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Abstract

DISLEX is an artificial neural network model of the mental lexicon. It was built to test com-
putationally whether the lexicon could consist of separate feature maps for the different lexical
modalities and the lexical semantics, connected with ordered pathways. In the model, the ortho-
graphic, phonological, and semantic feature maps and the associations between them are formed in
an unsupervised process, based on cooccurrence of the lexical symbol and its meaning. After the
model is organized, various damage to the lexical system can be simulated, resulting in dyslexic
and category-specific aphasic impairments similar to those observed in human patients.

1 Introduction

The human lexical system is believed to be highly modular, consisting of a central semantic com-
ponent and separate symbol memories for the different input and output modalities (Caramazza
1988; McCarthy and Warrington 1990). Such an architecture is intuitively compelling since the
modalities give rise to different representations, and they are processed through different neural
structures. Considerable experimental evidence also supports the dissociation of lexical compo-
nents. Modularity therefore forms a good guideline for building a computational model of the
lexical system.

How are the individual components implemented in the brain? Not much is known about the
structures underlying higher functions such as the lexicon. However, the perceptual mechanisms
are very well understood, and they appear to be organized around topological maps. For example,
nearby regions in the mammalian primary visual cortex respond to nearby regions in the retina
(Hubel and Wiesel 1959, 1965). Similar topological maps are known to exist in other sensory
systems and motor systems as well (Knudsen et al. 1987), and it is quite possible that higher-
level information is also represented in a similar manner. However, higher areas of the brain
represent abstract information, and it is difficult to establish to what features a particular neuron
is sensitive, let alone determine whether the sensitivity of neurons in a particular area forms a
topological organization. It has been possible to locate cells that are responsive to particular faces
and facial expressions, as well as neurons that respond selectively to different words, and these cells
appear to form localized groups (Hasselmo et al. 1989; Heit et al. 1989; Rolls 1984).
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Indirect evidence for localization in the lexical system comes from patients with brain lesions.
A number of patients have impairments of specific syntactic or semantic categories, such as con-
crete words, inanimate objects, and names of fruits and vegetables (Caramazza 1988; Hart et al.
1985; Warrington and Shallice 1984). Such impairments could result from localized damage to a
topological map that lays out the semantic properties of words.

These observations form the motivation for the DISLEX model of the human lexical system.
The main hypothesis to be tested computationally is that the lexical system consists of multiple
topological feature maps, each either representing the symbols within one modality or laying out
the word semantics. In the experiments reported in this paper, the DISLEX model was first
organized based on examples of desired input-output behavior, and then subjected to simulated
psycholinguistic experiments under various neural damage. The dyslexic and aphasic behavior
observed in the model as a result was consistent with those of human patients. Because such
behavior emerges automatically from the DISLEX architecture (and is not programmed in per se),
it constitutes computational support for the hypothesis. The model also predicts that form-specific
impairments would be possible in the human lexical system.

The orthographic and semantic components of DISLEX were used as the lexicon for the DIS-
CERN subsymbolic story processing system (Miikkulainen 1993). This paper describes the first
full implementation of DISLEX, including the phonological modality as well. Below, an overview
of DISLEX is first given. The orthographic, phonological, and semantic representations used in the
model are reviewed, followed by an analysis of the topological maps in DISLEX and the mechanisms
for associating lexical symbols with their meanings. The behavior of DISLEX is illustrated focusing
on priming and disambiguation, dyslexic impairments, and category-specific aphasic impairments.
A discussion of the limitations of the model and future research directions concludes the paper.

2 Overview of the DISLEX model

DISLEX consists of two main parts: memories for the lexical symbols in the different input and
output modalities, and the memory for the lexical semantics (figure 1). The symbol memories store
distributed representations (vectors of gray-scale values between 0 and 1) for the orthographic
and phonological word symbols that are used in communication with the external world. For
example, the orthographic representation for DOG consists of the visual form of the letters D, O,
and G, while the phonological representation stands for the string of phonemes /d/, /Q/, and /g/.
The semantic memory consists of distributed representations of distinct concepts. For example,
the concept dog refers to a specific animal and contains information such as domestic, mammal,
brown, and so on. There is a pathway from the semantic memory to higher-level systems such as
language processing and episodic memory, which use the semantic representations. The semantic
memory is also connected to sensorimotor memory, which contains visual images of objects and
other perceptual and motor information. This pathway allows nonlinguistic access to the semantic
memory, and provides a possible means for symbol grounding.

The symbol memories and the semantic memory are implemented as feature maps. There is one
map for each input and output modality and one for the semantic memory. Each unit in a feature
map represents a word (i.e. a symbol or a concept) in two ways: (1) each unit has an internal
parameter vector, also called the input weight vector, which stores a distributed representation for
a word, and (2) each unit is a local representation for that word on the map. The maps lay out
each high-dimensional distributed representation space on a 2-D network so that the similarities
between words become apparent (figure 2). Lexical symbols with similar form, such as BALL and
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Figure 1: The DISLEX model of the human lexical system. The lexical symbol memories are modality
and direction specific. Dashed lines indicate associative pathways, solid lines propagation of distributed
representations.

DOLL, are represented by nearby units in the symbol map. In the semantic map, semantic concepts
with similar content, such as livebat and prey, are mapped near each other. When a word
representation is input, the units in the map respond according to how similar their input weight
vector is to the word representation. The maximally responding unit is taken to represent the
input word on the map, and its label indicates the classification of the input. For example, an
orthographic input pattern may be recognized this way as an instance of the symbol DOG (figure 2).

The symbol maps are densely connected to the semantic map with one-way associative con-
nections (figure 2). Each symbol unit is initially connected to all semantic units, although only
a small subset of those connections remain effective after learning. A localized activity pattern
representing a symbol (e.g. DOG) in an input map will cause a localized activity pattern to form
in the semantic map, representing the meaning of the symbol. The units in the semantic map
have input weight vectors just like the symbol units, and these vectors represent distinct meanings.
After the maximally active semantic unit has been found (the one labeled dog), the corresponding
semantic representation is obtained from the input weights of this unit (i.e. by propagating its
activity through the input weights to the output of the semantic map).

In addition to activation through the associative connections, units on the semantic map can be
activated in a normal feature map manner through the input connections. If a particular meaning
is to be output, its distributed representation is given as input to the semantic map. A localized
activity pattern results, and activation propagates through the associative connections to the output
maps. The maximally activated symbol map unit then stands for the symbol corresponding to the
input meaning. Its distributed representation is obtained from the input weights of the maximally
activated symbol map unit. The lexicon thus transforms a symbol representation into a semantic
representation, and vice versa, and serves as an input/output filter for language processing.

