in parallel in a Condor cluster. The results from the
tournament were then used to identify complex and interesting behaviors that
perform well on the task.

4.2 The NERO Domain

NERO [41] was originally developed as an experimental platform for training
teams of agents to accomplish complex tasks based on the rtNEAT [39] method
for evolving artificial neural networks. The rtNEAT method is a version of
NEAT described in the previous section, with the difference that individuals
are evaluated, reproduced, and replaced continuously instead of in generations.
This approach allows running evolution in the background continuously in real-
time without distracting the human player. The original NERO game was later
extended into an open-source version called OpenNERO,2 which is a general-
purpose platform for AI research and education [20]. OpenNERO includes sev-
eral different environments and AI methods in addition to the NERO game
environment itself, but only the NERO environment in OpenNERO was used in
this research.

Each NERO agent on a team has a fixed array of 15 sensors that detect
agents on the same and opposite teams, placement of nearby walls, distance to

2 opennero.googlecode.com

opennero.googlecode.com
http://opennero.googlecode.com/


Multiagent Learning through Neuroevolution 37

Fig. 8. A screenshot of a single NEROmatch. Two teams of agents are shown as bipedal
robots in a playing arena with obstacles and boundaries. The teams start opposite each
other on the two sides of the obstacle wall in the middle and have to get around this
obstacle to damage opponents and earn points.

a flag (if present), current motion, damage to opponents, and damage to the
agent itself. Agents control their movement on the field using a two-dimensional
control signal u =< r̈, θ̈ >, where r̈ is the linear acceleration of the agent in
the direction of the agent’s current orientation θ, and θ̈ is the agent’s angular
acceleration.

Training teams in OpenNERO is similar to NERO. The user can dynamically
change the virtual environment by adding, scaling, rotating or removing walls,
moving a flag, and adding or removing immobile enemy agents. The user can also
change the way the fitness function is computed by adjusting a (positive or neg-
ative) weight on each of the different available fitness dimensions. The available
fitness dimensions are stand ground (i.e. minimize ṙ), stick together (minimize
distance to the team’s center of mass), approach flag (minimize distance to a
flag on the field, if present), approach enemy (minimize distance to the closest
enemy agent), hit target (successfully fire at an enemy), and avoid fire (minimize
accrued damage).

For the battle task, two teams—each consisting of 50 NERO agents—occupy
a continuous, two-dimensional, virtual playing field of fixed size (see Figure 8).



38 R. Miikkulainen et al.

The playing field contains one central obstacle (a wall), four peripheral obstacles
(trees), and four walls around the perimeter to contain all agents in the same
general area. Each NERO agent starts a battle with 20 hit-points. At each time
slice of the simulation, each agent has the opportunity to fire a virtual laser
at the closest target on the opponent’s team that is within two degrees of the
agent’s current orientation. If an agent fires and hits an opponent, the opponent
loses one hit-point. The score for a team is equal to the number of hit-points
that the opponent team loses in the course of the battle.

A team of NERO agents can be serialized to a flat text file. The text file
describes each of the 50 agents on a team. Agents that use rtNEAT serialize
to a description of the genotype for each agent, and agents that use Q-learning
serialize their (hashed) Q-tables directly to the file. Anyone was allowed to par-
ticipate in the tournament by submitting online a serialized team of virtual agent
controllers for the NERO battle task. The only difference between the teams was
in the training of the controllers contributed by the competitors.

The OpenNERO code was extended for this tournament to allow teams to
consist of mixtures of rtNEAT (neural network) and reinforcement learning
(Q-learning) agents; this distinction is primarily interesting in the sense that
rtNEAT agents search for control policies directly, while Q-learning searches in
value-function space and then uses value estimates for each state to determine
appropriate actions. For rtNEAT–based training, individuals within the popu-
lation are ranked based on the weighted sum of the Z-scores over the fitness
components. For Q-learning–based training, each fitness dimension is scaled to
[0, 1], and then a linear weighted sum is used to assign a total reward to each
individual.

Both types of controllers could be submitted to the online tournament: ar-
tificial neural network controllers of arbitrary weight and topology, and hash
tables approximating the value function of game states. The competitors could
extend and/or modify the available OpenNERO training methods as well as
create their own training environments and regimens. It was this training that
determined the fitness of each team when pitted against other teams submitted
to the tournament.

