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Abstract 

A distributed neural network model called SPEC 
for processing sentences with recursive relative 
clauses is described. The model is based on sep- 
arating the tasks of segmenting the input word 
sequence into clauses, forming the case-role rep- 
resentations, and keeping track of the recursive 
embeddings into different modules. The system 
needs to be trained only with the basic sentence 
constructs, and it generalizes not only to new in- 
stances of familiar relative clause structures, but 
to novel structures as well. SPEC exhibits plausi- 
ble memory degradation as the depth of the center 
embeddings increases, its memory is primed by 
earlier constituents, and its performance is aided 
by semantic constraints between the constituents. 
The ability to process structure is largely due to a 
central executive network that monitors and con- 
trols the execution of the entire system. This 
way, in contrast to earlier subsymbolic systems, 
parsing is modeled as a controlled high-level pro- 
cess rather than one based on automatic reflex 
responses. 

The girl, who liked the dog, saw the boy’, and 
it will generalize to different versions of the same struc- 
ture, such as The dog, who bit the girl, chased 
the cat (Miikkulainen 1990). However, such a net- 
work cannot parse sentences with novel combina- 
tions of relative clauses, such as The girl, who liked 
the dog, saw the boy, who chased the cat. The 
problem is that distributed neural networks are pat- 
tern transformers, and they generalize by interpolating 
between patterns on which they were trained. They 
cannot make inferences by dynamically combining pro- 
cessing knowledge that was previously associated to dif- 
ferent contexts, such as processing a relative clause at 
a new place in an otherwise familiar sentence structure. 
This lack of generalization is a serious problem, given 
how effortlessly people can understand sentences they 
have never seen before. 

Introduction 
Reading an input sentence into an internal represen- 
tation is a most fundamental task in natural language 
processing. In the distributed (i.e. subsymbolic) neu- 
ral network approach, it usually involves mapping a 
sequence of word representations into a shallow seman- 
tic interpretation, such as the case-role assignment of 
the constituents. This approach offers several promises: 
it is possible to combine syntactic, semantic, and the- 
matic constraints in the interpretation, generate expec- 
tations automatically, generalize to new inputs, and 
process noisy sentences robustly (Elman 1990, 1991; 
McClelland & Kawamoto 1986; Miikkulainen 1993; 
St. John & McClelland 1990). To a limited extent, 
it is even possible to train such networks to process 
sentences with complex grammatical structure, such as 
embedded relative clauses (Berg 1992; Jain 1991; Miik- 
kulainen 1990; Sharkey & Sharkey 1992; Stolcke 1990). 

This paper describes SPEC (Subsymbolic Parser for 
Embedded Clauses), a subsymbolic sentence parsing 
model that can generalize to new relative clause struc- 
tures. The basic idea is to separate the tasks of seg- 
menting the input word sequence into clauses, form- 
ing the case-role representations, and keeping track of 
the recursive embeddings into different networks. Each 
network is trained with only the most basic relative 
clause constructs, and the combined system is able to 
generalize to novel sentences with remarkably complex 
structure. Importantly, SPEC is not a neural net- 
work reimplementation of a symbol processor. It is a 
self-contained, purely distributed neural network sys- 
tem, and exhibits the usual properties of such systems. 
For example, unlike symbolic parsers, the network ex- 
hibits plausible memory degradation as the depth of 
the center embeddings increases, its memory is primed 
by the earlier constituents in the sentence, and its per- 
formance is aided by semantic constraints between the 
constituents. 

However, it has been very difficult to build subsym- 
bolic systems that would generalize to new sentence 
structures. A network can be trained to form a case- 
role representation of each clause in a sentence like 

The SPEC Architecture 
SPEC receives a sequence of word representations as 
its input, and for each clause in the sentence, forms 
an output representation indicating the assignment of 

‘In all examples in this paper, commas are used to indi- 
cate clause boundaries for clarity. 
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Figure 1: The SPEC sentence processing architecture. The system consists of the Parser (a simple recurrent 
the Stack (a RAAM network), and the Segmenter (a feedforward network). The gray areas indicate propagatio 
weights, t he solid lines stand for pattern transport, and the dashed lines represent control outputs (with gates). 
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words into case roles. The case-role representations are 
read off the system and placed in a short-term memory 
(currently outside SPEC) as soon as they are complete. 
SPEC consists of three main components: the Parser, 
the Segmenter, and the Stack (figure 1). Below, each 
component is described in detail. 

