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Games have long been a popular area for research in artificial intelligence 
(AI), and for good reason.  Because games are challenging yet easy to formal-
ize, they can be used as platforms for the development of new AI methods 
and for measuring how well they work.  In addition, games can demonstrate 
that machines are capable of behavior generally thought to require intel-
ligence without putting human lives or property at risk.

Most AI research so far has focused on games that can be described in a 
compact form using symbolic representations, such as board games and card 
games.  The so-called good old-fashioned artificial intelligence (GOFAI; 
Haugeland, 1985) techniques work well with symbolic games, and to a large 
extent, GOFAI techniques were developed for them.  GOFAI techniques 
have led to remarkable successes, such as Chinook, a checkers program that 
became the world champion in 1994 (Schaeffer, 1997), and Deep Blue, the 
chess program that defeated the world champion in 1997 and drew signifi-
cant attention to AI in general (Campbell et al., 2002).

Since the 1990s, the field of gaming has changed tremendously.  Inexpen-
sive yet powerful computer hardware has made it possible to simulate com-
plex physical environments, resulting in tremendous growth in the video 
game industry.  From modest sales in the 1960s (Baer, 2005), sales of enter-
tainment software reached $25.4 billion worldwide in 2004 (Crandall and 
Sidak, 2006).  Video games are now a regular part of many people’s lives, and 
the market continues to expand.
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Curiously, very little AI research has been involved 
in this expansion.  Many video games do not use AI 
techniques, and those that do are usually based on rela-
tively standard, labor-intensive scripting and authoring 
methods.  In this and other respects, video games dif-
fer markedly from symbolic games.  Video games often 
involve many agents embedded in a simulated physical 
environment where they interact through sensors and 
effectors that take on numerical rather than symbolic 
values.  To be effective, agents must integrate noisy 
input from many sensors, react quickly, and change 
their behavior during the game.  The AI techniques 
developed for and with symbolic games are not well 
suited to video games.

In contrast, machine-learning techniques, such as 
neural networks, evolutionary computing, and rein-
forcement learning, are very well suited to video games.  
Machine-learning techniques excel in exactly the 
kinds of fast, noisy, numerical, statistical, and changing 
domains that today’s video games provide.  Therefore, 
just as symbolic games provided an opportunity for the 
development and testing of GOFAI techniques in the 
1980s and 1990s, video games provide an opportunity 
for the development and testing of machine-learning 
techniques and their transfer to industry.

Artificial Intelligence in Video Games

One of the main challenges for AI is creating intel-
ligent agents that can become more proficient in their 
tasks over time and adapt to new situations as they 
occur.  These abilities are crucial for robots deployed 
in human environments, as well as for various software 
agents that live in the Internet or serve as human assis-
tants or collaborators.

Although current technology is still not sufficiently 
robust to deploy such systems in the real world, they are 
already feasible in video games.  Modern video games 
provide complex artificial environments that can be 
controlled and carry less risk to human life than any 
real-world application (Laird and van Lent, 2000).  At 

the same time, video gaming is an important human 
activity that occupies millions of people for countless 
hours.  Machine learning can make video games more 
interesting and reduce their production costs (Fogel et 
al., 2004) and, in the long run, might also make it pos-
sible to train humans realistically in simulated, adaptive 
environments.  Video gaming is, therefore, an important 
application of AI and an excellent platform for research 
in intelligent, adaptive agents.

Current video games include a variety of high-realism 
simulations of human-level control tasks, such as naviga-
tion, combat, and team and individual tactics and strat-
egy.  Some of these simulations involve traditional AI 
techniques, such as scripts, rules, and planning (Agre and 
Chapman, 1987; Maudlin et al., 1984), and a large part 
of AI development is devoted to path-finding algorithms, 
such as A*-search and simple behaviors built using 
finite-state machines.  AI is used to control the behav-
ior of the non-player characters (NPCs, i.e., autonomous  
computer-controlled agents) in the game.  The behaviors 
of NPCs, although sometimes impressive, are often repet-
itive and inflexible.  Indeed, a large part of the gameplay 
in many games is figuring out what the AI is programmed 
to do and learning to defeat it.

