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Self-organizing feature maps are usually implemented by abstracting the low-level neural and
parallel distributed processes. An external supervisor �nds the unit whose weight vector is
closest in Euclidian distance to the input vector and determines the neighborhood for weight
adaptation. The weights are changed proportional to the Euclidian distance. In a biologically
more plausible implementation, similarity is measured by a scalar product, neighborhood is
selected through lateral inhibition and weights are changed by redistributing synaptic resources.
The resulting self-organizing process is quite similar to the abstract case. However, the process
is somewhat hampered by boundary e�ects and the parameters need to be carefully evolved. It
is also necessary to add a redundant dimension to the input vectors.

1 Introduction

The self-organizing feature mapping [5; 7] is an unsu-
pervised learning process where the processing units
of e.g. 2-D laminar network become sensitive to spe-
ci�c items of the input space in a topological order
which corresponds to the topological order of the in-
put items. The process is both a method for orga-
nizing complex empirical knowledge and a model of
learning in biological neural networks.

The theory of self-organizing feature maps is fairly
well understood and demonstrated [7; 8; 4; 17] and
a number of applications and extensions of feature
maps have also been developed [9; 10; 11; 12; 13;
15; 16]. These implementations are based on an ab-
straction of the theory, which relies on global super-
vision and strong computational capabilities on the
processing units. An essential part of the theory is
that self-organization is brought about by a parallel
and distributed process on a network of neuron-like
elements. A plausible implementation must be based
on local computations, simple enough to be carried
out by neurons.

Kohonen has suggested that lateral inhibition and
redistribution of synaptic resources could be responsi-
ble for self-organization in biological systems [6]. An
implementation of this idea is discussed and simula-
tion results are presented in this paper.

2 Self-organizing feature maps

A 2-D topological feature map consists of an array
of processing units, each with n weight parameters.
Each unit produces one output value, proportional to
the similarity of the map's current input vector and
the unit's weight vector. The total response of the
map is a localized pattern of activity. In other words,
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an n-dimensional input vector is mapped onto a lo-
cation in the 2-D map. The weight vectors are tuned
to speci�c items of the input space so that topolog-
ical relations are retained. This means roughly that
nearby vectors in the input space are mapped onto
nearby units in the map.

The organization of the map, i.e. the assignment
of the weight vectors, is formed in an unsupervised
learning process. Input items are randomly drawn
from the input distribution and presented to the net-
work one at a time. The weight vector of the maxi-
mally responding unit and each unit in its neighbor-
hood are changed towards the input vector. These
units now produce an even stronger response to the
same input. In the process, weight vectors become
better approximations of the input distribution and
neighboring vectors become more parallel, which over
time results in global order.

Each adaptation step consists of three computa-
tional tasks: (1) measuring the similarity of the in-
put vector and the unit's weight vector, (2) determin-
ing the adapting neighborhood, and (3) changing the
weights in this neighborhood. These tasks can be ef-
�ciently implemented by abstracting their neural and
parallel distributed nature.

3 Abstract implementation

Self-organization can be e�ciently implemented based
on Euclidian distance and global supervision. It is
not necessary to explicitly model the connections be-
tween the units in the network. Every unit computes
the distance between its weight vector and the input
vector. An external supervisor �nds the unit with the
smallest distance, looks up the current neighborhood
radius from a training schedule, and tells the units
within this radius to modify their input weights. The
weight adaptations are proportional to the Euclidian
di�erence. The weights of unit (i; j) in a 2-D map are



(a) 0 samples (b) 30 samples (c) 100 samples (d) 10,000 samples

Figure 1: Abstract implementation of self-organization. The map consists of 20 � 20 units in a 2-D array
organization. The weight vector of each unit is shown as a point on the unit square 0 � x; y � 1. Each vector is
connected with a line to the weight vectors of the four neighboring units. In other words, each intersection and end
point of lines represents a weight vector, and the grid represents the topological organization of the units. The �gures
depict organization after 0, 30, 100, and 10,000 input vector presentations. The neighborhood radius was decreased
from 7 to 2 in 1000 presentations, and from 2 to 0 during the rest of the simulation. At the same time, the learning
rate � was decreased from 0.3 to 0.05, and then to 0.0.

changed according to

��ij;h =

�
�[�h � �ij;h] if (i; j)�Nc

0 otherwise (1)

where �ij;h is the hth weight vector component and
�h is the hth input vector component, � is the gain
parameter and Nc stands for the selected neighbor-
hood. The gain and the neighborhood size gradually
decrease over time.