The symbol and concept maps are organized and the associative connections between them
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Figure 2: Lexicon propagation. The orthographic input symbol DOG is translated into the semantic
concept dog in this example. The representations are vectors of gray-scale values between 0 and 1, stored
in the weights of the feature map units. The size of the unit on the map indicates how strongly it responds.
Only a few strongest associative connections of the orthographic input unit DOG (and only that unit) are
shown.

are formed simultaneously in an unsupervised learning process, by presenting the system with
cooccurring lexical symbols and their meanings. Before discussing the details of the self-organizing
process, let us look at how the symbols and concepts are represented.

3 Representing symbols and meanings

As customary in artificial neural network models, both the symbols and meanings are represented
distributively as feature vectors, or vectors of gray-scale values between 0 and 1. It is the similarities
among these vectors that determines the organization of the lexicon, and therefore they must be
designed so that they capture the essential similarities in the domain.

3.1 Symbol representations

It is reasonable to assume that the neural representations in each lexical symbol modality reflect
the structure of the physical symbols they stand for. Therefore in DISLEX, the orthographic
representations reflect the visual similarities among the written words, and spoken words that
sound similar are represented by similar phonological feature vectors. The same orthographic
and phonological representations are used for both input and output. While certainly the motor
representations for the symbols are different from their perceptual counterparts, it is assumed that
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Figure 3: The training data for the lexicon. Orthographic representations are blurred bitmaps of the
orthographic words and phonological representations consist of concatenations of phoneme representations.
Concept representations were developed by FGREP in the case-role assignment task and stand for distinct
meanings. Gray-scale boxes indicate component values between 0 and 1. The connections depict the mapping
between the symbols and their meanings. Many concepts map to several synonymous lexical symbols, and
the homonymous symbols CHICKEN and BAT map to two distinct concepts each. The orthographic and
phonological symbols correspond one-to-one to each other in this data.

they encode essentially the same information and can be approximated by representations of the
physical properties of the symbols.

In the orthographic domain, each letter of the alphabet was given a value between 0 and 1
according to its darkness, measured by the number of black pixels in its bitmap representation
(appendix A). The word representation vectors were then formed by concatenating the darkness
values of the individual letters (figure 3). This encoding scheme is very simple and leaves out
many orthographic details: in effect, the representations stand for extremely blurred pictures of the
words. This scheme was chosen over more complicated ones for two reasons: (1) In the orthographic
domain, there is no obvious more accurate alternative that would capture the similarities any better.
(2) This scheme is quite adequate for the DISLEX task and data. Each written word symbol has
a unique representation, and similar symbols have similar representations (figure 3).

A slightly more detailed encoding was employed in the phonological domain, not because more
details were necessary, but because such an encoding is standard in this domain. Each phoneme
was represented as a feature vector according to the International Phonetic Alphabet, with numeric
values coding the features of place and manner of articulation, sound, chromaticity, and sonority



(appendix B). The phoneme representation vectors were then concatenated to form the word
representations (figure 3). Again, each phonological word symbol has a unique representation in
the resulting vectors, and similar words have similar representations.

3.2 Concept representations

The semantic concept representations stand for distinct meanings in the language. Although it is
possible to encode meanings by hand as feature vectors (see e.g. McClelland and Kawamoto 1986),
as was done for symbols, it is difficult to decide what the appropriate semantic features should be.

With the FGREP-mechanism (Miikkulainen 1993; Miikkulainen and Dyer 1991), it is possible
to derive a distributed encoding automatically, based on examples of how the words are used in the
language. An FGREP-network is a three-layer backpropagation (Rumelhart et al. 1986) network,
where part of learning a task is to modify the input representations so that they best support the
task. Representations for items that are used in similar ways in the training examples become
similar, and in this sense, FGREP representations can be claimed to stand for the meanings of the
input items.

The semantic representations for DISLEX were formed with an FGREP network in the sentence
case-role assignment task of McClelland and Kawamoto (1986). A number of sentence examples
were generated based on a set of templates and semantic categories (listed in appendix C). Only
concepts that represented unique meanings among the lexical symbols were used. For example,
MAN, WOMAN, BOY, and GIRL were used exactly the same way in the data, and therefore they were
considered instances of the same concept: human. On the other hand, CHICKEN had two distinct
meanings: food and prey. Such ambiguities between symbols and meanings were set up inten-
tionally to make the lexicon mapping more interesting. The input to the network consisted of
the syntactic assignments of the sentence (e.g. subject=human, verb=ate, object=food), and the
network was trained to assign the correct semantic case roles for them (agent=human, verb=ate,
patient=food).

Starting with initially random representations and weights, the FGREP network was trained
with 0.1 learning rate for 2,000 epochs and with 0.05 for an additional 250 epochs, at which point
the average output error I;,, was 0.015. As a side effect of learning the case-role assignment task,
the network developed representations for the input concepts (figure 3). Words that belong to
the same semantic category (such as animals, hitters, etc.) have a number of uses in common,
and their representations have become similar. The total usage is different for each concept, and
consequently their representations are different. They stand for unique meanings.

The ambiguities between linguistic symbols and their meanings are shown explicitly in the
many-to-many mapping between unique symbols and unique meanings of figure 3. This data was
used to organize the lexicon.

4 Symbol and concept memories

The lexicon components are implemented as feature maps. The basic idea of self-organizing feature

maps is first briefly reviewed below, followed by a description of the symbol and concept maps in
DISLEX and their properties.
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Figure 4: A self-organizing feature map network. This network implements a mapping from a 3-
dimensional input space onto a 2-dimensional location in the network. The values of the input components,
weights, and the unit output are indicated by gray-scale coding.

4.1 Self-organizing feature maps

A 2-D topological feature map (Kohonen 1989, 1990) implements a topology-preserving mapping
from a high-dimensional input space onto a 2-D output space. The map consists of an array of
processing units, each with N weight parameters (figure 4). The map takes an N-dimensional
vector as its input and produces a localized pattern of activity as its output. In other words, the
input vector is mapped onto a location on the map.

Each processing unit receives the same input vector and produces one output value. The
response is proportional to the similarity of the input vector and the unit’s weight vector. The unit
with the largest output value constitutes the image of the input vector on the map. The weight
vectors are ordered in such a way that the output activity smoothly decreases with the distance
from the image unit, forming a localized response (an activity “bubble”).

The weight vectors approximate specific items of the input space in such a way that topological
relations are retained. This means roughly that nearby vectors in the input space are mapped
onto nearby units on the map. This is a very useful property, because the complex similarity
relationships of the high-dimensional input space (such as word representations) become visible on
the map.

