
Risto Miikkulainen is a professor of

computer sciences at the University

of Texas at Austin.

Games have long been a popular area for research in artificial intelligence
(AI), and for good reason. Because games are challenging yet easy to formal-
ize, they can be used as platforms for the development of new AI methods
and for measuring how well they work. In addition, games can demonstrate
that machines are capable of behavior generally thought to require intel-
ligence without putting human lives or property at risk.

Most AI research so far has focused on games that can be described in a
compact form using symbolic representations, such as board games and card
games. The so-called good old-fashioned artificial intelligence (GOFAI;
Haugeland, 1985) techniques work well with symbolic games, and to a large
extent, GOFAI techniques were developed for them. GOFAI techniques
have led to remarkable successes, such as Chinook, a checkers program that
became the world champion in 1994 (Schaeffer, 1997), and Deep Blue, the
chess program that defeated the world champion in 1997 and drew signifi-
cant attention to AI in general (Campbell et al., 2002).

Since the 1990s, the field of gaming has changed tremendously. Inexpen-
sive yet powerful computer hardware has made it possible to simulate com-
plex physical environments, resulting in tremendous growth in the video
game industry. From modest sales in the 1960s (Baer, 2005), sales of enter-
tainment software reached $25.4 billion worldwide in 2004 (Crandall and
Sidak, 2006). Video games are now a regular part of many people’s lives, and
the market continues to expand.

Creating Intelligent Agents in Games

Video games provide an ideal platform for the

development and testing of machine-learning

techniques.

Risto Miikkulainen

The
BRIDGE�

Curiously, very little AI research has been involved
in this expansion. Many video games do not use AI
techniques, and those that do are usually based on rela-
tively standard, labor-intensive scripting and authoring
methods. In this and other respects, video games dif-
fer markedly from symbolic games. Video games often
involve many agents embedded in a simulated physical
environment where they interact through sensors and
effectors that take on numerical rather than symbolic
values. To be effective, agents must integrate noisy
input from many sensors, react quickly, and change
their behavior during the game. The AI techniques
developed for and with symbolic games are not well
suited to video games.

In contrast, machine-learning techniques, such as
neural networks, evolutionary computing, and rein-
forcement learning, are very well suited to video games.
Machine-learning techniques excel in exactly the
kinds of fast, noisy, numerical, statistical, and changing
domains that today’s video games provide. Therefore,
just as symbolic games provided an opportunity for the
development and testing of GOFAI techniques in the
1980s and 1990s, video games provide an opportunity
for the development and testing of machine-learning
techniques and their transfer to industry.

Artificial Intelligence in Video Games

One of the main challenges for AI is creating intel-
ligent agents that can become more proficient in their
tasks over time and adapt to new situations as they
occur. These abilities are crucial for robots deployed
in human environments, as well as for various software
agents that live in the Internet or serve as human assis-
tants or collaborators.

Although current technology is still not sufficiently
robust to deploy such systems in the real world, they are
already feasible in video games. Modern video games
provide complex artificial environments that can be
controlled and carry less risk to human life than any
real-world application (Laird and van Lent, 2000). At

the same time, video gaming is an important human
activity that occupies millions of people for countless
hours. Machine learning can make video games more
interesting and reduce their production costs (Fogel et
al., 2004) and, in the long run, might also make it pos-
sible to train humans realistically in simulated, adaptive
environments. Video gaming is, therefore, an important
application of AI and an excellent platform for research
in intelligent, adaptive agents.

Current video games include a variety of high-realism
simulations of human-level control tasks, such as naviga-
tion, combat, and team and individual tactics and strat-
egy. Some of these simulations involve traditional AI
techniques, such as scripts, rules, and planning (Agre and
Chapman, 1987; Maudlin et al., 1984), and a large part
of AI development is devoted to path-finding algorithms,
such as A*-search and simple behaviors built using
finite-state machines. AI is used to control the behav-
ior of the non-player characters (NPCs, i.e., autonomous
computer-controlled agents) in the game. The behaviors
of NPCs, although sometimes impressive, are often repet-
itive and inflexible. Indeed, a large part of the gameplay
in many games is figuring out what the AI is programmed
to do and learning to defeat it.

