
Integrated Connectionist Models: Building AI Systems on

Subsymbolic Foundations �

Risto Miikkulainen

Department of Computer Sciences

The University of Texas at Austin, Austin, TX 78712-1188

risto@cs.utexas.edu

1 Introduction

Recently there has been a lot of excitement in cognitive science about the subsymbolic (i.e., par-
allel distributed processing, or distributed connectionist, or distributed neural network) approach.
Subsymbolic systems seem to capture a number of intriguing properties of human-like information
processing such as learning from examples, context sensitivity, generalization, robustness of behav-
ior, and intuitive reasoning. These properties have been very di�cult to model with traditional,
symbolic techniques.

Within this new paradigm, the central issues are quite di�erent (even incompatible) from the
traditional issues in symbolic cognitive science, and the research has proceeded without much in
common with the past. However, the ultimate goal is still the same: to understand how human
cognition is put together. Even if cognitive science is being built on a new foundation, as can be
argued, many of the results obtained through symbolic research are still valid, and could be used
as a guideline for developing subsymbolic models of cognitive processes.

This is the approach taken in building DISCERN (DIstributed SCript processing and Episodic
memoRy Network; Miikkulainen, 1993), a distributed neural network model of script-based story
understanding. DISCERN is purely a subsymbolic model, but at the high level it consists of
modules and information structures similar to those of symbolic systems, such as scripts, lexicon,
and episodic memory. At the highest level of cognitive modeling, the symbolic and subsymbolic
paradigms have to address the same basic issues. Outlining a parallel distributed approach to those
issues is the purpose of DISCERN.

DISCERN is an integrated connectionist architecture. Independent neural network models of
the various subtasks are brought together into a single system capable of performing the high-level
cognitive task. In this chapter, I present motivation for such integrated connectionist models in
general, describe the DISCERN system as an example, and discuss some of the main issues and
prospects of the approach.

�To appear in Honavar, V., and Uhr, L. (1994). Arti�cial Intelligence and Neural Networks: Steps toward Prin-

cipled Integration. New York: Academic Press.

2 Why subsymbolic AI?

Symbolic arti�cial intelligence is founded on the hypothesis that symbol manipulation is both
necessary and su�cient for intelligence (Newell, 1980). Symbolic systems have been quite successful,
for example, in modeling in-depth natural language processing (Dyer, 1983; Schank and Abelson,
1977), episodic memory (Kolodner, 1984), and problem solving (Laird et al., 1987; Newell, 1991).
However, there are two major issues that the symbolic approach does not address: the statistical
(intuitive) nature of certain cognitive processes, and the physical implementation of the cognitive
system.

It seems that people have two fundamentally di�erent mechanisms at their disposal for perform-
ing cognitive tasks. Following a sequential symbolic strategy is the more obvious of the two. Here,
one does not have an immediate answer to the problem, but the answer is sequentially constructed
from stored knowledge by a high-level goal-directed process, that is, by reasoning. Another type
of cognitive processing occurs through associations immediately, in parallel, and without conscious
control, in other words, by intuition. Large amounts of information, which may be incomplete or
even con
icting, are simultaneously brought together to produce the most likely answer.

In symbolic systems, knowledge is encoded in terms of explicit symbolic structures, and infer-
ences are based on handcrafted rules that operate on these structures. For cognitive processes based
on conscious rule application, such systems are a good approximation. However, intuitive process-
ing cannot be easily implemented. In contrast, neural networks represent knowledge in terms of
correlations, coded in the weights of the network. For a given input, the network computes the
most likely answer given its past experience. The process is opaque, nonconcatenative, and imme-
diate, and �ts very well into modeling intuitive inference (see also Hinton, 1990; Smolensky, 1988;
Touretzky, 1991.

The �rst major motivation for subsymbolic AI, therefore, is to give a better account for high-
level cognitive phenomena that are statistical, or intuitive, in nature. For example, the DISCERN
system aims at demonstrating how script-based inferences can be learned from experience, how
episodic memory organization can be automatically formed based on regularities in the experiences,
how word semantics can be learned from examples of word use, and how expectations and defaults
automatically emerge from correlations in the data.

Symbolic models are high-level process models, far removed from the physical structures that
implement the processes in the brain. As a result, they inherently lack the capability of explaining
certain aspects of human performance. In the symbolic framework, it is very di�cult to address
certain issues, for example: Where do performance errors come from? How can memory become
overloaded and why do certain types of memory confusions occur in overload situations? What
happens when the system is corrupted with noise, or when parts of it are destroyed?

While arti�cial neural networks are still only an abstraction of actual neural structures, they
are motivated by the fundamental properties of information processing in neural hardware. As a
result, they have a good chance of explaining behavioral phenomena that arise from the physical
organization of the brain, such as certain performance errors and de�cits. This is the second major
motivation for subsymbolic AI. For example, the physical organization of the DISCERN system
determines what kinds of memory interference, role binding, and lexical errors can occur under noise
and damage, and these errors turn out to be quite similar to those observed in human subjects.

2

3 Why integrated connectionist models?

At the outset, it is not obvious that large-scale arti�cial intelligence systems can be built from
distributed neural networks. Previous research in parallel distributed processing (PDP) has con-
centrated mostly on isolated, small, low-level tasks, and relied heavily on pre- and postprocessed
data (see, e.g., McClelland et al., 1986; Rumelhart et al., 1986c for an overview). In many cases,
the problem is reduced to learning a simple mapping. This suits modeling isolated low-level tasks,
such as learning past tense forms of verbs (Rumelhart and McClelland, 1986) or pronunciation
of words (Sejnowski and Rosenberg, 1987). However, modeling higher-level cognitive tasks with
simple pattern transformation networks has been infeasible, for three reasons:

1. High-level tasks are often composites of distinct subtasks. They consist of several interact-
ing subprocesses, such as parsing language, generating language, memory storage, memory
retrieval, and reasoning. Complex behavior requires bringing together several di�erent kinds
of knowledge sources and processes, something that cannot be done in a single pattern trans-
formation. Such behavior requires structured architectures (Feldman, 1989; Minsky, 1985;
Simon, 1969), and combinations of di�erent types of networks.