The Parser 
The Parser performs the actual transformation of the 
word sequence into the case-role representations, and 
like many other subsymbolic parsers, it is based on 
Elman’s (1990) simple recurrent network architecture 
(SRN; figure 2). The pattern in the hidden layer 
is copied to the previous-hidden-layer assembly and 
serves as input to the hidden layer during the next step 
in the sequence, thus implementing a sequence memory. 
The network is trained with examples of input/output 
sequences, adjusting all forward weights according to 
the backpropagation algorithm (Rumelhart, Hinton, & 
Williams 1986). 

Words are represented distributively as vectors of 
gray-scale values between 0 and 1. The component val- 
ues are initially assigned randomly and modified during 
learning by the FGREP method (Miikkulainen & Dyer 
1991; Miikkulainen 1993). FGREP is a convenient way 
to form distributed representations for input/output 
items, but SPEC is not dependent on FGREP. The 
word representations could have been obtained through 
semantic feature encoding (McClelland & Kawamoto 
1986) as well, or even assigned randomly. 

The case-role assignment is represented at the out- 
put of the Parser as a case-role vector (CRV), that is, a 
concatenation of those three word representation vec- 
tors that fill the roles of agent, act, and patient in the 
sentence2 (figure 2). For example, the word sequence 

“The representation was limited to three roles for 
simplicity. 

n etwork), 
n through 

the girl saw the boy receives the case-role assign- 
ment agent=girl, act=saw, patient=boy, which is rep- 
resented as the vector lgirl saw boy1 at the output 
of the Parser network. When the sentence consists of 
multiple clauses, the relative pronouns are replaced by 
their referents: The girl, who liked the dog, saw 
the boy parses into two CRVs: I girl liked dog1 
and lgirl saw boy I. 

The Parser receives a continuous sequence of input 
word representations as its input, and its target pat- 
tern changes at each clause boundary. For example, 
in reading The girl, who liked the dog, saw the 
boy, the target pattern representing lgirl saw boy1 
is maintained during the first two words, then switched 
to I girl liked dog1 during reading the embedded 
clause, and then back to lgirl saw boy I for the rest 
of the sentence. The CRV for the embedded clause is 
read off the network after dog has been input, and the 
CRV for the main clause after the entire sentence has 
been read. 

When trained this way, the network is not limited to 
a fixed number of clauses by its output representation. 
Also, it does not have to maintain information about 
the entire past input sequence in its memory, making it 
possible in principle to generalize to new clause struc- 
tures. Unfortunately, after a center-embedding has 
been processed, it is difficult for the network to remem- 
ber earlier constituents. This is why a Stack network 
is needed in SPEC. 

The Stack 

The hidden layer of a simple recurrent network forms 
a compressed description of the sequence so far. The 
Stack has the task of storing this representation at each 
center embedding, and restoring it upon return from 
the embedding. For example, in parsing The girl, 
who liked the dog, saw the boy, the hidden-layer 
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Figure 2: The Parser network. The figure depicts a snapshot of the network after it has read the first two words The and 
girl. The activity patterns in the input and output assemblies consist of word representations. The input layer holds the 
representation for the last word, girl, and the activity pattern at the output represents the (currently incomplete) case-role 
assignment of the clause. 

representation is pushed onto the stack after The girl, 
and popped back to the Parser’s previous-hidden-layer 
assembly after who liked the dog. In effect, the SRN 
can then parse the top-level clause as if the center em- 
bedding had not been there at all. 

The Stack is implemented as a Recursive Auto- 
Associative Memory (RAAM; Pollack 1990; figure 3). 
RAAM is a three-layer backpropagation network 
trained to perform an identity mapping from input to 
output. As a side effect, its hidden layer learns to 
form compressed representations of the network’s in- 
put;/output patterns. These representations can be re- 
cursively used as constituents in other input. patterns, 
and a potentially infinite hierarchical data structure, 
such as a stack, can this way be compressed into a 
fixed-size representation. 

