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ABSTRACT
Behavior domination is proposed as a tool for understanding and
harnessing the power of evolutionary systems to discover and
exploit useful stepping stones. Novelty search has shown promise
in overcoming deception by collecting diverse stepping stones, and
several algorithms have been proposed that combine novelty with a
more traditional �tness measure to refocus search and help novelty
search scale to more complex domains. However, combinations of
novelty and �tness do not necessarily preserve the stepping stone
discovery that novelty search a�ords. In several existing methods,
competition between solutions can lead to an unintended loss of
diversity. Behavior domination de�nes a class of algorithms that
avoid this problem, while inheriting theoretical guarantees from
multiobjective optimization. Several existing algorithms are shown
to be in this class, and a new algorithm is introduced based on
fast non-dominated sorting. Experimental results show that this
algorithm outperforms existing approaches in domains that contain
useful stepping stones, and its advantage is sustained with scale.
�e conclusion is that behavior domination can help illuminate the
complex dynamics of behavior-driven search, and can thus lead to
the design of more scalable and robust algorithms.
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1 INTRODUCTION
�e ability to discover and exploit stepping stones is a hallmark of
evolutionary systems. Evolutionary algorithms driven by a single
�tness objective are o�en victims of deception: they converge to
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Figure 1: �e non-dominated front of behavior domination
can be viewed as a rotation of the Pareto front. Guarantees
from multiobjective optimization can then be applied.

small areas of the search space, missing available stepping stones.
Novelty search [17, 19] is an increasingly popular paradigm that
overcomes deception by ranking solutions based on how di�erent
they are from others. Novelty is computed in the space of behaviors,
i.e., vectors containing semantic information about how a solution
achieves its performance when it is evaluated. In a collection of
solutions with su�ciently diverse behaviors, some solutions will
be useful stepping stones. However, with a large space of possi-
ble behaviors, novelty search can become increasingly unfocused,
spending most of its resources in regions that will never lead to
promising solutions. Recently, several approaches have been pro-
posed to combine novelty with a more traditional �tness objective
[11, 12, 25, 26, 31] to reorient search towards �tness as it explores
the behavior space. �ese approaches have helped scale novelty
search to more complex environments, including an array of control
[3, 6, 27] and content generation [16, 20, 21, 23, 28–30] domains.

�is paper shows that, aside from focusing search overall, the
addition of �tness can also be used to focus search on discovering
useful stepping stones. �e assumption is that the most likely
stepping stones occur at local optima along some dimensions of the
behavior space. Competition in several existing algorithms inhibits
the discovery and maintenance of such stepping stones, resulting in
“spooky action at a distance”, when a small search step in one part of
the space causes a novel solution to be lost in another part. Based on
the notion of behavior domination, a class of algorithms is de�ned
in this paper as a framework for understanding the dynamics of
behavior-driven search and developing algorithms that avoid such
problems. Intuitively, behavior domination means that a solution
exerts a negative e�ect on the ranking of every weaker solution,
and this e�ect increases as their di�erence in �tness increases
and as the distance between their behaviors decreases. Behavior
domination algorithms include several existing algorithms, and the
de�nition makes it possible to transfer theoretical guarantees from
multiobjective optimization; the non-dominated front induced by
behavior domination can be viewed (Figure 1) as a rotation of a
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Pareto front. Within this framework, a new algorithm is developed
that uses fast non-dominated sorting [7]. Experimental results show
that this algorithm outperforms existing approaches in domains
that contain useful stepping stones, and its advantage is sustained
with scale. �e conclusion is that behavior domination can help
illuminate the complex dynamics of behavior-driven search, and
can thus lead to the design of more scalable and robust algorithms.

2 BEHAVIOR-DRIVEN RANKING
Behavior-driven algorithms are a class of evolutionary algorithms
that are guided by information about how a solution achieves its
performance during evaluation. �e core de�ning component of
such an algorithm is the ranking procedure it uses to order solutions
for selection or replacement. �is section reviews background for
behavior-driven search, �rst de�ning some useful terms, and then
describing examples of popular behavior-driven algorithms.

2.1 Behavior and Behavior Characterization
Behavior-driven algorithms use a notion of solution behavior to
induce a meaningful distance metric between solutions and to fa-
cilitate the drive towards novelty and diversity. For example, in a
robot control domain, a solution’s behavior may be some function
of the robot’s trajectory [9, 12, 27], whereas in an image generation
domain, it may be the result of applying some deep features to
the image [16, 23, 28, 29]. �e following de�nitions of behavior,
behavior characterization, behavior space, and behavior distance
are fairly universal in the literature, though o�en not explicitly
de�ned.

