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Abstract

Based on a Hebbian adaptation process, the a�erent and lateral connections in the RF-LISSOM
model organize simultaneously and cooperatively, and form structures such as those observed in the
primary visual cortex. The neurons in the model develop local receptive �elds that are organized
into orientation, ocular dominance, and size selectivity columns. At the same time, patterned lateral
connections form between neurons that follow the receptive �eld organization. This structure is
in a continuously-adapting dynamic equilibrium with the external and intrinsic input, and can
account for reorganization of the adult cortex following retinal and cortical lesions. The same
learning processes may be responsible for a number of low-level functional phenomena such as tilt
aftere�ects, and combined with the leaky integrator model of the spiking neuron, for segmentation
and binding. The model can also be used to verify quantitatively the hypothesis that the visual
cortex forms a sparse, redundancy-reduced encoding of the input, which allows it to process massive
amounts of visual information e�ciently.

1 Introduction

The primary visual cortex, like many other regions of the neocortex, is a topographic map, organized
so that adjacent neurons respond to adjacent regions of the visual �eld. In addition, neurons are
responsive to particular features in the input, such as lines of a particular orientation or ocularity.
All neurons in a vertical column in the cortex typically have the same feature preferences. Vertical
groups of neurons with the same orientation preference are called orientation columns and vertical
groups with the same eye preference are called ocular dominance columns. The feature preferences
gradually vary across the surface of the cortex in characteristic spatial patterns that constitute the
cortical maps.

Cortical maps are shaped by visual experience. Altering the visual environment can drastically
change the organization of ocular dominance and orientation columns (Hubel and Wiesel 1962,
1968, 1977, 1974). The animal is most susceptible during a critical period of early life, typically
a few weeks. For example, if a kitten is raised with both eyes sutured shut, the cortex does not
develop a normal organization, and ocular dominance and orientation columns do not form. Even
if the eye is opened after a few weeks, the animal remains blind, even though the eye and the
LGN are perfectly normal. Similarly, if kittens are raised in environments containing only vertical
or horizontal contours, their ability to see other orientations su�ers signi�cantly. In the cortex,
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most cells develop preferences for these particular orientations, and do not respond well to the
other orientations (Hirsch and Spinelli 1970; Blakemore and Cooper 1970; Blakemore and van
Sluyters 1975). Such experiments indicate that visual inputs are crucial to form a normal cortical
organization, and suggest that the cortex tunes itself to the distribution of visual inputs.

The discovery by von der Malsburg (1973; see also Amari 1980 and Grossberg 1976) that simple
computational rules could drive the development of oriented receptive �elds from visual input,
raised the hope that much of the structure and development of V1 could be understood in terms of
very simple neuronal behavior. However, since then substantial new discoveries have changed our
understanding of the primary visual cortex. New evidence indicates that cells in V1 are coupled by
highly-speci�c long-range lateral connections (Gilbert et al.1990; Gilbert and Wiesel 1983; Schwark
and Jones 1989). These connections are reciprocal and far more numerous than the a�erents, and
they are believed to have a substantial in
uence on cortical activity. They grow exuberantly after
birth and reach their full extent in a short period. During subsequent development, they get
automatically pruned into well-de�ned clusters. Pruning happens at the same time as the a�erent
connections organize into topographic maps (Callaway and Katz 1990, 1991,Burkhalter et al. 1993;
Katz and Callaway 1992; Luhmann et al.1986). The �nal clustered distribution corresponds closely
to the distribution of a�erent connections in the map. For example, in the mature visual cortex,
lateral connections primarily run between areas with similar response properties, such as neurons
with the same orientation or eye preference (Gilbert et al. 1990; Gilbert and Wiesel 1989; L�owel
and Singer 1992).

Several observations indicate that the lateral connection structure is not de�ned genetically, but
depends on the visual input: (1) When the primary visual cortex (of the cat) is deprived of visual
input during early development, lateral connectivity remains crude and unre�ned (Callaway and
Katz 1991). (2) The pattern of lateral connection clusters can be altered by changing the input to
the developing cortex. The resulting patterns re
ect correlations in the input (L�owel and Singer
1992). (3) In the mouse somatosensory barrel cortex, sensory deprivation (by sectioning the input
nerve) causes drastic decreases in the extent and density of lateral connections (McCasland et al.
1992). These observations suggest that the development of lateral connections, like that of a�erent
connections, depends on cortical activity driven by external input.

New discoveries have also changed the notion that the a�erent structures and lateral connections
are essentially static after a critical period of early development. Recent results show that the adult
cortex can undergo signi�cant, often reversible, reorganization in response to various sensory and
cortical manipulations such as lesions in the receptive surface and the cortex (Gilbert 1992; Kaas
1991; Merzenich et al. 1990; Kapadia et al. 1994; Pettet and Gilbert 1992).

Based on the above results, a new theory of the visual cortex has started to emerge. The
cortex appears to be a continuously-adapting structure in a dynamic equilibrium with both the
external and intrinsic input. This equilibrium is maintained by cooperative and competitive lateral
interactions within the cortex, mediated by lateral connections (Gilbert et al. 1990). The a�erent
and lateral connection patterns develop synergetically and simultaneously, based on the same un-
derlying process. The primary function of the a�erent and lateral structures is to form a sparse,
redundancy-reduced encoding of the visual input (Barlow 1972; Field 1994). By integrating infor-
mation over large portions of the cortex, lateral connections assist in grouping simple features into
perceptual objects (Singer et al. 1990; von der Malsburg and Singer 1988), and may be responsible
for low-level visual phenomena such as tilt illusions and aftere�ects.

The exact mechanisms of such self-organization, plasticity, and function are still not completely
understood. Computational models can play a fundamental role in this research. With the advent
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of massively parallel computers in the last �ve years, it has become possible to simulate large
numbers of neural units and their connections. At the same time, neurobiological techniques for
mapping the response properties and connectivity of neurons have become sophisticated enough to
constrain and validate such models. This technological con
uence provides a timely opportunity
to test hypotheses about cortical mechanisms through large-scale computational experiments.

One of the most powerful computational abstractions of biological learning is the Hebb rule
(Gustafsson and Wigstr�om 1988; Hebb 1949), where synaptic e�cacies are adjusted based on coin-
cident pre- and postsynaptic activity. If two neurons are active at the same time, their connection
is deemed useful and is strengthened. Hebbian learning is usually coupled with normalization so
that the e�cacies do not grow without bounds but only their relative strengths change (Miller
1994b). A network of such units and connections may develop a globally ordered structure where
units represent speci�c inputs, such as lines of di�erent orientation. Such a process is called self-
organization: there is no global supervisor directing the process, but learning is based on a local
rule and driven by the input.

Several computational models have already shown how receptive �elds and their global organi-
zation in the cortical network can develop through Hebbian self-organization of a�erent synapses
(Erwin et al. 1995; Goodhill 1993; Kohonen 1982; Miller 1994a; Miller et al. 1989; Obermayer et al.
1990b; von der Malsburg 1973). Some of these models have also shown that aspects of cortical
plasticity, such as remapping of cortical topography following peripheral lesions, can be explained
with similar mechanisms (Obermayer et al. 1990a; Ritter et al. 1992). However, these models have
not taken the lateral interactions between cells into account, or have assumed that they are pre-
set and �xed and have a regular pro�le. Therefore, the simultaneous self-organization of lateral
connections and a�erent structures, and many aspects of cortical plasticity such as reorganization
of the map in response to cortical lesions and reshaping of mature receptive �elds in response to
retinal lesions, cannot be explained by these models.

This article shows that Hebbian self-organization in a large recurrent network of simple neural
elements can provide a uni�ed account of self-organization, plasticity, and low-level function in the
visual cortex. The model explains computationally (1) how the receptive �elds develop selectivity
to orientation, ocular dominance, and size, (2) how such receptive �elds organize into intertwined
columnar areas, (3) how the lateral connections develop synergetically with the a�erent connec-
tions and follow their global organization, (4) how such structures are maintained in a dynamic
equilibrium with the input, resulting in reorganization after retinal and cortical lesions, and (5)
how fast adaptation of lateral connections can be responsible for functional phenomena such as tilt
aftere�ects and segmentation. The model also suggests a functional role for the lateral connections:
during development, they learn the activity correlations between cortical neurons, and during visual
processing, �lter out these correlations from cortical activity to form a redundancy-reduced sparse
coding of the visual input.

2 The Receptive Field LISSOM (RF-LISSOM) model

RF-LISSOM, or Receptive Field Laterally Interconnected Synergetically Self-Organizing Map (Sirosh
1995; Sirosh and Miikkulainen 1994, 1996, 1997; Sirosh et al. 1996; �gure 1), was designed to give a
computational account for the observed self-organization, plasticity, and low-level functional phe-
nomena in the primary visual cortex. The cortical architecture has been simpli�ed to the minimum
necessary con�guration to account for the observed phenomena. Because the focus is on the two-
dimensional organization of the cortex, each \neuron" in the model corresponds to a vertical column
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Figure 1: The RF-LISSOM model. The lateral excitatory and lateral inhibitory connections of a single
neuron in the network are shown, together with its a�erent connections. The a�erents form a local anatomical
receptive �eld on the retina.

of cells through the six layers of the cortex. The transformations in the LGN are also bypassed for
simplicity.

In RF-LISSOM the cortical network consists of a sheet of interconnected neurons. Through
a�erent connections, each neuron receives input from a receptive surface, or \retina". In addi-
tion, each neuron has reciprocal excitatory and inhibitory lateral connections with other neurons.
Lateral excitatory connections are short-range, connecting only close neighbors. Lateral inhibitory
connections run for long distances, and may even implement close to full connectivity between
neurons in the network. Such a lateral interaction pro�le is intended to establish local cooperation
and global competition among the neurons, thereby making self-organization possible.