The organization of the map (i.e. the assignment of the weight vectors) is formed in an unsu-
pervised learning process (Kohonen 1982b, 1989). The input items are randomly drawn from the
input distribution and presented to the network one at a time (figure 4). The map responds to each
vector by developing a localized activity pattern. The weight vector of the maximally responding
unit and each unit in its neighborhood are changed toward the input vector, so that these units will
produce an even stronger response to the same input in the future. This way, the map adapts in
two ways at each presentation: (1) the weight vectors become better approximations of the input
vectors, and (2) neighboring weight vectors become more similar. Together these two adaptation
processes eventually force the weight vectors to become an ordered map of the input space. The

7



process begins with very large neighborhoods, that is, the weight vectors change in large areas.
This results in a gross ordering of the map. The size of the neighborhood and the learning rate
decrease with time, allowing the map to make finer and finer distinctions between items.

There are several alternatives for implementing the similarity metric, neighborhood selection,
and weight change in feature maps. A biologically plausible process would be based on weighted
sum of the input, lateral inhibition and redistribution of synaptic resources (Kohonen 1982b; Sirosh
and Miikkulainen 1994). These mechanisms can be abstracted and replaced with computationally
more efficient ones without obscuring the process itself. The similarity in DISLEX is measured by
Euclidian distance, the neighborhood consists of a square area around the maximally responding
unit, and the weight changes are proportional to the Euclidian difference. More specifically, the
output 7;; of unit (7, j) in a lexicon map is

1 — Ix—m;;||—dmin if (i, ENC,
mj:{ AU ()

0 otherwise,

where x is the symbol or concept representation vector, m;; is the weight vector of unit (7, j), V.
is the neighborhood around the image unit ¢ (defined as the set of units within a certain vertical
and horizontal distance from ¢), and dy,;, is the smallest and dp.x the largest distance of x to a
unit in the neighborhood. This formula generates a regular concentrated activity pattern around
the maximally responding unit.

With «(t) as the gain, the weight components are changed according to the input vector —
weight vector difference:

pis (4 1) = { pig (1) + @(B)[6(8) = i (D] IF (i) € No(0), o)

ijx(t) otherwise,

where the neighborhood N.(t) shrinks with time.

4.2 Symbol and concept maps

The symbol and concept maps in DISLEX were organized independently and simultaneously, so
that associative connections between them could be developed at the same time (as discussed in
the next section). Because the same symbol representations were used for both input and output
in each modality, the input and output maps developed the same order. This common organization
is referred to as the orthographic map and the phonological map below.

During self-organization, each lexical symbol < semantic concept representation pair (figure 3)
was presented to the appropriate maps 150 times in random order. The same learning rate a(t) was
used for all maps and associative connections (equations 2 and 3). The learning rate was linearly
decreased from 0.1 to 0.05 during the first 50 epochs, then to 0.0 during the remaining 100 epochs.
At the same time, the neighborhood radii on all maps were decreased from 4 to 1 and then from 1
to 0.

In the self-organizing process, the symbol and concept representations become stored in the
weights of the feature map units. Each orthographic and phonological symbol has an image unit
on the appropriate symbol map, and this unit’s weight vector equals the representation for that
word. Semantic concepts are represented in the same manner. The weight vectors of intermediate
units represent combinations of representations. For example, an unlabeled semantic unit between
dog and predator has features of both domestic and carnivorous animals.
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Figure 5: The orthographic, phonological, and semantic maps. The input and output maps in each
modality have the same order, shown here only once in (a) and (b). (a) Orthographic map. Each unit in the
9 x 9 network is represented by a box, and the labels indicate the image unit for each symbol representation.
The map is divided into major subareas according to word length. (b) Phonological map. The labels indicate
the images for each phonological word representation. Again, the word length is the major ordering factor.
(c) Semantic map. The labels on this 7 x 7 map indicate the maximally responding unit for each concept
representation. The map is organized according to the semantic categories (table 5).

All final maps exhibit hierarchical knowledge organization (figure 5). Large areas are allocated
to different categories of words, and each area is divided into subareas with finer distinctions. The
symbol maps become mainly organized according to word length. There are separate, adjacent
areas for orthographic symbols with 3, 4, 5, 6, and 7 characters, and words with 3, 4, and 5
phonemes. Within these areas, similar words are mapped near each other. For example, BAT is
mapped between BOY and HIT and DOLL is located next to BALL in the orthographic map. Similarly
in the phonological map, /dQg/ and /dQl/, and /b$I/ and /b$1/ are mapped near each other.

The semantic map has three main areas: verbs, animate objects, and inanimate objects. Finer

distinctions reveal the semantic categories used in generating the sentence examples for FGREP
(table 5). For example, there are subareas for hitters, possessions, and fragile-objects, with vase,



which belongs to all these categories, at the center. Note that the categorization was not directly
accessible to the FGREP network or the feature map at any point. It was only implicitly represented
by the sentences that were input to the FGREP network. The categories were extracted by FGREP,
coded into the representations, and finally visualized on the semantic feature map. The final map
reflects both the syntactic and the semantic properties of the words.

In the self-organizing process, the distribution of the weight vectors becomes an approximation
of the input vector distribution (Kohonen 1982a, 1989; Ritter 1991; Ritter and Schulten 1986).
More weight vectors are allocated to dense areas of the input space, and as a result these areas are
magnified (represented to greater detail) on the map. This can be clearly seen in the word maps.
For example, the semantic representations for the different animals are very similar, spanning only
a very small part of the representation space (figure 3), yet a relatively large area is allocated for
the animals on the semantic map.

The two dimensions of the map do not necessarily stand for any recognizable features of the
input space. They develop automatically to facilitate best discrimination between input items. The
map tries to approximate high-dimensional similarities with space-filling (Peano) surfaces, and tries
to fill the whole area of the map with data. As a result, the ordered areas on the map are likely to
have complicated and intertwined, rather than compact and regular, shapes. This is the case in all
the maps in DISLEX.

4.3 Feature maps as lexicon components

To conclude, self-organizing feature maps have several properties that make them a good model for
the lexical system:

1. The classification performed by a feature map is based on a large number of parameters
(the weight components), making it very robust. Incomplete or somewhat erroneous word
representations can be correctly recognized.

2. Once an inexact word symbol or concept is recognized, it is possible to recover its exact
representation from the weights of the image unit. In other words, categorical perception can
be modeled.

3. The map tends to be continuous, containing many intermediate units that represent items
between established categories. In other words, words can have soft boundaries.

4. Several items can be active on the map at the same time, which means that different alterna-
tives (synonyms, or ambiguous meanings) can be represented distinctly and in parallel. With
connections between different maps, many-to-many mappings are possible.

5. The differences of the most frequent input items are magnified in the mapping, i.e. the vari-
ations of the most common word meanings or surface forms are more finely discriminated.

