
Text and Discourse Understanding: The DISCERN

System �

Risto Miikkulainen
Department of Computer Sciences

The University of Texas at Austin

Austin, TX 78712

risto@cs.utexas.edu

1 Introduction

The subsymbolic approach to natural language processing (NLP) captures a number of intriguing
properties of human-like information processing such as learning from examples, context sensitivity,
generalization, robustness of behavior, and intuitive reasoning. Within this new paradigm, the
central issues are quite di�erent from (even incompatible with) the traditional issues in symbolic
NLP, and the research has proceeded without much in common with the past. However, the ultimate
goal is still the same: to understand how humans process language. Even if NLP is being built
on a new foundation, as can be argued, many of the results obtained through symbolic research
are still valid, and could be used as a guide for developing subsymbolic models of natural language
processing.

This is where DISCERN (DIstributed SCript processing and Episodic memoRy Network [18]),
a subsymbolic neural network model of script-based story understanding, �ts in. DISCERN is
purely a subsymbolic model, but at the high level it consists of modules and information structures
similar to those of symbolic systems, such as scripts, lexicon, and episodic memory. At the highest
level of natural language processing such as text and discourse understanding, the symbolic and
subsymbolic paradigms have to address the same basic issues. Outlining a subsymbolic approach
to those issues is the purpose of DISCERN.

In more speci�c terms, DISCERN aims: (1) to demonstrate that distributed arti�cial neural
networks can be used to build a large-scale natural language processing system that performs
approximately at the level of symbolic models; (2) to show that several cognitive phenomena can
be explained at the subsymbolic level using the special properties of these networks; and (3) to
identify central issues in subsymbolic NLP and to develop well-motivated techniques to deal with
them. To the extent that DISCERN is successful in these areas, it constitutes a �rst step towards
building text and discourse understanding systems within the subsymbolic paradigm.

�To appear in R. Dale, H. Moisl and H. Somers (editors), A Handbook of Natural Language Processing: Techniques

and Applications for the Processing of Language as Text. New York: Marcel Dekker.

2 The Script Processing Task

Scripts [6; 8; 26] are schemas of often-encountered, stereotypic event sequences, such as visiting a
restaurant, traveling by airplane, and shopping at a supermarket. Each script divides further into
tracks, or established minor variations. A script can be represented as a causal chain of events with
a number of open roles. Script-based understanding means reading a script-based story, identifying
the proper script and track, and �lling its roles with the constituents of the story. Events and
role �llers that were not mentioned in the story but are part of the script can then be inferred.
Understanding is demonstrated by generating an expanded paraphrase of the original story, and
by answering questions about the story.

To see what is involved in the task, let us consider an example of DISCERN input/output behav-
ior. The following input stories are examples of the fancy-restaurant, plane-travel, and electronics-
shopping tracks:

(1) John went to MaMaison. John asked the waiter for lobster. John left

a big tip.

(2) John went to LAX. John checked in for a flight to JFK. The plane landed

at JFK.

(3) John went to Radio-Shack. John asked the staff questions about CD-players.

John chose the best CD-player.

DISCERN reads the orthographic word symbols sequentially, one at a time. An internal represen-
tation of each story is formed, where all inferences are made explicit. These representations are
stored in the episodic memory. The system then answers questions about the stories:

Q: What did John buy at Radio-Shack?

A: John bought a CD-player at Radio-Shack.

Q: Where did John take a plane to?

A: John took a plane to JFK.

Q: How did John like the lobster at MaMaison?

A: John thought the lobster was good at MaMaison.

With the question as a cue, the appropriate story representation is retrieved from the episodic
memory and the answer is generated word by word. DISCERN also generates full paraphrases of
the input stories. For example, it generates an expanded version of the restaurant story:

John went to MaMaison. The waiter seated John. John asked the waiter for

lobster. John ate a good lobster. John paid the waiter. John left a big

tip. John left MaMaison.

The answers and the paraphrase show that DISCERN has made a number of inferences beyond the
original story. For example, it inferred that John ate the lobster and the lobster tasted good. The
inferences are not based on speci�c rules but are statistical and learned from experience. DISCERN
has read a number of similar stories in the past and the unmentioned events and role bindings have
occurred in most cases. They are assumed immediately and automatically upon reading the story
and have become part of the memory of the story. In a similar fashion, human readers often confuse
what was mentioned in the story with what was only inferred [3; 10; 11].

