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1 Introduction

Natural language processing appears on the surface to be a strongly symbolic activity. Words
are symbols that stand for objects and concepts in the real world, and they are put together into
sentences that obey well-speci�ed grammar rules. It is no surprise that for several decades natural
language processing research has been dominated by the symbolic approach. Linguists have focused
on describing language systems based on versions of the Universal Grammar. Arti�cial Intelligence
researchers have built large programs where linguistic and world knowledge is expressed in symbolic
structures, usually in LISP. Relatively little attention has been paid to various cognitive e�ects in
language processing. Human language users perform di�erently from their linguistic competence,
that is, from their knowledge of how to communicate correctly using language. Some linguistic
structures (such as deep embeddings) are harder to deal with than others. People make mistakes
when they speak, but fortunately it is not that hard to understand language that is ungrammatical
or cluttered with errors. Linguistic and symbolic arti�cial intelligence theories have little to say
about where such e�ects come from. Yet if one wants to build machines that would communicate
naturally with people, it is important to understand and model cognitive e�ects in natural language
processing.

The subsymbolic neural network approach holds a lot of promise for modeling the cognitive
foundations of language processing. Instead of symbols, the approach is based on distributed
representations that represent statistical regularities in language. Many cognitive e�ects arise
naturally from such representations. In this chapter, the subsymbolic approach is �rst contrasted
with the symbolic approach. Properties of distributed representations are illustrated, and examples
of cognitive e�ects that arise are given. The achievements of the approach, in terms of subsymbolic
systems that have been built so far, are reviewed and some remaining research issues outlined.

�To appear in A. Browne (editor), Neural Network Perspectives on Cognition and Adaptive Robotics. Bristol, UK;
Philadelphia, PA: Institute of Physics Press, 1997



(car-32

(owner (person-22

(name John)

(age 42)

(married T)))

(color red)

(type sports)

(age 5))

Figure 1: Symbolic representation of a concept. The representation consists of discrete and disjoint
symbols, organized in a list structure that is grammatical and concatenative.

2 Subsymbolic Representations

Symbolic and subsymbolic natural language processing systems are based on di�erent strategies
for representing information. In this section, the symbolic strategy is �rst contrasted with the
subsymbolic (also called distributed) approach. Properties of distributed representations are then
illustrated in a basic sentence case-role assignment task.

2.1 Properties of Subsymbolic Representations

Figure 1 shows a typical symbolic representation for an object, in this case car-32, expressed in
LISP syntax. Such a representation could reside in the memory of a symbolic natural language
processin (NLP program, as part of its world knowledge. Several observations can be made on this
representation. First, the symbols are discrete and disjoint. The symbol is either there or not,
and if it is there, it is the symbol exactly. In other words, it is not possible for a symbol to exist
at e.g. 50% strength, or 90% accuracy. Second, the symbolic structure is grammatical. There are
rules on how to read it: the �rst element in the list is the name of the whole list, and the following
elements are slot-�ller pairs that describe the object. Third, the structure is compositional and
concatenative. It is possible to change the representation by just adding, changing, or deleting
parts of it, and such changes do not a�ect any other part of the representation. For example, the
owner might have been speci�ed earlier as just John, but that symbol was replaced by a whole
structure describing John. Such a change had no e�ect on any other part of the representation of
car-32, or representations of any other objects in memory.

Figure 2 shows how such concepts could be represented subsymbolically in a neural network.
Each concept is a di�erent pattern of activity over the same set of units, and the processing knowl-
edge about these concepts is superimposed on the same set of connection weights. A single unit
does not represent any particular item, nor does an individual connection weight stand for any
particular relation. Each unit and connection is involved in representing many di�erent pieces of
information. They stand for entities of �ner granularity than symbols; therefore, representation
and processing is subsymbolic.1

Subsymbolic (i.e. distributed) representations have properties that are very di�erent from the
symbolic representations: (1) The representations are continuously valued; (2) Similar concepts
have similar representations; (3) The representations are holographic, that is, any part of the

1Subsymbolic representations are also often called distributed representations, and each unit a microfeature. This
is to contrast them with neural network implementations of symbolic representations, where each unit represents a
separate item, or a separate semantic feature.
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Figure 2: Subsymbolic representation. Each item is represented as a pattern of activity over the same
set of units, and the information about how to process the patterns is superimposed on the same set of
connection weights. The patterns are continuous and can be more or less accurate. Similar concepts are
represented by similar patterns, and the pattern as a whole is meaningful, not the values of individual units.
The values are indicated by gray-scale coding in the �gure. The output association could represent, for
example, properties associated with the concept, such as name, age, type, color (cf. �gure 1).

representation can be used to reconstruct the whole; and (4) Several di�erent pieces of knowledge
are superimposed on the same �nite hardware.

