
Parsing Embedded Clauses with Distributed Neural Networks

Risto Miikkulainen Dennis Bijwaard
Department of Computer Sciences Department of Computer Science
The University of Texas at Austin University of Twente

Austin, TX 78712 USA 7500 AE Enschede, The Netherlands
risto@cs.utexas.edu bijwaard@cs.utwente.nl

Abstract

A distributed neural network model called SPEC
for processing sentences with recursive relative
clauses is described. The model is based on sep-
arating the tasks of segmenting the input word
sequence into clauses, forming the case-role rep-
resentations, and keeping track of the recursive
embeddings into different modules. The system
needs to be trained only with the basic sentence
constructs, and it generalizes not only to new in-
stances of familiar relative clause structures, but
to novel structures as well. SPEC exhibits plausi-
ble memory degradation as the depth of the center
embeddings increases, its memory is primed by
earlier constituents, and its performance is aided
by semantic constraints between the constituents.
The ability to process structure is largely due to a
central executive network that monitors and con-
trols the execution of the entire system. This
way, in contrast to earlier subsymbolic systems,
parsing is modeled as a controlled high-level pro-
cess rather than one based on automatic reflex
responses.

The girl, who liked the dog, saw the boy’, and
it will generalize to different versions of the same struc-
ture, such as The dog, who bit the girl, chased
the cat (Miikkulainen 1990). However, such a net-
work cannot parse sentences with novel combina-
tions of relative clauses, such as The girl, who liked
the dog, saw the boy, who chased the cat. The
problem is that distributed neural networks are pat-
tern transformers, and they generalize by interpolating
between patterns on which they were trained. They
cannot make inferences by dynamically combining pro-
cessing knowledge that was previously associated to dif-
ferent contexts, such as processing a relative clause at
a new place in an otherwise familiar sentence structure.
This lack of generalization is a serious problem, given
how effortlessly people can understand sentences they
have never seen before.

Introduction
Reading an input sentence into an internal represen-
tation is a most fundamental task in natural language
processing. In the distributed (i.e. subsymbolic) neu-
ral network approach, it usually involves mapping a
sequence of word representations into a shallow seman-
tic interpretation, such as the case-role assignment of
the constituents. This approach offers several promises:
it is possible to combine syntactic, semantic, and the-
matic constraints in the interpretation, generate expec-
tations automatically, generalize to new inputs, and
process noisy sentences robustly (Elman 1990, 1991;
McClelland & Kawamoto 1986; Miikkulainen 1993;
St. John & McClelland 1990). To a limited extent,
it is even possible to train such networks to process
sentences with complex grammatical structure, such as
embedded relative clauses (Berg 1992; Jain 1991; Miik-
kulainen 1990; Sharkey & Sharkey 1992; Stolcke 1990).

This paper describes SPEC (Subsymbolic Parser for
Embedded Clauses), a subsymbolic sentence parsing
model that can generalize to new relative clause struc-
tures. The basic idea is to separate the tasks of seg-
menting the input word sequence into clauses, form-
ing the case-role representations, and keeping track of
the recursive embeddings into different networks. Each
network is trained with only the most basic relative
clause constructs, and the combined system is able to
generalize to novel sentences with remarkably complex
structure. Importantly, SPEC is not a neural net-
work reimplementation of a symbol processor. It is a
self-contained, purely distributed neural network sys-
tem, and exhibits the usual properties of such systems.
For example, unlike symbolic parsers, the network ex-
hibits plausible memory degradation as the depth of
the center embeddings increases, its memory is primed
by the earlier constituents in the sentence, and its per-
formance is aided by semantic constraints between the
constituents.

However, it has been very difficult to build subsym-
bolic systems that would generalize to new sentence
structures. A network can be trained to form a case-
role representation of each clause in a sentence like

The SPEC Architecture
SPEC receives a sequence of word representations as
its input, and for each clause in the sentence, forms
an output representation indicating the assignment of

‘In all examples in this paper, commas are used to indi-
cate clause boundaries for clarity.