Neurons receive a�erent connections from broad overlapping patches on the retina called anatom-
ical receptive �elds (RFs). The N �N network is projected on the retina of R� R receptors (for
example the neuron in the top left corner of the network is projected to the top left of the retina,
the center neuron to the center of the retina), and each neuron is assigned a square region of recep-
tors of side s centered on its projection as its RF. Typically s is about half the side of the retina.
Depending on the location of the neuron, its RF thereby consists of 1

2
s � 1

2
s (at the corners) to

s� s (at the center) receptors.

Both a�erent and lateral connections have positive synaptic weights. The weights are initially
set to random values, and organized through an unsupervised learning process. At each training
step, neurons start out with zero activity. An input activation pattern is introduced on the retina,
and the activation propagates through the a�erent connections to the cortical network. The initial
response �ij of neuron (i; j) is calculated as a weighted sum of the retinal activations:

�ij = �

 X
r1 ;r2

�r1;r2�ij;r1r2

!
; (1)

where �r1;r2 is the activation of a retinal receptor (r1; r2) within the receptive �eld of the neuron,
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�ij;r1r2 is the corresponding a�erent weight, and � is a piecewise linear approximation of the sigmoid
activation function.

The response evolves over time through lateral interaction. At each time step, each cortical
neuron combines the above a�erent activation

P
�� with its lateral excitation and inhibition:

�ij(t) = �

0
@X

r1;r2

�r1;r2�ij;r1r2 + 
e
X
k;l

Eij;kl�kl(t� �t)� 
i
X
k;l

Iij;kl�kl(t� �t)

1
A ; (2)

where Eij;kl is the excitatory lateral connection weight on the connection from neuron (k; l) to
neuron (i; j), Iij;kl is the inhibitory connection weight, and �kl(t� �t) is the activity of neuron (k; l)
during the previous time step. In other words, the retinal activity stays constant while the cortical
response settles. The scaling factors 
e and 
i determine the strength of the lateral excitatory and
inhibitory interactions. The activity pattern starts out di�use and spread over a substantial part
of the map, and converges iteratively into stable focused patches of activity, or activity bubbles.

The settling process determines the neighborhood around the initial response where the adap-
tation will occur. After the activity has settled, typically in a few iterations of equation 2, the
connection weights of each active neuron are modi�ed. Both a�erent and lateral weights adapt
according to the same mechanism: the Hebb rule, normalized so that the sum of the weights is
constant:

wij;mn(t + 1) =
wij;mn(t) + ��ijXmnP

mn [wij;mn(t) + ��ijXmn]
; (3)

where �ij stands for the activity of the neuron (i; j) in the settled activity bubble, wij;mn is the
a�erent or the lateral connection weight (�ij;r1r2 , Eij;kl or Iij;kl), � is the learning rate for each type
of connection (�A for a�erent weights, �E for excitatory, and �I for inhibitory) and Xmn is the
presynaptic activity (�r1;r2 for a�erent, �kl for lateral). A�erent inputs, lateral excitatory inputs,
and lateral inhibitory inputs are normalized separately.

As a result of this process, both inhibitory and excitatory lateral connections strengthen by
correlated activity. At long distances, very few neurons have correlated activity and therefore
most long-range connections eventually become weak. The weak connections are eliminated (i.e.
pruned) periodically, modeling connection death during early development in animals (Burkhalter
et al. 1993; Dalva and Katz 1994; Fisken et al. 1975; Gilbert 1992; Katz and Callaway 1992; L�owel
and Singer 1992). Through the weight normalization, the remaining inhibition concentrates in a
closer neighborhood of each neuron. The radius of the lateral excitatory interactions starts out
large, but as self-organization progresses, it is decreased until it covers only the nearest neighbors.
Such a decrease is necessary for global topographic order to develop and for the receptive �elds to
become well-tuned at the same time (for theoretical motivation for this process, see Kohonen 1982,
1989, 1993; Obermayer et al. 1992; Sirosh and Miikkulainen 1997; for neurobiological evidence, see
Dalva and Katz 1994; Hata et al.1993.) Together the pruning of lateral connections and decreasing
excitation range produce activity bubbles that are gradually more focused and local. As a result,
weights change in smaller neighborhoods, and receptive �elds become better tuned to local areas
of the retina. Let us next turn to simulations that illustrate this process.

3 Self-Organization

In this section, three self-organizing experiments with the RF-LISSOM model are presented. The
experiments show how the observed organization of feature detectors and lateral connections in
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the primary visual cortex could form based on activity-dependent self-organization, driven by the
regularities in the input. In the �rst experiment, the input patterns consist of elongated Gaussian
spots of light, and the model develops orientation maps. In the second experiment, a second retina
is included in the model, and ocular dominance columns appear on the map. In the third, Gaussian
spots of di�erent sizes are used as the input, resulting in size-selective columns. In all these cases,
the lateral connectivity patterns are found to follow the receptive �eld properties, as has been
observed in the cortex.

3.1 Development of Orientation Columns and Lateral Connections

In this experiment, the inputs to the network consisted of simple images of multiple elongated
Gaussian spots on the retinal receptors. The activity �r1;r2 of receptor (r1; r2) inside a spot is given
by

�r1;r2 = exp(�
((r1 � xi)cos(�)� (r2 � yi)sin(�))

2

a2
�
((r1 � xi)sin(�) + (r2 � yi)cos(�))

2

b2
); (4)

where a2 and b2 specify the length along the major and minor axes of the Gaussian, � speci�es its
orientation (chosen randomly from the uniform distribution in the range 0 � � < �), and (xi,yi):
0 � xi; yi < R speci�es its center.

The model consisted of an array of 192� 192 neurons, and a retina of 24 � 24 receptors. The
anatomical receptive �eld of each neuron covered 11� 11 receptors. The initial lateral excitation
radius was 19 and was gradually decreased to 1. The lateral inhibitory radius of each neuron was
47, and weak inhibitory connections were pruned away at 30; 000 iterations.1. The network had
approximately 400 million connections in total, and took 8 hours to simulate on 64 processors of
the Cray T3D at the Pittsburgh Supercomputing Center.

The self-organization of a�erents results in a variety of oriented receptive �elds similar to those
found in the visual cortex (�gure 2). Some are highly selective to inputs of a particular orien-
tation, others unselective. The global organization of such receptive �elds can be visualized by
labeling each neuron by the preferred angle and degree of selectivity to inputs at that angle. The
resulting orientation map (�gure 3) is remarkably similar in structure to those observed in the
primary visual cortex by recent imaging techniques (Blasdel 1992; Blasdel and Salama 1986) and
contains structures such as pinwheels, fractures and linear zones.2 The results strongly suggest
that Hebbian self-organization of a�erent weights, based on recurrent lateral interactions, underlie
the development of orientation maps in the cortex.

The lateral connection weights self-organize at the same time as the orientation map forms.
Initially, the connections are spread over long distances and cover a substantial part of the net-
work (�gure 3a). As lateral weights self-organize, the connections between uncorrelated regions

1The lateral connections were pruned if their strength was less than 0:00025. The a�erent weights were initially
random (chosen from a uniform distribution). In this particular experiment, the lateral inhibitory connections were
initially set to a Gaussian distribution with � = 100, and the lateral excitatory connections to a Gaussian with � = 15
to speed up learning; uniform random values can be used as well. The widths of the oriented Gaussian input spots
were a = 7:5 and b = 1:5. The lateral excitation 
e and inhibition strength 
i were both 0:9. The learning rate
�A decreased from 0:007 to 0:0015, �E from 0:002 to 0:001 and �I was a constant 0:00025. The lower and upper
thresholds of the sigmoid increased from 0:1 to 0:24 and from 0:65 to 0:82. Small variations of these parameters
produce roughly equivalent results. Similar parameters were used in other experiments described in this article.

2The similarity was measured by comparing Fourier transforms, autocorrelation functions, and correlation angle
histograms of experimental and model maps. See (Erwin et al. 1995) for a discussion of these methods.
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(a) RF sharply tuned to 60�
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(b) RF sharply tuned to 127.5�
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(c) Unselective RF

Figure 2: Self-organization of oriented a�erent receptive �elds. The a�erent weights of three neurons
at di�erent locations in the network are shown, plotted on the retinal surface. The �rst two are strongly
oriented, whereas the third is unoriented and symmetric.

become weaker, and after pruning, only the strongest connections remain (�gure 3b). The surviv-
ing connections of highly-tuned cells, such as the one illustrated in �gure 3b, link areas of similar
orientation preference, and avoid neurons with the orthogonal orientation preference. Furthermore,
the connection patterns are elongated along the direction that corresponds to the neuron's preferred
stimulus orientation. This organization re
ects the activity correlations caused by the elongated
Gaussian input pattern: such a stimulus activates primarily those neurons that are tuned to the
same orientation as the stimulus, and located along its length. At locations such as fractures, where
a cell is sandwiched between two orientation columns of very di�erent orientation preference, the
lateral connections are elongated along the two directions preferred by the two adjacent columns.
Finally, the lateral connections of unselective cells, such as those at pinwheel centers, connect to all
orientations around the cell. Thus the pattern of lateral connections of each neuron closely follows
the global organization of receptive �elds, and represents the long-term activity correlations over
large areas of the network.