The input/output of the Stack consists of the stack’s 
top element and the compressed representation for the 
rest of the stack. Initially the stack is empty, which is 
represented by setting all units in the “Stack” assem- 
bly to 0.5 (figure 3). The first element, such as the 
hidden-layer pattern of the Parser network after read- 
ing The girl, is loaded into the “Push” assembly, and 
the activity is propagated to the hidden layer. The 
hidden-layer pattern is then loaded into the “Stack” 
assembly at the input, and the Stack network is ready 
for another push operation. 

When the Parser returns from the center embedding, 
the stored pattern needs to be popped from the stack. 
The current stack representation is loaded into the hid- 
den layer, and the activity is propagated to the out- 
put layer. At the output, the “Pop” assembly contains 
the stored Parser-hidden-layer pattern, which is then 
loaded into the previous-hidden-layer assembly of the 
Parser network (figure 1). The “Stack” assembly con- 
tains the compressed representation for the rest of the 
stack, and it is loaded to the hidden layer of the Stack 
network, which is then ready for another pop operation. 

860 Neural Networks 

The Segmenter 

The Parser+Stack architecture alone is not quite suffi- 
cient for generalization into novel relative clause struc- 
tures. For example, when trained with only exam- 
ples of center embeddings (such as the above) and 
tail embeddings (like The girl saw the boy, who 
chased the cat), the architecture generalizes well 
to new sentences such as The girl, who liked the 
dog, saw the boy, who chased the cat. How- 
ever, the system still fails to generalize to sen- 
tences like The girl saw the boy, who the dog, 
who chased the cat, bit. Even though the Stack 
takes care of restoring the earlier state of the parse, 
the Parser has to learn all the different transitions into 
relative clauses. If it has encountered center embed- 
dings only at the beginning of the sentence, it cannot 
generalize to a center embedding that occurs after an 
entire full clause has already been read. 

The solution is to train an additional network, the 
Segmenter, to divide the input sequence into clauses. 
The segmenter receives the current hidden-layer pat- 
tern as its input, together with the representation for 
the next input word, and it is trained to produce a mod- 
ified hidden-layer pattern as its output (figure 4). The 
output is then loaded into the previous-hidden-layer as- 
sembly of the Parser. In the middle of reading a clause, 
the Segmenter passes the hidden-layer pattern through 
without modification. However, if the next word is a 
relative pronoun, the segmenter modifies the pattern 
so that only the relevant information remains. In the 
above example, after boy has been read and who is next 
to come, the Segmenter generates a pattern similar to 
that of the Parser’s hidden layer after only The boy in 
the beginning of the sentence has been input. 

In other words, the Segmenter (1) detects transitions 
to relative clauses, and (2) changes the sequence mem- 
ory so that the Parser only has to deal with one type 
of clause boundary. This way, the Parser’s task be- 



Figure 3: The Stack network. This figure simultaneously illustrates three situations that occur at different times during 
the training and the performance of the Stack: (1) A training situation where the network learns to autoassociate an input 
pattern with itself, forming a compressed representation at the hidden layer; (2) A push operation, where a representation 
in the “Push” assembly is combined with the empty-stack representation (in the “Stack” assembly) to form a compressed 
representation for the new stack in the hidden layer; (3) A pop operation, where the current stack representation in the 
hidden layer generates an output pattern with the top element of the stack in the “Pop” assembly and the representation for 
the remaining stack (currently empty) in the “Stack” assembly. 

comes sufficiently simple so that the entire system can 
generalize to new structures. 

The Segmenter plays a central role in the architec- 
ture, and it is very natural to give it a complete control 
over the entire parsing process. Control is implemented 
through three additional units at the Segmenter’s out- 
put (figure 4). The units “Push” and “Pop” control the 
stack operations, and the unit “Output” indicates when 
the Parser output is complete and should be read off the 
system. The control implementation in SPEC empha- 
sizes an important point: although much of the struc- 
ture in the parsing task is programmed into the system 
architecture, SPEC is still a self-contained distributed 
neural network. In many modular neural network ar- 
chitectures control is due to a hidden symbolic super- 
visor. SPEC demonstrates that such external control 
mechanisms are not necessary: even a rather complex 
subsymbolic architecture can take care of its own con- 
trol and operate independently of its environment. 