A number of issues can be identi�ed from the above examples. Speci�cally, DISCERN has to
(1) make statistical, script-based inferences and account for learning them from experience; (2)

2

store items in the episodic memory in a single presentation and retrieve them with a partial cue;
(3) develop a meaningful organization for the episodic memory, based on the stories it reads; (4)
represent meanings of words, sentences, and stories internally; and (5) organize a lexicon of symbol
and concept representations based on examples of how words are used in the language and form a
many-to-many mapping between them. Script processing constitutes a good framework for studying
these issues, and a good domain for developing an approach towards general text and discourse
understanding.

3 Approach

Subsymbolic models typically have very little internal structure. They produce the statistically
most likely answer given the input conditions in a process that is opaque to the external observer.
This is well suited to the modeling of isolated low-level tasks, such as learning past tense forms
of verbs or word pronunciation [25; 27]. Given the success of such models, a possible approach
to higher-level cognitive modeling would be to construct the system from several submodules that
work together to produce the higher-level behavior.

In DISCERN, the immediate goal is to build a complete, integrated system that performs well in
the script processing task. In this sense, DISCERN is very similar to traditional models in arti�cial
intelligence. However, DISCERN also aims to show how certain parts of human cognition could
actually be built. The components of DISCERN were designed as independent cognitive models
that can account for interesting language processing and memory phenomena, many of which are
not even required in the DISCERN task. Combining these models into a single, working system is
one way of validating them. In DISCERN, the components are not just models of isolated cognitive
phenomena; they are su�cient constituents for generating complex high-level behavior.

4 The Discern System

DISCERN can be divided into parsing, generating, question answering, and memory subsystems,
each with two modules (�gure 1). Each module is trained in its task separately and in parallel.
During performance, the modules form a network of networks, each feeding its output to the input
of another module.

The sentence parser reads the input words one at a time and forms a representation of each
sentence. The story parser combines the sequence of sentences into an internal representation of
the story, which is then stored in the episodic memory. The story generator receives the internal
representation and generates the sentences of the paraphrase one at a time. The sentence generator
outputs the sequence of words for each sentence. The cue former receives a question representation,
built by the sentence parser, and forms a cue pattern for the episodic memory, which returns the
appropriate story representation. The answer producer receives the question and the story and
generates an answer representation, which is output word by word by the sentence generator. The
architecture and behavior of each of these modules in isolation is outlined below.

3

Lexicon

Episodic
Memory

Sentence
Parser

S t o r y
Parser

Sentence
Generator

S t o r y
Generator

Answer
Producer

Cue
Former

Input text Output text

Figure 1: The DISCERN architecture. The system consists of parsing, generating, question
answering, and memory subsystems, two modules each. A dark square indicates a memory module,
a light square stands for a processing module. The lines indicate pathways carrying distributed
word, sentence, and story representations during the performance phase of the system. The modules
are trained separately with compatible I/O data.

5 Lexicon

The input and output of DISCERN consist of distributed representations for orthographic word
symbols (also called lexical words). Internally, DISCERN processes semantic concept represen-
tations (semantic words). Both the lexical and semantic words are represented distributively as
vectors of gray-scale values between 0.0 and 1.0. The lexical representations are based on the visual
patterns of characters that make up the written word; they remain �xed throughout the training
and performance of DISCERN. The semantic representations stand for distinct meanings and are
developed automatically by the system while it is learning the processing task.

The lexicon stores the lexical and semantic representations and translates between them (�g-
ure 2; [20]). It is implemented as two feature maps [12; 13], one lexical and the other semantic.
Words whose lexical forms are similar, such as LINE and LIKE, are represented by nearby units
in the lexical map. In the semantic map, words with similar semantic content, such as John and
Mary or Leone's and MaMaison are mapped near each other. There is a dense set of associative
interconnections between the two maps. A localized activity pattern representing a word in one
map will cause a localized activity pattern to form in the other map, representing the same word.
The output representation is then obtained from the weight vector of the most highly active unit.
The lexicon thus transforms a lexical input vector into a semantic output vector and vice versa.

4

Circuit who

MaMaison

NewYork

Boston

toate

Mary John

Leones

fish

JOHN(symbol)

John(concept)

Input:

Output:

Maximally responding
lexical unit

Maximally responding
semantic unit

Lexical map

Semantic map

Cty

LINE

LIKE

FISH PAID

GATETAKE

JOHN GOOD

LEFT

BUY

BEST

Figure 2: The lexicon. The lexical input symbol JOHN is translated into the semantic repre-
sentation of the concept John. The representations are vectors of gray-scale values between 0.0
and 1.0, stored in the weights of the units. The size of the unit on the map indicates how strongly
it responds. Only a small part of each map, and only a few strongest associative connections of the
lexical unit JOHN are shown in this �gure.