Some of these results have already been con�rmed in very recent neurobiological experiments3

(Fitzpatrick et al. 1994). In the iso-orientation columns of the tree-shrew cortex, horizontal con-
nections were found to be distributed anisotropically, extending farther and giving rise to more
terminals along the preferred orientation of the neuron. Most of these terminals also connected to
cells with the same orientation preference. The connection patterns at pinwheel centers and frac-
tures have not been studied experimentally so far; our model predicts that they will have unselective
and biaxial distributions, respectively.

3.2 Self-organization of ocular dominance and lateral connection patterns

In addition to responding to speci�c orientations, the neurons in the primary visual cortex are also
selective to the eye from which the input originates. In the second experiment with RF-LISSOM

3Note that if the lateral connection patterns are observed on the cortex directly, it is very di�cult to determine
their orientation because of the log-polar mapping from the retina to the cortex. The cortical patterns would �rst
have to be mapped back to the visual space. The model bypasses the log-polar transformation for simplicity, and the
lateral connection patterns are directly observable.

7



(a) Initial unordered map and connections (b) Final orientation map and connections

Figure 3: Self-organization of the orientation map and lateral connections. Each neuron in this
100 � 100 central region of the map is shaded according to its orientation preference. Shades from dark
to light represent continuously-changing orientation preference from 127.5�to 37.5�from the horizontal, and
from light to dark preference from 37.5�to -52.5�, i.e. back to 127.5�. This gray-scale scheme was chosen so
that the connections of the center neuron, which is tuned to 127.5�and identi�ed by a small box in the �gure,
could be clearly plotted, and also so that the shading would be continuous through all angles (as is possible
in color plots; see e.g. Sirosh et al. 1996). To disambiguate the shading, every third neuron in every third
row is marked with a line that identi�es the neuron's orientation preference. In addition, the length of the
line indicates how selective the neuron is to its preferred orientation. The outlined areas indicate units from
which the center unit has lateral connections. (a) Initially, the a�erent weights of each neuron are random,
and the receptive �elds are randomly oriented and very unselective, as shown by the random shades and
random and short lines (the line lengths were slightly magni�ed so that they could be seen at all). The lateral
connections cover a wide area uniformly. (b) After several thousand input presentations, the receptive �elds
have organized into continuous and highly selective bands of orientation columns. The orientation preference
patterns have all the signi�cant features found in visuo-cortical maps: (1) pinwheel centers, around which
orientation preference changes through 180�(e.g. the neuron eight lines from the left and four from the
bottom), (2) linear zones, where orientation preference changes almost linearly (e.g. along the bottom at
the lower left), and (3) fractures, where there is a discontinuous change of orientation preference (as in 7
lines from the left and 17 from the bottom). Most of the lateral connections have been pruned, and those
that remain connect neurons with similar orientation preferences. The marked unit prefers 127.5�, and its
connections come mostly from dark neurons. In the near vicinity, the lateral connections follow the twists
and turns of the darkly-shaded iso-orientation column, and avoid the lightly-shaded columns representing
the orthogonal preference. Further away, connections exist mostly along the 127.5�orientation, since these
neurons tend to respond to the same input. All the long-range connections shown are inhibitory at this
stage; there are excitatory connections only from the immediately neighboring units.
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Figure 4: Receptive �elds with varying degrees of eye-preference. In (a), the �nal a�erent weights
of a neuron at position (42; 39) in a 60 � 60 network are shown. This particular neuron is monocular with
strong connections to the right eye, and weak connections to the left. In (b), the weights of a binocular
neuron at position (38; 23) are shown. This neuron has appoximately equal weights to both eyes.

self-organization, the development of eye selectivity, or ocular dominance, was simulated. A second
retina was added to the model and the a�erent connections were set up exactly as for the �rst
retina, with local receptive �elds and topographically ordered RF centers. Multiple symmetric
Gaussian spots were presented in each eye as input, where the activity inside each spot is given by

�r1;r2 = exp(�
(r1 � xi)2 + (r2 � yi)2

a2
); (5)

where a2 speci�es the width of the Gaussian, and the spot centers (xi,yi): 0 � xi; yi < R, were
chosen randomly. Because of cooperation and competition between inputs from the two eyes, groups
of neurons developed strong a�erent connections to one eye or the other, resulting in patterns of
ocular dominance in the network (cf. von der Malsburg 1990; Miller et al. 1989).

The self-organization of the network was studied with varying between-eye correlations. At
each input presentation, one spot is randomly placed at (xi,yi) in the left retina, and a second spot
within a radius of c�R of (xi; yi) in the right retina. The parameter c 2 [0; 1] speci�es the spatial
correlations between spots in the two retinas, and can be adjusted to simulate di�erent degrees of
correlations between images in the two eyes. Multi-spot images can be generated by repeating the
above step: the simulations below used two-spot images in each eye.

Figure 4 shows the �nal a�erent receptive �elds of two typical neurons in a simulation with c = 1.
In this case, the inputs were uncorrelated, simulating perfect strabismus (i.e. the inputs from the
two eyes cannot be matched to form a single percept). In the early stages of the simulation, some
of the neurons randomly develop a preference for one eye or the other. Nearby neurons will tend
to share the same preference because lateral excitation keeps neural activity partially correlated
over short distances. As self-organization progresses, such preferences are ampli�ed, and groups
of neurons develop strong weights to one eye. Figure 4a shows the a�erent weights of a typical
monocular neuron.

The extent of activity correlations on the network determines the size of the monocular neuronal
groups. Farther on the map, where the activations are anticorrelated due to lateral inhibition,
neurons will develop eye preferences to the opposite eye. As a result, alternating ocular dominance
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(a) Connections of a Monocular Neuron (b) Connections of a Binocular Neuron

Figure 5: Ocular dominance and patterned long-range lateral connections. Each neuron is colored
with a grey-scale value (black ! white) that represents continuously changing eye preference from exclusive
left through binocular to exclusive right. Most neurons are monocular, so white and black predominate.
Small white dots indicate the strongest lateral input connections to the neuron marked with a big white dot.
Only the long range inhibitory connections are shown. The excitatory connections link each neuron only to
itself and to its eight nearest neighbors. (a) The lateral connections of a left monocular neuron predominantly
link areas of the same ocular dominance. (b) The lateral connections of a binocular neuron come from both
eye regions. In this simulation, the parameters were: network size N = 64; retinal size R = 24; a�erent �eld
size s = 9; � = 0:1; � = 0:65; spot width a = 5:0; excitation radius d = 1; inhibition radius=31; scaling
factors 
e = 0:5, 
i = 0:9; learning rates �A = �E = �I = 0:002; number of training iterations=35; 000.
The anatomical RF centers were slightly scattered around their topographically ordered positions (radius of
scatter=0.5), and all connections were initialized to random weights.

patches develop over the map, as shown in �gure 5.4 In areas between ocular dominance patches,
neurons will develop approximately equal strengths to both eyes and become binocular, like the
one shown in �gure 4b.

The lateral connection patterns closely follow ocular dominance organization (�gure 5). As
neurons become better tuned to one eye or the other, activity correlations between regions tuned
to the same eye become stronger, and correlations between opposite eye areas weaker. As a result,
monocular neurons develop strong lateral connections to regions with the same eye preference,
and weak connections to regions of opposite eye preference. The binocular neurons, on the other
hand, are equally tuned to the two eyes, and have activity correlations with both ocular dominance
regions. Their lateral connection weights are distributed more or less symmetrically around them
and include neurons from both eye-preference columns.

The normal case (simulated with c = 0:4), looks otherwise similar to �gure 5, but the ocular
dominance stripes are narrower and there are more ocular dominance columns in the network. Most
neurons are neither purely monocular nor purely binocular and few cells have extreme values of
ocular dominance. Accordingly, the lateral connectivity in the network is only partially determined
by ocular dominance. However, the lateral connections of the few strongly monocular neurons follow
the ocular dominance patterns like in the strabismic case. In both cases, the spacing between the
lateral connection clusters matches the stripe-width.

4For a thorough treatment of the mathematical principles underlying the development of ocular dominance
columns, see (Goodhill 1993; Miller et al. 1989; von der Malsburg and Singer 1988).
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(b) Large RF: neuron (69; 124)

Figure 6: Size-selective self-organized receptive �elds. The a�erent weights of neurons at two di�erent
locations in a 192 � 192 network are shown after self-organization. Initially the weights are random, but
after self-organization, a smooth hill-shaped weight pro�le develops. Though the anatomical RFs are the
same, the a�erent weights are organized into a variety of sizes from narrow, highly peaked receptive �elds
to large and broad ones.

The patterns of lateral connections and ocular dominance shown above closely match obser-
vations in the primary visual cortex. L�owel and Singer (1992) observed that when between-eye
correlations were abolished in kittens by surgically induced strabismus, long-range lateral connec-
tions primarily linked areas of the same ocular dominance. However, binocular neurons, located
between ocular dominance columns, retained connections to both eye regions. The ocular domi-
nance stripes in the strabismics were broad and sharply de�ned (L�owel 1994). In contrast, ocular
dominance stripes in normal animals were narrow and less sharply de�ned, and lateral connection
patterns overall were not signi�cantly in
uenced by ocular dominance. The receptive �eld model
reproduces these experimental results, and also predicts that the lateral connections of strongly
monocular neurons would follow ocular dominance even in the normal case. The model there-
fore con�rms that patterned lateral connections develop based on correlated neuronal activity and
demonstrates that they can self-organize cooperatively with ocular dominance columns.