Experiments 
The training and testing corpus was generated from a 
simple phrase structure grammar (table 1). Each clause 
consisted of three constituents: the agent, the verb and 
the patient. A relative who-clause could be attached to 
the agent or to the patient of the parent clause, and 
who could fill the role of either the agent or the pa- 
tient in the relative clause. In addition to who, the and 
“.” (full stop, the end-of-sentence marker that had its 
own distributed representation in the system just like 
a word), the vocabulary consisted of the verbs chased, 
liked, saw and bit, and the nouns boy, girl, dog and 
cat. Certain semantic restrictions were imposed on 
the sentences. A verb could only have certain nouns as 
its agent and patient, as listed in table 2. The gram- 
mar was used to generate all sentences with up to four 

ZP 
t NP VP “." 
+ DET N I DET N RC 

E 
--f V NP 
+ who VP I who NP V 

N + boy I girl I do I cat 

EET 
+ chased I liked 7 saw I bit 
+ the 

Table 1: The sentence grammar. 

Verb Case-role Possible fillers 

chased Agent: 
Patient: 

boy,girl,dog,cat 
cat 

liked Agent: 
Patient: 

boy ,girl 
boy,girl,dog 

saw 

bit 

Agent: 
Patient: 

boy,girl,cat 
boy,girl 

Agent: 
Patient: 

dog 
boy,girl,dog,cat 

Table 2: Semantic restrictions. 

clauses, and those that did not match the semantic re- 
strictions were discarded. The final corpus consisted of 
49 different sentence structures, with a total of 98,100 
different sentences. 

The SPEC architecture divides the sentence pars- 
ing task into three subtasks. Each component needs to 
learn only the basic constructs in its task, and the com- 
bined architecture forces generalization into novel com- 
binations of these constructs. Therefore, it is enough 
to train SPEC with only two sentence structures: (1) 
the two-level tail embedding (such as The girl saw 
the boy, who chased the cat, who the dog bit) and 
the two-level center-embedding (e.g. the girl, who the 
dog, who chased the cat, bit, saw the boy). The 
training set consisted of 100 randomly-selected sen- 
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Figure 4: The Segmenter network. The Segmenter receives the Parser’s hidden-layer pattern as its input together with 
the next input word, which in this case is who. The control outputs are 1, 0, 0, indicating that the Parser’s hidden-layer 
representation should be pushed onto the Stack, the current case-role representation is incomplete and should not be passed 
on to the output of the system, and the stack should not be popped at this point. In this case, the Segmenter output 
is identical to its input, because the girl is the smallest context that the Parser needs to know when entering a center 
embedding. 

tences of each type. In addition, the Stack was trained 
to encode and decode up to three levels of pushes and 
POPS. 

The word representations consisted of 12 units. 
Parser’s hidden layer was 75 units wide, Segmenter’s 50 
units, and Stack’s 50 units. All networks were trained 
with on-line backpropagation with 0.1 learning rate and 
without momentum. Both the Parser and the Seg- 
menter developed word representations at their input 
layers (with a learning rate of 0.001). The networks 
were trained separately (i.e. without propagation be- 
tween modules) and simultaneously, sharing the same 
gradually-developing word and parser-hidden-layer rep- 
resentations. The convergence was very strong. Af- 
ter 400 epochs, the average error per output unit was 
0.018 for the Parser, 0.008 for the Segmenter (0.002 for 
the control outputs), and 0.003 for the Stack, while an 
error level of 0.020 usually results in acceptable per- 
formance in’ similar assembly-based systems (Miikku- 
lainen 1993). The training took approximately three 
hours on an IBM RS6000 workstation. The final rep- 
resentations reflected the word categories very well. 

SPEC’s performance was then tested on the entire 
corpus of 98,100 sentences. The patterns in the Parser’s 
output assemblies were labeled according to the nearest 
representation in the lexicon. The control output was 
taken to be correct if those control units that should 
have been active at 1 had an activation level greater 
than 0.7, and those that should have been 0 had activa- 
tion less than 0.3. Measured this way, the performance 
was excellent: SPEC did not make a single mistake in 
the entire corpus, neither in the output words or in con- 
trol. The average unit error was 0.034 for the Parser, 
0.009 for the Segmenter (0.003 for control), and 0.005 
for the Stack. There was very little variation between 
sentences and words within each sentence, indicating 
that the system was operating within a safe margin. 