Machine learning in games began with Samuel’s (1959)
checkers program, which was based on a method simi-
lar to temporal-difference learning (Sutton, 1988). This
was followed by various learning methods applied to
tic-tac-toe, backgammon, go, Othello, and checkers
(see Fürnkranz, 2001, for a survey). Recently, machine-
learning techniques have begun to appear in video games
as well. For example, Fogel et al. (2004) trained teams of
tanks and robots to fight each other using a competitive
coevolution system, and Spronck (2005) trained agents
in a computer role-playing game using dynamic scripting.
Others have trained agents to fight in first- and third-
person shooter games (Cole et al., 2004; Hong and Cho,
2004). Machine-learning techniques have also been
applied to other video game genres, from Pac-Man (Lucas,
2005) to strategy games (Bryant and Miikkulainen, 2003;
Yannakakis et al., 2004).

Nevertheless, very little machine learning is used in
current commercial video games. One reason may be
that video games have been so successful that a new
technology such as machine learning, which would
fundamentally change the gaming experience, may
be perceived as a risky investment by the industry. In
addition, commercial video games are significantly
more challenging than the games used in research so

Very little machine learning
is used in current

commercial video games.

�Winter 2006

far. They not only have large state and action spaces,
but they also require diverse behaviors, consistent indi-
vidual behaviors, fast learning, and memory of past situ-
ations (Gomez et al., 2006; Stanley et al., 2005)

Neuroevolution

The rest of this article is focused on a particular
machine-learning technique, neuroevolution, or the
evolution of neural networks. This technique not only
promises to rise to the challenge of creating games that
are educational, but also promises to provide a plat-
form for the safe, effective study of how intelligent
agents adapt.

Evolutionary computa-
tion is a computational
machine-learning tech-
nique modeled after natu-
ral evolution (Figure 1a).
A population of candidate
solutions are encoded as
strings of numbers. Each
solution is evaluated in
the task and assigned a fit-
ness based on how well
it performs. Individuals
with high fitness are then
reproduced (by crossing
over their encodings) and
mutated (by randomly
changing components of
their encodings with a low
probability). The offspring
of the high-fitness individu-
als replace the low-fitness
individuals in the popula-
tion, and over time, solu-
tions that can solve the task
are discovered.

In neuroevolution, evolu-
tionary computation is used
to evolve neural network
weights and structures. Neu-
ral networks perform statisti-
cal pattern transformation
and generalization, and evo-
lutionary adaptation allows
for learning without explicit
targets, even with little re-
inforcement. Neuroevolu-

tion is particularly well suited to video games because
(1) it works well in high-dimensional spaces; (2) diverse
populations can be maintained; (3) individual networks
behave consistently; (4) adaptation takes place in real
time; and (5) memory can be implemented through recur-
rency (Gomez et al., 2006; Stanley et al., 2005).

Several methods have been developed for evolv-
ing neural networks (Yao, 1999). One particularly
appropriate for video games is called neuroevolution
of augmenting topologies (NEAT; Stanley and Miik-
kulainen, 2002), which was originally developed for
learning behavioral strategies. The neural networks
control agents that select actions in their output based

Figure 1 1a. Evolving neural networks. Solutions (such as neural networks) are encoded as chromosomes, usually consisting
of strings of real numbers, in a population. Each individual is evaluated and assigned a fitness based on how well it performs a
given task. Individuals with high fitness reproduce; individuals with low fitness are thrown away. Eventually, nearly all individuals
can perform the task. 1b. Each agent in neuroevolution receives sensor readings as input and generates actions as output. In the
NERO video game, the network can see enemies, determine whether an enemy is currently in its line of fire, detect objects and
walls, and see the direction the enemy is firing. Its outputs specify the direction of movement and whether or not to fire. In this
way, the agent is embedded in its environment and must develop sophisticated behaviors to do well. For general neuroevolution
software and demos, see http://nn.cs.utexas.edu.

Evolved Topology

Left/Right Forward/Back Fire

Enemy Radars On
Target

Object Rangefiners Enemy
LOF

Sensors

Bias

a.

b.