Both maps and the associative connections between them are organized simultaneously, based on
examples of co-occurring symbols and meanings.

The lexicon architecture facilitates interesting behavior. Localized damage to the semantic
map results in category-speci�c lexical de�cits similar to human aphasia [4; 15]. For example, the
system selectively loses access to restaurant names, or animate words, when that part of the map
is damaged. Dyslexic performance errors can also be modeled. If the performance is degraded,
for example, by adding noise to the connections, parsing and generation errors that occur are
quite similar to those observed in human deep dyslexia [5]. For example, the system may confuse
Leone's with MaMaison, or LINE with LIKE, because they are nearby in the map and share similar
associative connections.

5

LEXICON

Input layer:

Output layer:

Target pattern

Input pattern

New representations

Modify representations

Form error signal

Hidden layer
Previous hidden layer:
Sequence memory

Figure 3: The FGREP-module. At each I/O presentation, the representations at the input layer
are modi�ed according to the backpropagation error signal, and replace the old representations in
the lexicon. In the case of sequential input or output, the hidden layer pattern is saved after each
step in the sequence, and used as input to the hidden layer during the next step, together with the
actual input.

6 FGREP Processing Modules

Processing in DISCERN is carried out by hierarchically organized pattern-transformation networks.
Each module performs a speci�c subtask, such as parsing a sentence or generating an answer to
a question. All these networks have the same basic architecture: they are three-layer, simple-
recurrent backpropagation networks [9], with the extension called FGREP that allows them to
develop distributed representations for their input/output words.

The FGREP mechanism (Forming Global Representations with Extended backPropagation,
[21]) is based on a basic three-layer backward error propagation network, with the I/O representa-
tion patterns stored in an external lexicon (�gure 3). The input and output layers of the network
are divided into assemblies (i.e. groups of units). The assemblies stand for slots in the I/O repre-
sentation, such as the di�erent case roles of the sentence representation, or the role bindings in the
story representation. Each input pattern is formed by concatenating the current semantic lexicon
entries of the input words; likewise, the corresponding target pattern is formed by concatenating
the lexicon entries of the target words. For example, the target sentence John went to Mamaison

would be represented at the output of the sentence parser network as a single vector, formed by
concatenating the representations for John, went, and MaMaison (�gure 7a).

Three types of FGREP modules are used in the system: non-recurrent (the cue former and the

6

answer producer), sequential input (the parsers), and sequential output modules (the generators).
In the recurrent modules the previous hidden layer serves as sequence memory, remembering where
in the sequence the system currently is and what has occurred before (�gure 3). In a sequential
input network, the input changes at each time step, while the target pattern stays the same. The
network learns to form a stationary representation of the sequence. In a sequential output network,
the input is stationary, but the teaching pattern changes at each step. The network learns to
produce a sequential interpretation of its input.

The network learns the processing task by adapting the connection weights according to the
standard on-line backpropagation procedure [24]. The error signal is propagated to the input layer,
and the current input representations are modi�ed as if they were an extra layer of weights. The
modi�ed representation vectors are put back in the lexicon, replacing the old representations. Next
time the same words occur in the input or output, their new representations are used to form the
input/output patterns for the network. In FGREP, therefore, the required mappings change as the
representations evolve, and backpropagation is shooting at a moving target.

The representations that result from this process have a number of useful properties for natural
language processing. (1) Since they adapt to the error signal, they end up coding information most
crucial to the task. Representations for words that are used in similar ways in the examples become
similar. Thus, these pro�les of continuous activity values can be claimed to code the meanings of
the words as well. (2) As a result, the system never has to process very novel input patterns,
because generalization has already been done in the representations. (3) The representation of a
word is determined by all the contexts in which that word has been encountered; consequently, it
is also a representation of all those contexts. Expectations emerge automatically and cumulatively
from the input word representations. (4) Single representation components do not usually stand
for identi�able semantic features. Instead, the representation is holographic: word categories can
often be recovered from the values of single components. (5) Holography makes the system very
robust against noise and damage. Performance degrades approximately linearly as representation
components become defective or inaccurate.