6. The self-organizing process requires no supervision and makes no assumptions on the form or
content of the words. The properties of the representations which provide the best discrimi-
nation are determined automatically.

In the following sections, it will be shown how the topological organization of the map leads to
plausible dyslexic and aphasic behavior under simulated damage. However, first we need to discuss
how the associative connections between maps translate symbols to concepts and vice versa.

10



5 Associating symbols and concepts

The mapping between symbols and concepts is many-to-many. Some words have multiple meanings
(homonyms), and sometimes the same meaning can be expressed with several different symbols
(synonyms). For example, in the DISLEX training data the lexical symbol CHICKEN could mean
a living chicken or food. Similarly, BAT could be a baseball bat or a living bat. There are also
several groups of synonymous words in the data. For example, MAN, WOMAN, BOY, and GIRL all have
the same meaning human, and WOLF and LION are both predators. The many-to-many mapping
between symbols and meanings is implemented with associative connections between the symbol
and concept maps.

There is a unidirectional associative connection from each unit in the orthographic and phono-
logical input maps to each unit in the semantic map, and from each unit in the semantic map to
each unit in the orthographic and phonological output maps. The connection weight indicates the
strength of the association between the symbol and the concept.

The symbol and concept maps and the associative connections between them are organized
simultaneously by presenting examples of symbol-concept pairs (listed in figure 3). Such a training
scheme models the training data in the real world. In any particular processing context, only one
of the synonyms or homonyms is active, but different mappings are possible at different times. The
many-to-many mapping must be learned from these individual examples.

The distributed representation for the symbol is presented to the appropriate symbol map, which
develops a localized activity pattern around the image unit (equation 1). Ordinary feature map
adaptation then takes place within the neighborhood. At the same time, the representation for the
corresponding concept is input to the semantic map, which develops a similar localized response,
and the feature map weight vectors adapt within the neighborhood. At this point, both maps
display localized patterns of activity. The lexicon learns to associate them by their cooccurrence,
that is, through Hebbian learning (Hebb 1949; Hertz et al. 1991; Gustafsson and Wigstrom 1988).
The weights between active units are increased proportional to their activity:

Awgj e = a()Ns 157D uv, (3)

where w;; ., is the unidirectional weight between the source map unit at location (,7) (either
symbol or concept) and the destination unit at (u,v) (concept or symbol), and 5s;; and 7p 4,
indicate the activities of these units. As is common with Hebbian learning, the associative weight
vectors are then normalized:

wij,uv(t) + Awij,uv
172
{Zu,v [Wij,u0 (1) + Awij ] }

Wi (t+1) = (4)

Normalization is carried out over all associative connections of the source unit, and its effect is
to decrease the strengths of the connections to less active units. The process corresponds to
redistribution of synaptic resources, where the synaptic efficacy is proportional to the square root
of the resource (Sirosh and Miikkulainen 1994).

Initially, the activity patterns on the symbol and semantic maps are large, and associative
weights are changed in large areas. As the maps become ordered, the associations become gradually
more focused. The final associative connections form a continuous many-to-many mapping between
the maps. Unambiguous symbols and concepts have focused connections, as shown in figure 6. If
a symbol has several meanings, or one meaning can be expressed with several synonyms, there are
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Orthographic input map Orthographic output map

HATCHET INDO! LION VASE HATCHET INDO! LION VASE
HICKE! PERWT MME! FORK HICKE FORK
CHEESE CARRO[ DESK | ROCK CHEESH CARROI! DESK | ROCK
URTAI WOLF QURTAI /dOLF
>

SHEEP| ISPOON| BALL

DOLL SHEEP| ISPOON| %9& OLL
'OMAN GIRL BOY >

OMAN / Gl BOY

BROKE| PASTA BAT BROKE PASTA / BAT
MOVED PLATE ATE | DOG | MAN | HIT MOVED PLATE / ATE | DOG | MAN | HIT
human kived hit %sil
\ broke

) / block
ate A glass gear
‘ / vase
T
prey doll
predator riture food

Semantic map

Figure 6: Sample unambiguous associative mappings. Shown here are the active connections wpog ue >
0 from the orthographic input unit DOG to the semantic map and the active connections wqe11,5; > 0 from the
semantic unit doll to the orthographic output map. The darkness of the box indicates the strength of the
connection to the unit. The strongest connections concentrate around the image units but tend to activate
nearby representations as well. For example, in noisy conditions the input might be understood as livebat
instead of dog, or the symbol BALL might be output instead of DOLL, resulting in dyslexic behavior.

several groups of strong connections (figure 7). Units located between image units tend to combine
the connectivity patterns of nearby words (figure 7).

The associative connections are responsible for translating a symbol to its semantic counterpart,

and vice versa. The activity in one map propagates through the connections and causes an activity
pattern to form in the other map:

D ,uv = g(yuv) =g Z Wijuv?syij | s (5)

ij
where w;; ,, stands for the weight between the source map unit (¢, j) and the destination map unit
(u,v), and 75s,;; and 7p,, indicate the activities of these units. The activation function ¢(y) =
Y/Ymax, Where y,.. is the largest of the weighted sums y to the destination map. This function
scales the activity linearly within 0 and 1, approximating focusing the initial response through
lateral inhibition. The output representation is obtained from the input weights of the maximally
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Phonological input map Phonological output map

3@ {ret @J k3t@n r@t

it hm@R [Q'@h  b@Ukplelt it { hmar Q@) , r@uplelt
Um{ N y(y(
Ikin spun IkIn spun
uIf m{n Ul / m{n

dEsk b$! dEsk \ y b$I
muvd g3l |dQI |v#z |b3l muvé g3l |dQl |v#z |b3l
#st@ dQg |f$k #st@ )/ Jiz Q9) oK
sip 1Qk /28 /<er
peip@ Ind@ hit elt bit peip@ I/é@ it | elt t

human \ moved hit utensil

\ %e
\/ block
ate glass gear
N
P / vase
rey Yliv at’ dog doll \ N
redator ,/ furniture \

Semantic map

Figure 7: Sample ambiguous associative mappings. The semantic map shows the active connections
from the phonological input unit /JIkIn/ (chicken), which has two possible interpretations, food and prey.
A priming process is required to select between them. At right, the active connections from the intermediate
unit next to prey, livebat, dog, and predator to the phonological output map are shown. Possible output
symbols include all animal names /JIkIn/, /1QI0n/, /Sip/, /wUlf/, /dQg/, and /b{t/.

responding unit by propagating the activity (which is equal to 1) through its weight vector to the
output of the lexicon.