From the �rst two properties it follows that the representations can reect the meanings of
the concepts for which they stand. Similar meanings have similar representations. Because they
are continuous, it is possible to represent di�erent degrees of similarity, and category memberships
become a matter of degree. There are no clear-cut symbols, because representations belong to each
and every class to a di�erent degree, depending on their similarities to other representations in the
class.

The holographic property (3) makes the system robust against noise, damage, and incomplete
information. Because the same information is represented in several places, the processing is ef-
fectively based on an average of several representations. Noise is automatically �ltered out in the
averaging process, and loss of a few processing elements does not a�ect the average very much. The
system does not selectively lose discrete blocks of information; instead, the accuracy of the output
gradually degrades. Even when the input pattern is incomplete, the system can use the rest of the
pattern to reconstruct the missing information. This property can be used in high-level systems to
automatically create defaults and expectations.

The fourth property results in spontaneous generalization. This is the most important and most
striking di�erence from the symbolic approach. It is not possible to change the representation en-
coded in a subsymbolic network without a�ecting the representations of all other items. Knowledge
about an item is automatically generalized to all other items, to the degree that they are similar to
that item. For example, when a new fact is learned about car-32, it is coded into the network by
changing the connection weights. When the pattern for car-32 is input, the output of the network
now shows the new fact. Because the weight changes are small and distributed over the entire set
of weights, the output for John remains largely unchanged. This is because the input pattern for
car-32 is very di�erent from the pattern for John. The individual changes made in encoding the
new fact about car-32 have mostly a random e�ect on John, canceling out on the average. However,
the pattern for car-76 is very similar to car-32. When car-76 is input to the network, the weight
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Figure 3: Subsymbolic case-role assignment of simple sentences. The network is a Simple Recurrent
Network that modi�es word representations at its input layer as part of the learning process. In this snapshot,
the network is in the middle of reading The boy hit the window with the hammer.

changes correlate with the input pattern very well, and the output for car-76 now also shows the
new fact. In other words, the new fact about car-32 is automatically generalized to car-76, to the
degree that the representation for car-76 is similar to that for car-32.

2.2 Example: Subsymbolic Representations in Sentence Case-Role Assignment

Reading an input sentence into an internal representation is a most fundamental task in natural
language processing. Below, properties of the subsymbolic representations will be illustrated in
this task. The internal representation is based on the theory of thematic case roles (Fillmore 1968;
Cook 1989). The task consists of reading in the sentence word by word, and deciding which words
play the roles of the act, agent, patient, instrument, and patient-modi�er in the sentence.

For example, in The ball hit the girl with the dog, the subject ball is the instrument of
the hit act, the object girl is the patient, the with-clause dog is a modi�er of the patient, and the
agent of the act is unknown. Role assignment is context-dependent: in The ball moved, the same
subject ball is the patient. Assignment also depends on the semantic properties of the word. In
The man ate the pasta with cheese, the with-clause modi�es the patient; but in The man ate

the pasta with a fork, the with-clause is the instrument. In yet other cases, the assignment
must remain ambiguous. In The boy hit the girl with the ball, there is no way of telling
whether ball is an instrument of hit or a modi�er of girl.

The architecture of the case-role assignment network is shown in �gure 3. This network has one
input assembly, for the current word in the input sequence, and �ve assemblies in the output, one
for each case role. Through the backpropagation learning algorithm it is trained to map a sequence
of input word representations into a stationary case-role representation. The network structure is
based on Elman's (1990, 1991a) Simple Recurrent Network (SRN). A copy of the hidden layer at
time step t is saved and used along with the actual input at step t+1 as input to the hidden layer.
The previous hidden layer serves as a sequence memory, keeping track of where in the sequence
the parser currently is and what has occurred before. The error is backpropagated and weights are
changed at each step.
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At the same time as the network learns the case-role assignment task, it develops distributed
representations for the words. This is done through method called FGREP (Miikkulainen 1993;
Miikkulainen and Dyer 1991). Initially the representations for all words are assigned to random
patterns. The representations are stored in a lexicon outside the network, and input and target
patterns are formed by concatenating word representations currently in the lexicon. During each
training presentation, the backpropagation error signal is propagated to the input layer, and the
representations are changed as if they were an extra layer of weights. In other words, the network
tries to modify the representations so that it could better perform the case-role assignment task.
As a result, the �nal representations e�ectively code properties of the input words that are most
crucial to the task.

The FGREP method allows the network to develop its own distributed input/output repre-
sentations, a task which would be di�cult to do by hand. However, it is important to note that
backpropagation neural networks in general always develop distributed representations in their hid-
den layers as part of the learning. Such representations are learned essentially in the same process
as the FGREP representations, and therefore the analysis below illustrates the properties of internal
network representations in general.