858 Neural Networks

From: AAAI-94 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Figure 1: The SPEC sentence processing architecture. The system consists of the Parser (a simple recurrent
the Stack (a RAAM network), and the Segmenter (a feedforward network). The gray areas indicate propagatio
weights, t he solid lines stand for pattern transport, and the dashed lines represent control outputs (with gates).

Input

pars*Tl Segmenter Stack

I Case-role vector I

output

words into case roles. The case-role representations are
read off the system and placed in a short-term memory
(currently outside SPEC) as soon as they are complete.
SPEC consists of three main components: the Parser,
the Segmenter, and the Stack (figure 1). Below, each
component is described in detail.

The Parser
The Parser performs the actual transformation of the
word sequence into the case-role representations, and
like many other subsymbolic parsers, it is based on
Elman’s (1990) simple recurrent network architecture
(SRN; figure 2). The pattern in the hidden layer
is copied to the previous-hidden-layer assembly and
serves as input to the hidden layer during the next step
in the sequence, thus implementing a sequence memory.
The network is trained with examples of input/output
sequences, adjusting all forward weights according to
the backpropagation algorithm (Rumelhart, Hinton, &
Williams 1986).

Words are represented distributively as vectors of
gray-scale values between 0 and 1. The component val-
ues are initially assigned randomly and modified during
learning by the FGREP method (Miikkulainen & Dyer
1991; Miikkulainen 1993). FGREP is a convenient way
to form distributed representations for input/output
items, but SPEC is not dependent on FGREP. The
word representations could have been obtained through
semantic feature encoding (McClelland & Kawamoto
1986) as well, or even assigned randomly.

The case-role assignment is represented at the out-
put of the Parser as a case-role vector (CRV), that is, a
concatenation of those three word representation vec-
tors that fill the roles of agent, act, and patient in the
sentence2 (figure 2). For example, the word sequence

“The representation was limited to three roles for
simplicity.

n etwork),
n through

the girl saw the boy receives the case-role assign-
ment agent=girl, act=saw, patient=boy, which is rep-
resented as the vector lgirl saw boy1 at the output
of the Parser network. When the sentence consists of
multiple clauses, the relative pronouns are replaced by
their referents: The girl, who liked the dog, saw
the boy parses into two CRVs: I girl liked dog1
and lgirl saw boy I.

The Parser receives a continuous sequence of input
word representations as its input, and its target pat-
tern changes at each clause boundary. For example,
in reading The girl, who liked the dog, saw the
boy, the target pattern representing lgirl saw boy1
is maintained during the first two words, then switched
to I girl liked dog1 during reading the embedded
clause, and then back to lgirl saw boy I for the rest
of the sentence. The CRV for the embedded clause is
read off the network after dog has been input, and the
CRV for the main clause after the entire sentence has
been read.

When trained this way, the network is not limited to
a fixed number of clauses by its output representation.
Also, it does not have to maintain information about
the entire past input sequence in its memory, making it
possible in principle to generalize to new clause struc-
tures. Unfortunately, after a center-embedding has
been processed, it is difficult for the network to remem-
ber earlier constituents. This is why a Stack network
is needed in SPEC.

The Stack

The hidden layer of a simple recurrent network forms
a compressed description of the sequence so far. The
Stack has the task of storing this representation at each
center embedding, and restoring it upon return from
the embedding. For example, in parsing The girl,
who liked the dog, saw the boy, the hidden-layer

Neural Networks 859

uence of input words

Case-role assignment

Figure 2: The Parser network. The figure depicts a snapshot of the network after it has read the first two words The and
girl. The activity patterns in the input and output assemblies consist of word representations. The input layer holds the
representation for the last word, girl, and the activity pattern at the output represents the (currently incomplete) case-role
assignment of the clause.

representation is pushed onto the stack after The girl,
and popped back to the Parser’s previous-hidden-layer
assembly after who liked the dog. In effect, the SRN
can then parse the top-level clause as if the center em-
bedding had not been there at all.

The Stack is implemented as a Recursive Auto-
Associative Memory (RAAM; Pollack 1990; figure 3).
RAAM is a three-layer backpropagation network
trained to perform an identity mapping from input to
output. As a side effect, its hidden layer learns to
form compressed representations of the network’s in-
put;/output patterns. These representations can be re-
cursively used as constituents in other input. patterns,
and a potentially infinite hierarchical data structure,
such as a stack, can this way be compressed into a
fixed-size representation.