The
BRIDGE�

on sensory inputs (Figure 1b). NEAT is unique in that
it begins evolution with a population of small, simple
networks and complexifies those networks over genera-
tions, leading to increasingly sophisticated behaviors.

NEAT is based on three key ideas. First, for neural
network structures to increase in complexity over gen-
erations, a method must be found for keeping track of
which gene is which. Otherwise, it will not be clear
in later generations which individuals are compatible
or how their genes should be combined to produce off-
spring. NEAT solves this problem by assigning a unique
historical marking to every new piece of network struc-
ture that appears through a structural mutation. The
historical marking is a number assigned to each gene
corresponding to its order of appearance over the course
of evolution. The numbers are inherited unchanged dur-
ing crossover, which allows NEAT to perform crossover
without expensive topological analysis. Thus, genomes
of different organizations and sizes remain compatible
throughout evolution.

Second, NEAT speciates the population, so that
individuals compete primarily within their own niches
instead of with the population at large. In this way,
topological innovations are protected and have time
to optimize their structures. NEAT uses the historical
markings on genes to determine the species to which
different individuals belong.

Third, unlike other systems that evolve network
topologies and weights, NEAT begins with a uniform
population of simple networks with no hidden nodes.
New structure is introduced incrementally as structural
mutations occur, and only those structures survive that
are found to be useful through fitness evaluations. This
way, NEAT searches through a minimal number of
weight dimensions and finds the appropriate complexity
level for the problem. This process of complexification
has important implications for the search for solutions.
Although it may not be practical to find a solution in a

high-dimensional space by searching that space directly,
it may be possible to find it by first searching in lower
dimensional spaces and complexifying the best solu-
tions into the high-dimensional space.

As is usual in evolutionary algorithms, the entire
population is replaced with each generation in NEAT.
However, in a real-time game or simulation, this would
seem incongruous because every agent’s behavior would
change at the same time. In addition, behaviors would
remain static during the large gaps between generations.
Therefore, in order to apply NEAT to video games, a
real-time version of it, called rtNEAT, was created.

In rtNEAT, a single individual is replaced every few
game ticks. One of the poorest performing individuals
is removed and replaced with a child of parents cho-
sen from among the best performing individuals. This
cycle of removal and replacement happens continu-
ally throughout the game and is largely invisible to the
player. As a result, the algorithm can evolve increas-
ingly complex neural networks fast enough for a user to
interact with evolution as it happens in real time. This
real-time learning makes it possible to build machine-
learning games.

Machine-Learning Games

The most immediate opportunity for neuroevolution
in video games is to build a “mod,” a new feature or
extension, to an existing game. For example, a character
that is scripted in the original game can be turned into
an adapting agent that gradually learns and improves as
the game goes on. Or, an entirely new dimension can
be added to the game, such as an intelligent assistant or
tool that changes as the player progresses through the
game. Such mods can make the game more interesting
and fun to play. At the same time, they are easy and
safe to implement from a business point of view because
they do not change the original structure of the game.
From the research point of view, ideas about embedded
agents, adaptation, and interaction can be tested with
mods in a rich, realistic game environment.

With neuroevolution, however, learning can be taken
well beyond game mods. Entirely new game genres can
be developed, such as machine-learning games, in which
the player explicitly trains game agents to perform vari-
ous tasks. The fun and challenge of machine-learning
games is to figure out how to take agents through suc-
cessive challenges so that in the end they perform well
in their chosen tasks. Games such as Tamagotchi “Vir-
tual Pet” and Black & White “God Game” suggest that

With neuroevolution,
entirely new game genres

can be developed.

�Winter 2006

interaction with artificial agents can make for viable and
entertaining games. In NERO, the third such game, the
artificial agents adapt their behavior through sophisti-
cated machine learning.

The NERO Game

The main idea of NERO is to put the player in the
role of a trainer or drill instructor who teaches a team of
agents by designing a curriculum. The agents are simu-
lated robots that learn through rtNEAT, and the goal is
to train them for military combat.