The network was trained with data designed by McClelland and Kawamoto (1986) for the case-
role assignment task. There were 19 sentence templates of the type the human ate the food.
The actual sentences were formed by replacing the category words human and food with the actual
members of the category, such as man, woman, boy, girl, and chicken, cheese, pasta, carrot.
There were a total of 1,475 sentences, with 30 di�erent words. The network of course did know
about the templates and the categories, it only saw the actual sentences during training. To do the
case-role assignment correctly, it had to learn the regularities in the examples and code them into
the network weights and word representations.

The network successfully learned the case-role assignment task, and the representations con-
verged to a set where words that are used the same way in the data have similar representations (see
example set in �gure 4). One way to visualize the similarities among the 12-dimensional vectors is
through a hierarchical merge clustering algorithm (�gure 5). This process starts from the set of rep-
resentation vectors. At each step, two representations closest to each other are found and merged
into a single representation. In the process, clusters of similar representations become visible. The
clusters found this way turn out quite similar to the noun categories that were used in generating
the sentences. There are six prominent clusters with very small distances between items: animals,
humans, utensils, two di�erent types of hitters, and a combination of foods and fragile-objects.
Ambiguous words (chicken, which is an animal and food, and bat, an animal and hitter) and
words with an unusual use (e.g. dog, which is a possession but not a hitter) do not �t very well into
any category, and they are merged later in the process. The distances between the six clusters are
quite large, indicating that they are well separated and spread out in the representation space. The
cluster analysis demonstrates that the system develops subsymbolic representations that stand for
the meanings of the words. Words that belong to similar categories have similar representations.

Inspection of the representations in �gure 4 suggests that a single component does not play a
crucial role in the classi�cation of items. The fact that a word belongs to a certain category is
indicated by the activity pro�le as a whole, instead of particular units being on or o�. In other
words, information is distributed over the entire representation vector in a holographic fashion. This
is veri�ed by inspection. The whole categorization is visible even in the values of a single component
(�gure 6). Each component provides a slightly di�erent perspective on the data, and combining
the values of more components provides an even more descriptive categorization. The complete
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Figure 4: Distributed representations developed in the case-role assignment task. The repre-
sentations are grouped according to categories used in generating the sentences. The representations were
initially random. The network learned that certain words are used in similar ways in the data, and coded
the similarities in the representations.
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Figure 5: Visualizing the similarities in the representations through merge clustering. Step by
step, the clusters with the shortest single linkage distance were merged. Distance is shown on the horizontal
axis. The clustering follows the categories used in generating the sentences, showing that similar words have
similar representations.
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Figure 6: Holographic representations. The words are placed on a continuous line [0, 1] according to
the value of the last component in their representations. The categorization is already evident in this single
component.

representation can therefore be seen as a combination of 12 slightly di�erent viewpoints into the
word space. Such representations are very robust against errors. For example, one can eliminate
units from the representation (by �xing them at 0.5 activation), and the decline in output accuracy
is very gradual and approximately linear. Eliminating a unit means removing one classi�cation
perspective, and these perspectives apparently are additive.

Is it possible to name the properties the individual components are coding? The analysis
of FGREP representations above suggests that the microfeatures in internal representations are
identi�able only accidentally. Each individual component becomes sensitive to a combination of
several features that is very unlikely to exactly match an established term, although partial matches
are possible. For example, component 11 seems to separate animate objects, but the separation is
not clear-cut and has a lot of �ner structure (�gure 6). Moreover, the network does not lose the
information about animateness if this component becomes defective, so it would be incorrect to say
that the component is responsible for representing \animateness" of the input data.

The case-role assignment network generalizes very well to new sentences. If an unfamiliar
sentence is meaningful at all, its representation pattern is necessarily close to something the network
has already seen. This is because FGREP develops similar representations for similarly behaving
words. For example, the network has never seen The man ate the chicken with a fork, but
its representation is very close to the familiar sentence, The girl ate the pasta with a spoon,
because the representation for girl is equivalent to man, and fork to spoon, and chicken is very
much like pasta. In more general terms, the system can process the word x in situation S, because
it knows how to process the word y in situation S, and the words x and y are used similarly in a
large number of other situations.

The representations code not only properties of the words themselves, but also the contexts in
which they occur. As a result, the network generates expectations and guesses automatically. This
is demonstrated in �gure 3. During training, the network is required to produce the complete output
pattern after each step in the sequence, even before it is possible to unambiguously recognize the
sequence. As a result, the output patterns at each step are averages of all possible event sequences
at that point, weighted by how often they have occurred. After the next word is input, some of the
ambiguities are resolved and correct patterns are formed in the corresponding assemblies. Often
the sentence representation is almost complete before the sentence has been fully input. In �gure 3,
the network has read The boy hit the window and has unambiguously assigned these words to
the agent, act, and patient roles. The instrument and modi�er slots indicate expectations. At this
point it is already clear that the modi�er slot is going to be blank, because only human patients
have modi�ers in the data. Most probably, an instrument is going to be mentioned later, and
an expectation for a hitter (an average of all possible hitters) is displayed in the instrument slot.
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If with is read next, a hitter is certain to follow, making the pattern even stronger. Reading a
period next would instead clear the expectation in the instrument slot, indicating that the sentence
is complete without this constituent. The expectations emerge automatically and cumulatively
from the input word representations. Similarly to human language processing, the network can
automatically �lls in missing information, or select the correct sense for an ambiguous input word
or guess meanings of unfamiliar words.