3.3 Development of size selectivity and lateral connections

In their �rst recordings from the primary visual cortex of the cat, Hubel and Wiesel (1959, 1962)
reported that cortical cells were more selective to the width of patterns than were retinal cells.
They noted that cortical cells would give no response to a bar covering the whole receptive �eld,
whereas in the retina and the LGN, cells would typically respond to such patterns. Subsequently,
detailed studies by Campbell et al. (1969), De Valois et al. (1982) and others showed that cortical
cells are narrowly tuned to the spatial frequency of inputs, and had typical bandpass responses,
responding only to inputs in a speci�c frequency range. A continuum of spatial frequencies from
low to high were represented in the cortex (Silverman et al. 1989), and cells in each range of spatial
frequency were organized into distinct spatial frequency columns (Tootell et al. 1981, 1988). In
essence, cortical cells exhibited an organization of spatial frequency selectivity similar to ocular
dominance (OD) and orientation (OR) columns.

Modeling selectivity to spatial frequency would require much larger retinal and cortical networks
than can currently be simulated. However, it is possible to test a special case of the hypothesis:
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whether selective receptive �elds, columnar organization, and lateral connection patterns form when
the size of the Gaussian light spot is the main dimension of variation in the input.

In the third RF-LISSOM self-organization experiment, therefore, inputs of a variety of sizes were
presented to the network. The light spots were similar to those in the ocular dominance experiment
(equation 5), except that the width a was chosen uniformly randomly in the range [0.75,8.0].
The retinal activity vector was normalized to constant length, because without normalization,
larger-sized spots would produce stronger activation. A total of 25; 000 training steps were used,
with the network and simulation parameters similar to those in the orientation column simulation
(section 3.1).

The self-organization of a�erents results in smooth, hill-shaped RFs. A variety of RFs of di�er-
ent sizes are produced, some narrow and tuned to small stimuli, others large and most responsive to
large stimuli (�gure 6). Simultaneously with the RFs, each neuron's lateral connections evolve, and
by the Hebbian mechanism, are distributed according to how well the neuron's activity correlates
with the activities of the other neurons. Let us examine the nature of such activity correlations.
The inputs vary in size from a = 0:75 to a = 8:0, and are normalized. Therefore, the smallest
inputs produce very bright activity in a few receptors. They are also smaller than the size of each
anatomical receptive �eld. Therefore, these inputs predominantly stimulate neurons with small
receptive �elds and having anatomical RFs in the same position as the spot. Such neurons will
have strong activity correlations with other small receptive �eld neurons, but little correlation with
neurons having broader receptive �elds5. The global organization of size preferences and lateral
connections can be visualized by labeling each neuron with a color that indicates the width of its
RF, and plotting the patterns of lateral connections on top. As �gure 7a shows, the RF organization
has the form of connected, intertwined patches, similar to OD columns, and the lateral connections
of neurons connect to regions of the same size preference.

Neurons with larger receptive �elds have a slightly di�erent pattern of activity correlations.
The larger spots are not localized within the anatomical RF as are the smaller inputs, and extend
beyond it. They produce activity over a wider area in the network than the smaller, localized spots.
As a result, the inputs that best stimulate larger RF neurons also cause activity in large parts of
the network. Therefore, the activity correlations of such neurons are not as strongly determined
by size as that of small RF neurons. Therefore, the lateral connections of neurons with larger RFs
often link to smaller RF neurons also. In the cortex, neurobiologists have not yet studied how the
patterns of lateral connections relate to either size or spatial frequency preferences.

The columnar organization does not develop in small networks. Simulations show that, for a
given variance of the stimuli size, the ratio of neurons in the network to receptors in the retina (the
magni�cation factor) has to be greater than a threshold value for a stable columnar organization
to appear. Below the threshold, smooth RFs and an ordered topographic map develop, but all the
RFs tend to have the same size, corresponding to the average width of the input stimulus. Above
the threshold, symmetry breaking occurs, producing a variety of RF sizes for each location in the
retina. Such symmetry breaking is similar to that of the Self-Organizing Map (Kohonen 1982, 1989,
1995), where an input feature is represented in the network only if its variance is greater than a
threshold proportional to the magni�cation factor (Obermayer et al. 1992).

It is not known whether the long-range lateral connections in the cortex are organized according
to size or spatial frequency selectivity. So far, the lateral connection patterns have only been
studied in relation to the organization of OD and OR preference (Malach et al. 1993; L�owel and

5Note that even small spots produce quite widespread activity in the network, because each retinal receptor
connects to a large number of cortical neurons.
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(a) Columns and lateral connections:

Small RF

(b) Columns and lateral connections:

Large RF

Figure 7: Size-selective columns and lateral connection patterns. Each neuron in the network
is labeled with a grey-scale value (black ! white) that represents continuously-changing size preference
from small values to large values. Small white dots indicate the lateral input connections to the neuron
marked with the big white dot. The size preferences are organized systematically across the network into
connected, intertwined patches, and the strongest lateral connections predominantly link areas of the same
size selectivity.

Singer 1992; Gilbert and Wiesel 1989). However, considerable psychophysical and neurobiological
evidence indicates that selective lateral interactions exist between neurons tuned to di�erent spatial
frequencies (De Valois and Tootell 1983; Bauman and Bonds 1991). As in the RF-LISSOM model,
these interactions are also known to be largely inhibitory (De Valois and Tootell 1983; Vidyasagar
and Mueller 1994). The RF-LISSOM model is a �rst step towards modeling spatial frequency
selectivity, and suggests that the long-range lateral connections could be the anatomical substrate
for inhibition between spatial frequency channels. The model further predicts that the patterns of
lateral connections in the cortex would be in
uenced not only by OD and OR preference, but also
by selectivity to spatial frequency.

4 Functional role of the self-organized maps and lateral connec-
tions

The results on self-organization of OD, OR, and size-selectivity maps and lateral connections sug-
gest that a single Hebbian mechanism produces the receptive �elds and lateral interactions in the
primary visual cortex. If so, what could be the functional role of these self-organized structures in
visual processing?

The information processing role of the a�erent RFs is best seen by analogy with Self-Organizing
Maps (Kohonen 1982, 1989, 1995). The a�erent connections self-organize in a similar fashion in
both models. When presented with high-dimensional inputs, the self-organizing map selects the set
of feature dimensions along which inputs vary the most and represents them along the dimensions
of the map. For example, if the inputs lie mostly along the diagonal plane of a hypercube, the
self-organized map (and hence the RFs) will spread out along this diagonal. If there is some input
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variance in the dimension perpendicular to this diagonal, receptive �elds will be distributed along
this direction as well, and the map will \fold" in that direction. If there are many such feature
dimensions, a subset of them will be represented by the folds of the map in the order of their input
variance (Obermayer et al. 1992).

The images in the visual world could be varying the most along the dimensions of ocular
dominance, orientation preference and spatial frequency, and if so, the self-organized RFs will
represent these dimensions. During visual processing, the cortex then projects incoming visual
inputs onto these dimensions. As shown by Field (1994), such a projection produces a sparse coding
of the input, minimizing the number of active neurons and forming a more e�cient representation,
which is well suited for the detection of suspicious coincidences, associative memory and feature
grouping (Barlow 1972, 1985; Field 1987, 1994). Projecting onto the dimensions of maximum
variance also achieves minimal distortion and minimal spurious conjunctions of features.

What would the role then be for the lateral connections? Through Hebbian self-organization,
the lateral connections learn correlations between the feature detectors in the network|the stronger
the correlation between two cells, the larger the connection strength between them. However, these
long-range connections are inhibitory. Therefore, the strongly correlated regions of the network
inhibit each other|in other words, the lateral connections decorrelate (Barlow 1972, 1989). Decor-
relation is useful in producing e�cient representations. If the connection between two cells is strong,
then the response of one can be predicted to a large extent by knowing the response of the other.
Therefore, the activity of the second cell is redundant, and a more e�cient representation (in an
information-theoretic sense) can be formed by eliminating the redundancy. Decorrelation �lters
out the learned redundancies and produces an e�cient encoding of the visual input. Thus, the
visual knowledge that lateral connections learn is used to �lter out the already-known correlations
between cortical cells, leaving only novel information to be passed on to higher levels of processing.
The RF-LISSOM architecture demonstrates how decorrelation mechanisms could be implemented
in the primary visual cortex.

To demonstrate sparse coding and decorrelation in RF-LISSOM, the representations in the
orientation selectivity model of section 3.1 were analyzed in more detail. It was con�rmed that (1)
the network forms a sparse coding of the input, (2) the coding reduces redundancies, and (3) and
to get these e�ects, it is crucial that the lateral connections are self-organized.

Sparseness can be measured by the kurtosis (i.e. peakedness) of the network response. A small
number of strongly-responding neurons, that is, a sparse coding, will result in high kurtosis. In
�gure 8, the kurtosis measures of four di�erent networks are compared: (1) a network without any
lateral interactions at all (i.e. the initial response of the network), (2) a network with self-organized
lateral weights, (3) one with �xed random lateral weights, and (4) one with lateral weights that have
a �xed Gaussian pro�le (as assumed in some of the early self-organizing models). In each case, the
amount of contrast in the input was varied: A constant pattern of several elongated Gaussian light
spots was presented to the retina, and the height of the Gaussians was systematically increased.