4.3 Evaluation Results

An online NERO tournament was run in December 2011. About 85 participants
submitted 156 teams to the tournament. Of these, 150 teams contained neural
network-controlled agents and 11 contained value table-controlled agents. Mixed
teams were also allowed; four of the submitted teams contained mixed agent
types. Because of the large number of teams, each game was played off-screen
and limited to 5 minutes of game time. (In practice, good teams were able
to eliminate all opponents in less than 5 minutes.) The team with the highest
number of remaining hit points was declared the winner at the end of the match.
Ties were extremely rare and were broken by a pseudo-random coin toss. The
match-making script allowed matches to be run in parallel on a single machine
or to be distributed to a Condor compute cluster [43].



Multiagent Learning through Neuroevolution 39

Fig. 9. Results from the round-robin NERO tournament. Teams are sorted by average
score differential over all matches. Rows and columns in the matrix represent teams
in the tournament, and colors represent score differentials for the respective individual
matches between two teams. Red indicates victory by the row team, and blue indicates
victory by the column team.

First, several double-elimination tournaments were run with the submitted
teams. Repeated runs of the double-elimination tournament revealed that while
the set of teams in the top 10 was generally consistent, their ranking was not
stable. The teams were then placed in a round-robin tournament to evaluate the
overall winner more accurately. In the round-robin tournament, each of the 156
submitted teams was matched against the 155 other teams. Each pair of teams
was matched up twice (i.e. k = 2), allowing each team to play once as the blue
team and once as the red team. This resulted in 24180 separate games, which
were processed in parallel on approximately 100 computing nodes, which allowed
the entire round-robin tournament to complete in less than 24 hours.

Figure 9 shows the complete results of the round-robin tournament. Black
squares along the diagonal represent matches that were not played, blue squares
indicate a win by the column team, and red squares indicate a win by the row
team. One group of near-duplicate teams was submitted to the tournament;
this shows up as the band of similar-colored games about one-third of the way
through the matrix. The teams in the Figure are enumerated on both axes in
order of increasing average match score differential.



40 R. Miikkulainen et al.

Table 1. Top 10 teams by number of wins

Rank Team Total wins

1 synth.pop 137
2 synth flag.pop 130
3 lolwutamidoing 126
3 me - Rambo 126
5 PollusPirata 125
6 Cyber-trout 124
7 CirclingBullies 123
8 SneakySnipers 121
8 Tut 121

10 coward1 120

Table 1 shows the top ten teams. Despite the large number of teams, no single
competitor emerged that significantly outperformed all others. It is interesting
to analyze why.

In NERO, agents can be “shaped” towardsmore complex behaviors by progres-
sively changing the environment and the fitness function during training. This pro-
cess can create teams of agents that perform specific tasks during a battle. Given
the complexity of the environment and the task,many different strategies can arise
in this process, and they can interactwith each other in complex ways.Considering
this potential complexity, evolved strategies in the tournament turned out to be
surprisingly easy to analyze. Because fitness is evaluated similarly for each team
member during training, teams generally consist of agents that perform similar
actions in a given world state. In principle, multiple teams can be trained using
different shaping strategies, and single agents from those teams then combined
into one team by copying the appropriate parts of the serialized team files (as was
suggested in the online tournament instructions). However, most teams submitted
to the tournament did not (yet) take advantage of this possibility; instead, agents
on a single team usually performed similar actions in response to each game state.
It was therefore possible to characterize the most common strategies used in the
tournament, as outlined below. The example teams and videos of games between
then are available at the tournament website3.

Pack: The most prominent strategy among winning teams was to train agents
to move as a group toward the central wall, then follow the wall tightly to
go around it, and then proceed towards the opponents on the other side. This
strategy shows up in several of the top ten teams, but most notably in synth.pop

and me-Rambo. These teams actively pursued their opponents by forming agents
into a “pack” that had a lot of firepower and was therefore able to eliminate
opponents effectively.