The properties discussed above make sybsymbolic representations very di�erent from symbolic
representations. Philosophically, the two approaches are incompatible. Because of the fundamen-
tally di�erent way of representing information, it is not possible to exactly duplicate the function of a
symbolic system with the function of a subsymbolic system. A representation cannot be distributed
and symbolic at the same time (van Gelder 1989, 1990). Consequently, subsymbolic representations
are not just a low-level implementation of symbolic representations, but a fundamentally di�erent
approach to modeling natural language processing.

3 Modeling Human Language Processing

People seem to have two fundamentally di�erent mechanisms at their disposal for performing cog-
nitive tasks. Following a sequential symbolic strategy is the more obvious of the two. One does
not have an immediate answer to the problem, but the answer is sequentially constructed from
stored knowledge by a high-level goal-directed process, that is, by reasoning. Another type of
cognitive processing occurs through associations immediately, in parallel, and without conscious
control, in other words, by intuition. Large amounts of information, which may be incomplete or
even conicting, are simultaneously brought together to produce the most likely answer.

For cognitive processes based on conscious rule application, symbolic systems are a good ap-
proximation. However, intuitive processing cannot be easily implemented symbolically. In contrast,
neural networks represent knowledge in terms of statistical regularities in their training, and pro-
cessing is opaque, nonconcatenative, and immediate. Therefore, neural networks �t very well into
modeling intuitive inference. A major issue is: are humans indeed symbol processors at the high
level, for example in processing language, or could such processes be an epiphenomenon of low-level
associative and statistical mechanisms?

3.1 Symbols vs. Soft Constraints

Processing sentences with embedded clauses is one task that shows how human language processing,
although clearly symbolic at the surface level, at closer look exhibits strong subsymbolic qualities.
Consider the following sentence:

The girl who the boy hit cried.

This sentence has a relative clause attached to the main noun boy. Relative clauses have a simple
structure, and it is easy to form deeper embeddings by repeating the structure recursively:

The girl who the boy who the girl who lived next door blamed hit cried.

This sentence contains no new grammatical constructs. The familiar embedded clause construct is
used just three times, and the resulting sentence is almost incomprehensible. If humans were truly
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symbol processors, the number of levels would make no di�erence. It should be possible to handle
each new embedding just like the previous one.

Now consider a similar sentence:

The car that the man who the dog that had rabies bit drives is in the garage.

This sentence has the same grammatical structure as the previous one, and for a symbol processor it
should be equally easy, or hard, to process. Yet somehow this sentence is understandable, whereas
the previous one was not. What is di�erent?

Whereas the second sentence could be understood only based on syntactic analysis, the third
one has strong semantic constraints between constituents. We know that dogs have rabies, people
drive cars, and cars are in garages. These constraints make it possible for a human to understand
the sentence even when they lose track of its syntactic structure. A symbol processor can parse
the syntactic structure of both sentences perfectly well, and receives no bene�t from the semantic
constraints.

The conclusion from these examples is that people are not pure symbol processors when they
understand language. Instead, all constraints|grammatical, semantic, discourse, pragmatic|are
simultaneously taken into account to form the most likely interpretation of the sentence. This
behavior is di�cult to model with symbolic systems, but it is exactly what neural networks are
good at. The example discussed in the next section illustrates how.

3.2 Example: Case-Role Assignment of Embedded Clauses

The SPEC system (�gure 7; Miikkulainen 1996) is an extension of the subsymbolic parser archi-
tecture of section 2.2, designed to deal with sentences with embedded clauses. SPEC receives a
sequence of word representations as its input, and for each clause in the sentence, forms an output
representation indicating the assignment of words into case roles. The case-role representations are
read o� the system and placed in a short-term memory (currently outside SPEC) as soon as they
are complete. SPEC consists of three main components: the Parser, the Segmenter, and the Stack.
The Parser is a network similar to the parser above. The case-role assignment is represented at
the output of the Parser as a case-role vector (CRV), that is, a concatenation of those three word
representation vectors that �ll the roles of agent, act, and patient in the sentence. For example,
the word sequence the girl saw the boy receives the case-role assignment agent=girl, act=saw,
patient=boy, which is represented as the vector |girl saw boy| at the output of the Parser net-
work. When the sentence consists of multiple clauses, the relative pronouns are replaced by their
referents: The girl who liked the dog saw the boy parses into two CRVs: |girl liked dog|

and |girl saw boy|.

