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Machine learning scientists aim to discover techniques that can be

applied across diverse sets of problems. Such techniques need to exploit

regularities that are shared across tasks. This begs the question: What shared

regularity is not yet being exploited? Complex tasks may share structure that

is di�cult for humans to discover. The goal of deep multitask learning is to

discover and exploit this structure automatically by training a joint model

across tasks. To this end, this dissertation introduces a deep multitask learning

framework for collecting generic functional modules that are used in di↵erent

ways to solve di↵erent problems. Within this framework, a progression of

systems is developed based on assembling shared modules into task models and

leveraging the complementary advantages of gradient descent and evolutionary

optimization. In experiments, these systems confirm that modular sharing

vi



improves performance across a range of application areas, including general

video game playing, computer vision, natural language processing, and genomics;

yielding state-of-the-art results in several cases. The conclusion is that multi-

purpose modules discovered by deep multitask learning can exceed those

developed by humans in performance and generality.
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5.3 Omniglot multitask learning results. For each number of
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Chapter 1

Introduction

To e�ciently construct complex solutions to di�cult problems, real-

world general problem-solvers rely on functional modules. Each such module is

a tool specialized to solve a particular class of problems or subproblems. For

example, individual humans specialize into distinct roles in social organizations,

and, at one level lower, each human refines their own set of complementary skills.

In both cases, an e↵ective set of modules is discovered through the experience of

solving many diverse problems. That is, these sets are refined and reorganized

based on performance, in order to maximize system generality while maintaining

e�ciency. Importantly, this implies that, through such refinement, improved

performance on one task can lead to improved performance on another, even if

the tasks are seemingly unrelated.

Consider predicting the onset of a rare disease. There is a shortage

of data for this particular disease, but a specialist doctor has honed a set of

diagnosis techniques on related diseases, and can adapt these for a best guess.

Her more general medical abilities, developed in school and rotations, should

also lead to insights. Further, beyond medicine, any challenging task from

her life could help, e.g., competitive Judo, since through it she sharpens her
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general problem-solving skills. A machine with such functional modularity

could search for insight on a much broader scale. Modules trained to accurately

diagnose related diseases should provide a good starting point, and solutions to

any medical task could lead to insight, through their assessment of the human

condition. Further, solving a seemingly unrelated task, like predicting the

sentiment of Tweets, could lead to more accurate diagnoses, i.e., if modules

discovered for sentiment prediction generalize well to medical applications.

Though it may not be obvious how diseases and Tweets are related, such

generalization yields practical benefits today. For example, advances in neural

networks for sequence processing, originally developed for speech and natural

language, are successfully repurposed for genomics and heart-monitoring tasks.

The generic formulation of such machine learning techniques enables rapid

experimentation and modular recombination for new problems. However, this

methodological modularity cannot integrate knowledge across tasks as deeply as

biological or social problem-solvers. The standard toolbox of machine learning

techniques is refined by humans, but complex solutions to multiple problems

may contain powerful generic modules that are di�cult for humans to discover.

This dissertation develops an approach to automatically discover such modules.

1.1 Motivation

The field of machine learning is naturally well-suited to take advantage

of the modular approach. The success of machine learning is grounded in a

relatively small set of standard functions, which can be applied in a modular
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fashion to a broad array of problem areas. Such functional modularity appears

to be a requirement for general problem-solving systems in the real world. It

supports flexibility, adaptivity, and e�ciency over what would be possible with

a monolithic system. For example, doctors would be mentally slower and less

energy-e�cient if they had to activate their entire brain uniformly to solve

every new problem that came their way. At a higher level, large consulting

firms would be slower and less e�cient if they could not quickly assemble

project pipelines out of specialized human teams.

The general e↵ectiveness of machine learning and these other problem-

solving systems can be attributed to structural regularities shared across diverse

problems. These shared regularities can be exploited by standardized modules,

be they machine learning techniques, brain regions, or complete humans. The

generality of a system is then determined by the breadth of application of

its modules. In machine learning, multi-purpose modules are discovered by

humans through experimentation, intuition, and analysis of semantic structural

regularities across problems.

Multitask learning is a machine learning approach that improves gener-

alization of models by automatically exploiting regularities that exist across a

set of problems (Caruana, 1998). Regularities are exploited by sharing learned

functionality across the models trained for each problem. In recent years, mul-

titask learning has been extended to the realm of deep learning (Lecun et al.,

2015), where the multitask approach has been used to complement the success

of deep models across core areas of artificial intelligence, including computer
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vision (Zhang et al., 2014; Bilen & Vedaldi, 2016; Misra et al., 2016; Rudd et al.,

2016; Lu et al., 2017; Rebu� et al., 2017; Yang & Hospedales, 2017), natural

language processing (Collobert & Weston, 2008; Dong et al., 2015; Liu et al.,

2015a; Luong et al., 2016; Hashimoto et al., 2017), speech processing (Huang

et al., 2013; Seltzer & Droppo, 2013; Huang et al., 2015; Wu et al., 2015), and

reinforcement learning (Devin et al., 2016; Fernando et al., 2017; Jaderberg

et al., 2017b; Teh et al., 2017). The regularities discovered by deep multitask

learning are encoded in high-dimensional tensors of learned parameters that

are shared across models. These regularities exist at a subsymbolic level, and

thus could not be discovered by humans through methodological development.