The input/output of the Stack consists of the stack’s
top element and the compressed representation for the
rest of the stack. Initially the stack is empty, which is
represented by setting all units in the “Stack” assem-
bly to 0.5 (figure 3). The first element, such as the
hidden-layer pattern of the Parser network after read-
ing The girl, is loaded into the “Push” assembly, and
the activity is propagated to the hidden layer. The
hidden-layer pattern is then loaded into the “Stack”
assembly at the input, and the Stack network is ready
for another push operation.

When the Parser returns from the center embedding,
the stored pattern needs to be popped from the stack.
The current stack representation is loaded into the hid-
den layer, and the activity is propagated to the out-
put layer. At the output, the “Pop” assembly contains
the stored Parser-hidden-layer pattern, which is then
loaded into the previous-hidden-layer assembly of the
Parser network (figure 1). The “Stack” assembly con-
tains the compressed representation for the rest of the
stack, and it is loaded to the hidden layer of the Stack
network, which is then ready for another pop operation.

860 Neural Networks

The Segmenter

The Parser+Stack architecture alone is not quite suffi-
cient for generalization into novel relative clause struc-
tures. For example, when trained with only exam-
ples of center embeddings (such as the above) and
tail embeddings (like The girl saw the boy, who
chased the cat), the architecture generalizes well
to new sentences such as The girl, who liked the
dog, saw the boy, who chased the cat. How-
ever, the system still fails to generalize to sen-
tences like The girl saw the boy, who the dog,
who chased the cat, bit. Even though the Stack
takes care of restoring the earlier state of the parse,
the Parser has to learn all the different transitions into
relative clauses. If it has encountered center embed-
dings only at the beginning of the sentence, it cannot
generalize to a center embedding that occurs after an
entire full clause has already been read.

The solution is to train an additional network, the
Segmenter, to divide the input sequence into clauses.
The segmenter receives the current hidden-layer pat-
tern as its input, together with the representation for
the next input word, and it is trained to produce a mod-
ified hidden-layer pattern as its output (figure 4). The
output is then loaded into the previous-hidden-layer as-
sembly of the Parser. In the middle of reading a clause,
the Segmenter passes the hidden-layer pattern through
without modification. However, if the next word is a
relative pronoun, the segmenter modifies the pattern
so that only the relevant information remains. In the
above example, after boy has been read and who is next
to come, the Segmenter generates a pattern similar to
that of the Parser’s hidden layer after only The boy in
the beginning of the sentence has been input.

In other words, the Segmenter (1) detects transitions
to relative clauses, and (2) changes the sequence mem-
ory so that the Parser only has to deal with one type
of clause boundary. This way, the Parser’s task be-

Figure 3: The Stack network. This figure simultaneously illustrates three situations that occur at different times during
the training and the performance of the Stack: (1) A training situation where the network learns to autoassociate an input
pattern with itself, forming a compressed representation at the hidden layer; (2) A push operation, where a representation
in the “Push” assembly is combined with the empty-stack representation (in the “Stack” assembly) to form a compressed
representation for the new stack in the hidden layer; (3) A pop operation, where the current stack representation in the
hidden layer generates an output pattern with the top element of the stack in the “Pop” assembly and the representation for
the remaining stack (currently empty) in the “Stack” assembly.

comes sufficiently simple so that the entire system can
generalize to new structures.

The Segmenter plays a central role in the architec-
ture, and it is very natural to give it a complete control
over the entire parsing process. Control is implemented
through three additional units at the Segmenter’s out-
put (figure 4). The units “Push” and “Pop” control the
stack operations, and the unit “Output” indicates when
the Parser output is complete and should be read off the
system. The control implementation in SPEC empha-
sizes an important point: although much of the struc-
ture in the parsing task is programmed into the system
architecture, SPEC is still a self-contained distributed
neural network. In many modular neural network ar-
chitectures control is due to a hidden symbolic super-
visor. SPEC demonstrates that such external control
mechanisms are not necessary: even a rather complex
subsymbolic architecture can take care of its own con-
trol and operate independently of its environment.