Machine learning in games began with Samuel’s (1959) 
checkers program, which was based on a method simi-
lar to temporal-difference learning (Sutton, 1988).  This 
was followed by various learning methods applied to  
tic-tac-toe, backgammon, go, Othello, and checkers  
(see Fürnkranz, 2001, for a survey).  Recently, machine-
learning techniques have begun to appear in video games 
as well.  For example, Fogel et al. (2004) trained teams of 
tanks and robots to fight each other using a competitive 
coevolution system, and Spronck (2005) trained agents 
in a computer role-playing game using dynamic scripting.  
Others have trained agents to fight in first- and third-
person shooter games (Cole et al., 2004; Hong and Cho, 
2004).  Machine-learning techniques have also been 
applied to other video game genres, from Pac-Man (Lucas, 
2005) to strategy games (Bryant and Miikkulainen, 2003; 
Yannakakis et al., 2004).

Nevertheless, very little machine learning is used in 
current commercial video games.  One reason may be 
that video games have been so successful that a new 
technology such as machine learning, which would 
fundamentally change the gaming experience, may 
be perceived as a risky investment by the industry.  In 
addition, commercial video games are significantly 
more challenging than the games used in research so 
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far.  They not only have large state and action spaces, 
but they also require diverse behaviors, consistent indi-
vidual behaviors, fast learning, and memory of past situ-
ations (Gomez et al., 2006; Stanley et al., 2005)

Neuroevolution

The rest of this article is focused on a particular 
machine-learning technique, neuroevolution, or the 
evolution of neural networks.  This technique not only 
promises to rise to the challenge of creating games that 
are educational, but also promises to provide a plat-
form for the safe, effective study of how intelligent 
agents adapt.

Evolutionary computa-
tion is a computational 
machine-learning tech-
nique modeled after natu-
ral evolution (Figure 1a).  
A population of candidate 
solutions are encoded as 
strings of numbers.  Each 
solution is evaluated in 
the task and assigned a fit-
ness based on how well 
it performs.  Individuals 
with high fitness are then 
reproduced (by crossing 
over their encodings) and 
mutated (by randomly 
changing components of 
their encodings with a low 
probability).  The offspring 
of the high-fitness individu-
als replace the low-fitness 
individuals in the popula-
tion, and over time, solu-
tions that can solve the task 
are discovered.

In neuroevolution, evolu-
tionary computation is used 
to evolve neural network 
weights and structures.  Neu-
ral networks perform statisti-
cal pattern transformation 
and generalization, and evo-
lutionary adaptation allows 
for learning without explicit 
targets, even with little re-
inforcement.  Neuroevolu-

tion is particularly well suited to video games because 
(1) it works well in high-dimensional spaces; (2) diverse 
populations can be maintained; (3) individual networks 
behave consistently; (4) adaptation takes place in real 
time; and (5) memory can be implemented through recur-
rency (Gomez et al., 2006; Stanley et al., 2005).

Several methods have been developed for evolv-
ing neural networks (Yao, 1999).  One particularly 
appropriate for video games is called neuroevolution 
of augmenting topologies (NEAT; Stanley and Miik-
kulainen, 2002), which was originally developed for 
learning behavioral strategies.  The neural networks 
control agents that select actions in their output based 

Figure 1   1a.  Evolving neural networks.  Solutions (such as neural networks) are encoded as chromosomes, usually consisting 
of strings of real numbers, in a population.  Each individual is evaluated and assigned a fitness based on how well it performs a 
given task.  Individuals with high fitness reproduce; individuals with low fitness are thrown away.  Eventually, nearly all individuals 
can perform the task.  1b.  Each agent in neuroevolution receives sensor readings as input and generates actions as output.  In the 
NERO video game, the network can see enemies, determine whether an enemy is currently in its line of fire, detect objects and 
walls, and see the direction the enemy is firing.  Its outputs specify the direction of movement and whether or not to fire.  In this 
way, the agent is embedded in its environment and must develop sophisticated behaviors to do well.  For general neuroevolution 
software and demos, see http://nn.cs.utexas.edu.
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on sensory inputs (Figure 1b).  NEAT is unique in that 
it begins evolution with a population of small, simple 
networks and complexifies those networks over genera-
tions, leading to increasingly sophisticated behaviors.