The main observation is that the kurtosis of the self-organized lateral interactions is substantially
higher than that of the other three networks. By Hebbian self-organization, the long-range lateral
connections learn to encode correlations between the feature-selective units. Because the long-
range connections are inhibitory, strongly correlated regions of the network inhibit each other. At
the same time, the short-range lateral excitation locally ampli�es the responses of active units.
Together, the recurrent excitation and inhibition focuses the activity to the units best tuned to
the features of the input stimulus, thereby producing high kurtosis, that is, a sparse coding of the
input.
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Figure 8: Sparse coding in the RF-LISSOM model. With self-organized lateral connections, the
kurtosis (i.e. sparse coding) is signi�cantly higher than with �xed lateral connections or without lateral
connections at all. The di�erence is larger at higher intensities (measured by the intensity of the light spots,
in percentage), suggesting that the self-organized lateral connections perform redundancy reduction on the
response.

Second, the di�erence in kurtosis increases with contrast. As the light spots become more
intense, there is more input activation to the network. More units will be activated, and kurtosis
will decrease. This extra activity is mostly redundant, because the input pattern is still the same.
The self-organized lateral connections are able to remove such redundant activation, and kurtosis
decreases much slower than in the other cases. Third, such redundancy reduction takes place only
when the lateral connections are self-organized. The kurtosis with �xed lateral weights decreases
at the same rate as the kurtosis of the network without lateral weights.

In sum, the RF-LISSOM model suggests that the cortex performs two di�erent computations
during sensory processing: First, the inputs are projected onto the principal feature dimensions
represented by the a�erent receptive �eld structure. Then, the redundancies are �ltered out by
recurrent lateral interactions. The result is an e�cient, redundancy-reduced sparse coding of the
visual input which is then passed on to higher processing levels. This prediction can be veri�ed
experimentally by using information theory to analyze the optical images of cortical activity pat-
terns produced in response to simple retinal images. If con�rmed, it would constitute a major step
in understanding the function of the observed primary visual cortex structures.
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(a) Map before scotoma (b) Reorganized map

Figure 9: Reorganization of the topographic map after a retinal scotoma. The RF centers of every
third neuron in the network are plotted in the retinal space, and the neighboring centers are connected by
lines. (a) Before the scotoma, the centers are organized into a topographic map of the retina. (b) After the
scotoma, neurons whose receptive �elds were entirely covered by the scotoma remained unstimulated, and
retained their old receptive �elds. However, the surrounding neurons reorganized their a�erent weights, and
their receptive �elds moved out into the periphery of the scotoma. Such reorganization produces dynamic
expansions of receptive �elds and an inward shift of the response at the edge of the scotoma.

5 Plasticity of the Adult Visual Cortex

So far we have demonstrated how the laterally connected cortex could self-organize in response
to the external input, and what the self-organized structures mean. The model can also be used
to study dynamic phenomena in the adult cortex. The �rst experiment below shows how the
network reorganizes after a retinal lesion, giving a computational explanation to the phenomenon
of dynamic receptive �elds. The second experiment shows how the network reorganizes in response
to cortical lesions. These experiments suggest that the same processes that are responsible for the
development of the cortex also operate in the adult cortex, maintaining it in a dynamic equilibrium
with the input.

5.1 Reorganization after Retinal Lesions

Dynamic receptive �elds are observed in response to temporary arti�cial scotomas in the retina.
Such a lesion prevents part of the cortex from receiving input, producing a corresponding cortical
scotoma. However, if the surround of the scotoma is stimulated for a period of several minutes, and
the scotoma is then removed, the receptive �elds of the unstimulated neurons are found to have
expanded (Pettet and Gilbert 1992). The expansion is largest along the preferred orientation of
each neuron. Psychophysical experiments further show that after removing the scotoma, a stimulus
at the edge of the scotoma appears to have shifted towards the center (Kapadia et al. 1994). Prima
facie, such dynamic expansion of receptive �elds, and the perceptual shift accompanying it, is
incompatible with Hebbian self-organization (which are based on coincident activity), and has
been di�cult to explain.

The RF-LISSOM model suggests an explanation. Figure 9 shows how the orientation map
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of section 3.1 reorganizes when a retinal scotoma is introduced and inputs are presented in the
surrounding area. The receptive �elds of the central, unstimulated neurons remain in the same lo-
cation as before. Neurons that have part of their receptive �elds outside the scotoma are stimulated
by the surrounding input, and by Hebbian adaptation, reorganize their a�erent weights into the
periphery of the scotoma. As a result, these neurons become insensitive to the central region. If
the scotoma is now removed, and an input is presented in the scotoma region, only the previously
unresponsive neurons respond vigorously to the new input; the surrounding ones do not. Therefore,
there is considerably less lateral inhibition from the surrounding neurons to the central neurons,
and responses that were previously suppressed by lateral inhibition are unmasked. Therefore, when
the RF sizes of the central neurons are measured (based on network activity), they appear to have
increased. The expansion is greatest along the preferred orientation because the strongest a�erent
weights lie in this direction (�gure 2a,b), and any decrease of inhibition unmasks responses mainly
in that direction.

Such a reorganization can account for the psychophysical experiments as well. The neurons
whose receptive �elds have moved outward now respond to inputs farther from the center than
before. Therefore, an input at the edge of the retinal scotoma stimulates many neurons inside the
cortical scotoma that previously would not have responded, and the response pattern is shifted
inward, producing the perceptual shift. After the scotoma is removed and the normal stimulation
reestablished, the reorganized RFs gradually return to the normal state (of �gure 9a), and the shift
disappears. The model thus shows how the same self-organizing processes and lateral interactions
that sculpt the receptive �elds during early development could, in the adult, maintain them in a
continuously adapting, dynamic equilibrium with the visual environment.

5.2 Reorganization after Cortical Lesions

To simulate e�ects of cortical lesions the RF-LISSOM network was �rst organized with symmetric
Gaussian patterns such as those used in the ocular dominance simulation of section 3.2. This re-
sulted in regular Gaussian-shaped receptive �elds, retinotopic global order, and a smooth \Mexican
hat", or di�erence of Gaussians, lateral interaction pro�les.

To study the e�ects of cortical lesions, a small set of neurons in the organized network were then
made unresponsive to input. Three phases of reorganization wereobserved, like in the somatosensory
cortex (Merzenich et al. 1990). Immediately after the lesion, the receptive �elds (RFs) of neurons
in the perilesion zone enlarge. The lesion reduces the inhibition of the perilesion neurons, and
unmasks previously suppressed input activation. In e�ect, the perilesion neurons immediately take
over representing part of the input to the lesioned region, and the apparent loss of receptive surface
representation is smaller than expected based on the prelesion map (�gure 10b).

The lesion disrupts the dynamic equilibrium of the network, and both lateral and a�erent con-
nections of the active neurons adapt to compensate for the lesion. Neurons close to the lesion
boundary encounter a large imbalance of lateral interaction in their neighborhood, with no lateral
activation from inside the lesion and normal activation from outside. As a result, the lateral connec-
tion weights to the lesioned area decrease to zero, and by Hebbian adaptation and normalization,
all the lateral weights rapidly redistribute to the the lesion's periphery. Neurons at the lesion
boundary have the largest number of inhibitory connections from the lesioned zone; therefore, the
reorganization of inhibition is especially pronounced at the boundary. As a result, in the second
phase the lateral inhibition very rapidly becomes strong outside the lesion, and the previously
unmasked activity is partly suppressed (�gure 10c). This produces an apparent outward shift of
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(a) Activity before lesion (b) Immediately after

(c) After 500 iterations (d) After complete reorganization

Figure 10: Changing response patterns after a cortical lesion. The activity of neurons across the
network are shown for the same input before the lesion and at several stages after it. The lesioned area
is seen as a white square with no activity, and the black dot inside the square indicates the maximally
responding neuron before the lesion. Immediately after the lesion, the activity spreads out to neurons that
were previously inactive and therefore, the functional loss appears less severe than expected. As lateral
connections reorganize, the unmasked activity decreases because of increased lateral inhibition. Several
thousand adaptation steps after the lesion, a�erent weights of the perilesion neurons have spread out into
the area previously represented by the lesioned neurons (�gure 11b). Though lateral inhibition is still stronger
in the perilesion area, the input activation after reorganization overcomes the inhibition, and neurons at the
boundary of the lesion become more responsive to inputs previously stimulating lesioned neurons.

perilesion receptive �elds.

Even after the lateral connections reorganize, the remaining unmasked input activation causes
an imbalance in the network. Such activation forces the a�erent weights to reorganize and respond
better to inputs that were previously stimulating the lesioned zone. Gradually, the representation
of the receptive surface within the lesion zone is taken over by the neurons around it (�gure 11),
and the cortical lesion is partly compensated for (�gure 10d). The RF-LISSOM model predicts
that for full compensation to occur, the lesion must be small enough so that neurons across the
lesion are connected with excitatory connections. In that case they can act as neighbors on the
map and the gap (such as that in �gure 11b) can be closed.

The results with the RF-LISSOM model suggest two techniques to accelerate recovery following
surgery in the sensory cortices. Normally, the recovery time after cortical surgery would include an
initial period of regression due to the reorganization of inhibition, and gradual and slow compensa-

18



(a) Map before lesion (b) Reorganized map

Figure 11: Reorganization of receptive �elds after a cortical lesion. Initially the centers of the
Gaussian receptive �elds are regularly and uniformly distributed over the retinal area. After lesion, the
receptive �elds of neurons near the periphery of the lesion move towards the center, partly compensating for
the loss of function.

tion afterward. The �rst phase of regression could be ameliorated if a transient blocker of inhibitory
neurotransmitters were applied locally around the surgical area. Neurons around the surgical area
would then �re intensively because of reduced inhibition, and a�erent connections would adapt
rapidly to compensate for the lesion. Though the inhibition would strengthen when the blockade
goes away, the pace of recovery would have been hastened. Secondly, the topographic map could
be shifted (as in �gure 11) even before surgery. This preshifting could be achieved by intensive
and repetitive stimulation of the area expected to lose sensation and by sensory deprivation of its
surroundings. The receptive �elds would then have to move less to reach the �nal state, and the
recovery would be faster.