The agents begin the game with no skills but with
the ability to learn. To prepare them for combat, the
player must design a sequence of training exercises and
goals. Ideally, the exercises will be increasingly difficult
so that the team begins by learning basic skills and then
gradually builds on them (Figure 2). When the player
is satisfied that the team is well prepared, the team is
deployed in a battle against another team trained by
another player, allowing the players to see if their train-
ing strategies pay off.

The challenge is to anticipate the kinds of skills that
might be necessary for battle and build training exer-
cises to hone those skills. A player sets up training
exercises by placing objects on the field and specifying
goals through several sliders. The objects include static
enemies, enemy turrets, rovers (i.e., turrets that move),
flags, and walls. To the player, the sliders serve as an
interface for describing ideal behavior. To rtNEAT, they
represent coefficients for fitness components. For exam-
ple, the sliders specify how much to reward or punish
agents for approaching enemies, hitting targets, getting
hit, following friends, dispersing, etc. Each individual

fitness component is normalized to a Z-score (i.e., the
number of standard deviations from the mean) so all
components can be measured on the same scale. Fitness
is computed as the sum of all components multiplied by
their slider levels, which can be positive or negative.
Thus, the player has a natural interface for setting up a
training exercise and specifying desired behavior.

Agents have several types of sensors (Figure 1b).
Although NERO programmers frequently experiment
with new sensor configurations, the standard sensors
include enemy radars, an “on target” sensor, object
range finders, and line-of-fire sensors. To ensure con-
sistent evaluations, agents all begin in a designated area
of the field called the factory. Each agent is allowed
to spend a limited amount of time on the field during
which its fitness can be assessed. When time on the
field expires, the agent is transported back to the fac-
tory, where another evaluation begins.

Training begins by deploying 50 agents on the field.
Each agent is controlled by a neural network with ran-
dom connection weights and no hidden nodes, which
is the usual starting configuration for NEAT. As the
neural networks are replaced in real-time, behavior
improves, and agents eventually learn to perform the
task the player has set up. When the player decides
performance has reached a satisfactory level, he or she
can save the team in a file. Saved teams can be reloaded
for further training in different scenarios, or they can be
loaded into battle mode.

In battle mode, the player discovers how well the
training has worked. Each player assembles a battle
team of 20 agents from as many different trained teams as
desired, possibly combining agents with different skills.

Scenario 1: Enemy Turret Scenario 2: 2 Enemy Turrets Scenario 3: Mobile Turrets & Walls Battle

FIGURE 2 A sample training sequence in NERO. The figure depicts a sequence of increasingly difficult training exercises in which agents attempt to attack turrets without
getting hit. In the first exercise, there is only a single turret; additional turrets are added by the player as the team improves. Eventually walls are added, and the turrets
are given wheels so they can move. Finally, after the team has mastered the hardest exercises, it is deployed in a battle against another team. For animations of various
training and battle scenarios, see http://nerogame.org.

The
BRIDGE10

The battle begins with two teams arrayed on opposite
sides of the field. When one player presses a “go” but-
ton, the neural networks take control of their agents
and perform according to their training. Unlike train-
ing, however, where being shot does not cause damage
to an agent’s body, agents in battle are destroyed after
being shot several times (currently five). The battle
ends when one team is completely eliminated. In some
cases, the surviving agents may insist on avoiding each
other, in which case the winner is the team with the
most agents left standing.

Torque, a game engine licensed from GarageGames
(http://www.garagegames.com/), drives NERO’s simu-
lated physics and graphics. An important property of
Torque is that its physics is slightly nondeterministic so

that the same game is never played twice. In addition,
Torque makes it possible for the player to take control
of enemy robots using a joystick, an option that can be
useful in training.

Behavior can be evolved very quickly in NERO, fast
enough so that the player can be watching and interact-
ing with the system in real time. The most basic battle
tactic is to seek the enemy aggressively and fire at it. To
train for this tactic, a single static enemy is placed on the
training field, and agents are rewarded for approaching
the enemy. This training requires that agents learn to run
toward a target, which is difficult because they start out
in the factory facing in random directions. Starting with
random neural networks, it takes on average 99.7 sec-
onds for 90 percent of the agents on the field to learn to
approach the enemy successfully (10 runs, sd = 44.5s).