2. The required network size, the number of training examples, and the training time become
intractable as the size of the problem grows (Elman, 1991; Harris and Elman, 1989; St. John
and McClelland, 1990; St. John, 1992).

3. It is very di�cult to evaluate what the entire system is doing, for example, what knowledge it
is acquiring and applying, unless each module processes meaningful internal representations
that can be interpreted by an external observer and by other modules in the system.

A logical approach for high-level cognitive modeling, therefore, is to construct the architecture
from several interacting modules that work together to produce the high-level behavior. While
modularity is practical from the engineering point of view, it is also a plausible cognitive theory. If
one believes that the structure of cognitive behavior re
ects the structure of its underlying physical
implementation, faculties such as episodic memory, lexicon, parsing and generating language, and
reasoning should be based on di�erent modules (for related arguments for modularity, see e.g.
Fodor, 1983; Minsky, 1985; Shallice, 1988).

The integrated connectionist approach primarily aims at building complete systems that per-
form well in high-level tasks, and in this sense, the approach is very similar to traditional arti�cial
intelligence. In addition, integrated models try to show how certain parts of human cognition
could actually be built. The components are designed as independent cognitive models that, by
themselves, account for interesting perception, language-processing, reasoning, and memory phe-
nomena. Combining these models into a single, working system is one way of validating them. In
an integrated system, the components are not just models of isolated cognitive phenomena; they
are also su�cient constituents for generating complex high-level behavior.

4 Overview of DISCERN

The DISCERN system is a �rst implementation of the integrated connectionist approach. The
high-level task of script processing is broken into hierarchical subtasks, implemented by indepen-
dent connectionist modules that communicate using distributed representations. The DISCERN

3

RESTAURANT SCRIPT

FANCY-RESTAURANT TRACK

Causal Chain: Roles:

Entering Customer = John

Seating Restaurant = MaMaison

Ordering Food = lobster

Eating Taste = good

Paying Tip = big

Tipping
Leaving

Table 1: Representation of a script-based story as a causal chain and role bindings. This
particular instantiation is a simpli�ed version of the fancy-restaurant script, where only the main events
have been listed.

components are cognitive models in their own right; as a whole, DISCERN is a complete AI system
that performs approximately at the level of symbolic natural-language processing models.

Before describing the overall architecture and the component models in more detail, I will brie
y
review the script processing task and outline the issues involved.

4.1 The script processing task

Scripts (Schank and Abelson, 1977; Cullingford, 1978; Dyer et al., 1987) are schemas of often
encountered, stereotypical event sequences, such as visiting a restaurant, traveling by airplane, or
shopping at a supermarket. Each script divides further into tracks, or established minor variations.
A script can be represented as a causal chain of events with a number of open roles (table 1). Script-
based understanding means reading a script-based story, identifying the proper script and track,
and �lling its roles with the constituents of the story. Events and role �llers that were not mentioned
in the story but are part of the script can then be inferred. Understanding is demonstrated by
generating an expanded paraphrase of the original story, and by answering questions about the
story.

To see what is involved in the task, let us consider an example of DISCERN input/output be-
havior. The input stories are based on the fancy-restaurant, plane-travel, and electronics-shopping
tracks:

John went to MaMaison. John asked the waiter for lobster. John left the waiter

a big tip.

John went to LAX. John checked in for a flight to JFK. The plane landed at JFK.

John went to Radio-Shack. John asked the staff questions about CD-players. John

chose the best CD-player.

DISCERN reads the orthographic word symbols sequentially one at a time. An internal repre-
sentation of each story is formed, where all inferences are made explicit. These representations are
stored in an episodic memory. The system then answers questions about the stories:

What did John buy at Radio-Shack?

4

Lexicon

Episodic
Memory

Sentence
Parser

S t o r y
Parser

Sentence
Generator

S t o r y
Generator

Answer
Producer

Cue
Former

Input text Output text

FIGURE 1: The DISCERN architecture (performance con�guration). The model consists of
parsing, generating, question answering, and memory subsystems, two modules each. A dark square indicates
a memory module, a light square indicates a processing module.

John bought a CD-player at Radio-Shack.

Where did John fly to?

John flew to JFK.

What did John eat at MaMaison?

John ate a good lobster.

With the question as a cue, the appropriate story representation is retrieved from the episodic
memory, and the answer is generated word by word. DISCERN also generates full paraphrases of
the input stories. For example, it generates an expanded version of the restaurant story:

John went to MaMaison. The waiter seated John. John asked the waiter for lobster. John

ate a good lobster. John paid the waiter. John left a big tip. John left MaMaison.

A number of issues can be identi�ed from the above examples. Speci�cally, DISCERN has
to (1) make statistical script-based inferences and account for learning them from experience; (2)
store items in the episodic memory in a single presentation and retrieve them with a partial cue;
(3) develop a meaningful organization for the episodic memory, based on the stories it reads; (4)
represent meanings of words, sentences, and stories internally; (5) based on examples of how words
are used in the language, organize a lexicon of symbol and concept representations and form a
many-to-many mapping between them.

4.2 The DISCERN architecture

DISCERN can be divided into parsing, generating, question answering, and memory subsystems,
each with two modules (Figure 1). Each module is trained in its task separately and in parallel.
During performance, the modules form a network of networks, each feeding its output to the input
of another module.

5

The sentence parser reads the input words one at a time, and forms a representation of each
sentence. The story parser combines the sequence of sentences into an internal representation of
the story, which is then stored in the episodic memory. The story generator receives the internal
representation and generates the sentences of the paraphrase one at a time. The sentence generator
outputs the sequence of words for each sentence.

The cue former receives a question representation, built by the sentence parser, and forms a
cue pattern for the episodic memory, which returns the appropriate story representation. The
answer producer receives the question and the story and generates an answer representation, which
is output word by word by the sentence generator.