Experiments
The training and testing corpus was generated from a
simple phrase structure grammar (table 1). Each clause
consisted of three constituents: the agent, the verb and
the patient. A relative who-clause could be attached to
the agent or to the patient of the parent clause, and
who could fill the role of either the agent or the pa-
tient in the relative clause. In addition to who, the and
“.” (full stop, the end-of-sentence marker that had its
own distributed representation in the system just like
a word), the vocabulary consisted of the verbs chased,
liked, saw and bit, and the nouns boy, girl, dog and
cat. Certain semantic restrictions were imposed on
the sentences. A verb could only have certain nouns as
its agent and patient, as listed in table 2. The gram-
mar was used to generate all sentences with up to four

ZP
t NP VP “."
+ DET N I DET N RC

E
--f V NP
+ who VP I who NP V

N + boy I girl I do I cat

EET
+ chased I liked 7 saw I bit
+ the

Table 1: The sentence grammar.

Verb Case-role Possible fillers

chased Agent:
Patient:

boy,girl,dog,cat
cat

liked Agent:
Patient:

boy ,girl
boy,girl,dog

saw

bit

Agent:
Patient:

boy,girl,cat
boy,girl

Agent:
Patient:

dog
boy,girl,dog,cat

Table 2: Semantic restrictions.

clauses, and those that did not match the semantic re-
strictions were discarded. The final corpus consisted of
49 different sentence structures, with a total of 98,100
different sentences.

The SPEC architecture divides the sentence pars-
ing task into three subtasks. Each component needs to
learn only the basic constructs in its task, and the com-
bined architecture forces generalization into novel com-
binations of these constructs. Therefore, it is enough
to train SPEC with only two sentence structures: (1)
the two-level tail embedding (such as The girl saw
the boy, who chased the cat, who the dog bit) and
the two-level center-embedding (e.g. the girl, who the
dog, who chased the cat, bit, saw the boy). The
training set consisted of 100 randomly-selected sen-

Neural Networks 861

Figure 4: The Segmenter network. The Segmenter receives the Parser’s hidden-layer pattern as its input together with
the next input word, which in this case is who. The control outputs are 1, 0, 0, indicating that the Parser’s hidden-layer
representation should be pushed onto the Stack, the current case-role representation is incomplete and should not be passed
on to the output of the system, and the stack should not be popped at this point. In this case, the Segmenter output
is identical to its input, because the girl is the smallest context that the Parser needs to know when entering a center
embedding.

tences of each type. In addition, the Stack was trained
to encode and decode up to three levels of pushes and
POPS.

The word representations consisted of 12 units.
Parser’s hidden layer was 75 units wide, Segmenter’s 50
units, and Stack’s 50 units. All networks were trained
with on-line backpropagation with 0.1 learning rate and
without momentum. Both the Parser and the Seg-
menter developed word representations at their input
layers (with a learning rate of 0.001). The networks
were trained separately (i.e. without propagation be-
tween modules) and simultaneously, sharing the same
gradually-developing word and parser-hidden-layer rep-
resentations. The convergence was very strong. Af-
ter 400 epochs, the average error per output unit was
0.018 for the Parser, 0.008 for the Segmenter (0.002 for
the control outputs), and 0.003 for the Stack, while an
error level of 0.020 usually results in acceptable per-
formance in’ similar assembly-based systems (Miikku-
lainen 1993). The training took approximately three
hours on an IBM RS6000 workstation. The final rep-
resentations reflected the word categories very well.

SPEC’s performance was then tested on the entire
corpus of 98,100 sentences. The patterns in the Parser’s
output assemblies were labeled according to the nearest
representation in the lexicon. The control output was
taken to be correct if those control units that should
have been active at 1 had an activation level greater
than 0.7, and those that should have been 0 had activa-
tion less than 0.3. Measured this way, the performance
was excellent: SPEC did not make a single mistake in
the entire corpus, neither in the output words or in con-
trol. The average unit error was 0.034 for the Parser,
0.009 for the Segmenter (0.003 for control), and 0.005
for the Stack. There was very little variation between
sentences and words within each sentence, indicating
that the system was operating within a safe margin.