De�nition 2.1. A behavior of solution x in environment E is a
vector bx resulting from the evaluation of x in E.

De�nition 2.2. A behavior characterization b (x ) for an environ-
ment E is a (possibly stochastic) function mapping any solution x

to its behavior bx , given the evaluation of x in E.

By de�nition, the behavior characterization can be any function
mapping solutions to vectors. In practice, the behavior characteri-
zation is usually designed to align with a �tness measure or notion
of interestingness in the evaluation environment [31]. For example,
in a maze navigation task, the �nal position of a robot aligns more
with solving the task than its �nal orientation. In other words,
the behavior characterization is designed to capture a space whose
exploration is expected to have practical bene�ts.

De�nition 2.3. �e behavior space of a behavior characterization
b is the co-domain of b.

�e exploration of the behavior space by a search algorithm is
facilitated by a function giving the distance between two solutions
as a function of their behavior.

De�nition 2.4. A behavior distance is a metric d (b (x ),b (�)).

In pure novelty search, the behavior of a solution is the only
information returned from evaluation that is used in the ranking
system. �is is in contrast to traditional evolutionary algorithms,
which use only a single scalar �tness value fx computed from a
scalar �tness function f (x ). In general, a behavior-driven algorithm
can take advantage of both behavior and �tness when ranking
solutions.

2.2 Existing Behavior-driven Algorithms
�e following are some of the most popular schemes for behavior-
driven algorithms. As extensions to the pure novelty search par-
adigm, several recent algorithms use both behavior and �tness
information in ranking, trying to navigate the trade-o� between
the pressures towards novelty and diversity, and the pressure to
maximize. Although more exist that are not covered here, these
below should give a sense of the behavior-driven algorithm design
space. (See [11, 27, 31] for previous reviews of these algorithms.)

2.2.1 Novelty search (NS) [17, 19]. Each solution is ranked based
on a single novelty function n, giving the average distance of its
behavior to the k nearest behaviors of other solutions in the pop-
ulation and an archive of past solutions accumulated throughout
search. More speci�cally,

n(x ) =
1
k

kX

i=1
d (b (x ),b (�i ))

where �i is the ith nearest neighbor of x in the behavior space. �e
prevalent method of building the archive, and the method used
in this paper, is to add each solution to the archive with a �xed
probability padd [11, 18], in which case the archive represents a
sampling from the distribution of areas visited so far. Novelty search
captures the idea that more complex and interesting solutions lie
away from the visited areas of the behavior space.

2.2.2 Linear scalarization of novelty and fitness (LSNF) [5, 11].
An intuitive method of combining novelty and �tness is to rank a
solution based on linear scalarization of its �tness and novelty:

score(x ) = (1 � p) · f (x ) � fmin
fmax � fmin

+ p · n(x ) � nmin
nmax � nmin

n(x ).

�e �tness and novelty scores here are normalized to compensate
for di�erences in scale at every iteration. fmin , fmax , nmin , and
nmax are the minimum and maximum �tness and novelty scores
in the current population. �e parameter p controls the trade-o� of
�tness vs. novelty. LSNF with p = 0.5 has been shown to be robust
across domains [11], and that is the version considered here.

2.2.3 NSGA-II with novelty and fitness objectives (NSGA-NF) [26,
27]. Another approach is to use novelty and �tness as two objectives
within NSGA-II [7], the popular multiobjective framework. O�en
the novelty score in this approach is behavioral diversity, which is a
special case of novelty, where k is the population size and there is
no archive. �is approach has been shown to improve performance
on many tasks, especially those in evolutionary robotics, where
some constant diversity is useful to avoid local optima.

2.2.4 Novelty search with local competition (NSLC) [20, 31]. Nov-
elty search with local competition also uses an NSGA-II ranking
system, but instead of using a raw �tness objective alongside the
novelty objective, it uses a relative �tness score: a solution’s rank
in �tness among its k nearest neighbors. �is enables the suitable
exploration of diverse niches in the behavior space with di�erent
orders of magnitude of �tness. Lower �t niches are not outpaced
and forgo�en by having too much of the search’s resources comit-
ted to the globally most �t regions. NSLC has yielded particularly
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promising results in content generation domains, such as generat-
ing virtual creatures and images [20, 28].

2.2.5 MAP-elites [6, 25]. In MAP-elites, the behavior space is
broken up into a set of bins, such that each behavior is mapped
to a bin. For each bin, the solution with highest �tness whose
behavior falls into that bin is kept. �e population at any point
thus consists of the most �t (elite) solution from each bin for which
a behavior has been found. Because MAP-elites keeps an elite from
all visited bins in the behavior space, at any point the population
displays a map of the levels of �tness achievable throughout the
space. So, along with being a method for generating high-quality
diverse solutions, MAP-elites is a useful tool for visualization in
understanding how the behavior space and �tness landscape relate.