After a core set of semantic representations have been developed in the FGREP process, it is
possible to extend the vocabulary through a technique called cloning. Each FGREP representation
stands for a unique meaning and constitutes a semantic prototype. In cloning, several distinct
copies, or instances, are created from the same prototype. For example, instances such as John,
Mary, and Bill can be created from the prototype human. Such cloned representations consist of
two parts: the content part, which was developed in the FGREP process and encodes the meaning
of the word, and the ID part, which is unique for each instance of the same prototype. They all share
the same meaning, and therefore the system knows how to process them, but at the same time, the
ID part allows the system to keep them distinct. The ID+content technique can be applied to any
word in the training data, and in principle, the number of instances per word is unlimited. This
allows us to approximate a large vocabulary with only a small number of semantically di�erent
representations (which are expensive to develop) at our disposal.

7 Episodic Memory

The episodic memory in DISCERN [16; 17] consists of a hierarchical pyramid of feature maps
organized according to the taxonomy of script-based stories (�gure 4). The highest level of the
hierarchy is a single feature map that lays out the di�erent script classes. Beneath each unit of
this map there is another feature map that lays out the tracks within the particular script. The

7

 TRAIN
role bindings

 PLANE
role bindings

 BUS
role bindings

 GROCERY
role bindings

 CLOTH
role bindings

 ELECTR
role bindings

 COFFEE
role bindings

 FAST
role bindings

ELECTRCLOTH

GROCERY

PLANEBUS

TRAIN

S tory
representation

Scripts

Tracks

Roles

JLMB

REST SHOP

TRAVEL

COFFEE

FANCY

FAST

Figure 4: The hierarchical feature map classi�cation of script-based stories. Labels indi-
cate the maximally responding unit for the di�erent scripts and tracks. This particular input story
representation is classi�ed as an instance of the restaurant script (top level) and fancy-restaurant
track (middle level), with role bindings customer=John, food=lobster, restaurant=MaMaison,
tip=big (i.e., unit JLMB, bottom level).

di�erent role bindings within each track are separated at the bottom level. The map hierarchy
receives a story representation vector as its input and classi�es it as an instance of a particular
script, track, and role binding. The hierarchy thereby provides a unique memory representation for
each script-based story as the maximally responding units in the feature maps at the three levels.

Whereas the top and the middle level in the hierarchy only serve as classi�ers, selecting the
appropriate track and role-binding map for each input, at the bottom level a permanent trace of
the story must be created. The role-binding maps are trace feature maps, with modi�able lateral
connections (�gure 5). When the story representation vector is presented to a role-binding map, a
localized activity pattern forms as a response. Each lateral connection to a unit with higher activity
is made excitatory, while a connection to a unit with lower activity is made inhibitory. The units
within the response now \point" towards the unit with highest activity, permanently encoding that
the story was mapped at that location.

A story is retrieved from the episodic memory by giving it a partial story representation as a
cue. Unless the cue is highly de�cient, the map hierarchy is able to recognize it as an instance of
the correct script and track and form a partial cue for the role-binding map. The trace feature map
mechanism then completes the role binding. The initial response of the map is again a localized

8

MLMS

JLLS

JLMS

MSMS

JSMS

MSLS JSLS

MSLB

MLLB

MLLS

JSLB

MLMB

MSMB

JLLBJLMB MLMB

JSMB

(a) (b)

Figure 5: The trace feature map for fancy-restaurant stories. (a) The organization of the
map. Each story in the test set were mapped on one unit in the map, labeled by the role bindings
(where J=John, M=Mary, L=lobster, S=steak, M=Mamaison, L=Leone's, B=big, and S=small
(for size of tip)). The activation of the units (shown in gray-scale) indicates retrieval of the JLMB
story. (b) Lateral connections after storing �rst JLMB and then MLLB. Line segments indicate
excitatory lateral connections originating from each unit, length and width proportional to the
magnitude of the weight. Inhibitory connections are not shown. The latter trace has partially
obscured the earlier one.

activity pattern; because the map is topological, it is likely to be located somewhere near the stored
trace. If the cue is close enough, the lateral connections pull the activity to the center of the stored
trace. The complete story representation is retrieved from the weight vectors of the maximally
responding units at the script, track, and role-binding levels.