For example in figure 2, the orthographic representation of DOG is input to the orthographic
input map, which forms a concentrated activity pattern around the unit labeled DOG. The activity
propagates through the associative connections of all active units (figure 6) to the semantic map,
where a localized activity pattern forms around the unit labeled dog. The semantic representation
for dog is then obtained by propagating activation through the weight vector of this unit. In a
similar fashion, a phonological input can be translated to the corresponding concept, or a concept
to its orthographic or phonological counterpart.

The behaviour of the system is very robust. Even if the input pattern is noisy or incomplete,
it is usually mapped on the correct unit. Even if this does not happen, the associative connections
of the intermediate units provide a mapping that is close enough, so that the correct meaning or
symbol can be retrieved with top-down priming.
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Phonological input map

Maximally responding
phonological unit

kr@t h{m@RD IQI@n O br@Uk plelt
O owniho © O
O O O O spun
O wlf © O© mh © O
O O O O O h

O g3l dQl v#z b3l
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< bit

JO
0g
0

Priming:
Output:

Figure 8: Priming and disambiguation. 1. An ambiguous symbol /JIkIn/ (chicken) is input to the
phonological input map. The activity propagates through the associative connections of /JIkIn/ to the
semantic map, turning on prey and food, the two possible meanings associated with /JIkIn/. 2. At the
same time, priming activation is input to the semantic map through its input connections. 3. The unit
representing prey receives the largest total activation, turns off the other units, and sends the pattern for
prey to the output of the map.

6 Priming and disambiguation

When an ambiguous symbol is input to the lexicon, all possible meanings are activated at the
same time (figure 7). Such behavior is consistent with experimental results on lexical access. For
example, Swinney (1979) showed that in sentence processing, all meanings of ambiguous words are
initially activated upon reading the word, although after reading three more syllables, only the
correct meaning for the current context remains active.

To select the correct representation in DISLEX, a top-down priming mechanism combined with
competition among the map units can be employed. In addition to the associative activation, the
semantic map receives priming activation through its input connections (figure 8). Each unit (¢, j)
combines the two activations in its response:

ni; = 0 ([1 = plya,i; + pyrij) » (6)

where y, ;; indicates activation due to associative input and y;;; due to the priming input, the
parameter p : 0 < p < 1 determines the strength of the priming, and o is the standard sigmoid
activation function. Due to the priming activation, the unit representing the correct meaning now
responds more strongly than the other units. The representation stored in its weights is propagated
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to the output of the map.

Such priming input could originate from the high-level parsing processes. For example, the
expectations generated by the FGREP parsing network (section 3.2) could serve as a possible
source. After inputting The predator ate the, the FGREP network generates a strong expectation
for prey. When the phonological symbol /JIkIn/is input, it is mapped on the unit labeled /JIkIn/,
whose associative connections activate prey and food equally in the semantic map (figure 8). The
expectation pattern, which is close to the representation for prey, is input to the semantic map and
the resulting activity is combined with the activity propagated through the associative connections.
As aresult, the prey unit becomes most highly activated and is selected as the output of the lexicon.

The weights on the associative connections learn to represent statistical likelihoods of the as-
sociations. A very frequently active connection becomes stronger than a rare connection. For
example, if most of the occurrences of /JIkIn/ in the training data had been paired up with food,
the /JIkIn/ unit would tend to activate the food unit more than the prey unit. By default, the
food meaning would be selected, and stronger priming for prey would be required to override it.

The current implementation of DISLEX simply selects and outputs the representation stored
at the maximally responding unit. The selection could also be implemented with lateral inhibition.
The units on the map would be connected laterally with inhibitory weights, and the initial activation
would propagate through these connections, implementing cooperation and competition between
units. In this process, the activation would gradually settle into a localized response (Sirosh and
Miikkulainen 1994). The settling times should correspond to the reaction times observed in humans
(such as those described by e.g. Simpson and Burgess 1985). High-frequency words should have
shorter reaction times, and these times could be changed with priming. With several equally likely
interpretations, settling would generally take longer. The ambiguity effect, where a word with
multiple meanings is recognized faster than an unambiguous word (Balota et al. 1991; Jastrzembski
1981; Jastrzembski and Stanners 1975), could result from proximity of initial activation as proposed
by Joordens and Besner (1994). Such a dynamic implementation of the lexicon feature maps is an
important direction of future research.

7 Dyslexic errors and semantic slips

In dyslexia, words are often confused with semantically or visually /aurally similar ones. The lexicon
architecture is well suited for modeling such behavior. If the system performance is degraded, for
example, by adding noise to the connections, two basic types of input and production errors occur.

In production, noise in the input connections to the semantic map may cause a semantic repre-
sentation to be classified incorrectly. As a result, a word with a similar but incorrect meaning would
be produced, corresponding to a semantic error in deep dyslexia. For example, the representation
for dog may be accidentally mapped on the intermediate unit between dog, livebat, predator,
and prey. Instead of /dQg/, one of the animals /b{t/, /Sip/, /JIkIn/, /wUlf/, or /1QI@n/ could
be produced (figure 7). Or, due to noise in the associative output connections, the activity in the
semantic map may propagate incorrectly to the symbol map. In this case, a word with a simi-
lar orthographic or phonological form but a different meaning would be output, modeling surface
dyslexic behavior. For example, BALL is likely to be generated instead of DOLL in noisy propagation
to the orthographic map (figure 9).

Visual, phonological, and semantic errors may also occur during input. If an orthographic
representation is mapped incorrectly on a nearby unit on the orthographic map, a visual error
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Figure 9: An example of dyslexic behavior. If the associative propagation is noisy, BALL may be output
instead of DOLL (a). Priming or residual activation on gear has a similar effect (b).

results, corresponding to seeing the word incorrectly. For example, DOLL may be input as BALL.
The activity in the symbol map may also propagate incorrectly to a nearby unit in the semantic
map, in which case, for example, /JIkIn/ could be understood semantically as livebat (figure 7).

Combinations of the four basic error types are also possible, resulting in visual-then-semantic
or semantic-then-visual errors (such as sympathy < orchestra) and their phonological counter-
parts. For example, although SPOON is not visually or semantically similar to BAT, such a confu-
sion could take place if SPOON was first visually mistaken for SHEEP, and the activity then propa-
gated incorrectly to livebat. DISLEX can also explain why dyslexic errors are often both visu-
ally /phonologically and semantically related to the correct word. For example, if dog is presented
to the semantic map under noisy conditions, a localized response around the intermediate unit
between dog, livebat, predator, and prey might develop. Through the associative connections
of these units, all the symbols representing animals would be activated in the phonological map.
Each symbol receives activation from at least two semantic units: their own semantic unit (e.g.
/dQg/ from dog, /1QI@n/ from predator), and the winning intermediate unit (as shown in fig-
ure 7). However, /dQg/ and /b{t/ are so close in the phonological map that they both receive
activation from both dog and livebat. Therefore, if /dQg/ does not receive the highest activation,
then /b{t/ most likely will. In other words, /b{t/ would be output because it is both semantically
and phonologically similar to /dQg/.