However, like a human-developed toolbox, trained deep models are

inherently modular. Decomposing the computational graph of a deep model into

subgraphs yields a module corresponding to each of these subgraphs. Thanks to

the flexible compositional structure of neural networks, these subgraphs can in

principle be used for multiple purposes. Thanks to its generic training scheme,

deep multitask learning can be used to learn these modules and evaluate them

for each purpose. Thus, deep multitask learning is a well-motivated approach

for discovering multi-purpose modules.

Existing deep multitask learning approaches focus on discovering multi-

purpose, monolithic feature extractors. Improving feature extraction is a core

goal of deep learning (Lecun et al., 2015), but restricting multitask learning to

sharing of this kind significantly constrains the kinds of functional regularities

that can be discovered. In contrast, a more directly modular approach to deep
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multitask learning could discover generic functionality that monolithic systems

and humans cannot. This modularity would lead to more flexible, higher-

performing solutions that could be applied across the many deep learning

application areas, and would align more closely with how functionality is

organized in the real world.

1.2 Challenges

The pursuit of multi-purpose modules through deep multitask learning

raises three key challenges that any practical method will have to address if

it is to achieve the flexibility, adaptability, and e�ciency that the modular

approach promises. These challenges arise from the questions of module form,

module assembly, and module generality.

First, the form of constituent modules will be integral to the design of

the system. The natural definition of a deep learning module as a computational

subgraph is so broad that it includes modules defined by individual learned

parameters all the way up to modules that encompass the entire model for a

task. By specifying the set of subgraphs that constitute modules, a system

implies what scale of modularity it is looking for, and what kinds of modules

it can discover. For example, in the deep learning setting, it is natural to

define a module by a network layer ; indeed, this is one of the approaches taken

in this dissertation. As two more examples, existing deep multitask learning

approaches define modules at the level of feature extractors, while some modular

neuroevolution approaches, such as SANE (Moriarty & Miikkulainen, 1996) and
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ESP (Gomez & Miikkulainen, 1997), define modules at the level of individual

neurons. Finding a practical balance in scale is a key challenge: if modules

are too simple, they may not be expressive enough to capture interesting

regularities; if they are too complex, they approach the monolithic case, where

it may be di�cult for them to adapt to diverse purposes.

Second, the system will require a method that determines how modules

are assembled into complete models for each task. From the multitask learning

perspective, this is the question of how to share learned structure across

tasks. How to assemble modules is related to the problem of designing deep

learning architectures. Designing deep models for a single task is already a

challenging problem that is being approached with automated techniques, since

the complexity of many modern architectures is beyond what humans can

design manually. Designing architectures that support multiple tasks adds

another level of complexity to the problem, and determining which modules to

use at which location in such an architecture complexifies things further. A

key challenge of any system is to pair a space of possible constructions with a

practical method for discovering e↵ective constructions within this space. For

example, in a very restricted assembly space, finding optimal constructions in

this space may be easy, at the cost of diminishing the upper bound of system

performance.

Third, and most importantly, a successful system must force resulting

modules to be generic. In the trivial case, each module is used for only a

single purpose and the system collapses to a standard deep learning model.
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This collapse can be avoided by ensuring that modules are trained for multiple

purposes, i.e., to solve sets of distinct pseudo-tasks (Chapter 3). Again, the

potential of the system is determined by the scale of generality that can emerge.

For example, a set of modules in which each solves only a small set of similar

pseudo-tasks will be inherently less general than a set of modules in which

each solves a large diverse set. To that end, one of the grand challenges

of multitask learning is to successfully exploit regularities across seemingly

disparate problems. In such a setting, there may be no intuitive way to construct

fixed multitask architectures, so a more general and automated approach is

required. In the case of diverse tasks, and even when tasks are apparently

similar, care must always be taken to avoid negative transfer, i.e., when well-

intentioned sharing of structure actually ends up reducing performance. Such

degradation can occur when a module is trained to support more functionality

than it is capable of expressing. The module may indeed be generic, in that it

provides value for a diverse set of applications, but its value for each of those

applications may be suboptimal. Enabling discovery of highly generic modules

while avoiding negative transfer is thus a key challenge.

1.3 Approach

To solve these challenges of module form, assembly, and generality,

the approach taken in this dissertation is built out from the deep multitask

learning framework. First, this framework is generalized to provide a more

unified perspective of how neural network modules can be trained for multiple
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purposes. These multiple purposes are formalized as pseudo-tasks. Within

this framework, a progression of six learning systems is presented. Through

this progression, the generality of modules is expanded, leading to practical

solutions to module form and assembly at each step along the way. The

progression proceeds by (1) testing the inherent generality of single modules;

(2) improving the generality of single modules; (3) increasing the number of

modules and breadth of generality; (4+5) scaling this generality to complex

automatically-designed architectures; and (6) scaling this generality across

diverse architectures and problem areas. Together, these systems constitute a

comprehensive approach of how deep multitask learning can be used to discover

multi-purpose modules.