NEAT is based on three key ideas.  First, for neural 
network structures to increase in complexity over gen-
erations, a method must be found for keeping track of 
which gene is which.  Otherwise, it will not be clear 
in later generations which individuals are compatible 
or how their genes should be combined to produce off-
spring.  NEAT solves this problem by assigning a unique 
historical marking to every new piece of network struc-
ture that appears through a structural mutation.  The 
historical marking is a number assigned to each gene 
corresponding to its order of appearance over the course 
of evolution.  The numbers are inherited unchanged dur-
ing crossover, which allows NEAT to perform crossover 
without expensive topological analysis.  Thus, genomes 
of different organizations and sizes remain compatible 
throughout evolution.

Second, NEAT speciates the population, so that 
individuals compete primarily within their own niches 
instead of with the population at large.  In this way, 
topological innovations are protected and have time 
to optimize their structures.  NEAT uses the historical 
markings on genes to determine the species to which 
different individuals belong.

Third, unlike other systems that evolve network 
topologies and weights, NEAT begins with a uniform 
population of simple networks with no hidden nodes.  
New structure is introduced incrementally as structural 
mutations occur, and only those structures survive that 
are found to be useful through fitness evaluations.  This 
way, NEAT searches through a minimal number of 
weight dimensions and finds the appropriate complexity 
level for the problem.  This process of complexification 
has important implications for the search for solutions.  
Although it may not be practical to find a solution in a 

high-dimensional space by searching that space directly, 
it may be possible to find it by first searching in lower 
dimensional spaces and complexifying the best solu-
tions into the high-dimensional space.

As is usual in evolutionary algorithms, the entire 
population is replaced with each generation in NEAT.  
However, in a real-time game or simulation, this would 
seem incongruous because every agent’s behavior would 
change at the same time.  In addition, behaviors would 
remain static during the large gaps between generations.  
Therefore, in order to apply NEAT to video games, a 
real-time version of it, called rtNEAT, was created.

In rtNEAT, a single individual is replaced every few 
game ticks.  One of the poorest performing individuals 
is removed and replaced with a child of parents cho-
sen from among the best performing individuals.  This 
cycle of removal and replacement happens continu-
ally throughout the game and is largely invisible to the 
player.  As a result, the algorithm can evolve increas-
ingly complex neural networks fast enough for a user to 
interact with evolution as it happens in real time.  This 
real-time learning makes it possible to build machine-
learning games.

Machine-Learning Games

The most immediate opportunity for neuroevolution 
in video games is to build a “mod,” a new feature or 
extension, to an existing game.  For example, a character 
that is scripted in the original game can be turned into 
an adapting agent that gradually learns and improves as 
the game goes on.  Or, an entirely new dimension can 
be added to the game, such as an intelligent assistant or 
tool that changes as the player progresses through the 
game.  Such mods can make the game more interesting 
and fun to play.  At the same time, they are easy and 
safe to implement from a business point of view because 
they do not change the original structure of the game.  
From the research point of view, ideas about embedded 
agents, adaptation, and interaction can be tested with 
mods in a rich, realistic game environment.

With neuroevolution, however, learning can be taken 
well beyond game mods.  Entirely new game genres can 
be developed, such as machine-learning games, in which 
the player explicitly trains game agents to perform vari-
ous tasks.  The fun and challenge of machine-learning 
games is to figure out how to take agents through suc-
cessive challenges so that in the end they perform well 
in their chosen tasks.  Games such as Tamagotchi “Vir-
tual Pet” and Black & White “God Game” suggest that 
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interaction with artificial agents can make for viable and 
entertaining games.  In NERO, the third such game, the 
artificial agents adapt their behavior through sophisti-
cated machine learning.