Note that NERO differs from most applications of
evolutionary algorithms in that the quality of evolu-
tion is judged from the player’s perspective based on
the performance of the entire population, instead of the
performance of the population champion. However,
even though the entire population must solve the task,
it does not converge to the same solution. In seek train-
ing, some agents evolve a tendency to run slightly to
the left of the target, while others run to the right. The
population diverges because the 50 agents interact as
they move simultaneously on the field at the same time.
If all of the agents chose exactly the same path, they
would often crash into each other and slow each other
down, so agents naturally take slightly different paths to
the goal. In other words, NERO is a massively parallel,
coevolving ecology in which the entire population is
evaluated together.

Agents can also be trained to avoid the enemy, lead-
ing to different battle tactics. In fact, rtNEAT is flexible
enough to devolve a population that has converged on
seeking behavior into its complete opposite, a popula-
tion that exhibits avoidance behavior. For avoidance
training, players control an enemy robot with a joystick
and run it toward the agents on the field. The agents
learn to back away to avoid being penalized for being too
near the enemy. Interestingly, they prefer to run away
from the enemy backward so they can still see and shoot
at the enemy (Figure 3a). As an interesting combina-
tion of conflicting goals, a turret can be placed on the
field and agents asked to approach it without getting hit.
As a result, they learn to avoid enemy fire, running to
the side opposite the bullets and approaching the turret
from behind. This tactic is also effective in battle.

FIGURE 3 Behaviors evolved in NERO. 3a. This training screenshot shows sev-
eral agents running away backward while shooting at the enemy, which is being
controlled from a first-person perspective by a human trainer with a joystick. This
scenario demonstrates how evolution can discover novel and effective behaviors in
response to challenges set up by the player. 3b. Incremental training on increas-
ingly complex wall configurations produced agents that could navigate this complex
maze to find the enemy. Remarkably, they had not seen this maze during training,
suggesting that they had evolved general path-navigation ability. The agents spawn
from the left side of the maze and proceed to an enemy at the right. Notice that
some agents evolved to take the path through the top, while others evolved to
take the bottom path, suggesting that protecting innovation in rtNEAT supports a
range of diverse behaviors with different network topologies. Animations of these
and other behaviors can be seen at http://nerogame.org.

a.

b.

11Winter 2006

Other interesting behaviors have been evolved to test
the limits of rtNEAT, rather than specifically prepare
troops for battle. For example, agents were trained to
run around walls in order to approach the enemy. As
performance improved, players incrementally added
more walls until the agents could navigate an entire
maze (Figure 3b). This behavior was remarkable because
it was successful without any path planning.

The agents developed the general strategy of following
any wall that stood between them and the enemy until
they found an opening. Interestingly, different species
evolved to take different paths through the maze, show-
ing that topology and function are correlated in rtNEAT
and confirming the success of real-time speciation. The
evolved strategies were also general enough for agents
to navigate significantly different mazes without further
training. In another example, when agents that had
been trained to approach a designated location (marked
by a flag) through a hallway were attacked by an enemy
controlled by the player, they learned, after two min-
utes, to take an alternative path through an adjacent
hallway to avoid the enemy’s fire. Such a response is a
powerful demonstration of real-time adaptation. The
same kind of adaptation could be used in any interactive
game to make it more realistic and interesting.

Teams that were trained differently were sometimes
surprisingly evenly matched. For example, a seeking
team won six out of ten battles, only a slight advantage,
against an avoidant team that ran in a pack to a corner
of the field next to an enclosing wall. Sometimes, if
an avoidant team made it to the corner and assembled
fast enough, the seeking team ran into an ambush and
was obliterated. However, slightly more often the seek-
ing team got a few shots in before the avoidant team
could gather in the corner. In that case, the seeking
team trapped the avoidant team and had more surviving
numbers. Overall, neither seeking nor avoiding pro-
vided a significant advantage.

Strategies can be refined further by observing behaviors
during battle and setting up training exercises to improve
them. For example, a seeking team could eventually be
made more effective against an avoidant team when it
was trained with a turret that had its back against the wall.
The team learned to hover near the turret and fire when it
turned away and to back off quickly when it turned toward
them. In this way, rtNEAT can discover sophisticated
tactics that dominate over simpler ones. The challenge
for the player is to figure out how to set up the training
curriculum so sophisticated tactics will emerge.