The Parser receives a continuous sequence of input word representations as its input, and its
target pattern changes at each clause boundary. For example, in reading The girl who liked

the dog saw the boy the target pattern representing |girl saw boy| is maintained during the
�rst two words, then switched to |girl liked dog| during reading the embedded clause, and
then back to |girl saw boy| for the rest of the sentence. The CRV for the embedded clause is
read o� the network after dog has been input, and the CRV for the main clause after the entire
sentence has been read. When trained this way, the network is not limited to a �xed number of
clauses by its output representation. Also, it does not have to maintain information about the
entire past input sequence in its memory, making it possible in principle to generalize to new
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Figure 7: Subsymbolic case-role assignment of sentences with embedded clauses. The model,
SPEC, consists of the Parser (a simple recurrent network), the Stack (a RAAM network), and the Segmenter
(a feedforward network). The gray areas indicate propagation through weights, the solid lines stand for
pattern transport, and the dashed lines represent control outputs (with gates).

clause structures. Unfortunately, after a center-embedding has been processed, it is di�cult for the
network to remember earlier constituents. This is why a Stack network is needed in SPEC.

The hidden layer of a Simple Recurrent Network forms a distributed representation of the
sequence so far. The Stack has the task of storing this representation at each center embedding,
and restoring it upon return from the embedding. For example, in parsing The girl who liked

the dog saw the boy, the hidden-layer representation is pushed onto the stack after The girl,
and popped back to the Parser's previous-hidden-layer assembly after who liked the dog. In
e�ect, the SRN can then parse the top-level clause as if the center embedding had not been there
at all.

The Stack is implemented as a Recursive Auto-Associative Memory (RAAM; Pollack 1990).
RAAM is a three-layer backpropagation network trained to perform an identity mapping from
input to output. As a side e�ect, the hidden layer learns to form compressed distributed repre-
sentations of the network's input/output patterns, which consist of the top element of the stack
and the distributed representation of the rest of the stack. The hidden layer representation is then
recursively used as the representation for the rest of the stack in the next push operation. A poten-
tially in�nite stack can be compressed into a �xed-size representation this way. The stack structure
can later be decoded by loading its distributed representation into the hidden layer and reading o�
the top element and the distributed representation for the rest of the stack at the output.

The Parser+Stack architecture alone is not quite su�cient for generalization into novel relative
clause structures. For example, when trained with only examples of center embeddings (such as
the above) and tail embeddings (like The girl saw the boy who chased the cat), the architec-
ture generalizes well to new sentences such as The girl who liked the dog saw the boy who

chased the cat. However, the system still fails to generalize to sentences like The girl saw the

boy who the dog who chased the cat bit. Even though the Stack takes care of restoring the
earlier state of the parse, the Parser has to learn all the di�erent transitions into relative clauses.
If it has encountered center embeddings only at the beginning of the sentence, it cannot generalize
to a center embedding that occurs after an entire full clause has already been read.

This problem can be overcome with the Segmenter network. The Segmenter is trained to
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recognize the transition to the relative clause, and to modify the hidden layer pattern so that only
the relevant information remains (i.e boy in the above example). In other words, the controller has
an internal representation for the \relative clause" construct, and applies it to change the hidden
layer pattern so that the low-level sequence-processing network only has to deal with one type of
clause boundary. By dividing the task into meta-level control, low-level pattern transformation,
and memory, the whole system can generalize to novel structures.

SPEC was trained with 100 examples each of two sentence structures: (1) the two-level tail
embedding (such as The girl saw the boy who chased the cat who the dog bit) and the two-level
center-embedding (e.g. the girl who the dog who chased the cat bit saw the boy), and the stack
was trained to store up to three levels of center embeddings. After training, SPEC generalized
perfectly to all other combinations of center and tail embeddings of four clauses, that is, to 98,100
di�erent sentences.

The main result, therefore, is that the SPEC architecture successfully generalizes not only to
new instances of the familiar sentence structures, but to new structures as well. However, SPEC
is not a mere reimplementation of a symbol processor. As SPEC's Stack becomes increasingly
loaded, its output becomes less and less accurate; symbolic systems do not have any such inherent
memory degradation. An important question is, does SPEC's performance degrade in a cognitively
plausible manner, that is, does the system have similar di�culties in processing center embeddings
as people do?