Similar visual, phonological, and semantic errors, as well as combined visual-and-semantic and
visual-then-semantic errors and their phonological counterparts, have beed well documented in pa-
tients with various forms of dyslexia (Caramazza 1988; Coltheart et al. 1988a). They also occur
in noisy, stressful, and overload situations in normal human performance. Such behavior can be
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explained by the above mechanisms, lending support to the multiple feature map lexicon architec-
ture.

With priming, it would also be possible to model another interesting type of performance error:
the semantic (Freudian) slip (see e.g. Aitchison 1987; Freud 1926/1958). Such errors occur when
very strong semantic priming interferes with the output function. For example, if do1l1l was input
to the semantic map where gear is also active due to simultaneous or residual priming, the activity
would propagate through the associative connections of both (figure 9). As a result, the symbol
BALL would receive the strongest activation, and would be output instead of DOLL. The two output
symbols are similar, but the meaning of BALL reveals the hidden semantic priming.

8 Category-specific aphasic impairments

The DISLEX architecture is consistent with recent cognitive neuropsychology theories of the hu-
man lexical system, such as those of Caramazza (1988), Warrington (1975), and Warrington and
McCarthy (1987). Many observed lexical deficits in acquired aphasia have straightforward expla-
nations in the model.

Aphasia is a language-processing disorder that typically results from a well-localized damage to
the central nervous system, such as cerebral infarction, brain tumor, or contusion (Damasio 1981).
Aphasic impairments may be remarkably category specific. A patient may have selective difficulty
or selective preservation of words that belong to a particular syntactic or semantic category. In
certain patients the lexical access to function words is selectively impaired, in other cases the patient
has trouble with verbs (Caramazza 1988; Coltheart et al. 1988a). More specific impairments often
occur in semantic hierarchies. Some patients have trouble with concrete words, inanimate objects,
or indoor objects (Warrington and McCarthy 1983; Warrington and Shallice 1984; Yamadori and
Albert 1973), or even with classes as specific as names of fruits and vegetables (Hart et al. 1985). In
some cases, categories such as letters, body parts, and colors are selectively preserved (Goodglass
et al. 1986).

Deficits of this kind can be explained by the topological organization of the semantic memory.
The semantic map in DISLEX is hierarchically organized, and reflects both the syntactic and se-
mantic properties of the words. Localized lesions to the map that damage units or their connections
would produce selective impairments like the above.

In some cases the impairments cover all modalities, sometimes they are limited only to verbal
input or output, or even only to the orthographic or phonological domain. This suggests that the
semantic memory, visual input, and verbal input and output modalities are represented in separate
structures. For example, some patients were unable to access specific meanings from verbally as
well as visually (with pictures) presented cues (Warrington 1975; Warrington and Shallice 1984).
This implies that the semantic memory itself had been damaged. Another patient could not give
definitions for aurally presented names of living things such as “dolphin,” although he was able
to describe other objects. But when shown a picture of a dolphin, he could name it and give
an accurate verbal description of it (McCarthy and Warrington 1988). This suggests that the
visual pathway to the semantic memory, the semantic memory itself, and the verbal output were
preserved, but the verbal access to the semantic memory had been damaged. In another case, the
patient was unable to name fruits and vegetables, although he was able to match their names with
pictures, and classify them correctly when their names were presented aurally (Hart et al. 1985). In
other words, his semantic memory and verbal input were preserved, but the verbal output function
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was selectively impaired.

The impairment of semantic categories restricted to a single input or output modality can
be modeled in DISLEX by damaged pathways between symbol and concept maps. A necessary
assumption is that the pathways in DISLEX are not single axons, but consist of interneurons that
also exhibit map-like organization. Close to the semantic map the organization is semantic, close
to a symbol map it parallels the symbol map. If the pathway is severed close to the semantic map,
a semantic impairment within this modality results.

The dissociation of the orthographic and phonological modalities is also well documented in
aphasic data. Some patients have deficits only in one of the input or output channels, or different
deficits in different channels (Basso et al. 1978; Caramazza 1988). For example, a patient may
have spelling difficulties exclusively in the orthographic output domain (Goodman and Caramazza
1986; Miceli et al. 1985). The types of errors in orthographic and phonological dyslexia (section 7)
further suggest that the channels are organized according to the physical forms of the words. The
DISLEX model predicts that it would also be possible to lose access to specific types of symbols,
such as long or short words, as a result of localized damage to a lexical map.

In the aphasic impairments, the high-frequency words are often better preserved than rare words
(Caramazza 1988; Newcombe et al. 1965). This is also predicted by the feature map organization.
The most common words occupy larger areas in the map, making them more robust against damage.

9 Discussion

An important characteristic of the DISLEX model is that its performance directly depends on the
physical organization of the hardware. Noise can be added to it and it can be locally lesioned, and
it displays deficits similar to those of human dyslexics and aphasics. This suggests that the model
captures some of the physical structures underlying the lexical system in the brain. Its verification
could therefore serve as a starting point for various neuropsychological experiments. The central
assumption, and the most important to verify, is that the symbols and meanings are laid out on
maps where different units are selectively sensitive to different words in the data. Indeed, recently
it was found that neurons in the hippocampus respond selectively to visually presented words
(Heit et al. 1989). It would be important to find out whether these selectivities form a map-like
organization. Next, if such maps could be found for the different modalities, it would perhaps be
possible to verify that they are connected with ordered pathways.

DISLEX still finesses much of the fine neural structure, and the mapping to the neuron level
is nontrivial. The units and connections in the model do not necessarily correspond one-to-one to
neurons and synapses, but rather, to connected groups of neurons. For example, the weight vectors
in the semantic map are used both for input and output, which is not a plausible model of synaptic
efficacies. However, these two-way connections could be implemented with tightly interconnected
(or phase-locking) groups of neurons in the brain. Whether such groups can serve as the basic units
of information processing would need to be confirmed experimentally.