5 Lexicon

The input and output of DISCERN consists of distributed representations for orthographic word
symbols (also called lexical words below). Internally, DISCERN processes semantic concept rep-
resentations (semantic words). Both the lexical and semantic words are represented distributively
as vectors of gray-scale values between 0.0 and 1.0. The lexical representations are based on the
visual patterns of characters that make up the written words. They remain �xed throughout the
training and performance of DISCERN. The semantic representations stand for distinct meanings.
They are developed automatically by the system while it is learning the processing task.

The lexicon (Miikkulainen, 1990a) stores the lexical and semantic representations and translates
between them (Figure 2). It is implemented as two feature maps (Kohonen, 1989, 1990), one
lexical and the other semantic. Words whose lexical forms are similar, such as BALL and DOLL, are
represented by nearby units in the lexical map. In the semantic map, words with similar semantic
content, such as predator and prey, are mapped near each other.

The two maps are densely interconnected with associative connections. A localized activity
pattern representing a word in one map will cause a localized activity pattern to form in the other
map, representing the same word (Figure 2). The output representation is then obtained from the
weight vector of the most highly active unit. The lexicon thus transforms a lexical input vector
into a semantic output vector, and vice versa. Both maps and the associative connections between
them are organized simultaneously, based on examples of co-occurring symbols and meanings.

The lexicon architecture facilitates interesting behavior. Localized damage to the semantic
map results in category-speci�c lexical de�cits similar to human aphasia (see, e.g., Caramazza,
1988; McCarthy and Warrington, 1990). Dyslexic performance errors can also be modeled. If the
performance is degraded, for example, by adding noise to the connections, this will result in two
types of parsing errors and two types of generation errors. In parsing (1) a lexical input pattern
may be mapped incorrectly onto a nearby unit in the lexical map, which corresponds to reading the
word incorrectly; (2) the activity in the lexical map may propagate incorrectly to a nearby unit in
the semantic map. For example, CHICKEN is understood semantically as livebat. Analogously, in
generation (1) a semantic input pattern could be recognized incorrectly, and a word with a similar
but incorrect meaning produced; (2) activity may propagate to an incorrect unit in the lexical map,
and a word with a similar orthographic form but di�erent meaning output. These types of errors
are common in human deep dyslexia as well (Coltheart et al., 1988).

6

human moved hit

block

vase

food

gearglassate

prey

predator
doglivebat

utensil

broke

doll
furniture

WOLF

WINDOW LION VASE
FORK

ROCKDESK

GIRL BOY

HITMANPLATE
PASTABROKE

MOVED

WOMAN

CHEESE CARROT

ATE

DOLLBALL

BAT

SHEEP

DOG(symbol)

dog(concept)

Input:

Output:

Maximally responding
lexical unit

Maximally responding
semantic unit

Lexical map

Semantic map

SPOON

HAMMERCHICKEN

CURTAIN

HATCHET
PAPERWT

DOG

FIGURE 2: The lexicon. The lexical input symbol DOG is translated into the semantic representation
of the concept dog. The representations are vectors of gray-scale values between 0.0 and 1.0, stored in the
weights of the units. The size of the unit on the map indicates how strongly it responds. Only a few strongest
associative connections of the lexical unit DOG are shown.

7

LEXICON

Input layer:

Output layer:

Target pattern

Input pattern

New representations

Modify representations

Form error signal

Hidden layer
Previous hidden layer:
Sequence memory

FIGURE 3: The FGREP-module. In the case of sequential input or output, the hidden layer pattern is
saved after each step in the sequence, and used as input to the hidden layer during the next step, together
with the actual input.

6 FGREP processing modules

Processing in DISCERN is carried out by hierarchically organized FGREP modules. Each module
performs a speci�c subtask, such as parsing a sentence or generating an answer to a question. All
these modules have the same basic architecture.

The FGREP mechanism (Forming Global Representations with Extended backPropagation)
(Miikkulainen and Dyer, 1991) is based on a basic three-layer backward error propagation network,
with the I/O representation patterns stored in an external lexicon1 (Figure 3). The input and
output layers of the network are divided into assemblies. A routing network forms each input
pattern and the corresponding teaching pattern by concatenating the semantic lexicon entries of
the input and teaching items.

The network learns the processing task by adapting the connection weights according to the
standard backpropagation procedure (Rumelhart et al., 1986b, pp. 327{329). At the end of each
cycle, the current input representations are modi�ed at the input layer based on the error signal.
The modi�ed representations are put back to the lexicon, replacing the old ones and thereby
changing the next teaching pattern for the same input. In other words, backpropagation is shooting
at a moving target in a reactive training environment.

The representations that result from this process have a number of interesting properties. Since
they adapt to the error signal, the representations end up coding properties most crucial to the task.
Representations for words that are used in similar ways in the examples become similar. Thus,
these pro�les of continuous activity values can be claimed to code the meanings of the words as
well. Interestingly, single representation components do not usually stand for identi�able semantic

1Technically, the FGREP lexicon consists of only the semantic component of the lexicon model, that is, it is a
storage for semantic representations.

8

ID-part Content-part (human)
– same for all instances
– meaningful, developed by FGREP

–unique
–arbi t rary

John

Mary

Bill

FIGURE 4: Cloning word instances. Instances John, Mary, and Bill are created from the prototype
word human.

features. Instead, the representation is holographic. Word categories can often be recovered from
the values of single components, making the system very robust against damage. Performance
degrades approximately linearly as representation components become defective.

The representation of a word is determined by all the contexts in which that word has been
encountered, and consequently, it is also a representation of all those contexts. Expectations
emerge automatically and cumulatively from the input word representations. Also, the system
never has to process very novel input patterns, because generalization has already been done in the
representations.

Three types of FGREP modules are used in the system: nonrecurrent (the cue former and the
answer producer), sequential input (the parsers), and sequential output modules (the generators).
In the recurrent modules the previous hidden layer serves as sequence memory, remembering at
what point in the sequence the system currently is and what has occurred before (Elman, 1990;
Figure 3). In a sequential input network, the input changes at each time step, while the teaching
pattern stays the same. The network learns to form a stationary representation of the sequence.
In a sequential output network, the input is stationary, but the teaching pattern changes at each
step. The network learns to produce a sequential interpretation of its input.