To elicit enough errors from SPEC to analyze its limitations, the Stack's performance was
degraded by adding 30% noise in its propagation. Such an experiment can be claimed to simulate
overload, stress, cognitive impairment, or lack of concentration situations. The system turned out
to be remarkably robust against noise. The average Parser error rose somewhat, but the system
still got 94% of its output words right. As expected, most of the errors occurred as a direct result
of popping back from center embeddings with an inaccurate previous-hidden-layer representation.
For example, in parsing The girl, who the dog, who the boy, who chased the cat, liked,

bit, saw the boy, SPEC had trouble remembering the agents of liked, bit and saw, and patients
of liked and bit. The performance depends on the level of the embedding in an interesting manner.
It is harder for the network to remember the earlier constituents of shallower clauses than those of
deeper clauses (�gure 8). For example, SPEC could usually connect boy with liked (in 80% of the
cases), but it was harder for it to remember that it was the dog who bit (58%) and even harder
that the girl who saw (38%) in the above example.

Such behavior seems plausible in terms of human performance. Sentences with deep center
embeddings are harder for people to remember than shallow ones (Foss and Cairns 1970; Miller and
Isard 1964). It is easier to remember a constituent that occurred just recently in the sentence than
one that occurred several embeddings ago. Interestingly, even though SPEC was especially designed
to overcome such memory e�ects in the Parser's sequence memory, the same e�ect is generated by
the Stack architecture. The latest embedding has noise added to it only once, whereas the earlier
elements in the stack have been degraded multiple times. Therefore, the accuracy is a function of
the number of pop operations instead of a function of the absolute level of the embedding.

When the SPEC output is analyzed word by word, several other interesting e�ects are revealed.
Virtually in every case where SPEC made an error in popping an earlier agent or patient from
the stack it confused it with another noun (54,556 times out of 54,603; random choice would yield
13,650). In other words, SPEC performs plausible role bindings: even if the exact agent or patient
is obscured in the memory, it \knows" that it has to be a noun. Moreover, SPEC does not generate
the noun at random. Out of all nouns it output incorrectly, 75% had occurred earlier in the
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Figure 8: Memory accuracy after return from center embeddings. The percentage of correctly-
remembered agents is plotted after the �rst, second, and the third pop in sentences with three levels of center
embeddings. Each successive pop is harder and harder to do correctly. Similarly, SPEC remembers about
84% of the patients correctly after the �rst pop, and 67% after the second pop. The Stack representations
were degrade with 30% noise to elicit the errors.

sentence, whereas a random choice would give only 54%. It seems that traces for the earlier nouns
are discernible in the previous-hidden-layer pattern, and consequently, they are slightly favored at
the output. Such priming e�ect is rather surprising, but it is very plausible in terms of human
performance.

To test the e�ects of semantic constraints on sentence processing performance, the training
sentences had beengenerated with a number of restrictions. A verb could have only certain nouns
as its agent or patient. Some verbs had only one possible agent or patient, others had two, three or
four. This way semantic restrictions of di�erent strengths could be introduced in the training data.
The restrictions turned out to have a marked e�ect on the performance (�gure 9). If the agent or
patient that needs to be popped from the stack is strongly correlated with the verb, it is easier for
the network to remember it correctly. The e�ect depends on the strength of the semantic coupling.
For example, girl is easier to remember in The girl, who the dog bit, liked the boy, than
in The girl, who the dog bit, saw the boy, which is in turn easier than The girl, who the

dog bit, chased the cat. The reason is that there are only two possible agents for liked, whereas
there are three for saw and four for chased. While SPEC gets 95% of the unique agents right, it
gets 76% of those with two alternatives, 69% of those with three, and only 67% of those with four.

A similar e�ect has been observed in human processing of relative clause structures. Half the
subjects in Stolz's (1967) study could not decode complex center embeddings without semantic con-
straints. Huang (1983) showed that young children understand embedded clauses better when the
constituents are semantically strongly coupled, and Caramazza and Zurif (1976) observed similar
behavior in aphasics. This e�ect is often attributed to limited capability for processing syntax. The
SPEC experiments indicate that it could be at least partly due to impaired memory as well. When
the memory representation is impaired with noise, the Parser has to clean it up. In propagation
through the Parser's weights, noise that does not coincide with the known alternatives cancels out.
Apparently, when the verb is strongly correlated with some of the alternatives, more of the noise
appears coincidental and is �ltered out.
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Figure 9: E�ect of the semantic restrictions on the memory accuracy. The percentage of correctly-
remembered agents and patients over the entire corpus is plotted against how strongly they were semantically
associated with the verb. When there was only one alternative (such as dog as an agent for bit or cat as
the patient of chased), SPEC remembered 95% of them correctly. There was a marked drop in accuracy
with two, three and four alternatives. The Stack representations were degrade with 30% noise to elicit the
errors.

The conclusion from the SPEC system is, then, that even when the subsymbolic architecture is
designed for strong linguistic performance, such as generalizing to novel relative clause structures,
it can exhibit subsymbolic e�ects similar to those of humans. Deep center embeddings are di�cult
for SPEC, and semantic constraints make the task easier. It is by tapping into such phenomena
that the subsymbolic models can be most useful in natural language processing.