The NERO Game

The main idea of NERO is to put the player in the 
role of a trainer or drill instructor who teaches a team of 
agents by designing a curriculum.  The agents are simu-
lated robots that learn through rtNEAT, and the goal is 
to train them for military combat.

The agents begin the game with no skills but with 
the ability to learn.  To prepare them for combat, the 
player must design a sequence of training exercises and 
goals.  Ideally, the exercises will be increasingly difficult 
so that the team begins by learning basic skills and then 
gradually builds on them (Figure 2).  When the player 
is satisfied that the team is well prepared, the team is 
deployed in a battle against another team trained by 
another player, allowing the players to see if their train-
ing strategies pay off.

The challenge is to anticipate the kinds of skills that 
might be necessary for battle and build training exer-
cises to hone those skills.  A player sets up training 
exercises by placing objects on the field and specifying 
goals through several sliders.  The objects include static 
enemies, enemy turrets, rovers (i.e., turrets that move), 
flags, and walls.  To the player, the sliders serve as an 
interface for describing ideal behavior.  To rtNEAT, they 
represent coefficients for fitness components.  For exam-
ple, the sliders specify how much to reward or punish 
agents for approaching enemies, hitting targets, getting 
hit, following friends, dispersing, etc.  Each individual 

fitness component is normalized to a Z-score (i.e., the 
number of standard deviations from the mean) so all 
components can be measured on the same scale.  Fitness 
is computed as the sum of all components multiplied by 
their slider levels, which can be positive or negative.  
Thus, the player has a natural interface for setting up a 
training exercise and specifying desired behavior.

Agents have several types of sensors (Figure 1b).  
Although NERO programmers frequently experiment 
with new sensor configurations, the standard sensors 
include enemy radars, an “on target” sensor, object 
range finders, and line-of-fire sensors.  To ensure con-
sistent evaluations, agents all begin in a designated area 
of the field called the factory.  Each agent is allowed 
to spend a limited amount of time on the field during 
which its fitness can be assessed.  When time on the 
field expires, the agent is transported back to the fac-
tory, where another evaluation begins.

Training begins by deploying 50 agents on the field.  
Each agent is controlled by a neural network with ran-
dom connection weights and no hidden nodes, which 
is the usual starting configuration for NEAT.  As the 
neural networks are replaced in real-time, behavior 
improves, and agents eventually learn to perform the 
task the player has set up.  When the player decides 
performance has reached a satisfactory level, he or she 
can save the team in a file.  Saved teams can be reloaded 
for further training in different scenarios, or they can be 
loaded into battle mode.

In battle mode, the player discovers how well the 
training has worked.  Each player assembles a battle 
team of 20 agents from as many different trained teams as 
desired, possibly combining agents with different skills.  

Scenario 1: Enemy Turret Scenario 2: 2 Enemy Turrets Scenario 3: Mobile Turrets & Walls Battle

FIGURE 2   A sample training sequence in NERO.  The figure depicts a sequence of increasingly difficult training exercises in which agents attempt to attack turrets without 
getting hit.  In the first exercise, there is only a single turret; additional turrets are added by the player as the team improves.  Eventually walls are added, and the turrets 
are given wheels so they can move.  Finally, after the team has mastered the hardest exercises, it is deployed in a battle against another team.  For animations of various 
training and battle scenarios, see http://nerogame.org.
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The battle begins with two teams arrayed on opposite 
sides of the field.  When one player presses a “go” but-
ton, the neural networks take control of their agents 
and perform according to their training.  Unlike train-
ing, however, where being shot does not cause damage 
to an agent’s body, agents in battle are destroyed after 
being shot several times (currently five).  The battle 
ends when one team is completely eliminated.  In some 
cases, the surviving agents may insist on avoiding each 
other, in which case the winner is the team with the 
most agents left standing.