The main result, therefore, is that the SPEC ar- 
chitecture successfully generalizes not only to new in- 
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st,ances of the familiar sentence structures, but to new 
structures as well, which the earlier subsymbolic sen- 
tence processing architectures could not do. However, 
SPEC is not a mere reimplementation of a symbol pro- 
cessor. As SPEC’s Stack becomes increasingly loaded, 
its output becomes less and less accurate; symbolic sys- 
tems do not have any such inherent memory degrada- 
tion. An important question is, does SPEC’s perfor- 
mance degrade in a cognitively plausible manner, that, 
is, does the system have similar difficulties in process- 
ing recursive structures as people do’? 

To elicit enough errors from SPEC to analyze it,s 
limitations, the Stack’s performance was degraded by 
adding 30% noise in its propagation. Such an experi- 
ment can be claimed to simulate overload, stress, cog- 
nitive impairment, or lack of concentration situations. 
The system turned out to be remarkably robust against 
noise. The average Parser error rose to 0.058, but the 
system still got 94% of its output words right, with very 
few errors in control. ,4s expected, most, of t,lie errors 
occurred as a direct result of popping back from center 
embeddings with an inaccurate previous-hidden-layer 
representation. For example, in parsing The girl, 
who the dog, who the boy, who 
chased the cat, liked, bit, saw the boy, SPEC 
had trouble remembering the agents of liked, bit and 
saw, and patients of liked and bit. The performance 
depends on the level of the embedding in an interesting 
manner. It is harder for the network to remember the 
earlier constituents of shallower clauses than those of 
deeper clauses. For example, SPEC could usually con- 
nect boy with liked (in 80% of the cases), but it was 
harder for it to remember that it was the dog who bit 
(58%) and even harder that the girl who saw (38%) 
in the above example. 

Such behavior seems plausible in terms of human 
performance. Sentences with deep center embeddings 
are harder for people to remember than shallow ones 
(Foss & Cairns 1970; Miller & Isard 1964). It is easier 



to remember a constituent that occurred just recently 
in the sentence than one that occurred several embed- 
dings ago. Interestingly, even though SPEC was espe- 
cially designed to overcome such memory effects in the 
Parser’s sequence memory, the same effect is generated 
by the Stack architecture. The latest embedding has 
noise added to it only once, whereas the earlier ele- 
ments in the stack have been degraded multiple times. 
Therefore, the accuracy is a function of the number of 
pop operations instead of a function of the absolute 
level of the embedding. 

When the SPEC output is analyzed word by word, 
several other interesting effects are revealed. Virtually 
in every case where SPEC made an error in popping 
an earlier agent or patient from the stack it confused it 
with another noun (54,556 times out of 54,603; random 
choice would yield 13650). In other words, SPEC per- 
forms plausible role bindings: even if the exact agent 
or patient is obscured in the memory, it “knows” that 
it has to be a noun. Moreover, SPEC does not gen- 
erate the noun at random. Out of all nouns it output 
incorrectly, 75% had occurred earlier in the sentence, 
whereas a random choice would give only 54%. It seems 
that traces for the earlier nouns are discernible in the 
previous-hidden-layer pattern, and consequently, they 
are slightly favored at the output. Such priming effect 
is rather surprising, but it is very plausible in terms of 
human performance. 

The semantic constraints (table 2) also have a 
markecl effect on the performance. If the agent or 
patient that needs to be popped from the stack is 
strongly correlated with the verb, it is easier for the 
network to remember it correctly. The effect depends 
on the strength of the semantic coupling. For example, 
girl is easier to remember in The girl, who the dog 
bit, liked the boy, than in The girl, who the 
dog bit, saw the boy, which is in turn easier than 
The girl, who the dog bit, chased the cat. The rea- 
son is that there are only two possible agents for liked, 
whereas there are three for saw and four for chased. 
While SPEC gets 95% of the unique agents right, it 
gets 76% of those with two alternatives, G9% of those 
with three, and only G7% of those with four. 