Evolution of the weight vectors in this process is
visualized in �gure 1. The input data consists of 2-
D vectors uniformly distributed on the unit square.
Since dimensionality is not reduced in this mapping,
the organization of the map can be visualized by
plotting the 2-D weight vectors directly on the input
space.

The weight vectors are initially uniformly dis-
tributed on the unit square (�gure 1a). In the begin-
ning of the process, a number of units are clustered
together (1b). The clusters are then ordered, and
individual weight vectors start to separate from the
clusters (1c). As the neighborhood size decreases, the
weight vectors gradually spread out to �ll the whole
input space (1d). In the �nal map, each unit is re-
sponsible for an approximately equal area. The map
is slightly contracted at the boundaries, because the
units near the boundary do not have complete neigh-
borhoods.

4 \Biological" implementation

Self-organization with the abstract implementation is
strong and e�cient to simulate, and therefore well-
suited for applications. However, it does not explain
how self-organization could arise in biological systems.
Below, Euclidian distance and global supervision are
replaced by local computations compatible with the
weighted sum model of the neuron, and the result-
ing adjustments to the self-organization process are
discussed.

4.1 Similarity and neighborhood selection

The weighted sum of the input components, i.e. the
scalar product of the input vector and the weight vec-
tor, is by itself a simple measure of similarity (with
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Figure 2: Lateral inhibition coe�cients k (one-
dimensional case). The height of the bar indicates the
weight on the connection from unit k to unit 0 (relative
indexing). The same connectivity pattern applies to every
unit in the network.

certain restrictions; see section 4.3). The initial re-
sponse �ij of unit (i; j) to an external input vector
can be computed as

�ij = �

 X
h

�ij;h�h

!
(2)

where the function � is the familiar sigmoid activation
function, or its piecewise linear approximation

�(x) =

(
0 x � �
(x� �)=(� � �) � < x < �
1 x � �

(3)

The sigmoid introduces a nonlinearity (a soft thresh-
old between � and �) into the reponse, and limits its
output within the range [0; 1].

The neighborhood is selected by focusing the initial
response of the map through lateral inhibition. The
response evolves over time according to

�ij(t) = �

0
@X

h

�ij;h�h +
X
k;l

kl;ij�kl(t��t)

1
A (4)

where kl;ij is the lateral connection weight on the
connection from unit (k; l) to unit (i; j), and �kl(t �
�t) is the activity of unit (k; l) during the previous
time step.

The weights on the lateral connections have the
form of a \Mexican hat" (�gure 2). The connections



(a) Initial response (b) Final response

Figure 3: Focusing the response through lateral
inhibition. The darkness of each square indicates the
activity level of the corresponding unit in the 20�20 map.

(a) Initial response (b) Final response

Figure 4: Focusing the response at the boundary.

to the closest units are excitatory and to units further
away are inhibitory. In our simulations,

kl;ij =

8><
>:

E jk� ij; jl� jj � d

�E
�

(jk � ij > d or jl � jj > d)
and jk� ij; jl� jj � 3d+ 1

0 otherwise
(5)

The parameter d controls the width of the inter-
action, E its strength and � the ratio of excita-
tion/inhibition.

Lateral inhibition is a biologically plausible form
of lateral connectivity, well documented in e.g. low-
level vision [1; 14]. The lateral weights are assumed
to be preassigned, and their task is to support self-
organization of the weights on the external input con-
nections. The self-organizing process does not directly
modify the lateral connections.

The primary e�ect of lateral inhibition is to sharpen
the contrast between high and low activity areas. If
the width of the lateral inhibition mask is comparable
to the initial localized response of the network, the re-
sponse becomes more focused around the maximally
responding unit (or area) in successive iterations of
equation 4. The more lateral inhibition there is com-
pared to the lateral excitation, the more focused is
the �nal stable response.