It is possible to extend the FGREP lexicon by creating a number of distinct word instances from
the same semantic word, such as the tokens John, Mary, Bill from the type human (Figure 4).
The representation now consists of two parts: the content part, which was developed in the FGREP
process and encodes the meaning of the word, and the ID part, which is unique to each instance
of the same word. The ID part has no intrinsic meaning in the system, only distinguishing one
instance of a word from all other instances of the same word. The technique can be thought of as
an approximation of sensory grounding, where the ID part stands for the sensory referent of the
word.

The ID+content technique can be applied to any word in the training data, and in principle, the
number of instances per word is unlimited. This allows us to approximate a large vocabulary with
only a small number of semantically distinct representations at our disposal. Word discrimination
degrades approximately linearly as a function of the number of instances. This is remarkable since
the number of di�erent input/output patterns grows polynomially.

9

 TRAIN
role bindings

 PLANE
role bindings

 BUS
role bindings

 GROCERY
role bindings

 CLOTH
role bindings

 ELECTR
role bindings

 COFFEE
role bindings

 FAST
role bindings

ELECTRCLOTH

GROCERY

PLANEBUS

TRAIN

S tory
representation

Scripts

Tracks

Roles

JLMB

REST SHOP

TRAVEL

COFFEE

FANCY

FAST

FIGURE 5: The hierarchical feature map classi�cation of script-based stories. Labels indicate
the maximally responding unit for the di�erent scripts and tracks. This particular input story representation
is classi�ed as an instance of the restaurant script (top level) and fancy-restaurant track (middle level), with
role bindings customer=John, food=lobster, restaurant=MaMaison, tip=big (i.e., JLMB, bottom level).

7 Episodic memory

The episodic memory in DISCERN is a hierarchical feature map system (Miikkulainen, 1990c)
combined with the trace feature map mechanism (Miikkulainen, 1992). The map hierarchy provides
the organization for the memory, and the trace feature map technique implements storage and
retrieval of memory traces.

7.1 Map hierarchy

The feature map hierarchy is a pyramid organized according to the hierarchical taxonomy of script-
based stories (Figure 5). The highest level of the hierarchy is a single feature map that lays out
the di�erent script classes. Beneath each unit of this map there is another feature map that lays
out the tracks within the script. The di�erent role bindings within each track are separated at the
bottom level. The map hierarchy receives a story representation as its input and classi�es it as an
instance of a particular script, track, and role binding. In other words, the map hierarchy provides
a unique memory representation for each script-based story.

Let us follow the classi�cation of the story about John's visit to MaMaison. The top-level
map receives the complete story representation vector and maps it onto the unit labeled REST,
for restaurant script (Figure 5). This unit compresses the vector by removing components whose
values are the same in all restaurant stories. The representation now consists of information that

10

best distinguishes between the di�erent restaurant stories. The REST-unit passes the compressed
representation down to its submap, which classi�es it as an instance of the fancy-restaurant track.
Again, the FANCY-unit removes the components common to all fancy-restaurant stories, and passes
the highly compressed vector to its submap. The representation is now limited to information about
the role bindings, and it is mapped onto the unit representing customer=John, food=lobster,
restaurant=MaMaison, tip=big.

A higher-level map in the hierarchy acts as a �lter: (1) it chooses the relevant input items for
each lower-level map, and (2) compresses the representation of these items to the most relevant
components. Maps lower in the hierarchy form increasingly �ner distinctions between the stories.

The hierarchical script taxonomy is extracted from examples of story representations. The
pyramid structure itself is predetermined and �xed, but the maps are self-organized one level at a
time from top to bottom. Each unit independently determines how to compress its input vectors
by �nding components with least variance.

Hierarchical feature maps have a number of properties that make them useful for memory
organization: (1) The organization re
ects the properties of the data, the hierarchy representing its
taxonomy, and maps laying out the topology of each level. (2) The most salient components of the
input data are singled out, and more resources are allocated for representing them accurately. (3)
The classi�cation is very robust, and usually correct even if the input vector is noisy or incomplete.
(4) The organization is formed in an unsupervised manner, extracting it from input examples.
(5) Self-organizing a hierarchy of small maps instead of a single large one means dividing the
classi�cation task into hierarchical subgoals, which is an e�cient way to reduce complexity.

7.2 Trace feature maps

An ordinary feature map is a classi�er, mapping an input vector onto a location in the map. A trace
feature map, in addition, creates a memory trace at that location. The map remembers that at
some point previously it had received an input item which was classi�ed at the particular location.
The traces can be stored one at a time, as stories are read in, and retrieved with a partial cue.

A trace feature map is a single ordered feature map with modi�able lateral connections between
the units (Figure 6). Initially, the lateral connections are all inhibitory. When an input vector
is presented to this map, a localized activity pattern forms as a response. A trace is created
by modifying the lateral connections within this response. A connection to a unit with higher
activity is made excitatory, while a connection to a unit with lower activity is made inhibitory,
both proportionally to the activity level of the source unit. The units within the response now
\point" towards the unit with highest activity (Figure 6).

A stored vector is retrieved by giving the map an approximation of the vector as a cue. The
initial response is again a localized activity pattern, and because the map is topological, it is likely
to be located somewhere near the stored trace. If the cue is close enough, the lateral connections
pull the activity to the center of the trace, and the external input weights of the most highly
active unit give the stored vector. If the cue is too far away, the initial response does not reach
the \basin" of the trace, and the activity oscillates between nonactivity (caused by the inhibitory
lateral connections) and the initial response. In other words, the trace feature map can complete a
partial cue, and indicate when there is no appropriate trace in the memory.

The trace feature map exhibits interesting memory e�ects that result from interactions between
traces. Later traces capture units from earlier ones, making later traces more likely to be retrieved

11

FIGURE 6: A trace feature map. Three traces (delineated by the large circles) are stored in the map.
Line segments indicate excitatory lateral connections originating from each unit, with length and width
proportional to the magnitude of the weight. Inhibitory connections are not shown. The trace at right has
partially obscured an earlier trace.