NERO was created over a period of about two years
by a team of more than 30 student volunteers (Gold,
2005). The game was first released in June 2005 at
http://nerogame.org and has since been downloaded
more than 100,000 times. NERO is under continu-
ing development and is currently focused on providing
more interactive play. In general, players agree that the
game is engrossing and entertaining. Battles are excit-
ing, and players spend many hours perfecting behaviors
and assembling teams with just the right combination
of tactics. Remarkably, players who have little techni-
cal background often develop accurate intuitions about
the underlying mechanics of machine learning. This
suggests that NERO and other machine-learning games
are viable as a genre and may even attract a future gen-
eration of researchers to machine learning.

Games like NERO can be used as research plat-
forms for implementing novel machine-learning
techniques. For example, one direction for research
is to incorporate human knowledge, in terms of rules,
into evolution. This knowledge could then be used
to seed the population with desired initial behaviors
or to give real-time advice to agents during evolution
(Cornelius et al., 2006; Yong et al., 2006). Another
area for research is to learn behaviors that not only
solve a given problem, but solve it in a way that makes
sense to a human observer. Although such solutions
are difficult to describe formally, a human player may
be able to demonstrate them by playing the game
himself or herself. An evolutionary learning system
can then use these examples to bias learning toward
similar behaviors (Bryant, 2006).

Conclusion

Neuroevolution is a promising new technology that
is particularly well suited to video game applications.
Although neuroevolution methods are still being devel-
oped, the technology can already be used to make cur-
rent games more challenging and interesting and to

Games with adapting
intelligent agents are likely

to be in high demand.

The
BRIDGE12

implement entirely new genres of games. Such games,
with adapting intelligent agents, are likely to be in high
demand in the future. Neuroevolution may also make it
possible to build effective training games, that is, games
that adapt as the trainee’s performance improves.

At the same time, video games provide interesting,
concrete challenges for machine learning. For example,
they can provide a platform for the systematic study of
methods of control, coordination, decision making,
and optimization, within uncertainty, material, and
time constraints. These techniques should be widely
applicable in other fields, such as robotics, resource
optimization, and intelligent assistants. Just as tradi-
tional symbolic games catalyzed the development of
GOFAI techniques, video gaming may catalyze research
in machine learning for decades to come.

Acknowledgments

This work was supported in part by the Digital Media
Collaboratory of the University of Texas at Austin, Texas
Higher Education Coordinating Board through grant
ARP-003658-476-2001, and National Science Founda-
tion through grants EIA-0303609 and IIS-0083776.

References

Agre, P.E., and D. Chapman. 1987. Pengi: An Implementa-
tion of a Theory of Activity. Pp. 268–272 in Proceedings
of the 6th National Conference on Artificial Intelligence.
Los Altos, Calif.: Morgan Kaufmann.

Baer, R.H. 2005. Videogames: In the Beginning. Springfield,
N.J.: Rolenta Press.

Bryant, B.D. 2006. Evolving Visibly Intelligent Behavior for
Embedded Game Agents. Ph.D. thesis, University of Texas
at Austin. Technical Report AI-06-334.

Bryant, B.D., and R. Miikkulainen. 2003. Neuroevolution
for Adaptive Teams. Pp. 2194–2201 in Proceedings of the
2003 Congress on Evolutionary Computation. Piscataway,
N.J.: IEEE.

Campbell, M., A.J. Hoane Jr., and F.-H. Hsu. 2002. Deep
Blue. Artificial Intelligence 134: 57–83.

Cole, N., S.J. Louis, and C. Miles. 2004. Using a Genetic
Algorithm to Tune First-Person Shooter Bots. Pp. 139–145
in Proceedings of the 2004 Congress on Evolutionary Com-
putation. Piscataway, N.J.: IEEE.

Cornelius, R., K.O. Stanley, and R. Miikkulainen. 2006.
Constructing Adaptive AI Using Knowledge-Based
Neuroevolution. Pp. 693–708 in AI Game Programming
Wisdom 3, edited by S. Rabin. Revere, Mass.: Charles
River Media.