4 Overview of Subsymbolic Natural Language Processing

Natural language processing has been an active area of connectionist research for over a decade.
Subsymbolic models have been developed to address a variety of issues, such as semantic inter-
pretation, learning syntax and semantics, prepositional phrase attachment, anaphora resolution,
morphology, phrase generation, identi�cation of discourse topics, and goal-plan analysis (Allen
1987, 1989; Cosic and Munro 1988; Cottrell and Plunkett 1994; Gasser 1994; Karen 1990; Kukich
1987; Lee 1991; Munro et al. 1991; Touretzky 1991).

A good amount of work has been done showing that networks can capture grammatical struc-
ture. For example, Servan-Schreiber et al. (1991) showed how Simple Recurrent Networks can
learn a �nite state grammar. These networks are similar to those discussed above, except they are
trained to predict the next item in the sequence instead of reading the sequence into a stationary
representation. Servan-Schreiber et al. trained such an SRN with sample strings from a particular
grammar, and it learned to indicate the possible next elements in the sequence. For example, given
a sequence of distributed representations for elements B, T, X, X, V, and V, the network turns on
two units representing X and S at its localist output layer, indicating that in this grammar, the
string can continue with either X or S.

Elman (1991a, 1991b) used the same network architecture to predict a context-free language
with embedded clauses. The network could not learn the language completely, but its performance
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was remarkably similar to human performance. It learned better when it was trained incrementally,
�rst with simple sentences and gradually including more and more complex examples. The network
could maintain contingencies over embeddings if the number of intervening elements was small.
However, deep center embeddings were di�cult for the network, as they are for humans. Weckerly
and Elman (1992) further showed that center embeddings were harder for this network than right-
branching structures, and that processing was aided by semantic constraints between the lexical
items. Such behavior matches human performance very well.

The above architectures demonstrated that subsymbolic networks build meaningful internal
representations when exposed to examples of strings in a language. They did not address how
such capabilities could be put to use in parsing and understanding language. McClelland and
Kawamoto (1986) �rst identi�ed the sentence case-role assigment as a good approach. The approach
is particularly well-suited for neural networks because the cases can be conveniently represented
as assemblies of units that hold distributed representations, and the parsing task becomes that
of mapping between distributed representation patterns. McClelland and Kawamoto showed that
given the syntactic role assignment of the sentence as the input, the network could assign the correct
case roles for each constituent. The network also automatically performed semantic enrichment on
the word representations (which were hand-coded concatenations of binary semantic features), and
disambiguated between the di�erent senses of ambiguous words.

As was discussed above in section 2.2, essentially the same task can be performed from sequential
word-by-word input by a simple recurrent network and meaningful distributed representations for
the words can be automatically developed at the same time. Systems with FGREP representations
generally have a strong representation of context, which results in good generalization properties,
robustness against noise and damage, and automatic \�lling in" of missing information. The
FGREP representations can be augmented with ID information, which allows the system to process
a large vocabulary even after learning only a small number of distinct meanings (Miikkulainen and
Dyer 1991). In this ID+content approach, representations for e.g. John, Bill, and Mary are created
from the FGREP representation of human by concatenating unique ID patterns in front of it. All
these words have the same meaning for the system, and it knows how to process them even if it
has never seen them before.

St. John and McClelland (1990) further explored the subsymbolic approach to sentence inter-
pretation in their Sentence Gestalt model. They aimed at explaining how syntactic, semantic,
and thematic constraints are combined in sentence comprehension, and how this knowledge can be
coded into the network by training it with queries. The gestalt is a hidden-layer representation
of the whole sentence, built gradually from a sequence of input words by a simple recurrent net-
work. The second part of the system (a three-layer backpropagation network) is trained to answer
questions about the sentence gestalt, and in the process, useful thematic knowledge can be injected
into the system. Similar approach can also be applied to processing script-based stories (St. John
1992).

A number of researchers have proposed modular and structured architectures. In addition to
SPEC, FGREP networks were used to build a story processing system called DISCERN (Miikkulai-
nen 1993). DISCERN is a large-scale natural language processing system implemented entirely at
the subsymbolic level. DISCERN aims at bridging the gap between subsymbolic mechanisms and
complex high-level behavior. Subsymbolic neural network models of parsing, generating, reason-
ing, lexical processing, and episodic memory are integrated into a single system that learns to read,
paraphrase, and answer questions about stereotypical narratives. In this approach, connectionist
networks are not only plausible models of isolated cognitive phenomena, but also serve as building
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blocks for large-scale arti�cial intelligence systems.