2.2.6 Fitness-based search. It is worth including �tness-based
search, the standard approach to evolutionary search, as the trivial
example. In �tness-based search, solutions are ranked based on a
single �tness value. Any additionally available behavior informa-
tion is ignored.

�e proliferation of recently introduced behavior-driven methods
gives a strong indication that novelty alone is not generally su�-
cient for tackling complex domains. �e methods reviewed above
each have intriguing de�nitions that suggest they would be a good
option for particular kinds of problems. However, unforeseen dy-
namics can emerge from the interaction between novelty and �t-
ness, which can be di�cult to disentangle. �e next section sheds
some light on these issues, resulting in the characterization of these
existing algorithms, and the development of a new approach.

3 BEHAVIOR DOMINATION ALGORITHMS
�e goal is to maintain the power of novelty search to discover step-
ping stones, while adding a �tness drive to focus search. Novelty
search has demonstrated that a su�ciently diverse collection of
solutions most likely contains useful stepping stones for solving the
problem at hand. When adding �tness to focus search, the presump-
tion is that the most useful stepping stones will be local optima
along some dimensions of the behavior space. As pure �tness-based
search maintains the most �t solutions, and pure novelty search
maintains the most novel solutions, a method that combines the
two should maintain the most promising set of stepping stones dis-
covered so far, and the quality of this set should improve over time.
Section 3.1 discusses the presence of “spooky action at a distance”
in several existing algorithms, which inhibits their ability to pre-
serve useful stepping stones. Section 3.2 presents a formalization of
behavior domination, which de�nes a sub-class of behavior-driven
algorithms that can avoid this pitfall and guarantee monotonic
improvement of collected stepping stones. Section 3.3 shows that
several existing behavior-driven algorithms are in this sub-class.
Section 3.4 uses behavior domination to develop a new algorithm
based on fast non-dominated sorting.

3.1 “Spooky Action at a Distance” for
Behavior-driven Search

When novelty and �tness are combined, the interaction between
these two drives can have unintended consequences. �e stepping
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Figure 2: (spooky action at a distance) Consider populations
P = {x0,x1,x2,x3} and P

0 = {x0,x1,x2,x4}, in which one solu-
tion must be selected for deletion. Suppose k = 2, and the
archive is empty. With population P , LSNF, NSGA-NF, and
NSLC all delete x2. However, with population P

0, they all
delete x0. �e small local increase in novelty from x3 to x4
thus causes a global decrease in novelty (Section 3.1).

stone discovery ability of novelty search may not necessarily be
preserved. For example, if a small change in behavior of one solution
has a fatal e�ect on a distant isolated solution on the other edge of
the explored behavior space, then a valuable stepping stone may be
lost. �e algorithm has taken one small step forward, but one large
step back. �is unse�ling e�ect is an instance of “spooky action at
a distance” for behavior-driven search. More speci�cally, spooky
action at a distance occurs when a ranking decision based on a local
increase in novelty results in a global decrease of novelty. Here,
global novelty is de�ned by two measures: GNP, the maximum
behavior distance between any pair of solutions in the population;
and GNT, the total behavior distance between all pairs of solutions.

It turns out several existing behavior-driven algorithms sup-
port spooky action at a distance. �e following example is for
a one-dimensional behavior space. Consider a population P =

{x0,x1,x2,x3}, and an empty archive, whereb (x0) = bo , f (x0) = fo ,
b (x1) = bo + 10, f (x1) = fo + 11, b (x2) = bo + 11, f (x2) = fo + 10,
b (x3) = bo + 21, and f (x3) = fo . Now, consider an identical setup
but with P 0 = {x0,x1,x2,x4}, whereb (x4) = bo+22, and f (x4) = fo
(Figure 2). Suppose an algorithm Amust delete one solution, and
A deletes x2 with population P , but A deletes x0 with population
P

0. �is change must be caused by the move of x3 to x4. P with
x2 deleted has global novelty GNP(P ) = 21 and GNT(P ) = 41.
However, P 0 with x0 deleted has global novelty GNP(P 0) = 12 and
GNT(P 0) = 24. �us, A demonstrates spooky action at a distance.

Suppose k = 2. �en given P , n(x0) = 21/2, n(x1) = 11/2,
n(x2) = 11/2, and n(x3) = 21/2. Given P

0, n(x0) = 21/2, n(x1) =
11/2, n(x2) = 12/2, and n(x4) = 23/2. �e next three observations
show spooky action at a distance for LSNF, NSGA-NF, and NSLC.