Backpedaling: A second successful strategy was almost exactly the opposite
from the “pack” strategy: From the start, most agents backpedaled away from

3 code.google.com/p/opennero/wiki/TournamentResults2011

code.google.com/p/opennero/wiki/TournamentResults2011
http://code.google.com/p/opennero/wiki/TournamentResults2011


Multiagent Learning through Neuroevolution 41

the opponents and the central wall, and then took shots against the opponents
from afar. Backpedaling preserves the ability of the agents to fire at opponents,
while increasing the distance to the opposing team and maximizing view of the
field. Backing up was often effective against the “pack” strategy because a team
could eliminate the opponents one-by-one as they emerged around the edge of
the wall. Examples of this strategy included EvilCowards and SneakySnipers.

Encircling: Some teams followed a third strategy, where all agents on the team
would run to the far right or left of the wall in a wide arc, and that way try
to encircle the enemy agents. Interestingly, although at the outset this strategy
seems logical, and was indeed devastating to some opponents, it often lost to the
first two strategies. Against the teams that adopted the “pack” strategy, agents
following the “encircle” strategy were often not pointed toward their opponents,
and thus could be fired upon without recourse. Similarly, teams following the
“encircle” strategy tended to fail against the “backpedal” teams because the
“encircle” agents again tended to be pointed away from enemy agents too often
to fire successfully. Examples of encircling teams include Caipirinha 01 FNM

and Artificial Ignorance.

Brownian Motion: Teams that used reinforcement learning agents tended to
cluster in the middle of the playing field and move back and forth in Brownianmo-
tion. This behavior likely originated from a difficulty in acquiring sufficient data
during training, and from a difficulty in approximating the value function for the
task, resulting in agents that effectively chose random actions at each time step.
However, sometimes this behavior was seen in rtNEAT teams as well, and it was at
times surprisingly effective. When other teams approached the cluster, they were
not always lined up to shoot—on the other hand, because of the Brownianmotion,
the shots were not always on target either. So the Brownian motion teams formed
a firing squad that was difficult to approach, performing sometimes better than
teams that employed a strategy for going around the wall. Examples of Brownian
motion teams include Peaceful Barbarians 1 and The729Gang.

Perhaps most interestingly, the strategies do not form a strict dominance hi-
erarchy, but instead are highly cyclic. For instance, the third-place me-Rambo (a
“pack” team) reliably defeats the first-place synth.pop (also a “pack” team), ap-
parently due to subtle differences in timing. On the other hand, synth.pop wins
over the 24th-place EvilCowards (a “backpedal” team), because the synth.pop
pack splits into two and breaches the wall from both edges simultaneously. How-
ever, EvilCowards handily defeats me-Rambo, because agents in the me-Rambo

train are eliminated one-at-a-time as they come around the wall!
There are many other similar cycles in the tournament graph as well, i.e. there

is not a team in the tournament that is objectively better than all other teams.
It actually seems that there is not even a single strategy that is better than the
others: as e.g. the “pack” strategy becomes highly optimized, it also becomes
more vulnerable to the “backpedal” counter-strategy. Such relationships may
indeed be inherent and even desirable for complex games.



42 R. Miikkulainen et al.

Based on these observations, a compelling next step might be to construct
composite teams of individuals from several different teams. The idea is that
such teams could perform well against a variety of strategies. Such an approach
was already possible in the online tournament, but not extensively used. With
more multi-objective evolutionary methods [35,36], it might also be possible to
develop multi-modal behaviors that identify what strategy the opponent is using,
and select a counter-strategy accordingly. It might also be possible in principle
to adapt to opponents online, while the battle is taking place. Such extensions
should result in more versatile multi-agent behavior; they will also make it even
more difficult to analyze such behavior in the future.

4.4 Evaluation Conclusions

The results of the online NERO tournament demonstrate that multi-agent be-
havior can be evaluated quantitatively using tournaments. To fully characterize
the behaviors, it is necessary to run round-robin tournaments: There may not
be a single best strategy, but behaviors may instead be highly diverse, and per-
form differently against different opponents. This phenomenon may indeed be
an inherent property of multiagent behavior in complex domains, and further
computational tools may need to be developed to analyze it fully.