A similar effect has been observed in human pro- 
cessing of relative clause structures. Half the subjects 
in Stolz’s (1967) study could not decode complex cen- 
ter embeddings without semantic constraints. Huang 
(1983) showed that young children understand embed- 
ded clauses better when the constituents are semanti- 
cally strongly coupled, and Caramazza 8~ Zurif (1976) 
observed similar behavior in aphasics. This effect is of- 
ten attributed to limited capability for processing syn- 
tax. The SPEC experiments indicate that it could be 
at least partly due to impaired memory as well. When 
the memory representation is impaired with noise, the 
Parser has to clean it up. In propagation through the 
Parser’s weights, noise that does not coincide with the 
known alternat>ives cancels out. Apparently, when the 

verb is strongly correlated with some of the alterna- 
tives, more of the noise appears coincidental and is fil- 
tered out. 

Discussion 
Several observations indicate that the SPEC approach 
to subsymbolic parsing should scale up well. First, as 
long as SPEC can be trained with the basic constructs, 
it will generalize to a very large set of new combinations 
of these constructs. Combinatorial training (St. John 
1992) of structure is not necessary. In other words, 
SPEC is capable of dynamic inferencing, previously 
postulated as very difficult for subsymbolic systems to 
achieve (Touretzky 1991). Second, like most subsym- 
bolic systems, SPEC does not need to be trained with 
a complete set, of all combinations of constituents for 
the basic constructs; a representative sample. like the 
200 out of 1088 possible training sentences above, is 
enough. Third, with the FGREP mechanism it is pos- 
sible to automatically form meaningful distributed rep- 
resentations for a large number of words, even to ac- 
quire them incrementally (Miikkulainen 8~ Dyer 1991: 
Miikkulainen 1993), and the network will know how to 
process them in new situat,ions. Fourth, SPEC is quite 
insensitive to configuration and simulation parameters, 
suggesting that the approach is very st,rong, and there 
should be plenty of room for adapting it to more chal- 
lenging experiments. The most immediate direction 
for future work is to apply the SPEC architecture to a 
wider variety of grammatical constructs and to larger 
vocabularies. 

The Segmenter is perhaps the most significant new 
feature of the SPEC architecture. It, can be seen as 
a first step toward implementing high-level control in 
the connectionist framework (see also Jacobs. Jordan, 
& Barto 1991: Jam 1991: Schneider 8~ Detweiler 198’7: 
Sumida 1991). The Segmenter monitors the input se- 
quence and the state of the parsing network, and is- 
sues I/O control signals for the Stack memory and the 
Parser itself at appropriate times. The Segmenter has 
a high-level view of the parsing process. and uses it 
to assign simpler tasks to the other moclules. In that 
sense, the Segmenter implements a strategy for parsing 
sentences with relative clauses. Such control networks 
could play a major role in future subsymbolic models of 
natural language processing and high-level reasoning. 

Conclusion 
SPEC is largely motivated by the desire to build a sys- 
tem that (1) would be able to process nontrivial input 
like symbolic systems, and (2) woiild make use of the 
unique properties of distributed neural networks slrch 
as learning from examples, spontaneous generalization, 
robustness, contest> sensit,ivity, and integrating statisti- 
cal evidence. Alt,hough SPEC does not address several 
important issues in connectionist natural language pro- 
cessing (such as processing exceptions and representing 
flexible structure), it, does indicate that learning and 
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applying grammatical structure for parsing is possible 
with pure distributed networks. 

However, even more than an AI system aiming at 
best possible performance, SPEC is an implementa- 
tion of a particular Cognitive Science philosophy. The 
architecture is decidedly not a reimplementation of a 
symbol processor, or even a hybrid system consisting 
of subsymbolic components in an otherwise symbolic 
framework. SPEC aims to moclel biological information 
processing at a specific, uniform level of abstraction, 
namely that of distributed representation on modular 
networks. SPEC should be evaluated according to how 
well its behavior matches that produced by the brain 
at the cognitive level. The memory degradation ex- 
periments indicate that SPEC is probably on the right 
track, and the success of the high-level controller net- 
work in generating high-level behavior opens exciting 
possibilities for future work. 
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