Observation 3.1 (Spookiness of LSNF). With P , score(x0) = 0 + 1,
score(x1) = 1 + 0, score(x2) = 10/11 + 0, and score(x3) = 0 + 1
=) x2 is deleted. With P 0, score(x0) = 0+10/12, score(x1) = 1+0,
score(x2) = 10/11 + 1/12, and score(x4) = 0 + 1 =) x0 is deleted.

Observation 3.2 (Spookiness of NSGA-NF). With P , x1 dominates
x2, while all other solutions are non-dominated =) x2 is deleted.
With P

0, x2 is no longer dominated, but x4 now dominates x0 =)
x0 is deleted.
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Observation 3.3 (Spookiness of NSLC). With P , the local competi-
tion scores of x0,x1,x2,x3 are 0, 2, 1, 0, resp. So, x1 dominates x2,
while all other solutions are non-dominated =) x2 is deleted.
With P

0, the local competition scores of x0,x1,x2,x4 are again
0, 2, 1, 0, resp. So, as in Observation 3.2, x2 is no longer dominated,
but x4 now dominates x0 =) x0 is deleted.

With problems such as “spooky action at a distance” in mind,
the next section introduces a notion of behavior domination from
which algorithms can be developed that avoid these issues.

3.2 Ranking by Behavior Domination
Apractical unifying framework for behavior-drivenmethods should
capture both the pure novelty maximization and pure �tness max-
imization extremes, as well as a trade-o� space, that potentially
captures some of the existing approaches and suggests new ones.
Many components of existing ranking mechanisms (Section 2.2)
can be represented in terms of pair-wise relationships between
solutions, based on their behaviors and �tnesses. �ese pairwise
interactions capture the positive or negative e�ects solutions have
on each other during ranking when they are competing for a spot
in the population. Focusing on pairwise e�ects also helps avoid
unintended global e�ects, such as that discussed in Section 3.1.

To focus search on maintaining the most e�cient set of stepping
stones, behavior domination aims to formalize the idea that a solu-
tion should dominate solutions with similar behaviors and lower
�tnesses. In particular, each solution exerts a domination e�ect over
each weaker solution. Intuitively, the domination e�ect should in-
crease (decrease) as the di�erence between their �tnesses increases
(decreases), and increase (decrease) as the distance between their
behaviors decreases (increases). �e following de�nition of domi-
nation e�ect captures these requirements.

De�nition 3.4. �e domination e�ect of x on � is a function

e (x ,�) = f (x ) � f (�) � d (b (x ),b (�))
where f is a �tness function, b is a behavior characterization, and
d is a behavior distance.

�e score produced by the domination e�ect function can be
used in various ways in a ranking system. Two common methods
of combining pairwise scores are (1) ranking by aggregation, and
(2) ranking by domination. In ranking by aggregation, solutions are
ranked by a single score based on a sum of pairwise scores, e.g., the
novelty score is a normalized sum of distances between the behav-
iors of pairs of solutions. In ranking by domination, solutions are
ranked in a partial order, by a boolean pairwise relation of whether
they dominate one another. To enable ranking by domination, the
following de�nition provides such a pairwise operator, based on
the domination e�ect function de�ned above.

De�nition 3.5. If e (x ,�) � 0, then x ⌫ �, that is, x dominates �.

It turns out that for any speci�cation of e�ective domination,
i.e., any choice of f , b, and d , this de�nition of domination de�nes
a partial order over solutions.

T������ 3.6. � ⌫ x induces a partial order over solutions for any
choice of f , b, and d .

P����. Transitivity: Suppose x ⌫ � and � ⌫ z. �en, 0 
e (x ,�)+e (�, z) = ( f (x )� f (�)�d (x ,�))+ ( f (�)� f (z)�d (�, z)) =
f (x )� f (z)� (d (x ,�)+d (�, z))  f (z)� f (x )�d (x , z) = e (x , z) =)
x ⌫ z. Re�exivity and antisymmetry are similarly straightforward
to show. ⇤

�e partial order de�ned by behavior domination is similar to
the one de�ned by Pareto-dominance in multiobjective optimiza-
tion. Note that, even though they make use of a notion of Pareto-
dominance, neither NSGA-NF nor NSLC have the property of a
stable partial-ordering of solutions, because the novelty objective
�uctuates as the population changes over time. On the other hand,
the front induced by behavior domination can be viewed geometri-
cally as a rotation of a Pareto front (Figure 1). Algorithms based
on behavior domination can then more easily inherit properties
from multiobjective optimization, e.g., guarantees that the non-
dominated front dominates every point ever generated and all area
dominated by any point ever generated, and guarantees regarding
near-optimal distribution of non-dominated solutions [4, 8, 14]. �e
practical expectation is that the utility of non-dominated solutions
as stepping stones in multiobjective optimization will transfer to
the case of behavior domination. An algorithm based on this con-
nection to multiobjective optimization is introduced in Section 3.4.