(Figure 6). The extent of the basins determines the memory capacity. The smaller the basins,
the more traces will �t in the map, but more accurate cues are required to retrieve them. If the
memory capacity is exceeded, older traces will be selectively replaced by newer ones. Traces that
are unique, that is, located in a sparse area of the map, are not a�ected, no matter how old they
are. Similar e�ects are common in human long-term memory (Baddeley, 1976; Postman, 1971).

7.3 Storage and retrieval

A story is represented in the episodic memory by the maximally responding units at the script,
track, and role-binding levels. However, each unit on a role-binding map stands for a unique story,
and a trace needs to be created only at the bottom level. The script and the track level are ordinary
feature maps, while the role-binding level consists of trace feature maps.

When a representation is stored in the episodic memory, the map hierarchy determines the
appropriate role-binding map and the location on that map. The trace feature map mechanism
then creates a memory trace at that location.

A story is retrieved from the memory by giving it a partial story representation as a cue. Unless
the cue is highly de�cient, the map hierarchy is able to recognize it as an instance of the correct
script and track, and form a partial cue to the role-binding map. The trace feature map mechanism
then completes the role binding. The complete story representation is retrieved from the weight
vectors of the maximally responding units at the script, track, and role-binding levels.

8 Connecting the modules in DISCERN

8.1 Performance phase

Let us follow DISCERN (Figure 1) as it processes the story about John's visit to MaMaison. The
lexical representations of each word are presented to the lexical map of the lexicon, which produces

12

the corresponding semantic representation as its output (Figure 2). These are fed one at a time to
the sentence parser, which gradually forms a stationary case-role representation of each sentence at
its output layer (Figure 7). After a period is input, ending the sentence, the �nal case-role pattern
is fed to the input of the story parser.

In a similar manner, the story parser receives a sequence of sentence case-role representations
as its input, and forms a stationary slot-�ller representation of the whole story at its output layer
(Figure 8). This is a representation of the story in terms of its role bindings, and constitutes the
�nal result of the parse. The story representation is fed to the episodic memory, which classi�es it
as an instance of a particular script, track, and role binding, and creates a trace in the appropriate
role-binding map (Figure 5).

The generator subsystem reverses the parsing process. The story generator network receives
the story representation as its input and generates a sequence of sentence case-role representations.
Each of these is fed to the sentence generator, which outputs the semantic representations of the
output words one at a time. Finally, the lexicon transforms these into lexical words.

The sentence parser and the sentence generator are also trained to process question sentences
and answer sentences. The cue former receives the case-role representation of the question (Figure 9)
produced by the sentence parser, and generates an approximate story representation as its output
(Figure 10). This pattern is fed to the episodic memory, which classi�es it as an instance of a
script, track, and role binding. The trace feature map settles to a previously stored memory trace,
and the complete story representation (Figure 8) is retrieved from the weights of the maximally
responding units.

The answer producer receives the complete story representation, together with the case-role
representation of the question, and generates a case-role representation of the answer sentence
(Figure 11), which is then output word by word by the sentence generator.

8.2 Training phase

A good advantage of the modular architecture can be made in training the system (Figure 12). The
tasks of the six processing modules are separable, and they can be trained separately as long as
compatible I/O material is used. The modules must be trained simultaneously to ensure that they
will develop and learn to use the same semantic representations. The hierarchical organization of
the episodic memory can be developed at the same time.

The lexicon ties the separated tasks together. Each FGREP network tries to modify the repre-
sentations in such a manner that its performance in its own task would improve. The requirements
of the di�erent tasks are combined, and the representations are never exactly optimal to any in-
dividual network. The networks compensate by adapting their weights, so that, in the end, the
representations and weights of all networks are in harmony: the output patterns produced by
one network are exactly what the next network had learned to process as its input, and the �nal
representations re
ect the combined use of the words in the six tasks.

9 Discussion of DISCERN

The complete DISCERN system performs very well in the script processing task. Missing events
and role �llers are inferred whenever possible, and at the output, about 98% of the words are
correct (tested with 96 three-sentence stories, instantiated from three scripts, each with three

13

Case roles

Concept
Concepts

Agent A c t Recipnt Pat ientPa t -a t t r Location

John left waiter big tip

representations

FIGURE 7: Case-role representation of the sentence John left the waiter a big tip. The
concept representations in each case-role correspond to the concept representations in the lexicon.

rep.

F i l le rs

RolesScr ip t R/CstmrTrack R/Food R/Restr R/Tip

$fancy John MaMaisonlobster good big

R/Taste

$restr
Concept

FIGURE 8: Representation of the story by its role bindings. The assemblies are data-speci�c: their
interpretation depends on the pattern in the script slot. The role names R/... are speci�c for the restaurant
script.

Agent A c t Recipnt Pat ientPa t -a t t r Location

John ate what MaMaison

FIGURE 9: Case-role representation of the question What did John eat at MaMaison? Questions
are represented as sentences, but processed through a di�erent pathway.

Scr ip t R/CstmrTrack R/Food R/Restr R/Tip

$fancy John MaMaison(?) (?)

R/Taste

$restr good

FIGURE 10: Memory cue. Most of the story representation is complete, but the patterns in Food and
Tip slots indicate averages of all possible alternatives.

Agent A c t Recipnt Pat ientPa t -a t t r Location

John ate lobstergood

FIGURE 11: Case-role representation of the answer John ate a good lobster.

14

Lexicon

Episodic
Memory

Sentence
Parser

S t o r y
Parser

Sentence
Generator

S t o r y
Generator

Answer
Producer

Cue
Former

FIGURE 12: Training con�guration. Each module is trained separately and simultaneously with com-
patible I/O data (originating from the same example stories). There is no propagation between modules,
but they simultaneously perform di�erent parts of the same story processing tasks. All processing modules
also modify the same representation set in the lexicon.

tracks, each with three open roles, and two instances cloned for each �ller word). If there is
not enough information to �ll a role, the most likely �ller is selected and maintained throughout
paraphrase generation. Thus, DISCERN performs plausible role bindings|an essential task in
high-level inferencing and one that has been postulated to be very di�cult for parallel distributed
processing systems to achieve (Dyer, 1991).