Torque, a game engine licensed from GarageGames 
(http://www.garagegames.com/), drives NERO’s simu-
lated physics and graphics.  An important property of 
Torque is that its physics is slightly nondeterministic so 

that the same game is never played twice.  In addition, 
Torque makes it possible for the player to take control 
of enemy robots using a joystick, an option that can be 
useful in training.

Behavior can be evolved very quickly in NERO, fast 
enough so that the player can be watching and interact-
ing with the system in real time.  The most basic battle 
tactic is to seek the enemy aggressively and fire at it.  To 
train for this tactic, a single static enemy is placed on the 
training field, and agents are rewarded for approaching 
the enemy.  This training requires that agents learn to run 
toward a target, which is difficult because they start out 
in the factory facing in random directions.  Starting with 
random neural networks, it takes on average 99.7 sec-
onds for 90 percent of the agents on the field to learn to 
approach the enemy successfully (10 runs, sd = 44.5s).

Note that NERO differs from most applications of 
evolutionary algorithms in that the quality of evolu-
tion is judged from the player’s perspective based on 
the performance of the entire population, instead of the 
performance of the population champion.  However, 
even though the entire population must solve the task, 
it does not converge to the same solution.  In seek train-
ing, some agents evolve a tendency to run slightly to 
the left of the target, while others run to the right.  The 
population diverges because the 50 agents interact as 
they move simultaneously on the field at the same time.  
If all of the agents chose exactly the same path, they 
would often crash into each other and slow each other 
down, so agents naturally take slightly different paths to 
the goal.  In other words, NERO is a massively parallel, 
coevolving ecology in which the entire population is 
evaluated together.

Agents can also be trained to avoid the enemy, lead-
ing to different battle tactics.  In fact, rtNEAT is flexible 
enough to devolve a population that has converged on 
seeking behavior into its complete opposite, a popula-
tion that exhibits avoidance behavior.  For avoidance 
training, players control an enemy robot with a joystick 
and run it toward the agents on the field.  The agents 
learn to back away to avoid being penalized for being too 
near the enemy.  Interestingly, they prefer to run away 
from the enemy backward so they can still see and shoot 
at the enemy (Figure 3a).  As an interesting combina-
tion of conflicting goals, a turret can be placed on the 
field and agents asked to approach it without getting hit.  
As a result, they learn to avoid enemy fire, running to 
the side opposite the bullets and approaching the turret 
from behind.  This tactic is also effective in battle.

FIGURE 3   Behaviors evolved in NERO.  3a.  This training screenshot shows sev-
eral agents running away backward while shooting at the enemy, which is being 
controlled from a first-person perspective by a human trainer with a joystick.  This 
scenario demonstrates how evolution can discover novel and effective behaviors in 
response to challenges set up by the player.  3b.  Incremental training on increas-
ingly complex wall configurations produced agents that could navigate this complex 
maze to find the enemy.  Remarkably, they had not seen this maze during training, 
suggesting that they had evolved general path-navigation ability.  The agents spawn 
from the left side of the maze and proceed to an enemy at the right.  Notice that 
some agents evolved to take the path through the top, while others evolved to 
take the bottom path, suggesting that protecting innovation in rtNEAT supports a 
range of diverse behaviors with different network topologies.  Animations of these 
and other behaviors can be seen at http://nerogame.org.

a.

b.
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Other interesting behaviors have been evolved to test 
the limits of rtNEAT, rather than specifically prepare 
troops for battle.  For example, agents were trained to 
run around walls in order to approach the enemy.  As 
performance improved, players incrementally added 
more walls until the agents could navigate an entire 
maze (Figure 3b).  This behavior was remarkable because 
it was successful without any path planning.