Although aggregation and domination are the most prevalent
approaches to ranking, the de�nition of a behavior domination
algorithm does not preclude the existence of other schemes that
use a domination e�ect function.

De�nition 3.7. Every algorithm whose ranking mechanism’s de-
pendence on f and b can be de�ned in terms of a domination e�ect
function is a behavior domination algorithm (BDMA).

Behavior domination algorithms can avoid “spooky action at a
distance” (Section 3.1) by using a domination-based ranking scheme.
When ranking decisions are only made with respect to the operator
⌫, moving a solution � away from a non-dominated solution x

cannot cause x to become dominated. For example, see the repre-
sentation of MAP-elites in the next section (Observation 3.10).

3.3 BDMA Representation of Existing
Algorithms

�e next three observations demonstrate how the behavioral dom-
ination framework can be used to represent existing algorithms.
Such observations are helpful in clarifying the space of BDMAs.

Observation 3.8 (Fitness-based search is a BDMA). Since �tness-
based search does not make use of behavior, this can be achieved
by se�ing b to be the trivial behavior characterization, b (x ) = 0 8x .
�en, ⌫ (De�nition 3.5) induces the same total ordering as sorting
�tness scores directly.

Observation 3.9 (Novelty search is a BDMA). �is is another trivial
case. Since novelty search does not make use of the �tness function,
this is similarly achieved by choosing f (x ) = 0 8x , and using the
usual novelty search aggregation scoring for ranking solutions.

Observation 3.10 (MAP-elites is a BDMA). Consider an instance
of MAP-elites with �tness function f , behavior characterization bo ,
and binning function � that maps each behavior to its bin. Choose
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Figure 3: A sample BDMA-2 population successfully main-
taining solutions at each local maximum discovered in the
four peaks domain (Section 4.1). Dashed lines indicate the
region each solution dominates for w = 4. �e �ve solu-
tions on the non-dominated front are in red, including two
around the peak where b (x ) = 40.

b such that b (x ) = � (bo (x )), and de�ne d by

d (b (x ),b (�)) =
8><>:
0, if b (x ) = b (�),

1, otherwise.

�en, the non-dominated solutions under ⌫ are exactly the elites
maintained by the original MAP-elites algorithm.

�e above subsumptions demonstrate the breadth of the space of
BDMAs. However, each of these representations avoids the natural
geometric form of the domination e�ect function. Section 3.4 de-
velops an algorithm that follows more directly from De�nition 3.5.

3.4 A non-dominated sorting BMDA: BDMA-2
Given a �tness function f and a behavior characterization b, here
let the domination e�ect function be parameterized completely by
the choice of behavior distance d . A new algorithm, BDMA-2, is
de�ned with a scaled L2 distance metric:

d (b (x ),b (�)) = w · kb (x ) � b (�)k2.
�e inclusion of the scaling parameter w is useful for �exibility
in relating �tness and behavior distance numerically. Increasing
w increases the emphasis on novelty; decreasing it increases the
emphasis on �tness. Figure 3 depicts an instance of a ranking step
in BDMA-2, including the induced domination structure, taken
from the experiments in Section 4.1.

Now that a suitable behavior distance is de�ned, a fast non-
dominated sort (as in NSGA-II [7]) is used to rank the solutions,
based on the ⌫ operator induced by d . In contrast to the distance
function used by MAP-elites (Obs. 3.10), the L2 distance allows the
�exible discovery of the locations of an e�cient set of stepping
stones, opposed to having their bounded locations determined be-
forehand. �e expectation is that the success of the non-dominated
front in NSGA-II in providing useful stepping stone for multiobjec-
tive optimization will transfer to this case of behavior domination.
Similar to a previous behavior-driven tie-breaking approach [13],
ties are broken on the �nal front from which solutions must be kept

by iteratively excluding the less �t of the two nearest solutions on
that front, until the desired number of solutions remain.

Specifying the number of top solutions to select via the fast non-
dominated sort can be viewed as specifying the number of stepping
stones wished to be maintained during search. To preserve the e�-
cient exploration capabilities of novelty search while maintaining
useful stepping stones, it is useful to have a subset of the population
selected as stepping stones, and the remainder selected by novelty
alone. Specifying the number of stepping stones in the population
is an intuitive parameterization that can be informed by domain
knowledge as well as time and space requirements.