A number of other connectionist models of lexical access and lexical disambiguation have been
proposed recently (Bookman 1989; Cottrell and Small 1983; Gallant 1991; Gasser 1988; Gigley
1988; Kawamoto 1988; Sharkey 1989; Small 1990; Waltz and Pollack 1985). These models aim at
explaining lexical processing with low-level mechanisms, focusing on the timing of the process as well
as on certain types of performance errors and deficits. They are primarily process models, detached
from the physical structures, and designed as controlled demonstrations of how disambiguation
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could be carried out in the lexical system. One model that shares many of the goals of DISLEX is
that of Hinton and Shallice (1991), further developed by Plaut (1991) and Plaut and Shallice (1993).
In this model, an orthographic word representation is mapped to a semantic feature representation
of the word meaning, and on to a phonological representation. An essential part of the model is that
the semantic representation layer is recurrent (trained by backpropagation through time, Rumelhart
et al. 1986, or as a deterministic Boltzmann machine, Hinton 1989). A noisy orthographic input
representation causes initial activity in the semantic representation layer, which then settles into
one of the attractor states representing a meaning. The network can be lesioned by deleting units
and connections and by adding noise to the connections. As a result, the attractor basins are
distorted and words are sometimes mapped to incorrect semantics in a manner that represents the
types of errors observed in human deep dyslexia.

Although DISLEX and the attractor model are based on very different principles, they account
for much of the same data. Hinton, Plaut, and Shallice have addressed a wider range of dyslexic
phenomena in their work, including effects of word abstractness. On the other hand, DISLEX can
account for many category-specific impairments in acquired aphasia. Further computational exper-
iments are necessary to compare the merits and disadvantages of the two approaches. Experimental
results supporting neural maps vs. distributed and dynamic symbol and meaning representations
would also help in verifying the assumptions of the two models.

An important computational validation of DISLEX was performed as part of the DISCERN
system (Miikkulainen 1993). In DISCERN, subsymbolic neural network models of parsing, gen-
eration, episodic memory, and the lexicon are brought together into a large artificial intelligence
system that learns to read, paraphrase, and answer questions about script-based stories. In DIS-
CERN the components, including the DISLEX lexicon, are not just models of isolated cognitive
phenomena; they are shown to be sufficient computational constituents for generating complex
high-level language processing behavior.

The orthographic and phonological pathways to semantic representations are very clearly sepa-
rated in DISLEX. There is some evidence, however, that orthographic access to semantics is at least
partially affected by phonology (Coltheart et al. 1988b). For example, Van Orden et al. (1988) found
that nonwords such as sute and words with ambiguous phonological representations such as hare
were often categorized according to their phonological representation as a piece of clothing or
a part of the human body, although the orthographic representation alone would not activate
those meanings. These results could be explained by an automatic process that associates pro-
nunciation to the text (or “reads aloud”) in the background. Such a process could be modeled
through associative connections from the orthographic to the phonological map. Activation of an
orthographic representation would activate its phonological counterpart, which in turn would send
activation to the semantic map. It would be interesting to find out whether such associations exist
between other modalities as well; they could easily be incorporated into the DISLEX architecture.

DISLEX is currently a model of single-word processing. It does not have special mechanisms for
representing and processing phrasal structures or morphology. The model can deal with structured
expressions in two ways: (1) Most common morphological forms and idioms, such as nationalism
or The Big Apple can be represented like words, as single entries in the lexicon. Different morpho-
logical forms of the same word are mapped nearby on the semantic map and slips between forms
are possible. (2) More complex phrases and unusual, constructive forms such as kick the bucket
or nonpreemptive can be represented by their constituents in the lexicon, and the responsibility for
parsing/generating them lies within the sentence-processing modules. These mechanisms together
give a rough but fairly plausible account of human performance (as described e.g. by Aitchison
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1987). However, it seems likely that people initially process the constituents of a new form or
phrase separately, but after extensive practice the expression becomes a single unanalyzable entry
in the lexicon (Stemberger 1985). How this learning process could be modeled in DISLEX is an
open question. Also, dyslexic and aphasic data suggest that morphology is an independent system
that can be selectively impaired or preserved (Caramazza 1988; Coltheart et al. 1988a). In some
cases, inflectional affixes are processed incorrectly while the stems are preserved (Gleason 1978), in
others, the patient has trouble producing appropriate word stems but demonstrates correct inflec-
tion of the resulting nonwords (Caplan et al. 1972). Such dissociations cannot be easily explained
by the current architecture.

In category-specific impairments, the more general terms are often better preserved (Caramazza
et al. 1990; Warrington 1975). For example, a normal subject would respond faster to “Is a duck
a bird?” than to “Is a duck an animal?,” but the aphasic patient would find the latter question
easier. In some cases, the superordinate categories are accessible when the subordinate categories
are not. For example, the patient may be able to classify a canary as a bird, an animal, and a
living thing, but could not confirm that it is yellow, small, and a pet (Warrington 1975). Such data
suggests that the semantic memory is hierarchically organized, and specific information is more
vulnerable than general information. Unfortunately in the lexicon model, the general terms would
be located at the center of more specific terms on the semantic map, and would be equally easy
to access and equally likely to be impaired in local damage. Lack of physical hierarchy makes it
also difficult to account for certain psychological data on normal processing of category hierarchies.
Rosch et al. (1976) and Rosch (1978) demonstrated that names for basic-level categories (such as
table or dog) are easier to process than for superordinate and subordinate categories (e.g. furniture,
spaniel). For the current model, the level of the category would not make any difference.

However, if the semantic memory was implemented as a hierarchical feature map system (Miik-
kulainen 1990), the general terms would be represented higher in the hierarchy and could be better
preserved. Access to the basic level could be easier than either to the top or bottom of the hierarchy.
Such a hierarchical feature map lexicon opens many interesting possibilities and constitutes a most
promising direction for future research.

10 Conclusion

The DISLEX model was built to test computationally whether the lexical system could consist of
separate topologically organized feature maps for the different modalities and the lexical semantics.
The performance characteristics and especially the dyslexic and aphasic behavior exhibited by the
model suggest that DISLEX is probably on the right track. The most important direction of future
work is to verify some of the assumptions and predictions of the model experimentally and against
clinical data. Such interaction between experimental and modeling approaches should lead to better
constraints on future models, and eventually to a better understanding of the lexical system.
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Letter Value Letter Value Letter Value Letter Value

A 0.481481 H 0.666667 O 0.629630 V 0.370370
B 0.814814 1 0.148148 P 0.592593 W 0.814815
C 0.444444 J 0.296296 Q 0.666667 X 0.444444
D 0.703704 K 0.481481 R 0.703704 Y 0.259259
E 0.703704 L 0.296296 S 0.518519 7 0.518519
F 0.444444 M 1.000000 T 0.333333

G 0.740741 N 0.666667 U 0.518519

Table 1: Orthographic representations. The number of black pixels for each letter in the MacIntosh
Geneva font was scaled between 0 and 1. Word representations were formed by concatenating the letter
values into a single vector.

A Orthographic representations

The orthographic symbol representations for each word were formed by concatenating the values
representing the darkness of each letter into a single vector. The darkness values were obtained by
counting the number of black pixels for each letter in the 12pt MacIntosh Geneva font and scaling
the number between 0 and 1. The resulting darkness values are listed in table 1.