The main result, therefore, is that the SPEC ar-
chitecture successfully generalizes not only to new in-

862 Neural Networks

st,ances of the familiar sentence structures, but to new
structures as well, which the earlier subsymbolic sen-
tence processing architectures could not do. However,
SPEC is not a mere reimplementation of a symbol pro-
cessor. As SPEC’s Stack becomes increasingly loaded,
its output becomes less and less accurate; symbolic sys-
tems do not have any such inherent memory degrada-
tion. An important question is, does SPEC’s perfor-
mance degrade in a cognitively plausible manner, that,
is, does the system have similar difficulties in process-
ing recursive structures as people do’?

To elicit enough errors from SPEC to analyze it,s
limitations, the Stack’s performance was degraded by
adding 30% noise in its propagation. Such an experi-
ment can be claimed to simulate overload, stress, cog-
nitive impairment, or lack of concentration situations.
The system turned out to be remarkably robust against
noise. The average Parser error rose to 0.058, but the
system still got 94% of its output words right, with very
few errors in control. ,4s expected, most, of t,lie errors
occurred as a direct result of popping back from center
embeddings with an inaccurate previous-hidden-layer
representation. For example, in parsing The girl,
who the dog, who the boy, who
chased the cat, liked, bit, saw the boy, SPEC
had trouble remembering the agents of liked, bit and
saw, and patients of liked and bit. The performance
depends on the level of the embedding in an interesting
manner. It is harder for the network to remember the
earlier constituents of shallower clauses than those of
deeper clauses. For example, SPEC could usually con-
nect boy with liked (in 80% of the cases), but it was
harder for it to remember that it was the dog who bit
(58%) and even harder that the girl who saw (38%)
in the above example.

Such behavior seems plausible in terms of human
performance. Sentences with deep center embeddings
are harder for people to remember than shallow ones
(Foss & Cairns 1970; Miller & Isard 1964). It is easier

to remember a constituent that occurred just recently
in the sentence than one that occurred several embed-
dings ago. Interestingly, even though SPEC was espe-
cially designed to overcome such memory effects in the
Parser’s sequence memory, the same effect is generated
by the Stack architecture. The latest embedding has
noise added to it only once, whereas the earlier ele-
ments in the stack have been degraded multiple times.
Therefore, the accuracy is a function of the number of
pop operations instead of a function of the absolute
level of the embedding.

When the SPEC output is analyzed word by word,
several other interesting effects are revealed. Virtually
in every case where SPEC made an error in popping
an earlier agent or patient from the stack it confused it
with another noun (54,556 times out of 54,603; random
choice would yield 13650). In other words, SPEC per-
forms plausible role bindings: even if the exact agent
or patient is obscured in the memory, it “knows” that
it has to be a noun. Moreover, SPEC does not gen-
erate the noun at random. Out of all nouns it output
incorrectly, 75% had occurred earlier in the sentence,
whereas a random choice would give only 54%. It seems
that traces for the earlier nouns are discernible in the
previous-hidden-layer pattern, and consequently, they
are slightly favored at the output. Such priming effect
is rather surprising, but it is very plausible in terms of
human performance.

The semantic constraints (table 2) also have a
markecl effect on the performance. If the agent or
patient that needs to be popped from the stack is
strongly correlated with the verb, it is easier for the
network to remember it correctly. The effect depends
on the strength of the semantic coupling. For example,
girl is easier to remember in The girl, who the dog
bit, liked the boy, than in The girl, who the
dog bit, saw the boy, which is in turn easier than
The girl, who the dog bit, chased the cat. The rea-
son is that there are only two possible agents for liked,
whereas there are three for saw and four for chased.
While SPEC gets 95% of the unique agents right, it
gets 76% of those with two alternatives, G9% of those
with three, and only G7% of those with four.