On the other hand, it may take signi�cant experimenter e�ort
and domain knowledge to set an e�ective w . Conveniently, the
de�nition of behavior domination can be used to develop a suit-
able scheme for automatically se�ingw online during search. It is
straightforward to encode rules so that w is set to guarantee the
domination or non-domination of some set of solutions considered
harmful or desirable, respectively. In the experiments in this paper,
an example of such an online adaptation scheme is considered, in-
spired by the avoidance of “spooky action at a distance” (Section 3.1).
In this scheme, at every iterationw is set at the maximal value such
that neither of the two most distant solutions are dominated. �is
online adaptation scheme (BDMA-2a) is compared against se�ing
a staticw in Section 4. �ough it is an intuitive heuristic, se�ingw
online in this fashion does not necessarily preserve the guarantees
of using a �xed domination e�ect function. Development of more
grounded approaches to adaptingw is le� to future work.

4 EXPERIMENTAL INVESTIGATION
Experiments were run in domains that extend limited capacity dri�
models, previously used to study novelty search [15, 22], with �t-
ness and a continuous solution space. Each solution is encoded by a
vector with values in the range [0, 150]. �e population is randomly
initialized with all values in [0, 1]. �is abstraction captures the
property of real world domains that o�en only a small portion of
the behavior space can be reached by randomly generated solutions,
e.g., robots that either spin in place or crash into the nearest wall;
evolution must accumulate structure in its solutions to progress
beyond this initial space. �e �rst set of experiments tests the abil-
ity to discover and maintain available stepping stones; the second
tests the ability to perform well in se�ings where e�ective use of
stepping stones can accelerate evolutionary progress.

�e underlying evolutionary algorithm for each experimental
setup is a steady-state algorithm with Gaussian mutation and uni-
form crossover. �e only di�erence between setups in a domain is
the method of ranking solutions. See Appendix for experimental
parameter se�ings. In each domain, the performance measures for
each algorithm were averaged over ten runs.

4.1 Discovering and Maintaining Stepping
Stones

�e �rst domain has a one-dimensional solution space. �e �tness
landscape has four peaks of di�ering heights, with the rightmost
peak being the highest (Figure 3). �e behavior characterization
is the identity function, i.e., b (x ) = x . Each peak represents a po-
tentially useful stepping stone, with the higher peaks having more
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Figure 4: Four peaks domain results. A total (current) bin
score near 500 indicates all stepping stones are discovered
(maintained). (top) Novelty search discovers all the peaks
most quickly, but BMDA-2 does not take much longer; (bot-
tom) Only BDMA-2, NSLC, and BDMA-2a consistently main-
tain solutions near each discovered peak across the ten trials.

potential. In an optimal state, a population will include solutions
near the tops of each peak. �is domain tests an algorithm’s ability
to grow its solutions to successfully discover each peak while main-
taining in the active population potentially useful stepping stones
encountered along the way.

Consider four bins in the behavior space, each of width 10 and
centered around a peak. Each algorithm is evaluated against two
MAP-elites-based measures [6, 31]. �e �rst is the sum of the top
�tnesses ever achieved across the bins; this measures an algorithm’s
ability to discover stepping stones. �e second is the sum of the
top �tnesses of these bins in the current population; this measures
an algorithm’s ability to maintain stepping stones. �e results are
depicted in Figure 4. As expected, novelty search is able to discover
the available stepping stones most quickly, since it’s focused only
on exploration. However, BMDA-2 is not far behind, followed by
NSLC and BDMA-2a. When it comes to maintaining these stepping
stones, BDMA-2 outperforms the other algorithms, again followed
closely by NSLC and BDMA-2a. Note that although MAP-elites
maintains the elites in each visited bin, when the bin size is large it
is di�cult to jump to new bins, and when it is small the chance of
selecting an elite on the edge as a parent is small. So, MAP-elites
explores slowly in this domain (results shown with bin size 1).

Figure 5 shows examples of values ofw adapted over the course
of BDMA-2a runs. Future schemes for adaptingw may try to mini-
mize �uctuations for be�er predictability (Section 5).

Figure 5: Adapted value of w over time for three indepen-
dent runs of BDMA-2a (Section 3.4) in the four peaks do-
main, along with the medianw over all 10 runs. Adaptation
of w is marked by periods of relative stability followed by
periods of relative instability.