Figures 3, 4 and 5 illustrate the lateral inhibition
process. The network consists of 20 � 20 units with
interactions described by equations 3 through 5. In
�gures 3 and 4, the input weights are perfectly or-
dered, i.e. they correspond to the unit coordinates.
The sigmoid parameters are � = 0:88, � = 1:25 and
the lateral interaction parameters d = 2, E = 0:025,
� = 5:0. The external input to the network is held
constant and the network is allowed to settle until it

(a) Initial response (b) Final response

Figure 5: Focusing the response of an unordered
map.

reaches a stable state. Usually this takes 10 to 20
iterations. Figure 3 shows how the response to an in-
put vector located at the center of the input space is
focused by the network.

Figure 4 demonstrates boundary e�ects. The lat-
eral inhibition mask for units close to the boundary
extends outside the network, which has zero activity.
As a result, the strongest activity develops at distance
d + 1 from the boundary. This is because the units
at the d + 1:th row or column receive all the lateral
excitation but only about half the inhibition, while
the units at the boundary receive half of both.

Figure 5 illustrates focusing the response of a com-
pletely unordered map. The initial pattern is highly
discontinuous. A mask larger than the network (d =
4; E = 0:0075; � = 6:0) sees the whole network as one
large activity cluster and concentrates the response
around the center.

4.2 Weight adaptation

According to a well-known hypothesis due to Hebb
[2], permanent synaptic e�cacy changes require both
presynaptic and postsynaptic activity. The connec-
tion is signi�cant and deserves to be enforced if the
activity causes further activity. This principle can be
formulated as:

d�=dt = ��� (6)

where � is the e�cacy of the synapse, � is the presy-
naptic (input) activity, � is the postsynaptic (output)
activity and � is the gain of the change.

The weight changes in the Hebbian model are
strictly non-negative. The model can be augmented
by requiring that the sum of the synaptic resources
of the neuron remains constant in the weight change.
In other words, the resources are redistributed pro-
portionally to their use. Assuming that the synaptic
e�cacies are directly proportional to the amount of
resource at the synapse,

�ij;h(t+�t) =
�ij;h(t) + ��ij�hP
h [�ij;h(t) + ��ij�h]

(7)

where �ij stands for the activity of the unit in the
�nal stable state.

Equation 7 implies that only those units which are
active do change. The cluster of activity brought
about by lateral inhibition selects the area of the max-
imal response, and the weights of the units within this
area change proportionally to their activity. Note that



in general the units most similar to the input vector
change the most. This is contrary to the abstract
implementation, where the vectors are adapted pro-
portional to the Euclidian di�erence.

4.3 Self-organization

Bringing the above mechanisms for neuron activa-
tion and synaptic weight change together is not su�-
cient for self-organization. Two additional restrictions
must be taken into account:

(1) The scalar product as a similarity measure re-
quires that all weight vectors are of the same length.
For example, if the input vector is (0.75 0.25), a unit
with exactly the same weight vector responds with
�(0:752 + 0:252) = �(0:625), whereas a unit with e.g.
weights (1.0 0.0) outputs �(0:75). The weight vectors
must be normalized:

�ij;h(t +�t) =
�ij;h(t) + ��ij�hnP

h [�ij;h(t) + ��ij�h]
2

o1=2 (8)

In e�ect, the weight vector is rotated towards the in-
put vector. The sum of squares of weight components
is constant, i.e. the synaptic e�cacy is not directly
proportional to the resource being redistributed, but
proportional to the square root of it. Doubling the ef-
�cacy of a synapse requires quadrupling the amount
of resource at the synapse.

2) The direction of the weight vector rotation (equa-
tion 8) depends only on the direction of the input
vector. The self-organizing process cannot di�erenti-
ate between inputs in the same direction, and conse-
quently it can only form an n � 1-dimensional map-
ping of the n-dimensional input space. This map-
ping will be distorted, because the magnitude of the
weight rotation depends on the length of the input
vector: longer vectors cause larger changes. For this
reason, the input vectors must be normalized before
presenting them to the system. E�ectively this means
reducing the dimensionality of the input space by one:
the input distribution is projected on the surface of a
hypersphere.

If the system is to learn the distribution of an n-
dimensional input space, a redundant n+1:th dimen-
sion must be added to the input vectors. The original
dimensions are interpreted as angles and the n+ 1:th
dimension represents the length of the vector, which
is chosen the same for all inputs.