Hierarchical feature maps have a number of properties that make them useful for memory
organization: (1) The organization is formed in an unsupervised manner, extracting it from the
input experience of the system. (2) The resulting order reects the properties of the data, the
hierarchy corresponding to the levels of variation, and the maps laying out the similarities at each
level. (3) By dividing the data �rst into major categories and gradually making �ner distinctions
lower in the hierarchy, the most salient components of the input data are singled out and more
resources are allocated for representing them accurately. (4) Because the representation is based on
salient di�erences in the data, the classi�cation is very robust, and usually correct even if the input
is noisy or incomplete. (5) Because the memory is based on classifying the similarities and storing
the di�erences, retrieval becomes a reconstructive process [14; 28] similar to human memory.

The trace feature map exhibits interesting memory e�ects that result from interactions between
traces. Later traces capture units from earlier ones, making later traces more likely to be retrieved
(�gure 5). The extent of the traces determines memory capacity. The smaller the traces, the more
of them will �t in the map, but more accurate cues are required to retrieve them. If the memory
capacity is exceeded, older traces will be selectively replaced by newer ones. Traces that are unique,
that is, located in a sparse area of the map, are not a�ected, no matter how old they are. Similar

9

e�ects are common in human long-term memory [2; 22].

8 DISCERN High-Level Behavior

DISCERN is more than just a collection of individual cognitive models. Interesting behavior
results from the interaction of the components in a complete story-processing system. Let us
follow DISCERN as it processes the story about John's visit to MaMaison (�gure 6). The lexical
representations for each word are presented to the lexical map of the lexicon, which produces the
corresponding semantic representation as its output (�gure 2). These are fed one at a time to the
sentence parser, which gradually forms a stationary case-role representation of each sentence at its
output layer (�gure 7a). After a period is input, ending the sentence, the �nal case-role pattern is
fed to the input of the story parser.

In a similar manner, the story parser receives a sequence of sentence case-role representations
as its input, and forms a stationary slot-�ller representation of the whole story at its output layer
(�gure 7b). This is a representation of the story in terms of its role bindings, and constitutes the
�nal result of the parse. The story representation is fed to the episodic memory, which classi�es it
as an instance of a particular script, track, and role binding, and creates a trace in the appropriate
role-binding map (�gures 4 and 5b).

The generator subsystem reverses the parsing process. The story generator network receives
the story representation as its input and generates a sequence of sentence case-role representations.
Each of these is fed to the sentence generator, which outputs the semantic representations of the
output words one at a time. Finally, the lexicon transforms these into lexical words.

The sentence parser and the sentence generator are also trained to process question sentences
and answer sentences. The cue former receives the case-role representation of the question (�g-
ure 7c), produced by the sentence parser, and generates an approximate story representation as its
output (�gure 7d). This pattern is fed to the episodic memory, which classi�es it as an instance
of a script, track, and role binding. The trace feature map settles to a previously stored memory
trace (�gure 5a), and the complete story representation (�gure 7b) is retrieved from the weights
of the maximally responding units at the three levels of the hierarchy (�gure 4). The answer pro-
ducer receives the complete story representation, together with the case-role representation of the
question, and generates a case-role representation of the answer sentence (�gure 7e), which is then
output word by word by the sentence generator.

DISCERN was trained and tested with an arti�cially generated corpus of script-based stories
consisting of three scripts (restaurant, shopping, and travel), with three tracks and three open roles
each.

The complete DISCERN system performs very well: at the output, 98 percent of the words are
correct. This is rather remarkable for a chain of networks that is 9 modules long and consists of
several di�erent types of modules.

A modular neural network system can only operate if it is stable, that is, if small deviations
from the normal ow of information are automatically corrected. It turns out that DISCERN
has several built-in safeguards against minor inaccuracies and noise. The semantic representations
are distributed and redundant, and inaccuracies in the output of one module are cleaned up by
the module that uses the output. The memory modules clean up by categorical processing: a
noisy input is recognized as a representative of an established class and replaced by the correct
representation of that class. As a result, small deviations do not throw the system o� course, but

10

[parsing input story:] (comment by DISCERN)
JOHN WENT TO MAMAISON . (sequence of input words)
|John went MaMaison| (sentence parser output)
JOHN ASKED THE WAITER FOR LOBSTER .

|John asked waiter lobster |

JOHN LEFT A BIG TIP .

|John left waiter big tip | (�gure 7a)

[into internal representation:]

|$restaurant $fancy John lobster MaMaison good big| (story parser output; �gure 7b)
[storing into episodic memory:]

[image units (0,0), (0,0), (6,6):] (location in the memory; �gure 4)
|$restaurant $fancy John lobster MaMaison good big| (episodic memory representation)
[generating paraphrase:]

|John went MaMaison| (story generator output)
JOHN WENT TO MAMAISON . (sequence of output words)
|waiter seated John |

THE WAITER SEATED JOHN .

|John asked waiter lobster |

JOHN ASKED THE WAITER FOR LOBSTER .

|John ate good lobster |

JOHN ATE A GOOD LOBSTER .

|John paid waiter |

JOHN PAID THE WAITER .

|John left waiter big tip |

JOHN LEFT A BIG TIP .

|John left MaMaison|

JOHN LEFT MAMAISON .