Although this encoding scheme is simple, it results in unique representations for all symbols
in the training data, and similar symbols have similar representations. With a larger vocabulary,
more accurate representations might be needed to make sure they are unique. The actual bitmaps
of letters could be used, or bitmaps that have been slightly blurred. Blurring introduces overlap,
causing letters that are perceived similar to have more similar representations.

B Phonological representations

The phonological word symbols were represented as sequences of phonemes, obtained from the
CELEX database at Max Planck Institute for Psycholinguistics. Following the International Pho-
netic Alphabet, each phoneme was classified according to place and manner of articulation, sound,
chromaticity, and sonority, and the categorization was translated into a numerical vector. The
phoneme representation vectors were then concatenated into the phonological word symbol vec-
tors. The phoneme classifications are listed in table 2 and the numeric encoding of their feature
values in table 3.

C Semantic representations

The semantic representations were obtained with the FGREP method in the task of assigning case
roles to the syntactic constituents of the sentence. The sentence templates are listed in table 4,
and the semantic categories in table 5. The input/output examples were generated from the
templates by filling each slot with a concept from a specified category. This data set was obtained
from McClelland and Kawamoto (1986) by replacing words that were used in identical ways in
their data by a single word. This way, {man, woman, boy, girl} was replaced by human, {cheese,
pasta, carrot} by food, {wolf, lion} by predator, {ball, hatchet, hammer} by gear, {paperwt,
rock} by block, {plate, window} by glass, {fork, spoon} by utensil, and {desk, curtain} by
furniture. In addition, the occurrences of the ambiguous word chicken were replaced by the
appropriate unambiguous concepts food and prey, and similarly bat was replaced by livebat and
gear. In the resulting data, every concept has a unique and unambiguous usage.
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Label |Example|Place Manner Sound Chromacity Sonority
I |plt none vowel voiced front-center hi-mid
E |pEt none vowel voiced front mid-lo
{ |pAt none vowel voiced front lo-mid
e |bAy none vowel voiced front mid-hi
a |bOut none vowel voiced front lo
Q [pOt none vowel voiced center lo-mid
Vv |pUtt none vowel voiced center-back mid-lo
U |pUt none vowel voiced center-back hi-mid
@ |thE none vowel voiced center mid
i |hEEd none vowel voiced front hi
u |whO’d |none vowel voiced back hi
3 |bURn |none vowel voiced front-center mid
$ |bORn |none vowel voiced back mid-lo
# |bARn |none vowel voiced center-back lo
p |Pet bilabial stop unvoiced none none
b |Boat bilabial stop voiced none none
t |Tot alveolar stop unvoiced none none
d |Debt alveolar stop voiced none none
k |Ketch |velar stop unvoiced none none
g |Get velar stop voiced none none
N [saNG velar nasal voiced none none
m |Met bilabial nasal voiced none none
n |Net alveolar nasal voiced none none
1 |Let alveolar lateral voiced none none
r |Row alveolar approximant voiced none none
£ |For labio-dental fricative frication none none
v |Vow labio-dental fricative voiced none none
T |THin dental fricative frication none none
D |THen dental fricative voiced none none
s |Say alveolar fricative frication mnone none
z |laZy alveolar fricative voiced none none
S |SHop palatal-alveolar fricative frication mnone none
Z |aZure palatal-alveolar fricative voiced none none
j | Yes palatal approximant voiced none none
x |loCH velar fricative frication none none
h |How glottal fricative aspiration none none
w |Why velar approximant voiced none none
J |CHeap |palatal-alveolar stop frication mnone none
_ |juDGe [palatal-alveolar stop voiced none none

Table 2: Phoneme representations. The phoneme label and an example of each phoneme is given,
followed by the values of the five features that describe the phoneme. The actual representation vectors were
formed by replacing the feature values with their numeric encoding, shown in table 3.

Place Manner Sound Chromacity Sonority
0.000 none 0.000 none 0.000 none 0.000 none 0.000 none
0.125 bilabial 0.167 stop 0.250 voiced 0.200 front 0.143 hi
0.250 labio-dental 0.333 fricative 0.500 frication  0.400 front-center 0.286 hi-mid
0.375 dental 0.500 approximant 0.750 unvoiced 0.600 center 0.429 mid-hi
0.500 alveolar 0.667 lateral 1.000 aspiration 0.800 center-back 0.571 mid
0.625 palatal-alveolar 0.833 nasal 1.000 back 0 714 mid-lo
0.750 palatal 1.000 vowel 0.857 lo-mid
0.875 velar 1.000 lo
1.000 glottal

Table 3: Phoneme features. The values of each feature are represented as real numbers between 0 and 1.
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Sentence frame Correct case roles
1. The human ate. agent
2. The human ate the food. agent, patient
3. The human ate the food with the food. agent, patient, modifier
4. The human ate the food with the utensil. agent, patient, instrument
5. The animal ate. agent
6. The predator ate the prey. agent, patient
7. The human broke the fragileobj. agent, patient
8. The human broke the fragileobj with the breaker. agent, patient, instrument
9. The breaker broke the fragileobj. instrument, patient
10. The animal broke the fragileobj. agent, patient
11.  The fragileobj broke. patient
12.  The human hit the thing. agent, patient
13. The human hit the human with the possession. agent, patient, modifier
14. The human hit the thing with the hitter. agent, patient, instrument
15.  The hitter hit the thing. instrument, patient
16. The human moved. agent, patient
17. The human moved the object. agent, patient
18. The animal moved. agent, patient
19. The object moved. patient

Table 4: Sentence templates. Each frame has one to three concept slots (shown in roman typeface).
Each slot has a predetermined case role, shown at right. Each slot can be filled with any of the concepts
in the specified category, listed in table 5. For instance, “The animal broke the fragileobj” generates 4 x 2
different sentences, all with the case-role assignment agent=animal, patient=fragileobj.

Category Semantic concepts

human human

food food

utensil utensil

animal prey predator livebat dog
fragileob] glass vase

breaker =~ gear block

hitter gear block vase

possession gear vase doll dog
object %ear block vase glass food
urniture doll utensil

thing human prey predator livebat dog
ear block vase glass food
urniture doll utensil

verb hit ate broke moved

Table 5: Semantic categories. Each slot in the sentence templates specifies a category, and can be filled
with any semantic concept in that category. In other words, the categorization determines how the concepts
are used in the sentences.

D DISLEX code

The code and data for the DISLEX system is available by anonymous ftp from cs.utexas.edu:
pub/neural-nets/dislex,orin the World Wide Web, under http://www.cs.utexas.edu/users/nn.
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