The system extracts the appropriate inferences automatically, based on statistical correlations
in the input examples. This di�ers from the symbolic models of script processing (Schank and
Abelson, 1977; Cullingford, 1978; Dyer, 1983), where the inferences are based on handcrafted
rules and representations of the script. Similarly, the episodic memory is organized automatically
according to similarities between example stories, as opposed to hand-coded memory structures and
organization rules in comparable symbolic systems, such as those of Lebowitz (1980) and Kolodner
(1984). On the other hand, DISCERN currently does not have mechanisms for representing multiple
simultaneously active scripts, or stories that consist of sequential activation and deactivation of
multiple scripts.

A modular PDP system can only operate if it is stable, that is, if small deviations from the nor-
mal
ow of information are automatically corrected. DISCERN has several automatic safeguards
against minor inaccuracies and noise. The semantic representations are distributed and redundant,
and inaccuracies in the output of one module are cleaned up by the module that uses the output.
The memory modules clean up by categorical processing: a noisy input is recognized as a represen-
tative of an established class and replaced by the correct representation of that class. As a result,
small deviations do not throw the system o� course, but rather the system �lters out the errors
and returns to the normal course of processing.

The subsymbolic approach is e�ective in script processing because scripts are regular event
sequences, and their structure can easily be extracted by a neural network system. Script inferences

15

are intuitive, immediate, and occur without conscious control, matching the statistical nature of
processing in distributed networks. However, DISCERN cannot handle deviations from scripts very
well. For example, in the training data the customer never leaves a tip in a fast-food restaurant.
If later DISCERN encounters a fast-food-restaurant story where customer actually does leave a
tip, DISCERN will simply override this information. Tip=none has become part of the established
fast-food-restaurant track, and DISCERN has no mechanism to represent a deviation from the
regular course of events. Another major limitation of DISCERN as a cognitive model is that the
slot-�ller representations for each script must be designed by hand. DISCERN does not discover
new scripts by itself.

10 Further issues in building integrated connectionist models

Although processing simple script instantiations is a start, there is a long way to go before integrated
connectionist models will rival the best symbolic AI systems. For example, in story understanding,
symbolic systems have been developed that analyze realistic stories in-depth, based on higher-
level knowledge structures such as goals, plans, themes, a�ects, beliefs, argument structures, plots,
and morals (e.g. Alvarado et al., 1990; Dyer, 1983; Reeves, 1991; Schank and Abelson, 1977).
Subsymbolic systems are not yet capable of modeling cognitive processes at this level. Subsymbolic
systems are very good at dealing with regularities and combining large amounts of simple pieces of
evidence, but they do not easily lend themselves to processing complex knowledge structures and
unusual and novel situations. In designing subsymbolic models that would do that, we are faced
with two major problems: (1) how should control of complex processing strategies be implemented,
and (2) how should abstractions be represented and learned.

10.1 Connectionist control of cognitive processes

Integrated connectionist models such as DISCERN demonstrate how far it is possible to go in
modeling high-level behavior by combining simple low-level processes. DISCERN is not \conscious"
of what it is doing, that is, it does not have representations concerning the nature of its own
representations and processes. As a result, it cannot employ high-level strategies to control its own
processes; its behavior is limited to a series of re
ex responses.

With a high-level monitor and control mechanism, it would be possible to build much more
powerful subsymbolic models:

1. Current systems try to process every input in exactly the same way, regardless of whether or
not the input makes sense. A high-level control system could monitor the feasibility of the
task and the quality of output, and initiate exception processing when the usual mechanisms
fail. For example, unusual events and deviations from a script could be detected and then
processed by special mechanisms.

2. Retrieval from episodic memory could be controlled intelligently. The monitor could decide
how to search for traces and how to respond when multiple traces are found, or when nothing
is found.

3. The monitor could keep the system on a stable path by detecting and correcting internal
inaccuracies that cannot be caught by the automatic low-level �lters (such as confusions
between IDs in DISCERN).

16

4. Sequential high-level procedures and reasoning mechanisms could be implemented, such as
comparing several items in the memory and applying high-level rules to conclude new infor-
mation.

It might be possible to implement the necessary monitoring, modulation, and decision-making
tasks with trainable control networks. These modules would receive input from several pathways
in the system, thus monitoring its state, and their output would gate the system pathways through
multiplicative connections (such as those of Pollack, 1987; Rumelhart et al., 1986a). Equipped with
such mechanisms, subsymbolic models would no longer be limited to automatic re
ex behavior, and
would be able to perform much more robustly in the real world.

10.2 Representing and learning abstractions

Representing structure, processing exceptions, and making dynamic inferences are often cited as
the three main challenges for subsymbolic arti�cial intelligence. I will argue that these problems
are closely related, and stem from the fundamental limitation of the current architectures in rep-
resenting and learning abstractions of data.

Let us brie
y review each problem. First, assembly-based representations, as they are commonly
used in subsymbolic systems, must be designed in advance and remain �xed. Units cannot be
created or moved around in the network, but can only function in the same exact con�guration
they were trained in. It is very di�cult to represent multiple �llers (e.g., the man and the boy),
additional constituents, and recursive structures (see Dolan, 1989; Hinton, 1990; Pollack, 1990;
Smolensky, 1990 for possible approaches).

Second, processing knowledge in PDP models is based on statistical regularities; PDP models
cannot handle deviations from regularities very well (Miikkulainen and Dyer, 1989; St. John, 1992).
Exceptions are simply overridden. The network has no representation for all-or-none role bindings,
and as a result it cannot process truly novel inputs according to a symbolic-like higher-level rule.

The third problem, that of dynamic inferencing (Touretzky, 1991), is evident in such areas as
processing relative clauses. A sentence-processing network may be able to generalize to di�erent
versions of the same sentence structure, but not to new recursive clause structures (Miikkulainen,
1990b). It cannot make inferences by dynamically combining processing knowledge it has previously
seen only in separate situations.