A similar effect has been observed in human pro-
cessing of relative clause structures. Half the subjects
in Stolz’s (1967) study could not decode complex cen-
ter embeddings without semantic constraints. Huang
(1983) showed that young children understand embed-
ded clauses better when the constituents are semanti-
cally strongly coupled, and Caramazza 8~ Zurif (1976)
observed similar behavior in aphasics. This effect is of-
ten attributed to limited capability for processing syn-
tax. The SPEC experiments indicate that it could be
at least partly due to impaired memory as well. When
the memory representation is impaired with noise, the
Parser has to clean it up. In propagation through the
Parser’s weights, noise that does not coincide with the
known alternat>ives cancels out. Apparently, when the

verb is strongly correlated with some of the alterna-
tives, more of the noise appears coincidental and is fil-
tered out.

Discussion
Several observations indicate that the SPEC approach
to subsymbolic parsing should scale up well. First, as
long as SPEC can be trained with the basic constructs,
it will generalize to a very large set of new combinations
of these constructs. Combinatorial training (St. John
1992) of structure is not necessary. In other words,
SPEC is capable of dynamic inferencing, previously
postulated as very difficult for subsymbolic systems to
achieve (Touretzky 1991). Second, like most subsym-
bolic systems, SPEC does not need to be trained with
a complete set, of all combinations of constituents for
the basic constructs; a representative sample. like the
200 out of 1088 possible training sentences above, is
enough. Third, with the FGREP mechanism it is pos-
sible to automatically form meaningful distributed rep-
resentations for a large number of words, even to ac-
quire them incrementally (Miikkulainen 8~ Dyer 1991:
Miikkulainen 1993), and the network will know how to
process them in new situat,ions. Fourth, SPEC is quite
insensitive to configuration and simulation parameters,
suggesting that the approach is very st,rong, and there
should be plenty of room for adapting it to more chal-
lenging experiments. The most immediate direction
for future work is to apply the SPEC architecture to a
wider variety of grammatical constructs and to larger
vocabularies.

The Segmenter is perhaps the most significant new
feature of the SPEC architecture. It, can be seen as
a first step toward implementing high-level control in
the connectionist framework (see also Jacobs. Jordan,
& Barto 1991: Jam 1991: Schneider 8~ Detweiler 198’7:
Sumida 1991). The Segmenter monitors the input se-
quence and the state of the parsing network, and is-
sues I/O control signals for the Stack memory and the
Parser itself at appropriate times. The Segmenter has
a high-level view of the parsing process. and uses it
to assign simpler tasks to the other moclules. In that
sense, the Segmenter implements a strategy for parsing
sentences with relative clauses. Such control networks
could play a major role in future subsymbolic models of
natural language processing and high-level reasoning.

Conclusion
SPEC is largely motivated by the desire to build a sys-
tem that (1) would be able to process nontrivial input
like symbolic systems, and (2) woiild make use of the
unique properties of distributed neural networks slrch
as learning from examples, spontaneous generalization,
robustness, contest> sensit,ivity, and integrating statisti-
cal evidence. Alt,hough SPEC does not address several
important issues in connectionist natural language pro-
cessing (such as processing exceptions and representing
flexible structure), it, does indicate that learning and

Neural Networks 863

applying grammatical structure for parsing is possible
with pure distributed networks.

However, even more than an AI system aiming at
best possible performance, SPEC is an implementa-
tion of a particular Cognitive Science philosophy. The
architecture is decidedly not a reimplementation of a
symbol processor, or even a hybrid system consisting
of subsymbolic components in an otherwise symbolic
framework. SPEC aims to moclel biological information
processing at a specific, uniform level of abstraction,
namely that of distributed representation on modular
networks. SPEC should be evaluated according to how
well its behavior matches that produced by the brain
at the cognitive level. The memory degradation ex-
periments indicate that SPEC is probably on the right
track, and the success of the high-level controller net-
work in generating high-level behavior opens exciting
possibilities for future work.

References
Berg, G. 1992. A connectionist parser with recursive

sentence structure and lexical disambiguation. In
Proceedings of the 10th National Conference on
Artijkxl Intelligence, 32-37. Cambridge, MA:
MIT Press.