The agents developed the general strategy of following 
any wall that stood between them and the enemy until 
they found an opening.  Interestingly, different species 
evolved to take different paths through the maze, show-
ing that topology and function are correlated in rtNEAT 
and confirming the success of real-time speciation.  The 
evolved strategies were also general enough for agents 
to navigate significantly different mazes without further 
training.  In another example, when agents that had 
been trained to approach a designated location (marked 
by a flag) through a hallway were attacked by an enemy 
controlled by the player, they learned, after two min-
utes, to take an alternative path through an adjacent 
hallway to avoid the enemy’s fire.  Such a response is a 
powerful demonstration of real-time adaptation.  The 
same kind of adaptation could be used in any interactive 
game to make it more realistic and interesting.

Teams that were trained differently were sometimes 
surprisingly evenly matched.  For example, a seeking 
team won six out of ten battles, only a slight advantage, 
against an avoidant team that ran in a pack to a corner 
of the field next to an enclosing wall.  Sometimes, if 
an avoidant team made it to the corner and assembled 
fast enough, the seeking  team ran into an ambush and 
was obliterated.  However, slightly more often the seek-
ing team got a few shots in before the avoidant team 
could gather in the corner.  In that case, the seeking 
team trapped the avoidant team and had more surviving 
numbers.  Overall, neither seeking nor avoiding pro-
vided a significant advantage.

Strategies can be refined further by observing behaviors 
during battle and setting up training exercises to improve 
them.  For example, a seeking team could eventually be 
made more effective against an avoidant team when it 
was trained with a turret that had its back against the wall.  
The team learned to hover near the turret and fire when it 
turned away and to back off quickly when it turned toward 
them.  In this way, rtNEAT can discover sophisticated 
tactics that dominate over simpler ones.  The challenge 
for the player is to figure out how to set up the training 
curriculum so sophisticated tactics will emerge.

NERO was created over a period of about two years 
by a team of more than 30 student volunteers (Gold, 
2005).  The game was first released in June 2005 at 
http://nerogame.org and has since been downloaded 
more than 100,000 times.  NERO is under continu-
ing development and is currently focused on providing 
more interactive play.  In general, players agree that the 
game is engrossing and entertaining.  Battles are excit-
ing, and players spend many hours perfecting behaviors 
and assembling teams with just the right combination 
of tactics.  Remarkably, players who have little techni-
cal background often develop accurate intuitions about 
the underlying mechanics of machine learning.  This 
suggests that NERO and other machine-learning games 
are viable as a genre and may even attract a future gen-
eration of researchers to machine learning.

Games like NERO can be used as research plat-
forms for implementing novel machine-learning 
techniques.  For example, one direction for research 
is to incorporate human knowledge, in terms of rules, 
into evolution.  This knowledge could then be used 
to seed the population with desired initial behaviors 
or to give real-time advice to agents during evolution 
(Cornelius et al., 2006; Yong et al., 2006).  Another 
area for research is to learn behaviors that not only 
solve a given problem, but solve it in a way that makes 
sense to a human observer.  Although such solutions 
are difficult to describe formally, a human player may 
be able to demonstrate them by playing the game 
himself or herself.  An evolutionary learning system 
can then use these examples to bias learning toward 
similar behaviors (Bryant, 2006).

Conclusion

Neuroevolution is a promising new technology that 
is particularly well suited to video game applications.  
Although neuroevolution methods are still being devel-
oped, the technology can already be used to make cur-
rent games more challenging and interesting and to 
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implement entirely new genres of games.  Such games, 
with adapting intelligent agents, are likely to be in high 
demand in the future.  Neuroevolution may also make it 
possible to build effective training games, that is, games 
that adapt as the trainee’s performance improves.

At the same time, video games provide interesting, 
concrete challenges for machine learning.  For example, 
they can provide a platform for the systematic study of 
methods of control, coordination, decision making, 
and optimization, within uncertainty, material, and 
time constraints.  These techniques should be widely 
applicable in other fields, such as robotics, resource 
optimization, and intelligent assistants.  Just as tradi-
tional symbolic games catalyzed the development of 
GOFAI techniques, video gaming may catalyze research 
in machine learning for decades to come.
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