[parsing question:]

WHAT DID JOHN EAT AT MAMAISON ?

|John ate what MaMaison| (sentence parser output; �gure 7c)

[into cue:]

|$restaurant $fancy John (?) MaMaison good (?)| (cue former output; �gure 7d)
[retrieving from episodic memory:]

[image units (0,0), (0,0), (6,6):] (location in the memory; �gures 4 and 5a)
|$restaurant $fancy John lobster MaMaison good big| (episodic memory output; �gure 7b)
[generating answer:]

|John ate good lobster | (answer producer output; �gure 7e)
JOHN ATE A GOOD LOBSTER .

Figure 6: A listing of DISCERN output as it processes the example story. Comments
printed out by DISCERN are enclosed in brackets; otherwise all words stand for activity patterns,
with \ " indicating the blank pattern. Output layers consisting of several assemblies are enclosed
between bars.

11

(a)

Case roles

Concept
Concepts

Agent A c t Recipnt Pat ientPa t -a t t r Location

John went

representations

MaMaison

(b) representations

F i l le rs

RolesScr ip t R/CstmrTrack R/Food R/Restr R/Tip

$fancy John MaMaisonlobster good big

R/Taste

$restr
Concept

(c)

Case roles

Concept
Concepts

representations

Agent A c t Recipnt Pat ientPa t -a t t r Location

John ate what MaMaison

(d)
Concept
representations

F i l le rs

RolesScr ip t R/CstmrTrack R/Food R/Restr R/Tip

$fancy John MaMaison(?) (?)

R/Taste

$restr good

(e)

Case roles

Concept
Concepts

representations

Agent A c t Recipnt Pat ientPa t -a t t r Location

John ate lobstergood

Figure 7: Sentence and story representations (a) Case-role representation of the sentence
John went to MaMaison. The concept representations in each case-role correspond to the concept
representations in the lexicon. (b) Representation of the story by its role bindings. The assemblies
are data-speci�c: their interpretation depends on the pattern in the script slot. The role names
R/... are speci�c for the restaurant script. (c) Case-role representation of the question What

did John eat at MaMaison? Questions are represented as sentences, but processed through a
di�erent pathway (see �gure 1). (d) Memory cue. Most of the story representation is complete,
but the patterns in Food and Tip slots indicate averages of all possible alternatives. (e) Case-role
representation of the answer John ate a good lobster.

12

rather the system �lters out the errors and returns to the normal course of processing, which is an
essential requirement for building robust natural language processing models.

DISCERN also demonstrates strong script-based inferencing [19]. Even when the input story is
incomplete, consisting of only a few main events, DISCERN can usually form an accurate internal
representation of it. DISCERN was trained to form complete story representations from the �rst
sentence on, and because the stories are stereotypical, missing sentences have little e�ect on the
parsing process. Once the story representation has been formed, DISCERN performs as if the script
had been fully instantiated. Questions about missing events and role-bindings are answered as if
they were part of the original story. If events occurred in an unusual order, they are recalled in the
stereotypical order in the paraphrase. If there is not enough information to �ll a role, the most likely
�ller is selected and maintained throughout the paraphrase generation. Such behavior automatically
results from the modular architecture of DISCERN and is consistent with experimental observations
on how people remember stories of familiar event sequences [3; 10; 11].