Crandall, R.W., and J.G. Sidak. 2006. Video Games: Seri-
ous Business for America’s Economy. Entertainment Soft-
ware Association Report. Available online at: http://www.
theesa.com/files/VideoGame_Final.pdf.

Fogel, D.B., T.J. Hays, and D.R. Johnson. 2004. A Platform
for Evolving Characters in Competitive Games. Pp. 1420–
1426 in Proceedings of the 2004 Congress on Evolutionary
Computation. Piscataway, N.J.: IEEE.

Fürnkranz, J. 2001. Machine Learning in Games: A Survey.
Pp. 11–59 in Machines That Learn to Play Games, edited
by J. Fürnkranz and M. Kubat. Huntington, N.Y.: Nova
Science Publishers.

Gold, A. 2005. Academic AI and Video Games: A Case
Study of Incorporating Innovative Academic Research
into a Video Game Prototype. Pp. 141–148 in Proceedings
of the IEEE 2005 Symposium on Computational Intelli-
gence and Games. Piscataway, N.J.: IEEE.

Gomez, F., J. Schmidhuber, and R. Miikkulainen. 2006. Effi-
cient Non-linear Control through Neuroevolution. Pp.
654–662 in Proceedings of the European Conference on
Machine Learning. Berlin: Springer-Verlag.

Haugeland, J. 1985. Artificial Intelligence: The Very Idea.
Cambridge, Mass.: MIT Press.

Hong, J.-H., and S.-B. Cho. 2004. Evolution of Emergent
Behaviors for Shooting Game Characters in Robocode.
Pp. 634–638 in Proceedings of the 2004 Congress on Evo-
lutionary Computation. Piscataway, N.J.: IEEE.

Laird, J.E., and M. van Lent. 2000. Human-Level AI’s Killer
Application: Interactive Computer Games. Pp. 1171–
1178 in Proceedings of the 17th National Conference on
Artificial Intelligence. Menlo Park, Calif.: AAAI Press.

Lucas, S.M. 2005. Evolving a Neural Network Location Eval-
uator to Play Ms. Pac-Man. Pp. 203–210 in Proceedings of
the IEEE Symposium on Computational Intelligence and
Games. Piscataway, N.J.: IEEE.

Maudlin, M.L., G. Jacobson, A. Appel, and L. Hamey. 1984.
ROG-O-MATIC: A Belligerent Expert System. In Pro-
ceedings of the 5th National Conference of the Canadian
Society for Computational Studies of Intelligence. Missis-
sagua, Ontario: Canadian Society for Computational Stud-
ies of Intelligence.

Samuel, A.L. 1959. Some studies in machine learning using
the game of checkers. IBM Journal 3: 210–229.

Schaeffer, J. 1997. One Jump Ahead. Berlin: Springer-Verlag.
Spronck, P. 2005. Adaptive Game AI. Ph.D. thesis, Maas-

tricht University, the Netherlands.
Stanley, K.O., B.D. Bryant, and R. Miikkulainen. 2005. Real-

time neuroevolution in the NERO video game. IEEE Trans-
actions on Evolutionary Computation 9(6): 653–668.

13Winter 2006

Stanley, K.O., and R. Miikkulainen. 2002. Evolving neural
networks through augmenting topologies. Evolutionary
Computation 10(2): 99–127.

Sutton, R.S. 1988. Learning to predict by the methods of
temporal differences. Machine Learning 3: 9–44.

Yannakakis, G.N., J. Levine, and J. Hallam. 2004. An Evo-
lutionary Approach for Interactive Computer Games.
Pp. 986–993 in Proceedings of the 2004 Congress on

Evolutionary Computation. Piscataway, N.J.: IEEE.
Yao, X. 1999. Evolving artificial neural networks. Proceed-

ings of the IEEE 87(9): 1423–1447.
Yong, C.H., K.O. Stanley, R. Miikkulainen, and I. Karpov.

2006. Incorporating Advice into Evolution of Neural Net-
works. In Proceedings of the 2nd Artificial Intelligence
and Interactive Digital Entertainment Conference. Menlo
Park, Calif.: AAAI Press.