In Jain's (1991) Structured Incremental Parser, one module was trained to assign words into
phrases, and another to assign phrases into case roles. These modules were then replicated multiple
times so that the recognition of each constituent was guaranteed independent of its position in the
sentence. In the �nal system, words were input one at a time, and the output consisted of local
representations for the possible assignments of words into phrases, phrases into clauses, phrases
into roles in each clause, and for the possible relationships of the clauses. A consistent activation
of the output units represented the interpretation of the sentence. The system could interpret
complicated sentence structures, and even ungrammatical and incomplete input. The parse result
was a description of the semantic relations of the constituents; the constituents themselves were
not represented.

Berg's (1992) XERIC and Sharkey and Sharkey's (1992) parser were both based on the idea of
combining a simple recurrent network with a Recursive Auto-Associative Memory (RAAM) that
encodes and decodes parse trees. In Sharkey and Sharkey's model, �rst the RAAM network was
trained to form compressed representations of syntactic parse trees. Second, an SRN network was
trained to predict the next word in the sequence of words that make up the sentence. Third, a
standard three-layer feedforward network was trained to map the SRN hidden-layer patterns into
the RAAM parse-tree representations. During performance, a sequence of words was �rst read into
the SRN, its �nal hidden layer transformed into a RAAM hidden layer, and then decoded into a
parse tree with the RAAM network. Berg's XERIC worked in a similar manner, except the SRN
hidden layer representations were directly decoded by the RAAM network.

Capabilities of RAAM networks and the distributed representations they form have been ex-
tensively studied (see e.g. Blank et al.1992; Kwasny and Kalman 1995). Although the constituents
of such representations, e.g. words in the parse tree, are not directly available, it is possible to
perform \holistic" transformations on the entire patterns. For example, Chalmers (1990) trained
one RAAM network to encode sentences in active voice, such as John loves Michael, and another
RAAM network to encode same sentences in the passive, such as Michael is loved by John. A
third, feedforward network was trained to map the distributed representation of the active sentence
to the representation of the passive. The transformation network easily generalized to new sen-
tences, showing that it had developed a sensitivity to structure that was only implicitly encoded in
the distributed representations. Chrisman (1992) applied the same idea of holistic transformations
to translating between English and Spanish sentences. Instead of two RAAMs and a transfor-
mation network he used two RAAMs with a common hidden layer. This forced the English and
Spanish sentences to be encoded with more similar distributed representations, resulting in better
performance.

The above results indicate that subsymbolic networks can represent and process linguistic knowl-
edge in a cognitively valid manner, with strong sensitivity to context. They also show promise that
complex structures can be processed, and large systems can be build from subsymbolic components.

5 Future Challenges

Even though the above systems are successful in what they are designed to do, and show very
interesting cognitive behavior, they are still mostly demonstrations of capabilities on toy problems.
Before subsymbolic natural language processing systems will rival the large symbolic NLP systems,
several issues must be resolved:
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How can complex linguistic representations be encoded on neural networks? For example, how
can you represent an inde�nite number of agents in a clause, or clauses in a sentence, or sentences
in a story, when you only have a limited and �xed number of units in the network? People do
not seem to have a �xed upper bound, although there clearly are memory limits. It is possible
that some kind of reduced descriptions, similar to those modeled by RAAM, are being formed.
However, so far it has turned out very di�cult to make the RAAM architecture to generalize to
new structures. For example in Sharkey and Sharkey's parser, and in Chalmers's and Chrisman's
transformation systems, the limiting factor was the RAAM representation, not the transformation.

How can we come up with training examples for realistic language processing? Although large
corpora of unprocessed text are readily available, subsymbolic systems usually require more sophis-
ticated information as targets, such as case-role representations for parsing, or transfer examples
for translation. Building such corpora is very laborous, and it is unclear whether it is ever possible
to have large enough training sets, as long as generalization is limited to interpolation between
training examples.

Building systems that would be able to generalize in a more fundamental way, by dynamic
inferencing, or bringing together processing knowledge that has previously been seen in separate
situations, is perhaps the greatest challenge for connectionist systems. It is only possible by strongly
constraining the kinds of things the networks do, as in SPEC: the parser was limited to only simple
pattern transformation, and the structure of the network forced generalization to novel structures.
Time will tell how far such solutions will take us, but it is possible that network architectures and
learning algorithms can be designed that would be able to learn metaknowledge about the kinds
of tasks they are performing, and would allow them to use context when it is useful, and ignore it
when it is irrelevant.

6 Conclusion

In this chapter, foundations for subsymbolic natural language processing were reviewed. Distributed
representations were found to have very di�erent properties from symbolic representations, proper-
ties that match the cognitive constraints in language processing very well. Two parsing architectures
were discussed, one where properties of distributed representations could be easily illustrated, and
another more complex architecture where the emergent cognitive e�ects could be analyzed. An
overview of the state of the art in subsymbolic natural language processing systems suggests that
many language phenomena can be modeled this way, although it is still di�cult to scale the ap-
proach up to the level of complexity required by natural language processing in the real world.
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