In the simulations reported in this paper, the orig-
inal distribution was uniformly distributed on the 2-
dimensional square x = (x1; x2), �0:5 � x1; x2 �
0:5). Each input vector was transformed into a 3-
dimensional cartesian vector x = (�1; �2; �3) whose
coordinates in the spherical system are (x1; x2; 1):(

�1 = 1 � cos(x1) cos(x2);
�2 = 1 � sin(x1) cos(x2);
�3 = 1 � sin(x2)

(9)

When these 3-dimensional input vectors are pre-
sented to the system it organizes itself accord-
ingly, forming a 2-dimensional mapping of the 3-
dimensional input space. Since the dimensions are
optimally chosen in the self-organizing process [7] and
the third input dimension is redundant, the mapping

directly represents the original 2-dimensional input
space.

Note that the coordinate transformation is unique
only when ��=2 < x2 < �=2, and the rotation direc-
tion is correct only when ��=2 � x1 � �=2. Numer-
ically the most stable area is a fairly close neighbor-
hood of (0; 0; 1)spherical.

5 Experiments

The biological implementation (equations 3 to 5
and 8) was tested with various degrees of initial or-
der in the map and with various parameter settings.
Overall, the self-organizing process resembles the ab-
stract case fairly well.

The degree of initial ordering determines how large
the activity clusters must be to successfully produce
self-organization. This in turn determines the width
of the smallest useful lateral inhibition mask. When
the initial weight components were randomly dis-
tributed within 0.1 radius of their optimal (ordered)
values, the network self-organized with d = 1 (�g-
ures 6a and 6b). For a 0.25 radius, d had to be in-
creased to 2, and for 0.5, to 3. When the network was
completely random initially (radius=1.0), total mask
diameter of 26 (d = 4) was required (�gures 7a to 7c).

The fact that lateral inhibition can organize even
an initially completely random network is a somewhat
surprising result. There are no activity clusters within
the initial response that could be focused (�gure 5a).
However, when the lateral inhibition mask is larger
than the network, the whole network forms one ini-
tial activity cluster. The di�erentiation capability of
this large a mask is very subtle. The resulting activity
clusters are large and tend to form around the cen-
ter of the network (�gure 5b). The subtle di�erences
between them are enough to force the network to or-
ganize. One can say that order is brought about by
boundary e�ects: the boundaries mold the mapping
in shape, as suggested by Kohonen [6]. Note that the
network needs to be almost fully connected to produce
order.

As in the abstract implementation, the larger the
mask, the stronger is its self-organizing capability, i.e.
the faster the convergence to the proper order. This
can be seen in �gure 6, where a map with 0.1 initial
random radius is organized with masks d = 1 and
d = 4. With the smaller mask, 1,600 presentations
were required to order the map, whereas the larger
mask only needed 400 samples.

Self-organization begins at the center of the net-
work and spreads towards the boundaries (�gures 6c
and 7b). This is because the activity clusters tend to
form around the center of the network. Weight adap-
tation is proportional to the activity of the unit, and
individual units may be left out of the activity cluster
until the map is fairly well ordered (7b). This pro-
cess di�ers from the abstract implementation, where
the units are �rst clustered together and the clusters
organized (�gures 1b and 1c).

The contraction of the �nal mapping is comparable
to the mask size. The mask with d = 1 covers the
input space fairly well (6b), while d = 4 is badly con-
tracted (6d). This is because larger masks generate



(a) 0 samples (b) 1,600 samples, d = 1 (c) 100 samples, d = 4 (d) 400 samples, d = 4

Figure 6: Self-organizing a map with 0.1 initial randomness. (a) Initial con�guration of the map. Weight
components are distributed uniformly within 0.1 of their optimal value. (b) Final con�guration of the map organized
with the mask d = 1; E = 0:03; � = 0:98; � = 1:15. (c) and (d) Con�guration after 100 and 400 presentations obtained
with the mask d = 4; E = 0:01; � = 0:8; � = 1:5. The map is ordered faster, but it is badly contracted. Throughout
the simulations, the network was allowed to settle for 10 iterations, learning rate � was constant at 0.1 and � = 8:0.