4.2 Harnessing Stepping Stones
�e most successful algorithms at discovering and maintaining
stepping stones (NSLC, BDMA-2, and BDMA-2a), along with Nov-
elty and Fitness as controls, were evaluated in two further domains,
which test the abilities of algorithms to exploit available stepping
stones by focusing on the most promising areas of the search space.

4.2.1 Exponential Focus (ETF) Domain. �e ETF domain cap-
tures the notion that real world domains contain complementary
stepping stones, which, if harnessed successfully, can accelerate
progress in a way not possible otherwise. �is domain has a two-
dimensional solution space, and the �tness function contains step-
ping stones that can enable exponential progress if used e�ectively.

�e �tness landscape consists of a series of claw-like regions
that increase in size and value as they get farther away from the
origin; all other areas have �tness zero (Figure 6 (top)). �e heel
of the �rst claw is located at (1, 1) and has �tness 1. �e ith claw
has a heel with �tness h, and three toes, each of width � = 0.2.
Fitness increases linearly along each toe. �e tip of the vertical and
horizontal toes have �tness h + i , and the tip of the diagonal toe
has �tness h + 2i . �e heel of the (i + 1)st claw has �tness 2(h + i ),
and can be reached by a successful crossover of the ith vertical
and horizontal toes. �us, an algorithm can reach the next claw by
maintaining solutions on the tips of both horizontal and vertical
toes, while avoiding convergence to the deceptive diagonal toe.

�e behavior characterization is b ([x0,x1]) = s · x0 + x1, i.e.,
s controls how much the �rst dimension of the behavior space
is stretched. As s increases, it is more costly for an algorithm to
densely explore the entire behavior space. Experiments were run
with s = 100, s = 1000, and s = 10000.

Since the purpose of this domain is to evaluate how well an
algorithm can use stepping stones to discover high-performing
solutions, algorithms are compared based on their maximum �t-
ness achieved by iteration. Results are shown in Figure 6 (bo�om)
and Table 1 (a). BDMA-2a signi�cantly outperforms each existing
algorithm for each value of s (Mann Whitney U Test, p < 0.01),
with BDMA-2 showing dramatic improvements as well.
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Figure 6: (top) �e ETF domain contains a series of claw-
like regions. Each region supports two stepping stones that
can be combined to reach the next higher-valued region via
crossover. �is domain tests the ability to harness these step-
ping stones; (bottom)Results in the ETF domainwith s = 100.
BDMA-2 is the most successful, followed by BDMA-2a.

s Fitness Novelty NSLC BDMA-2 BDMA-2a
100 2.55 (0.28) 6.49 (0.77) 6.02 (1.29) 22.41 (5.32) 11.76 (0.85)
1000 2.55 (0.28) 9.59 (1.74) 6.31 (1.26) 14.79 (2.63) 14.16 (1.33)
10000 2.55 (0.28) 9.36 (1.68) 6.13 (0.98) 9.57 (2.04) 15.68 (1.71)

(a) Mean max �tness (std. err.) in the ETF domain.

D Fitness Novelty NSLC BDMA-2 BDMA-2a
10 2.708 (0.00) 2.846 (0.09) 2.823 (0.05) 3.023 (0.09) 3.010 (0.10)
20 2.708 (0.00) 2.678 (0.01) 2.748 (0.02) 2.898 (0.05) 2.791 (0.05)
30 2.708 (0.00) 2.682 (0.01) 2.705 (0.00) 2.791 (0.02) 2.711 (0.02)

(b) Mean max �tness (std. err.) in the focused Ackley domain.

Table 1: Max�tnesses achieved through 10,000 iterations, av-
eraged across 10 runs. (a) Results in the ETF domain. Both
BDMA-2 and BDMA-2a outperform the other approaches
across all scales of s. BDMA-2’s performance decreases with
s, while BDMA-2a’s increases, showing its ability to success-
fully adapt w with this type of scaling; (b) Results in the fo-
cused Ackley domain. BMDA-2 and BDMA-2a outperform
the other algorithms across all scales of D.

Figure 7: (top) �e focused Ackley domain tests an algo-
rithm’s ability to focus on useful stepping stones, which
here are local maxima bordering noisy regions in a high-
dimensional behavior space. (bottom)Results in the focused
Ackley domain with D = 10. BDMA-2 and BDMA-2a consis-
tently outperform the other approaches.