All these three problems originate from the use of distributed neural networks as statistical
pattern transformers. The networks are trained to compute smooth functions between patterns,
and as a result they are only able to interpolate between the patterns they were trained on. They
cannot represent di�erent alternatives distinctly, and they cannot extrapolate to new patterns. In
order to process novel constituents and novel structures, the networks must be supplied with meta-
level information that describes the structure of the data, such as schemas, rules, and abstractions.
A novel input needs to be recognized in terms of meta-level categories, and processed according to
abstract knowledge in that category. In terms of the above problems:

1. A
exible representation must contain information telling what the components are and how
they are related.

2. Processing exceptions requires explicit representation of the general rules and variable bind-
ings, so that the network is able to choose to use them to override the statistical regularities.

17

3. Dynamic inferencing is only possible if the meta-structure of the input is explicitly represented.
For example, if the sentence-processing system is able to represent the general structure of a
relative clause, it would be able to apply that structure to novel clause constructs.

Abstractions are regularities that best describe the structure of the data. It might be possible to
devise a self-organizing process that is sensitive to the internal structure of the training examples.
The network would learn the processing task, and at the same time develop a layout of rules,
schemas, and other abstract structures that best describe the data. Further input would then
be interpreted and represented in terms of this layout (i.e., in terms of the internal structure of
the input). Such a capacity would be a major step toward extending subsymbolic AI beyond the
limitations of current models.

11 Conclusion

Above all, DISCERN serves to show that subsymbolic high-level AI is feasible. DISCERN con-
stitutes a �rst implementation of the integrated connectionist approach, demonstrating that it is
possible to build complete models from independently designed connectionist components. The
scale-up properties of the approach seem quite good. Hierarchical modular structure with sequen-
tial communication e�ciently reduces the complexity of the high-level task. The modules �lter
out each other's errors, and system performance is stable. With meaningful intermediate repre-
sentations, more modules could be added to the existing system. The system develops its own
representations for intercommunication between modules, and these representations are optimized
for the overall task.

DISCERN also grounds several high-level phenomena in subsymbolic (statistical) processes.
Learning word meanings, script processing, and episodic memory organization are based on self-
organization and gradient-descent in error. Script-based inferences, expectations, and defaults
automatically result from generalization and graceful degradation in distributed networks. At the
level of maps, pathways, and networks, DISCERN is also a plausible physical model. Several
types of performance errors in role binding, episodic memory, and lexical access are explained by
the physical organization of the system, and many aphasic impairments can be modeled by local
damage to the model.

The two main liabilities of DISCERN are that processing is based on a series of re
ex responses,
and that many of the internal knowledge structures are �xed and speci�ed in advance. Developing
methods for connectionist control of high-level behavior and for learning more of the necessary
knowledge structures automatically are the two main areas for future research. Progress in these
areas should lead eventually to substantially more powerful subsymbolic AI systems.

Acknowledgement

This research was supported in part by an Initial Teaching Alphabet (ITA) Foundation grant and
by fellowships from the Academy of Finland, the Emil Aaltonen Foundation, the Foundation for
the Advancement of Technology, and the Alfred Kordelin Foundation (Finland) when the author
was at UCLA. The simulations were carried out in part on the CRAY Y-MP8/864 at the San Diego
Supercomputer Center.

18

References

Alvarado, S., Dyer, M. G., and Flowers, M. 1990. Argument representation for editorial
text. Knowledge-Based Systems 3, 87{107.

Baddeley, A. D. 1976. The psychology of memory. Basic Books, New York.

Caramazza, A. 1988. Some aspects of language processing revealed through the analysis of
acquired aphasia: The lexical system. Annual Review of Neuroscience 11, 395{421.

Coltheart, M., Patterson, K., and Marshall, J. C. (eds.) 1988. Deep dyslexia, second
edition. Routledge and Kegan Paul, London; Boston.

Cullingford, R. E. 1978. Script application: Computer understanding of newspaper stories.
Ph.D thesis, Department of Computer Science, Yale University, New Haven, Connecticut.
(Technical Report 116).

Dolan, C. P. 1989. Tensor manipulation networks: Connectionist and symbolic approaches to

comprehension, learning and planning. Ph.D thesis, Computer Science Department, University
of California, Los Angeles. (Technical Report UCLA-AI-89-06).

Dyer, M. G. 1983. In-depth understanding: A computer model of integrated processing for narra-

tive comprehension. MIT Press, Cambridge, Massachusetts.

Dyer, M. G. 1991. Symbolic neuroengineering for natural language processing: A multilevel
research approach. In: Barnden, J. A., and Pollack, J. B. (eds.), High-level connectionist
models, Ablex, Norwood, New Jersey, pp. 32{86.

Dyer, M. G., Cullingford, R. E., and Alvarado, S. 1987. Scripts. In: Shapiro, S. C. (ed.),
Encyclopedia of arti�cial intelligence, Wiley, New York, pp. 980{994.

Elman, J. L. 1990. Finding structure in time. Cognitive Science 14, 179{211.

Elman, J. L. 1991. Incremental learning, or The importance of starting small. In: Proceedings of
the 13th Annual Conference of the Cognitive Science Society, Erlbaum, Hillsdale, New Jersey,
pp. 443{448.

Feldman, J. A. 1989. Neural representation of conceptual knowledge. In: Nadel, L., Cooper,
L. A., Culicover, P., and Harnish, R. M. (eds.), Neural connections, mental computation,
MIT Press, Cambridge, Massachusetts, pp. 68{103.

Fodor, J. A. 1983. Modularity of mind: An essay on faculty psychology. MIT Press, Cambridge,
Massachusetts.

Harris, C. L., and Elman, J. L. 1989. Representing variable information with simple recurrent
networks. In: Proceedings of the 11th Annual Conference of the Cognitive Science Society,
Erlbaum, Hillsdale, New Jersey, pp. 635{642.

Hinton, G. E. 1990. Mapping part-whole hierarchies into connectionist networks. Arti�cial

Intelligence 46, 47{75.

Kohonen, T. 1989. Self-organization and associative memory, third edition. Springer, Berlin;
Heidelberg; New York.