The model shows that receptive �elds are maintained dynamically by excitatory and inhibitory
interactions within the cortex. The combined e�ect of a�erent input, lateral excitation and lateral
inhibition determine the responses of neurons. When the balance of excitation and inhibition is
perturbed, neuronal response patterns change dynamically, and receptive �elds appear to expand
or decrease in size rapidly. If the perturbations are transient, they produce only transient changes
in synaptic weight patterns and the topographic map does not shift much. However, if the pertur-
bation persists for long, synaptic weight changes accumulate, and the topographic map reorganizes
substantially. Such receptive �eld dynamics has been recently observed in the visual cortex (Pettet
and Gilbert 1992). RF-LISSOM provides a computational explanation of why such dynamics occur,
and illustrates the primary role of lateral interactions in cortical plasticity.

6 Modeling Low-Level Visual Functions

The lateral connections in the visual cortex are believed to be mediating several low-level visual
phenomena such as tilt illusions, tilt aftere�ects, segmentation and binding (Tolhurst and Thompson
1975; von der Malsburg and Singer 1988; Singer et al. 1990). In this section, two experiments are
presented that rely on adaptation of connections after the network has self-organized. In the �rst
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Figure 12: Tilt aftere�ect patterns. Fixate upon the circle inside the square at the left or the right
for at least thirty seconds, moving the eye slightly inside the circle to avoid developing strong afterimages.
Now �xate upon the line or square at the center; they should appear tilted in the direction opposite to the
previous pattern. (Adapted from Campbell and Ma�ei 1971.)

one, tilt aftere�ects are shown to result from increased inhibition between neurons responsive to
similar orientations. In the second, after extending the RF-LISSOM architecture with a more
realistic spiking model of the neuron, fast adaptation of lateral connections is shown to establish
synchronization between neurons representing the same input object, forming a basis for binding
and segmentation.

6.1 Tilt Aftere�ects

The tilt after-e�ect (TAE, Gibson and Radner 1937) is an intriguing visual phenomenon that has
long been studied as an indication of the underlying mechanisms of the visual system. After staring
at a pattern of tilted lines or gratings, subsequent lines appear to have a slight tilt in the opposite
direction. Figure 12 demonstrates the e�ect. The e�ect resembles an afterimage from staring
at a bright light, but it causes changes in orientation perception rather than color or brightness
perception.

Several explanations have been proposed for the TAE over the years. Gibson and Radner (1937)
hypothesized that the TAE results from perceptual normalization, where the subjective vertical and
horizontal norms are modi�ed by visual experience. This theory does not explain why the e�ect
occurs also for vertical and horizontal adaptation angles. K�ohler and Wallach (1944) postulated
that activation of cortical sensory areas results in local electrical �elds that spread electrotonically
to nearby areas. Activated areas experience satiation, which results in displacement of subsequent
perceptions to unsatiated areas. Such electrotonic mechanisms have not been found, and a more
modern version of that theory was devised based on feature-detector fatigue: if neurons with
orientation preferences close to the adaptation �gure become fatigued as a result of activation, a
di�erent set of neurons will be activated for the test �gure, accounting for the perceptual shift
(Coltheart 1971; Sutherland 1961). This theory has also been discounted because such fatigue
mechanisms have not been found, and cell �ring has been shown neither necessary nor su�cient
for adaptation (Vidyasagar 1990).

The prevailing theory for these e�ects attributes them to lateral interactions between orientation-
speci�c feature-detectors in the primary visual cortex (Tolhurst and Thompson 1975). The lateral
inhibitory connection strengths between activated neurons are believed to increase temporarily
while an input pattern is inspected, causing changes in the perception of subsequent orientations.
This occurs because the detectors are broadly tuned, and detectors for neighboring orientations also
adapt somewhat. When a subsequent line of a slightly di�erent orientation is presented, the most
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strongly responding units are now the ones with orientation preferences further from the adapting
line, resulting in a change in the perceived angle.

Although the inhibition theory was proposed in the 1970s (in a slightly di�erent form), it is
computationally very expensive to simulate and has not been tested in a detailed model of cortical
function. RF-LISSOM is such a model, and it is computationally feasible to test it on the orientation
network of section 3.1. The results suggest that tilt aftere�ects are not 
aws in an otherwise well-
designed system, but an unavoidable result of a self-organizing process that aims at producing an
e�cient, sparse encoding of the input through decorrelation.

To compare with results from human subjects, the tilt aftere�ect was measured in the orientation
map model as a function of the angular separation of the inducing and test �gures. For adaptation
on the inducing stimulus, the x and y coordinates of the center of a vertical Gaussian on the retina
were �xed at the center of the retina. The learning rates �I , �A, and �E were all set to 0:000005.
All other parameters remained as in the self-organization of the orientation map.

To obtain a quantitative estimate of the aftere�ect in the model, the perceived orientation in
the model was measured as an activity-weighted sum of the pre-adaptation orientation preference
of all active units. Perceived orientation was computed separately for each possible orientation
of a test Gaussian at the center of the retina, both before and after adaptation. For a given
angular separation of the adaptation stimulus and the test stimulus, the computed magnitude of
the tilt aftere�ect is the di�erence between the initial perceived angle and the one perceived after
adaptation.

Figure 13 plots these di�erences after adapting to a vertical training line. For comparison,
the �gure also shows results from the most detailed recent data available for the tilt aftere�ect in
human foveal vision (Mitchell and Muir 1976). The results from the model are clearly consistent
with those seen in human observers.

In the model, the amount of aftere�ect increases with adaptation as connection weights grad-
ually change. The S-shape of the curve in �gure 13 results from the redistribution of inhibitory
weights to connections linking active neurons. Since the most active neurons are those encoding
vertical orientations, the response to vertical and nearly vertical lines decreases dramatically. This
causes the direct e�ect of angle expansion at these angles (0� { 35�), just as predicted by the lateral
inhibition theory of tilt aftere�ects.

At the same time as the lateral inhibitory connections increase between active neurons, they
must decrease between those neurons and inactive ones (i.e., those encoding distant orientations).
This happens because the inhibitory weights are normalized to a constant sum in the model. The
result is an increase in the response to lines from 45� { 90�, or the indirect e�ect. Of the detectors
activated for a test line in this range, those with preference closer to vertical are more active
due to the reduction of inihibitory connections to them, while those encoding nearly orthogonal
preference are unchanged. The perceived orientation thus shifts towards the training orientation.
This result is a straightforward consequence of the lateral inhibition theory when the fact of limited
synaptic resources is taken into account (cf. Purves 1988), which idea is a major contribution of
the RF-LISSOM model.

The current results provide strong computational support for the theory that plastic lateral
interactions are responsible for the tilt aftere�ect as well as the initial self-organization of the
orientation detectors. Through similar mechanisms, the model should also be able to explain
simultaneous tilt illusions between overlapping or nearby stimuli (as proposed in Carpenter and
Blakemore (1973)). However, the simple method of computing the perceived orientation as a

21



−90 −75 −60 −45 −30 −15 0 15 30 45 60 75 90
Angle on Retina (degrees)

−4

−2

0

2

4

0

A
ft
e

re
ff
e

ct
 (

d
e

g
re

e
s 

cl
o

ck
w

is
e

)

Figure 13: Tilt aftere�ect versus retinal angle. The heavy line shows the magnitude of the tilt
aftere�ect in the RF-LISSOM model for each orientation after adapting to a vertical training line for 128
iterations. Positive values denote a clockwise change in the perceived orientation of the test line, and negative
counterclockwise. The �lled circles represent the average tilt aftere�ect for a single human subject (DEM)
from Mitchell and Muir (1976) over 10 trials; this subject had the most complete data of the four in the
study. For each angle in each trial, the subject trained for 3 minutes on a sinusoidal grating of a given
angle, then measured the tested the e�ect on a horizontal grating. Error bars indicate �1 standard error
of measurement from that study. The un�lled circles show the tilt a�ere�ect under similar conditions for
subject DWM from that study; this subject showed the largest indirect e�ect of the four from the study.

weighted average of activated units requires that the stimuli be spatially su�ciently separated so
that their responses do not overlap. With the single-spot training inputs used for this version of the
orientation map, connections do not develop over areas large enough to permit such separations, and
thus the magnitude of the e�ect cannot be measured for the simultaneous case using this technique.
To overcome this di�culty, it will be necessary to train the system with inputs that have longer-
range correlations between similar orientations, such as sinusoidal gratings (representing objects
with parallel lines). A version of the RF-LISSOM model trained on such patterns should be able to
account for tilt illusions as well as tilt aftere�ects. Although such experiments require even larger
cortex and retina sizes, they should become practical in the near future.

In addition, many similar phenomena such as aftere�ects of curvature, motion, spatial frequency,
size, position, and color have been documented in humans (Barlow 1990). Since speci�c detectors
for most of these features have been found, RF-LISSOM is expected to be able to account for them
by the same process of decorrelation mediated by self-organizing lateral connections.
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Figure 14: The leaky integrator neuron in SLISSOM. Leaky integrators at each synapse perform
decayed summation of incoming spikes. The spike generator compares the weighted sum of the integrator
outputs to a dynamic threshold, �ring a spike if the sum is greater. Each spike increases the threshold, with
exponential decay.