Caramazza, A., and ‘Zurif, E. B. 1976. Dissociation
of algorithmic and heuristic processes in language
comprehension: Evidence from aphasia. Bruin and
Language 3~572-582.

Elman, J. L. 1990. Finding structure in time. Cognitive
Science 14:179-211.

Elman, J. L. 1991. Distributed representations, sim-
ple recurrent networks, ancl grammatical struc-
ture. Muchine Leurning 7:195-225.

Foss, D. J., and Cairns, H. S. 1970. Some effects of
memory limitation upon sentence comprehension
and recall. Journal of Verbal Learning and Verbal
Behavior 91541-547.

Huang, M. S. 1983. A developmental study of chil-
dren’s comprehension of embedded sentences with
and without semantic constraints. Journal of Psy-
chology 114351-513.

Jacobs, R. A.; Jordan, M. I.; and Barto, A. G.
1991. Task decomposition through competition in
a modular connectionist architecture: The what
and where vision tasks. Cognitive Science 15:219-
250.

Jain, A. N. 1991. Parsing complex sentences with struc-
tured connectionist networks. Neural Computation
3:110-120.

McClelland, J. L., and Kawamoto, A. H. 1986. Mech-
anisms of sentence processing: Assigning roles to
constituents. In McClelland, J. L., and Rumel-
hart, D. E., eds., Purullel Distributed Processing.
Cambridge, MA: MIT Press. 272-325.

864 Neural Networks

Miikkulainen, R. 1990. A PDP architecture for pro-
cessing sentences with relative clauses. In Karl-
gren, H., ed., Proceedings of th,e 13th Internn-
tional Conference on Computational Linguistics,
201-206. Helsinki, Finland: Yliopistopaino.

Miikkulainen, R. 1993. Subsymbolic Natural Languuge
Processing: An Integrated Model of Scripts, Lezi-
con, and Memory. Cambridge, MA: MIT Press.

Miikkulainen, R., and Dyer, M. G. 1991. Natural
language processing with modular neural networks
and distributed lexicon. Cognitive Sciewe 15:343-
399.

Miller, G. A., and Isard, S. 1964. Free recall of
self-embedded English sentences. Inform&ion nn,d
Control 7:292-303.

Pollack, J. B. 1990. Recursive clistributed representa-
tions. Art$cial Intelligence 46:77-105.

Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J.
1986. Learning internal representations by error
propagation. In Rumelhart, D. E., and I\IcClel-
land, J. L., eds., Par&lel Distributed Processing.
Cambridge, MA: MIT Press. 318-362.

Schneider, W., and Detweiler, M. 1987. A connec-
tionist/control architecture for working memory.
In Bower, G. H., ed., The Psychology of Learning
and Motivation, volume 21. New York: Academic
Press. 53-119.

Sharkey, N. E., and Sharkey, A. J. C. 1992. A modu-
lar design for connectionist parsing. In Drossaers.
M. F. J., and Nijholt,, A., eds., T,wente TVorksh.op
on Language Tech,nology $. 87-96. Department
of Computer Science. University of Twente, the
Netherlands.

St. John, R/I. F. 1992. The story gestalt: A model of
knowledge-intensive processes in text comprehen-
sion. Cognitive Science 163271-306.

St. John, M. F., and McClelland, J. L. 1990. Learning
and applying contextual constraints in sentence
comprehension. Artificial Intelligence 463217-258.

Stolcke, A. 1990. Learning feature-basecl semantics
with simple recurrent networks. Technical Report
TR-90-015, ICSI, Berkeley, CA.

Stolz, W. S. 19G7. A study of the ability to decode
grammatically novel sentences. Journal of Verbal
Learning and Verbal Beh,nvior 6:867-873.

Sumida, R. A. 1991. Dynamic inferencing in parallel
distributed semantic networks. In Proceedings of
the 13th Annuul Conference of the Cognitzve Scz-
ence Society, 913-917. Hillsdale, NJ: Erlbaum.

Touretzky, D. S. 1991. Connectionism and composi-
tional semantics. In Barnden, J. A., and Pollack,
J. B., eds., High-Level Connectionist Models. Nor-
wood, NJ: Ablex. 17-31.