5 Discussion and Future Work

The experiments on cooperation raise an interesting issues about the nature of
cooperation. For instance, the predators in Experiment 3 (individual rewards
with communication) evolve cooperative hunting strategies efficiently, but they
do not have any fitness incentive for cooperation. Instead, they use one another
to improve individual fitness. Is this real cooperation? In biological literature, a
cooperator is defined as an individual who pays a cost for another individual to
receive a benefit [27]. This is a useful working definition in artificial settings as
well. Thus in Experiment 3, though not all the predators gain by coordinating
their behaviors, it is still considered cooperation.

Social learning is strongly motivated by biological analogy as well. The so-
cial intelligence hypothesis [5,19] and the cultural intelligence hypothesis [44]
suggest that the need to handle complex social behaviors was the primary selec-
tion pressure driving the increase in brain size in primates and humans. These
hypotheses are indeed supported by strong empirical evidence in recent years
[18]. Further, egalitarianist philosophy advocates treating all individuals in a
population as equals, regardless of such factors as background and status [3].
In hunter-gatherer societies, egalitarianism is a common paradigm for managing
daily activities and organizing social structures [4]. It is likely that this lack of
hierarchy and strict maintenance of equality has been pivotal in the development
of human society and in separating humans from other primates [10]. It is inter-
esting to see that the same conclusion follows from computational experiments
on social learning: Egalitarianism promotes diversity, which in turn allows the



Multiagent Learning through Neuroevolution 43

population as a whole to achieve better performance. Given how difficult it may
be to verify social and computational intelligence hypotheses directly, computa-
tional simulations may prove instrumental in testing and refining it further in
the future.

Given that the NERO evaluation with 156 teams took significant supercom-
puting resources, it is useful to evaluate how this approach might be scaled up.
Larger tournaments could be organized by using a hybrid structure; round-robin
pools could be run in parallel to identify the proper seeds for top-ranking teams,
and then a double-elimination tournament could be used to identify the overall
winner. Thanks to the independence of individual matches in round-robin tour-
naments and within each level of a knockout tournament, it should be possible to
scale up to even larger tournaments by running games on more compute nodes
or carefully designing a tournament structure to optimize use of computing re-
sources.

On the other hand, the tournament also showed that machine-learning games,
where neuroevolution of multiagent behavior play a central role, may indeed be
a viable game genre in the future. Several approaches to the game were identified
in the tournament, none of them dominating all others. This is precisely what
makes such games interesting: There is room for innovation and creativity, and
the outcomes often turn out to be surprising. Using such games as a platform, it
may also be possible to make significant research progress in multi-agent systems
and intelligent agents in general.

6 Conclusion

Multiagent systems can be seen as the next frontier in constructing intelligent
behavior through neuroevolution. This paper reviewed three challenges and op-
portunities in such systems: manipulating the rewards, coordination, and return;
combining social learning with evolution; and evaluating performance through
tournaments. Significant interactions and complexity were observed in each case,
leading to the conclusion that the research is still in the beginning stages, but
also that the technology is a good match with the opportunities.

Acknowledgments. Special thanks to Marc Wiseman and Kay Holekamp for
their help with hyena data, all participants of the OpenNERO online tourna-
ment, Sebastian Thrun and Peter Norvig for allowing us to run the tournament
in their online AI class, and Ken Stanley and Adam Dziuk for help with Open-
NERO. This research was supported in by Google, Inc. and NSF under grants
DBI-0939454, IIS-0915038, and IIS-0757479.

References

1. Acerbi, A., Nolfi, S.: Social learning and cultural evolution in embodied and sit-
uated agents. In: IEEE Symposium on Artificial Life, ALIFE 2007, pp. 333–340.
IEEE (2007)



44 R. Miikkulainen et al.

2. Acerbi, A., Parisi, D.: Cultural transmission between and within generations. Jour-
nal of Artificial Societies and Social Simulation 9(1) (2006)

3. Arneson, R.: Egalitarianism. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of
Philosophy. Stanford University (2009)

4. Boehm, C.: Hierarchy in the forest: The evolution of egalitarian behavior. Harvard
Univ. Pr. (2001)

5. Byrne, R., Whiten, A.: Machiavellian Intelligence: Social Expertise and the Evo-
lution of Intellect in Monkeys, Apes, and Humans. Oxford University Press, USA
(1989)