4.2.2 Focused Ackley Domain. �e results in the ETF domain
demonstrate that BDMA-2 can be successful in domains that contain
natural stepping stones. To further validate this idea, experiments
were run in a domain based on the popular Ackley benchmark
function [1, 2], which also has an inherent stepping stone structure.
�e search space isD-dimensional. If a solution x falls in a bounded
region, de�ned by |x0 � x1 | < 2 and

PD
i=2 xi < D/2, its �tness is

the value of the Ackley function at [x0,x1], otherwise, its �tness
is drawn randomly from [0, 1] (Figure 7 (top)). In this domain,
b (x ) = x , and scale is controlled by the number of dimensions D of
the behavior space. �e noise outside of the bounded region is a
challenge for algorithms that must decide which regions are worth
exploring. �e results in Figure 7 (bo�om) and Table 1 (b) show how
BDMA-2 and BMDA-2a improve upon existing approaches. BDMA-
2 signi�cantly outperforms each existing algorithm for each value of
D (Mann Whitney U Test, p < 0.02), except for Fitness with D = 30,
as each approach that makes use of the behavior characterization b
is negatively a�ected by increases in the dimensionality of b.

Still, the success of BDMA-2 and BDMA-2a in these domains
that contain useful stepping stones is encouraging evidence for the
potential to scale behavior domination algorithms to more complex
domains, where it is assumed that such stepping stones exist.
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5 DISCUSSION AND FUTUREWORK
�e existing algorithms classi�ed under behavior domination (Sec-
tion 3.3) have been validated across an array of complex domains
[2, 6, 18, 19, 25]. �e experiments in Section 4 demonstrate that the
behavior domination framework can lead to progress over existing
approaches on problems that contain useful stepping stones, and it
will be interesting to see what newmethods will be required to scale
these methods to the real world, where stepping stones abound, e.g.,
in domains such as robot control [6, 19, 27] and automatic content
generation [16, 20, 29].

E�ective speci�cation of behavior is still an issue. Experiments
in the ETF domain (Section 4.2.1) showed how behavior-driven
algorithms can be sensitive even to linear scaling of the behavior
space. Although BDMA-2 and BDMA-2a outperformed the other
approaches in this scenario, their reliance on a single parameter
w across all behavior dimensions makes them susceptible to such
issues. From the perspective of behavior domination, solutions to
these issues can be hidden in the behavior characterization, i.e., by
le�ing b be some transformation of the raw behavior characteri-
zation. Automatically specifying behavior characterizations in a
robust and general way is an open problem, and some recent work
has begun to make progress in this direction [10, 23, 24, 29].

Given a reasonable behavior characterization, one method of
se�ingw automatically was presented in Section 3.4, but there are
many methods that could be tried, some of which may be more
generally e�ective, and preserve stability properties of the behavior
domination front. Overall, more work can be done to transfer
guarantees from the theory of multiobjective optimization [4, 8],
which will also lead to practical algorithmic improvements.

Although transferring theoretical properties can be satisfying,
further work is needed to understand where theoretical focus
in behavior-driven search will yield the biggest practical impact.
�e issue of “spooky action at a distance” (Section 3.1) identi�es
some unse�ling dynamics in existing algorithms, but it is not clear
whether it strikes at the heart of the ma�er, or is merely a shadow of
something more illusive. Further work must be done to fully char-
acterize the emergent dynamics of ranking procedures, in parallel
with work to understand how careful speci�cation of a behavior
characterization and �tness function can guarantee the existence
of useful stepping stones in the joint behavior-�tness space.

6 CONCLUSION
�e goal of this study was to understand and harness the ability
of evolution to discover useful stepping stones. Existing behavior-
driven algorithms have properties that interfere with this goal; the
behavior domination framework was introduced to reason formally
about how these properties could be avoided. A new algorithm,
BDMA-2, was introduced based on this framework, and shown
to improve over existing behavior-driven algorithms in domains
that contain useful stepping stones. �e behavior domination per-
spective is thus a promising tool for comparing and understanding
existing behavior-driven algorithms as well as for designing be�er
ones in the future.
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Appendix of Experimental Parameters
BDMA-2 params.: w by domain: Four peaks:w = 16; ETF andAckley:w = 0.005,w =
0.0005,w = 0.00005, for s (D ) = 100(10), 1000(20), 10000(30), resp. Proportion of
population selected by novelty alone: 0.5.
Underlying algorithm: pop. size = 20; solutions generated per iteration = 1; crossover
probability = 1; mutation � by domain: � = 1, � = 0.1, � = 0.25.
Novelty params.: k = 5; padd = 0.01 (BDMA-2 has no external archive).
Four peaks �tness function: f (x ) = 50 ·� (x, 10, 5)+150 ·� (x, 40, 3)+100 ·� (x, 70, 8)+
200 · � (x, 130, 5), where � (x, µ, � ) = exp[�(x � µ )2/(2� 2 )].
Ackley function parameterization: a = 500, b = 0.0005, c = � .