6.2 Segmentation and Binding

The RF-LISSOM model suggests that lateral connections play a central role in self-organization
and in function of the visual cortex by establishing competitive and cooperative interactions be-
tween feature detectors. They may also mediate function at lower level by modulating the spiking
behavior of neuronal groups. This way they could cause synchronization and desynchronization of
spiking activity, thus mediating feature binding and segmentation. Such synchronization of neu-
ronal activity emerges in the visual cortex of the cat when light bars of various length are presented
(Gray and Singer 1987; Eckhorn et al. 1988; Gray et al. 1989). Several models have been pro-
posed to explain this phenomenon (von der Malsburg 1987; von der Malsburg and Buhmann 1992;
Eckhorn et al. 1990; Reitboeck et al. 1993; Wang 1996). The model of Reitboeck et al. (1993) is
particularly interesting because of its sophisticated model of the neuron: the synapses are leaky
integrators that sum incoming signals over time with exponential decay. A network of such neu-
rons can segment multiple objects in a scene by synchronizing neuronal activity. Spikes of neurons
representing the same object are synchronized, and those of neurons representing di�erent objects
are desynchronized.

The leaky integrator model of the spiking neuron can be integrated with the RF-LISSOM model
of self-organization to model segmentation and binding. This extension of RF-LISSOM is called
Spiking Laterally Interconnected Synergetically Self-Organizing Map, or SLISSOM. SLISSOM (1)
forms a topological map from an initially random network through synergetic self-organization as
before, and (2) generates synchronized and desynchronized neuronal activity that can be used for
segmenting multiple objects in the scene.

Each connection in SLISSOM is a leaky integrator that performs decayed summation of incoming
spikes, thereby establishing not only spatial summation, but also temporal summation of activity
(�gure 14). Each new spike is added to the sum of the previous ones, and the sum is exponentially
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(a) Initial map (b) Final map (c) Ideal map

Figure 15: Self-Organization of the SLISSOM Map. (a) The a�erent weights are initially randomized
and their centers of gravity are about the same. (b) After 5500 iterations, the network forms a well-formed
mapping of the input space, comparable to (c), the ideal grid where each node represents a gaussian receptive
�eld located directly below the map unit.

decayed over time. The current sums are multiplied by the connection weight and added together 6

to form the net input to the neuron. The spike generator compares the net input to a threshold and
decides whether to �re a spike. The threshold is a sum of two factors: the base threshold � and the
decayed sum of past spikes, formed by a similar leaky integrator as in the input synapses. Active
spiking therefore increases the e�ective threshold, making further spiking less likely and keeping
the activation of the system within a reasonable range.

Each connection has a queue that stores previous spikes. In calculating the postsynaptic po-
tential, the latest spike has the value of 1:0 and older ones are decayed by 1

e�q
, where �q is the

decay parameter, as they are shifted through the queue. The inhibitory feedback loop in the spike
generator (�gure 14) is a similar queue that receives spikes from the spike generator itself, with
decay 1

e�s
.

The input to the network consists of squares of �xed size (3 � 3 in the experiments reported
below), activated at random locations on the retina. Spikes are generated at the active retinal
neurons and sent through the a�erent connections to the cortical neurons. The net input �ij to
the spike generator of the cortical neuron at location (i; j) at time t is calculated by summing the
a�erent and excitatory lateral contributions and subtracting the inhibitory lateral contributions:

�ij(t) = 
a
X
r1;r2

�r1 ;r2�ij;r1r2 + 
e
X
k;l

�kl(t� 1)Eij;kl� 
i
X
k;l

�kl(t� 1)Iij;kl; (6)

where 
a, 
e, and 
i are the scaling factors for the a�erent, excitatory, and inhibitory contributions,
�r1;r2 is the decayed sum of the incoming queue from the retinal neuron at (r1; r2), �ij;r1r2 is the
corresponding a�erent connection weight, �kl(t� 1) is the decayed sum of the incoming queue from
the map neuron at (k; l) at time t � 1, and Eij;kl is the corresponding excitatory and Iij;kl the
inhibitory lateral connection weight. The spike generator �res a spike if �ij > � + #ij , where � is
the base threshold and #ij the output of the spike generator's leaky integrator.

6This di�ers from Eckhorn et al.(1990) and Reitboeck et al.(1993) who multiplied the weighted sums from a�erent
connections and those from lateral connections. Multiplying exerts better modulation on the neuronal activity, but
disturbs self-organization by rapid 
uctuation. In our experiments, modulation turned out to be possible with additive

neurons as well.
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Through equation 6, SLISSOM goes through a similar settling process as the RF-LISSOM
network. The input is kept constant and the cortical neurons are allowed to exchange spikes. After
a while, the neurons reach a stable rate of �ring, and this rate is used to modify the weights. Both
the a�erent and the lateral weights are modi�ed according to the Hebbian principle:

wij;mn(t) =
wij;mn(t� 1) + �VijXmn

N
; (7)

where wij;mn(t) is the connection weight between neurons (i; j) and (m;n), wij;mn(t � 1) is the
previous weight, � is the learning rate (�a for a�erent, �E for excitatory, and �i for inhibitory
connections), Vij and Xmn are the average spiking rates of the neurons, and N is the normalization
factor,

P
mn [wij;mn(t� 1) + �VijXmn]

2 for a�erent connections and
P

mn [wij;mn(t� 1) + �VijXmn]
for lateral connections (cf. Sirosh and Miikkulainen 1994).

The SLISSOM experiment consists of two parts: (1) self-organization, and (2) object segmenta-
tion. During self-organization, single objects are shown to the network, and the lateral and a�erent
connection weights are adapted to form a topological map of the input space. After the network
has stabilized, multiple objects are presented to the retina and the network segments the objects
by temporally alternating the activity on the map.

The retina and the cortex both consisted of 11 � 11 units. Each neuron was fully connected
to the retina. The a�erent weights were initialized to be most sensitive to a 3 � 3 area on the
retina, centered right below each neuron, and then 65% noise was added to their values. The
lateral connection weights were randomly initialized. Inhibitory connections covered the whole
map, and excitatory connections linked to a square area centered at each neuron, with initial
radius of 8, gradually decreasing to 1. At the same time, the lateral inhibitory learning rate
�i gradually increased from 0.001 to 0.1. Slow adaptation in the beginning captures long-term
correlations within the inputs, which is necessary for self-organization. Fast adaptation towards
the end facilitates quick modulation of the activity necessary for segmentation.

During self-organization, single 3� 3 square objects were presented to the network. The retinal
neurons representing objects were spiking at each time step, and the settling consisted of 15 cycles
of cortical activity update (equation 6). After settling, connection weights were modi�ed according
to equation 7. Each such presentation was counted as an iteration. After 5500 iterations, both the
a�erent and the lateral weights stabilized into smooth pro�les. A�erent weights formed smooth
Gaussian receptive �elds most sensitive to input from the retinal neuron right below the map
neuron, and the lateral weights formed smooth Mexican-hat pro�les. Figure 15 shows the global
organization of the map during the process. The �nal map (�gure 15b) closely resembles the ideal
map of the input space (15c).

Once the SLISSOM network had formed smooth and concentrated receptive �elds and lateral
interaction pro�les, segmentation experiments were conducted on it. Several input objects (again,
3�3 squares) were presented to the retina at the same time, separated by at least 3 rows or columns
of receptors. The objects constantly spiked on the retina for several hundred time steps, and the
spike activity at the cortical layer was recorded. For each object, a separate 5� 5 area on the map
responded and the other areas remained silent. Segmentation is evident in the total number of
spikes per time step (i.e. the multi-unit activity, or MUA; �gure 16). The spikes within the same
area are synchronized, and spikes across the di�erent areas desynchronized. This result is very
robust and works for di�erent locations on the retina and for di�erent numbers of objects.

Several studies have shown that fast adaptation of synaptic e�cacy may mediate feature binding
through temporal coding (von der Malsburg 1987; Wang 1996). Similarly in the experiments with
SLISSOM, rapid adaptation of lateral weights was found crucial for oscillatory behavior. On the
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Figure 16: The multi-unit activities of areas responding to three di�erent objects. The total
number of spikes per time step in each of the three 5 � 5 areas are plotted over 500 time steps. Although
initially there is simultaneous activity in all areas, they quickly desynchronize and activation rotates from
one area to another.

other hand, self-organization requires slow adaptation so that long-term correlations can be learned.
If the weights are initially random and change rapidly, they will 
uctuate too much and an ill-formed
map will result. One way to deal with this problem is to start out with a slow learning rate and
gradually make learning faster. Such a change does not disturb the self-organization since the
activity on the map becomes more consistent and predictable as the training goes on, and the need
for keeping track of the long-term correlations disappears. The parameter �i was increased to 0.1
at iteration 3500, allowing segmentation to occur, but that did not disrupt the already well-formed
map (�gure 15).

The MUAs show some overlap even when the input is successfully segmented (�gure 16). This
is due to the slightly overlapping receptive �elds in the model. Gray et al. (1989) observed that in
the cat visual cortex, strong phase-locking occurred when the receptive �elds were clearly separate.
Apparently when they overlap slightly, phase locking becomes less well de�ned at the edges. The
overlap is unavoidable in the current small SLISSOM network, but could be reduced in larger-
scale simulations. Simulations on a more detailed self-organized model of the visual cortex with
orientation columns and patterned lateral connections might also account for perceptual phenomena
such as Gestalt e�ects. For example, principles such as proximity, smoothness, and continuity of
contours can be seen as regularities among image features. They would be encoded as correlations
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in the lateral connections, and could aid in determining object boundaries.