6. Czirok, A., Vicsek, T.: Collective behavior of interacting self-propelled particles.
Physica A 281, 17–29 (2000)

7. de Oca, M., Stutzle, T., Van den Enden, K., Dorigo, M.: Incremental social learning
in particle swarms. IEEE Transactions on Systems, Man, and Cybernetics, Part
B: Cybernetics 41(2), 368–384 (2011)

8. Denaro, D., Parisi, D.: Cultural evolution in a population of neural networks. In:
Marinaro, M., Tagliaferri, R. (eds.) Neural Nets Wirn 1996, pp. 100–111. Springer,
Newyork (1996)

9. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics–Part
B 26(1), 29–41 (1996)

10. Erda, L., Whiten, A., Mellars, P., Gibson, K.: Egalitarianism and Machiavellian
intelligence in human evolution. McDonald Institute for Archaeological Research
(1996)

11. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: From architectures to learn-
ing. Evolutionary Intelligence 1, 47–62 (2008)

12. Floreano, D., Urzelai, J.: Evolutionary robots with on-line self-organization and
behavioral fitness. Neural Networks 13, 431–4434 (2000)

13. Fogel, D.B.: Blondie24: Playing at the Edge of AI. Morgan Kaufmann, San Fran-
cisco (2001)

14. Fogel, L., Owens, A., Walsh, M.: Artificial intelligence through simulated evolution.
John Wiley (1966)

15. Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behavior.
Adaptive Behavior, 317–342 (1997)

16. Gomez, F., Miikkulainen, R.: Active guidance for a finless rocket using neuroevo-
lution. In: Proceedings of the Genetic and Evolutionary Computation Conference,
pp. 2084–2095. Morgan Kaufmann, San Francisco (2003)

17. Haasdijk, E., Vogt, P., Eiben, A.: Social learning in population-based adaptive
systems. In: IEEE Congress on Evolutionary Computation, CEC 2008 (IEEEWorld
Congress on Computational Intelligence), pp. 1386–1392. IEEE (2008)

18. Herrmann, E., Call, J., Hernández-Lloreda, M., Hare, B., Tomasello, M.:
Humans have evolved specialized skills of social cognition: The cultural intelligence
hypothesis. Science 317(5843), 1360 (2007)

19. Humphrey, N.: The social function of intellect. Growing Points in Ethology, 303–
317 (1976)

20. Karpov, I.V., Sheblak, J., Miikkulainen, R.: OpenNERO: A game platform for AI
research and education. In: Proceedings of the Fourth Artificial Intelligence and
Interactive Digital Entertainment Conference (2008)

21. Kohl, N., Stanley, K.O., Miikkulainen, R., Samples, M., Sherony, R.: Evolving a
real-world vehicle warning system. In: Proceedings of the Genetic and Evolutionary
Computation Conference (2006)



Multiagent Learning through Neuroevolution 45

22. Kubota, N., Shimojima, K., Fukuda, T.: Virus-evolutionary genetic algorithm -
coevolution of planar grid model. In: Proceedings of the Fifth IEEE International
Conference on Fuzzy Systems (FUZZ IEEE 1996), pp. 8–11 (1996)

23. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms.
Nature 406, 974–978 (2000)

24. Miikkulainen, R.: Neuroevolution. In: Encyclopedia of Machine Learning. Springer,
Berlin (2010)

25. Mitchell, M., Thomure, M.D., Williams, N.L.: The role of space in the success of
coevolutionary learning. In: Artificial Life X: Proceedings of the Tenth Interna-
tional Conference on the Simulation and Synthesis of Living Systems, pp. 118–124
(2006)

26. Moriarty, D.E., Miikkulainen, R.: Forming neural networks through efficient and
adaptive coevolution. Evolutionary Computation 5(4), 373–399 (1997)

27. Nowak, M.A.: Five rules for the evolution of cooperation. Science 314, 1560–1563
(2006)

28. Parisi, D.: Cultural evolution in neural networks. IEEE Expert 12(4), 9–14 (1997)

29. Pérez-Uribe, A., Floreano, D., Keller, L.: Effects of Group Composition and Level
of Selection in the Evolution of Cooperation in Artificial Ants. In: Banzhaf, W.,
Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI),
vol. 2801, pp. 128–137. Springer, Heidelberg (2003)