In general, given the information in the question, DISCERN recalls the story that best matches
it in the memory. An interesting issue is: what happens when DISCERN is asked a question that
is inaccurate or ambiguous, that is, one that does not uniquely specify a story? For example,
DISCERN might have read a story about John eating lobster at MaMaison, and then about Mary
doing the same at Leone's, and the question could be Who ate lobster? Because later traces are
more prominent in the memory, DISCERN is more likely to retrieve the Mary-at-Leone's story in
this case (�gure 5b). The earlier story is still in the memory, but to recall it, more details need
to be speci�ed in the question, such as Who ate lobster at MaMaison? Similarly, DISCERN can
robustly retrieve a story even if the question is slightly inaccurate. When asked How did John

like the steak at MaMaison?, DISCERN generates the answer John thought lobster was good

at MaMaison, ignoring the inaccuracy in the question, because the cue is still close enough to the
stored trace. DISCERN does recognize, though, when a question is too di�erent from anything in
the memory, and should not be answered. For Who ate at McDonald's?, the cue vector is not close
to any trace, the memory does not settle, and nothing is retrieved. Note that these mechanisms
were not explicitly built into DISCERN, but they emerge automatically from the physical layout
of the architecture and representations.

9 Discussion

There is an important distinction between scripts (or more generally, schemas) in symbolic systems,
and scripts in subsymbolic models such as DISCERN. In the symbolic approach, a script is stored
in memory as a separate, exact knowledge structure, coded by the knowledge engineer. The script
has to be instantiated by searching the schema memory sequentially for a structure that matches
the input. After instantiation, the script is active in the memory and later inputs are interpreted
primarily in terms of this script. Deviations are easy to recognize and can be taken care of with
special mechanisms.

In the subsymbolic approach, schemas are based on statistical properties of the training ex-
amples, extracted automatically during training. The resulting knowledge structures do not have
explicit representations. For example, a script exists in a neural network only as statistical correla-
tions coded in the weights. Every input is automatically matched to every correlation in parallel.
There is no all-or-none instantiation of a particular knowledge structure. The strongest, most
probable correlations will dominate, depending on how well they match the input, but all of them
are simultaneously active at all times. Regularities that make up scripts can be particularly well

13

captured by such correlations, making script-based inference a good domain for the subsymbolic
approach. Generalization and graceful degradation give rise to inferencing that is intuitive, im-
mediate, and occurs without conscious control, as script-based inference in humans. On the other
hand, it is very di�cult to recognize deviations from the script and to initiate exception-processing
when the automatic mechanisms fail. Such sequential reasoning would require intervention of a
high-level "conscious" monitor, which has yet to be built in the connectionist framework.

10 Conclusion

The main conclusion from DISCERN is that building subsymbolic models is a feasible approach to
understanding mechanisms underlying natural language processing. DISCERN shows how several
cognitive phenomena may result from subsymbolic mechanisms. Learning word meanings, script
processing, and episodic memory organization are based on self-organization and gradient-descent
in error in this system. Script-based inferences, expectations, and defaults automatically result
from generalization and graceful degradation. Several types of performance errors in role binding,
episodic memory, and lexical access emerge from the physical organization of the system. Per-
haps most signi�cantly, DISCERN shows how individual connectionist models can be combined
into a large, integrated system that demonstrates that these models are su�cient constituents for
generating sequential, symbolic, high-level behavior.

Although processing simple script instantiations is a start, there is a long way to go before
subsymbolic models will rival the best symbolic cognitive models. For example, in story under-
standing, symbolic systems have been developed that analyze realistic stories in depth, based on
higher-level knowledge structures such as goals, plans, themes, a�ects, beliefs, argument structures,
plots, and morals (e.g. [1; 7; 23; 26]). In designing subsymbolic models that would do that, we
are faced with two major challenges [18]: (1) how to implement connectionist control of high-level
processing strategies (making it possible to model processes more sophisticated than a series of
reex responses), and (2) how to represent and learn abstractions (making it possible to process
information at a higher level than correlations in the raw input data). Progress in these areas
would constitute a major step towards extending the capabilities of subsymbolic natural language
processing models beyond those of DISCERN.

Acknowledgements

This research was supported in part by the Texas Higher Education Coordinating Board under
grant ARP-444.

Note

Software for the DISCERN system is available in the World Wide Web at URL http://www.cs.
utexas.edu/users/nn/pages/software/nn-software.html. An interactive X11 graphics demo, show-
ing DISCERN in processing example stories and questions, can be run remotely under the World
Wide Web at http://www.cs.utexas.edu/users/nn/pages/demos/discern/discern.html.

14

References

[1] S. Alvarado, M. G. Dyer, and M. Flowers. Argument representation for editorial text.
Knowledge-Based Systems, 3:87{107, 1990.

[2] A. D. Baddeley. The Psychology of Memory. Basic Books, New York, 1976.