Kohonen, T. 1990. The self-organizing map. Proceedings of the IEEE 78, 1464{1480.

Kolodner, J. L. 1984. Retrieval and organizational strategies in conceptual memory: A computer

model. Erlbaum, Hillsdale, New Jersey.

19

Laird, J. E., Newell, A., and Rosenbloom, P. S. 1987. SOAR: An architecture for general
intelligence. Arti�cial Intelligence 33, 1{64.

Lebowitz, M. 1980. Generalization and memory in an integrated understanding system. Ph.D
thesis, Department of Computer Science, Yale University, New Haven, Connecticut. Research
Report 186.

McCarthy, R. A., and Warrington, E. K. 1990. Cognitive neuropsychology: A clinical intro-

duction. Academic Press, New York.

McClelland, J. L., Rumelhart, D. E., and the PDP Research Group 1986. Parallel

distributed processing: Explorations in the microstructure of cognition, Vol. 2: Psychological

and biological models. MIT Press, Cambridge, Massachusetts.

Miikkulainen, R. 1990a. A distributed feature map model of the lexicon. In: Proceedings of the
12th Annual Conference of the Cognitive Science Society, Erlbaum, Hillsdale, New Jersey, pp.
447{454.

Miikkulainen, R. 1990b. A PDP architecture for processing sentences with relative clauses.
In: Karlgren, H. (ed.), Proceedings of the 13th International Conference on Computational

Linguistics, Yliopistopaino, Helsinki, Finland, pp. 201{206.

Miikkulainen, R. 1990c. Script recognition with hierarchical feature maps. Connection Science

2, 83{101.

Miikkulainen, R. 1992. Trace feature map: A model of episodic associative memory. Biological
Cybernetics 67, 273{282.

Miikkulainen, R. 1993. Subsymbolic natural language processing: An integrated model of scripts,

lexicon, and memory. MIT Press, Cambridge, Massachusetts.

Miikkulainen, R., and Dyer, M. G. 1989. A modular neural network architecture for sequential
paraphrasing of script-based stories. In: Proceedings of the International Joint Conference on
Neural Networks (Washington, DC), Vol. II, IEEE, Piscataway, New Jersey, pp. 49{56.

Miikkulainen, R., and Dyer, M. G. 1991. Natural language processing with modular neural
networks and distributed lexicon. Cognitive Science 15, 343{399.

Minsky, M. 1985. Society of mind. Simon & Schuster, New York.

Newell, A. 1980. Physical symbol systems. Cognitive Science 4, 135{183.

Newell, A. 1991. Uni�ed theories of cognition. Harvard University Press, Cambridge, Mas-
sachusetts.

Pollack, J. B. 1987. Cascaded back-propagation on dynamic connectionist networks. In: Pro-
ceedings of the Ninth Annual Conference of the Cognitive Science Society, Erlbaum, Hillsdale,
New Jersey, pp. 391{404.

Pollack, J. B. 1990. Recursive distributed representations. Arti�cial Intelligence 46, 77{105.

Postman, L. 1971. Transfer, interference and forgetting. In: Kling, J. W., and Riggs, L. A.
(eds.), Woodworth and Schlosberg's experimental psychology, third edition, Holt, Rinehart and
Winston, New York, pp. 1019{1132.

Reeves, J. F. 1991. Computational morality: A process model of belief con
ict and resolution

for story understanding. Ph.D thesis, Computer Science Department, University of California,
Los Angeles. (Technical Report UCLA-AI-91-05).

20

Rumelhart, D. E., Hinton, G. E., and McClelland, J. L. 1986a. A general framework for
parallel distributed processing. In: Rumelhart, D. E., and McClelland, J. L. (eds.),
Parallel distributed processing: Explorations in the microstructure of cognition, Vol. 1: Foun-

dations, MIT Press, Cambridge, Massachusetts, pp. 45{76.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. 1986b. Learning internal representa-
tions by error propagation. In: Rumelhart, D. E., and McClelland, J. L. (eds.), Parallel
distributed processing: Explorations in the microstructure of cognition, Vol. 1: Foundations,
MIT Press, Cambridge, Massachusetts, pp. 318{362.

Rumelhart, D. E., and McClelland, J. L. 1986. On learning past tenses of English verbs.
In: Rumelhart, D. E., and McClelland, J. L. (eds.), Parallel distributed processing:

explorations in the microstructure of cognition, Vol. 2: Psychological and biological models,
MIT Press, Cambridge, Massachusetts, pp. 216{271.

Rumelhart, D. E., McClelland, J. L., and the PDP Research Group 1986c. Parallel

distributed processing: Explorations in the microstructure of cognition, Vol. 1: Foundations.
MIT Press, Cambridge, Massachusetts.

St. John, M. F. 1992. The story gestalt: A model of knowledge-intensive processes in text
comprehension. Cognitive Science 16, 271{306.

St. John, M. F., and McClelland, J. L. 1990. Learning and applying contextual constraints
in sentence comprehension. Arti�cial Intelligence 46, 217{258.

Schank, R. C., and Abelson, R. P. 1977. Scripts, plans, goals, and understanding: An inquiry

into human knowledge structures. Erlbaum, Hillsdale, New Jersey.

Sejnowski, T. J., and Rosenberg, C. R. 1987. Parallel networks that learn to pronounce
English text. Complex Systems 1, 145{168.

Shallice, T. 1988. From neuropsychology to mental structure. Cambridge University Press,
Cambridge, United Kingdom.

Simon, H. A. 1969. The sciences of the arti�cial. MIT Press, Cambridge, Massachusetts.

Smolensky, P. 1988. On the proper treatment of connectionism. Behavioral and Brain Sciences

11, 1{74.

Smolensky, P. 1990. Tensor product variable binding and the representation of symbolic struc-
tures in connectionist systems. Arti�cial Intelligence 46, 159{216.

Touretzky, D. S. 1991. Connectionism and compositional semantics. In: Barnden, J. A.,
and Pollack, J. B. (eds.), High-level connectionist models, Ablex, Norwood, New Jersey, pp.
17{31.

21