30. Rawal, A., Rajagopalan, P., Miikkulainen, R.: Constructing competitive and coop-
erative agent behavior using coevolution. In: IEEE Conference on Computational
Intelligence and Games (CIG 2010) (August 2010)

31. Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. In:
Computer Graphics (SIGGRAPH 1987 Conference Proceedings), vol. 21(4), pp.
25–34 (1987)

32. Reynolds, R.: An introduction to cultural algorithms. In: Proceedings of the Third
Annual Conference on Evolutionary Programming, pp. 131–139. World Scientific
(1994)

33. Roeva, O., Pencheva, T., Tzonkov, S., Arndt, M., Hitzmann, B., Kleist, S., Miksch,
G., Friehs, K., Flaschel, E.: Multiple model approach to modelling of escherichia
coli fed-batch cultivation extracellular production of bacterial phytase. Electronic
Journal of Biotechnology 10(4), 592–603 (2007)

34. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-
propagating errors. Nature 323(6088), 533–536 (1986)

35. Schrum, J., Miikkulainen, R.: Evolving agent behavior in multiobjective domains
using fitness-based shaping. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference (2010)

36. Schrum, J., Miikkulainen, R.: Evolving multimodal networks for multitask games.
In: Proceedings of the IEEE Conference on Computational Intelligence and Games
(CIG 2011), pp. 102–109. IEEE, Seoul (2011)

37. Seno, H.: A density-dependent diffusion model of shoaling of nesting fish. Ecol.
Modell. 51, 217–226 (1990)

38. Simpson, G.: The baldwin effect. Evolution 7(2), 110–117 (1953)

39. Stanley, K., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary Computation 10(2), 99–127 (2002)

40. Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Real-time neuroevolution in the
NERO video game. IEEE Transactions on Evolutionary Computation 9(6), 653–
668 (2005)



46 R. Miikkulainen et al.

41. Stanley, K.O., Bryant, B.D., Miikkulainen, R.: Real-time neuroevolution in the
NERO video game. IEEE Transactions on Evolutionary Computation 9(6), 653–
668 (2005)

42. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

43. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the
condor experience. Concurrency - Practice and Experience 17(2-4), 323–356 (2005)

44. Tomasello, M.: The cultural origins of human cognition. Harvard Univ. Pr. (1999)
45. Valsalam, V., Miikkulainen, R.: Evolving symmetry for modular system design.

IEEE Transactions on Evolutionary Computation 15, 368–386 (2011)
46. Vogt, P., Haasdijk, E.: Modeling social learning of language and skills. Artificial

Life 16(4), 289–309 (2010)
47. Waibel, M., Floreano, D., Magnenat, S., Keller, L.: Division of labour and colony ef-

ficiency in social insects: effects of interactions between genetic architecture, colony
kin structure and rate of perturbations. In: Proceedings of the Royal Society B,
vol. 273, pp. 1815–1823 (2006)

48. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8(3), 279–292 (1992)
49. Werbos, P.: Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE 78(10), 1550–1560 (1990)
50. Whiteson, S., Stone, P.: Evolutionary function approximation for reinforcement

learning. The Journal of Machine Learning Research 7, 877–917 (2006)
51. Yong, C., Miikkulainen, R.: Coevolution of role-based cooperation in multi-agent

systems. IEEE Transactions on Autonomous Mental Development (2010)


	Multiagent Learning through Neuroevolution
	Introduction
	Setting up Multiagent Neuroevolution
	Predator-Prey Environment
	The Multi-Component ESP Neuroevolution Method
	Experimental Setting Results
	Experimental Setting Conclusions

	Combining Evolution with Social Learning
	Motivation for Social Learning
	The Foraging Domain
	The NEAT Neuroevolution Method
	Social Learning Results
	Social Learning Conclusions

	Evaluating Multiagent Performance
	Motivation
	The NERO Domain
	Evaluation Results
	Evaluation Conclusions

	Discussion and Future Work
	Conclusion