7 Discussion and Future Work

The RF-LISSOM model is based on three fundamental assumptions: First, vertical columns form
the basic computational units in the visual cortex, and it is possible to approximate cortical function
by modeling the 2-D layout of such columns instead of having to model each individual neuron
separately. Since neurons in such columns are known to have similar response properties (Hubel and
Wiesel 1959, 1965), this is a reasonable abstraction that makes computational modeling tractable.

Second, the lateral interactions between such columns are primarily excitatory in the short
range and inhibitory in the long range. This assumption is more controversial since about 80% of
the long-range connections are known to have excitatory synapses in the cortex (Gilbert et al.1990).
However, the connections in RF-LISSOM are intended to model the overall excitation/inhibition
between columns, not the individual synapses. The long-range excitatory connections could link to
inhibitory cells in simple local circuits, and the overall e�ect could be inhibitory. Optical imaging
and electrophysiological studies indeed suggest that there is substantially more inhibition in the
cortex than predicted by the synapse types (Grinvald et al.1994; Hata et al.1993; Hirsch and Gilbert
1991). The nature of long-range interactions remains controversial at this point. The RF-LISSOM
model makes the computational prediction that the overall e�ect of long-range interactions on the
column is inhibitory; otherwise self-organization does not occur in the model.

Third, the input patterns are su�ciently sparse so that distinct feature detectors may develop.
As the number of spots in the images are increased, the organization of the map gradually degrades.
When there is more overlap in the input more complex and random visual features are created, and
the network attempts to represent these features as well. At �rst this seems incompatible with the
dense nature of natural input images. However, there are two ways why such sparse input patterns
might actually be realistic: (1) it is possible that much of the self-organization occurs prenatally
based on traveling activity waves in the retina, such as those observed in the ferret and in the cat
(Meister et al. 1991; Wong et al. 1993). Such waves appear to have the necessary sparse structure.
(2) Although the natural images may be dense originally, after the edge-enhancement mechanisms
in the retina, they also have a sparse structure, with linear features at the local level (Wandell
1995). If retinal preprocessing mechanisms are added, it is likely that the RF-LISSOM network
can develop realistic orientation, ocular dominance, and size maps from natural images.

The main di�erence between RF-LISSOM and other recent models of cortical self-organization
(Amari 1980; Bienenstock et al. 1982; Durbin and Mitchison 1990; Erwin et al. 1995; Goodhill
1993; Grossberg 1976; Kohonen 1982; Linsker 1990; Miller 1994a; Miller et al. 1989; Obermayer
et al. 1992; Ritter et al. 1992; Shouval 1995; Stryker et al. 1990; Tanaka 1993; Willshaw and
von der Malsburg 1976) is that in RF-LISSOM, the lateral connections between feature detectors are
explicitly modeled. Therefore, the model can explain how not only the observed a�erent structures
but also the lateral connectivity patterns emerge as a result of self-organization. Several testable
predictions can be made based on the model, such as the connectivity at the pinwheel centers and
fractures. The explicit lateral connections also make it possible to test the decorrelation hypothesis,
possible plasticity mechanisms, and the inhibitory theory of tilt aftere�ects computationally.

The tilt aftere�ect and segmentation and binding in RF-LISSOM are modeled using the same
adaptation processes as the self-organization. However, these processes operate in di�erent time
scales, and most likely would have to be based on two di�erent processes in the cortex. The
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mechanisms underlying perceptual phenomena may be a short-time-scale, temporary version of the
self-organizing processes that capture longer-term correlations. These fast weights could act as a
small additive or multiplicative term on a relatively static long-term weight. Each inhibitory weight
w could be represented as wo+�w, where the wo portion would be comparatively static, keeping its
value inde�nitely in darkness and changing with a long time constant. The �w term, on the other
hand, would adapt and decay very quickly, presumably to represent the short-term correlations
between image elements. The tilt aftere�ect and the segmentation and binding phenomena would
be a result of such short-term adaptation.

Future work on RF-LISSOM models focuses on three areas: scaling the model up to more
realistic scales, extending the functional simulations, and modeling self-organization of hierarchical
representations. The models presented in this article were simpli�ed in two ways: (1) there were
separate models for each experiment (although with very similar networks and parameters), and
(2) simple light spots were used as inputs instead of realistic images. This way, it was possible to
study each individual aspect separately, and show how cortical structure and function depends on
the structure of the inputs. With complex natural images, it would have been di�cult to perform
such an analysis and identify the crucial parameters that are responsible for each e�ect. In the
future, this work should be extended to more complex inputs, to study the combined organization
of various features in the cortex. One problem is that more computational power will be needed
for such simulations than is currently available. When more features have to be represented on
the map at the same time, the maps need to be larger. Perhaps 512 � 512 units are needed for
simultaneous orientation, ocular dominance, and size preferences to develop. The requirement will
grow perhaps four-fold if gratings such as those used in tilt illusions in humans are to be used on
the organized network. The leaky integrator model of the neuron in turn doubles or triples the
resource requirements. This is beyond the current computational resources, but could be available
in the next few years. It may also be possible to approximate such large networks with smaller
ones and address issues in processing realistic input with realistic-size networks sooner.

Second main direction of future work consists of extending the functional simulations on the
organized model. In addition to tilt aftere�ects, other �gural aftere�ects and also simultaneous
tilt illusions can be modeled, as outlined in section 6.1. Binding and segmentation can be studied
with more complex images, with multiple, di�erently-shaped, and moving objects. Since the lateral
connections in RF-LISSOM store long-range activity correlations, it may be possible to model
perceptual grouping, or gestalt, e�ects such as continuity of contours, proximity, and smoothness.

The time course of the organization of representations could be matched with developmental
data on young animals. The network develops coarse representations of average inputs at �rst and
gradually makes the map more accurate. For example, when it becomes computationally feasible
to form maps of spatial frequency selectivity, it should be possible to model early perceptual
development, where infants �rst are aware of only low spatial frequencies, but develop sensitivity
to higher frequencies during the �rst few months.

Fahle et al. (1995) and Weiss et al. (1993) found that performance in hyperacuity tasks, such
as deciding whether two lines of same orientation are separated by a small perpendicular o�set,
improves with practice even without feedback. The e�ect is speci�c to position and orientation, but
transfers between eyes to some degree. Shiu and Pashler (1992) reported similar results for orien-
tation discrimination tasks, although they found that the e�ect also depends on cognitive factors.
The RF-LISSOM model should be able to account for such psychophysical learning phenomena.
The active feature detectors and lateral connections between them would adapt, resulting in rep-
resentation and discrimination of smaller di�erences. Hyperacuity and discrimination phenomena
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might also form a good testbed for extensions of RF-LISSOM that include feedback from higher
cortical levels.

Third, the RF-LISSOM model could be extended to learning of hierarchical visual representa-
tions, to discover increasingly complex structures in the input. Other self-organizing algorithms
such as the self-organizing map (Kohonen 1982, 1989, 1995) do not directly lend themselves to such
hierarchical networks. A higher level map will pick up essentially the same features of the input as
the lower level map, and represent the same level of information. However, the lateral interactions
in RF-LISSOM eliminate redundant activity, and the map encodes the input in terms of unique
feature detectors. A higher-level RF-LISSOM network would learn the correlations between the
�rst-level of feature detectors, and thereby form more complex detectors. Thus, by combining
self-organization and decorrelation in one algorithm, a mechanism is obtained that can be applied
in multiple stages to extract increasingly complex structures from the input. Therefore, LISSOM
networks can possibly be cascaded in multiple levels to model the hierarchical representations in
the visual cortex.

Large-scale computational models like RF-LISSOM are likely to play a signi�cant role in future
research on the structure and function of the visual cortex, because only computational models
can be rigorous enough and detailed enough to verify ideas about how the visual cortex operates.
At the current rate of technological progress, computers will be powerful enough to simulate the
visual cortex at realistic details within a decade or two. Such models should provide a fundamental
understanding of higher brain function and perception, and suggest novel algorithms for pattern
recognition, computer vision and sensory processing.

8 Conclusion

The RF-LISSOM model demonstrates how a variety of phenomena in the visual cortex can be ex-
plained by local cooperation and global competition whose speci�c form is learned from correlations
in the input. Both the feature detectors and the lateral interactions self-organize simultaneously
and synergetically based on a single Hebbian learning mechanism, resulting in patterns of selec-
tivity and lateral connectivity some of which have already been observed in the visual cortex, and
others that constitute testable predictions of the model. Such self-organization stores long-range
activity correlations between units into the lateral connections, and during visual processing, this
information is used to eliminate redundancies and to form an e�cient sparse coding of the input.
Many aspects of cortical plasticity can be explained by the model, such as reorganization after
retinal lesions and that after cortical lesions, and the model suggests ways to hasten recovery from
such lesions. The simulated reorganizations are reversible, and demonstrate how a topographic
map can be maintained in a dynamic equilibrium with extrinsic and intrinsic inputs.

The model demonstrates that not only cortical structure, but also many of its functional char-
acteristics could be emergent properties driven by activity-dependent self-organization. Tilt after-
e�ects in the model result from the same decorrelating process that is responsible for the initial
development of the orientation map. Combined with the leaky integrator model of the spiking
neuron, adaptation in RF-LISSOM can also account for segmentation by synchronization. These
results suggests that both the development and function of the primary visual cortex could eventu-
ally be understood computationally based on Hebbian adaptation of laterally interconnected leaky
integrator neurons.
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Note

Various LISSOM software, visualizations, and papers are available at http://www.cs.utexas.edu/users/nn.
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