[3] G. H. Bower, J. B. Black, and T. J. Turner. Scripts in memory for text. Cognitive Psychology,
11:177{220, 1979.

[4] A. Caramazza. Some aspects of language processing revealed through the analysis of acquired
aphasia: The lexical system. Annual Review of Neuroscience, 11:395{421, 1988.

[5] M. Coltheart, K. Patterson, and J. C. Marshall, editors. Deep Dyslexia. Routledge and Kegan
Paul, London; New York, second edition, 1988.

[6] R. E. Cullingford. Script Application: Computer Understanding of Newspaper Stories. PhD
thesis, Department of Computer Science, Yale University, New Haven, CT, 1978. Technical
Report 116.

[7] M. G. Dyer. In-Depth Understanding: A Computer Model of Integrated Processing for Narra-

tive Comprehension. MIT Press, Cambridge, MA, 1983.

[8] M. G. Dyer, R. E. Cullingford, and S. Alvarado. Scripts. In S. C. Shapiro, editor, Encyclopedia
of Arti�cial Intelligence, pages 980{994. Wiley, New York, 1987.

[9] J. L. Elman. Finding structure in time. Cognitive Science, 14:179{211, 1990.

[10] A. C. Graesser, S. E. Gordon, and J. D. Sawyer. Recognition memory for typical and atypical
actions in scripted activities: Tests for the script pointer+tag hypothesis. Journal of Verbal

Learning and Verbal Behavior, 18:319{332, 1979.

[11] A. C. Graesser, S. B. Woll, D. J. Kowalski, and D. A. Smith. Memory for typical and atyp-
ical actions in scripted activities. Journal of Experimental Psychology: Human Learning and

Memory, 6:503{515, 1980.

[12] T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78:1464{1480, 1990.

[13] T. Kohonen. Self-Organizing Maps. Springer, Berlin; Heidelberg; New York, 1995.

[14] J. L. Kolodner. Retrieval and Organizational Strategies in Conceptual Memory: A Computer

Model. Erlbaum, Hillsdale, NJ, 1984.

[15] R. A. McCarthy and E. K. Warrington. Cognitive Neuropsychology: A Clinical Introduction.
Academic Press, New York, 1990.

[16] R. Miikkulainen. Script recognition with hierarchical feature maps. Connection Science, 2:83{
101, 1990.

[17] R. Miikkulainen. Trace feature map: A model of episodic associative memory. Biological

Cybernetics, 67:273{282, 1992.

[18] R. Miikkulainen. Subsymbolic Natural Language Processing: An Integrated Model of Scripts,

Lexicon, and Memory. MIT Press, Cambridge, MA, 1993.

15

[19] R. Miikkulainen. Script-based inference and memory retrieval in subsymbolic story processing.
Applied Intelligence, 5:137{163, 1995.

[20] R. Miikkulainen. Dyslexic and category-speci�c impairments in a self-organizing feature map
model of the lexicon. Brain and Language, in press.

[21] R. Miikkulainen and M. G. Dyer. Natural language processing with modular neural networks
and distributed lexicon. Cognitive Science, 15:343{399, 1991.

[22] L. Postman. Transfer, interference and forgetting. In J. W. Kling and L. A. Riggs, editors,
Woodworth and Schlosberg's Experimental Psychology, pages 1019{1132. Holt, Rinehart and
Winston, New York, third edition, 1971.

[23] J. F. Reeves. Computational Morality: A Process Model of Belief Conict and Resolution for

Story Understanding. PhD thesis, Computer Science Department, University of California,
Los Angeles, 1991. Technical Report UCLA-AI-91-05.

[24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations by
error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations, pages
318{362. MIT Press, Cambridge, MA, 1986.

[25] David E. Rumelhart and James L. McClelland. On learning past tenses of English verbs. In
D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing: Explorations

in the Microstructure of Cognition, Volume 2: Psychological and Biological Models, pages
216{271. MIT Press, Cambridge, MA, 1986.

[26] R. C. Schank and R. P. Abelson. Scripts, Plans, Goals, and Understanding: An Inquiry into

Human Knowledge Structures. Erlbaum, Hillsdale, NJ, 1977.

[27] T. J. Sejnowski and C. R. Rosenberg. Parallel networks that learn to pronounce English text.
Complex Systems, 1:145{168, 1987.

[28] M. D. Williams and J. D. Hollan. The process of retrieval from very long-term memory.
Cognitive Science, 5:87{119, 1981.

16