(a) 0 samples (b) 350 samples (c) 1,000 samples (d) 5,000 samples

Figure 7: Self-organizing an initially random map. The weight components are distributed uniformly between
0 and 1. The �gures display organization after 0, 350, 1,000, and 5,000 input vector presentations. Mask d = 4; E =
0:01; � = 0:8; � = 1:5 was used during the �rst 1,000 presentations, d = 3; E = 0:015; � = 0:9; � = 1:4 until 2,000,
d = 2; E = 0:02; � = 0:95; � = 1:3 until 3,000 and d = 1; E = 0:03; � = 0:98; � = 1:15 during the rest of the simulation.
Throughout the simulation, the settling time was 10, � = 0:1 and � = 8:0.

larger concentrated activity patterns, and weights are
changed in larger neighborhoods.

In order to expand the ordered but contracted map,
the activity clusters must be made gradually smaller.
Increasing inhibition/excitation ratio (decreasing �)
or increasing the threshold � of the sigmoid will pro-
duce this result. However, the boundary e�ects still
prevent the map from expanding. The clusters never
form at the boundary, but at the d + 1th layer from
the boundary (�gure 4b). The weight changes that
would expand the map are canceled out by changes
in the opposite direction1.

Currently the only way to form strong clusters close
to the boundary is to use masks with smaller excita-
tion width d. Figure 7 displays a simulation where
the mask size was decreased from d = 4 to d = 1 in 4
phases. The �nal mapping has spread out fairly well
and it is fairly uniform. However, the three outer-
most layers still remain slightly contracted from their
optimal position.

1If the lateral interaction strength E is gradu-
ally decreased, the unit response reects the exter-
nal input more, and the response to an input out-
side the map moves closer to the boundary. How-
ever, this will not help expand the map because the
magnitude of the response is much smaller. The
weight changes that result are small and overridden
by stronger changes that move the weights to the op-
posite direction.

6 Discussion

It is interesting to speculate on the biological meaning
of the adjustments that were found necessary for self-
organization. How could the transformation of the
n-dimensional input space onto a redundant n + 1-
dimensional hypersphere surface be implemented in
biological systems? If the data is represented by
coarse coding [3], the input activation to the neu-
ron may be highly redundant. In addition, the input
components should be coupled in such a way that an
increase in the activity of one component is accompa-
nied by an increasingly larger decrease in the activity
of other components.

It appears that gradually decreasing the lat-
eral inhibition mask would require synaptic e�cacy
changes where excitatory connections become in-
hibitory. However, feature map units do not nec-
essarily have to represent individual neurons. It is
possible to interpret them as neuronal groups con-
nected with multiple excitatory and inhibitory con-
nections. The inhibitory connections between two
groups could gradually become stronger than excita-
tory ones, changing the sign of the lateral interaction.
How the inhibition can increase in a geometrically or-
dered fashion and how a correct schedule for this pro-
cess can be determined are still open questions.

It is conceivable that biological feature maps would
have some initial order. Whatever the task is, some
regularities could be expected and the system could



be prewired to deal with them. This would be an
advantage in evolution and therefore likely to be pro-
duced by evolution. Self-organization would not need
to start in a completely random initial state and the
lateral connectivity could be narrower, producing less
contracted maps without the need for changing the
lateral connections.

Currently there is no way to prevent the activity
clusters from forming away from the boundary with-
out also disrupting self-organization. The fact that
the lateral activity drops to 0 outside the map ap-
pears to be important for bootstrapping the map-
ping. Methods that form clusters at the boundary
(virtual extension of activity beyond the boundaries,
modifying the masks of the units near the bound-
ary) destroy this property and the map does not self-
organize. This phenomenomcalls for further research.

7 Conclusion

Lateral inhibition combined with redistribution of
synaptic resources produces self-organization with
certain restrictions. (1) The input vectors must all
have the same length, i.e. an n-dimensional input
space must be transformed onto a surface of an n+1-
dimensional hypersphere before the mapping. (2) The
weight vectors must all have the same length, i.e. the
synaptic e�cacies are proportional to the square root
of the resource being redistributed. (3) The lateral in-
teraction, sigmoid and gain parameters must be care-
fully evolved according to the current degree of order
in the network. (4) The outermost layers of the net-
work will become clustered together.

The most important open research question is how
to form activity clusters at the boundary of the map
without weakening the system's self-organization ca-
pability.
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