The first system, General Reuse of Static Modules (GRUSM), is designed

to answer the question: How general are trained modules inherently, i.e.,

when trained for a single purpose? In this system, a module trained initially

for one purpose in a single task is reused as is, i.e., without modifying its

parameters, for a di↵erent purpose at a di↵erent depth in another task. A

concrete implementation is developed that uses a coevolutionary flavor of

neuroevolution, ESP (Gomez & Miikkulainen, 2003), to train modules and

incorporate them into new locations. The implementation, GRUSM-ESP, is

evaluated in general video game playing, where each task corresponds to a

game. In the experiments, reused modules take the form of a single layer of

weights (of adaptable dimension). The results show that sometimes modules

generalize well, sometimes they do not, and that this transferability can be
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predicted based on task characteristics. In particular, the modules trained

in more complex tasks tend to generalize better. This makes sense, since

modules that support more complex functionality will naturally contain more

information that can be exploited. However, predicting module generalization

is not as strong a tool as training more general modules in the first place.

With this knowledge that neural network modules have the potential

to generalize across diverse purposes, the question is: How can they be forced

to generalize better? The second system, Pseudo-task Augmentation (PTA),

approaches this question from the foundational case where there is a single

module that is simultaneously trained for many purposes. This module is a

generic encoder with an arbitrary fixed topology, which is shared across all tasks

and trained by gradient descent, as in classical deep multitask learning. To make

this encoder more general, it is forced to solve each task in multiple distinct

ways, by training it with multiple decoders for each task; each decoder defines

a distinct pseudo-task. Training with additional pseudo-tasks is theoretically

shown to expand the training dynamics of gradient descent. Methods are then

introduced that interleave gradient descent with a coevolutionary process that

controls pseudo-tasks to improve generalization. By increasing the number

of ways a single core module is used, PTA is shown to improve performance

across an array of deep models, including achieving state-of-the-art results on

the CelebA multitask facial attribute recognition dataset.

With this knowledge that training a module in more ways can improve

its generality, the question is: How far can this idea be taken? The third
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system, soft ordering, takes this idea to the extreme: Each layer in a deep

architecture constitutes a module, and all modules are trained simultaneously

across all possible locations in all tasks in a fixed architecture. Thus, each

module must support functionality everywhere to some extent. At each lo-

cation, the system learns a mixture of modules used at that location, while

simultaneously learning the parameters of the modules themselves, and the

complete optimization is performed end-to-end using gradient descent. The

method is evaluated in vision and non-spatial domains, using convolutional and

fully-connected layers, and demonstrates improvements over single-task and

shared feature extractor approaches, including outperforming state-of-the-art

deep multitask learning approaches on Omniglot multitask character recog-

nition. Visualizations indicate that modules are indeed learning functional

primitives, whose behavior is tuned to match the needs of particular contexts.

These results suggest that simultaneously training modules for many kinds

of purposes across multiple tasks is a promising approach to discovering a

compact set with generic functionality.

However, the soft ordering method does not scale well, because all

modules are executed at each location in the joint model during each forward

and backward pass. Scaling this approach requires a way to automatically

select which module to use at each location during training. In the remaining

three systems, such selection methods are used to scale soft ordering in two

orthogonal directions: (1) to more complex multitask architectures discovered

by neural architecture search; and (2) to sharing across diverse classes of
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architectures and task modalities. The fourth and fifth systems follow the first

of these directions, and the sixth follows the second.

The fourth system, Coevolution of Task Routing (CTR), uses evolution

to discover where each module should be applied, and uses gradient descent to

train their parameters. That is, evolution and gradient descent are interleaved

in a manner similar to PTA. In CTR, starting from a minimal architecture for

each task, evolution expands its use of modules incrementally so that the correct

amount of complexity can be achieved. Modules in CTR can also take on more

generic functionality than in soft ordering, since evolution discovers di↵erent

kinds of architectures for di↵erent tasks, so modules are trained for more diverse

pseudo-tasks. Two new key mechanisms make the system practical: (1) All

candidate models for all tasks are trained jointly, so module semantics are

preserved across generations; and (2) task architectures are coevolved, allowing

more e�cient optimization of the multitask architecture. In experiments, this

system demonstrates marked improvement over soft ordering.

The fifth system, Coevolution of Modules and Task Routing (CMTR),

is a direct generalization of CTR, in which modules are no longer restricted to

being single neural network layers. In this system, along with the optimization

of how modules are assembled for each task, the topologies of the modules

themselves are optimized. Module topologies are optimized in an outer loop

around CTR, using a variant of CoDeepNEAT (Miikkulainen et al., 2017), a

popular evolutionary architecture search algorithm, which in turn is incremental,

coevolutionary, and explicitly modular. By making module topologies more
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flexible, CMTR yields significant improvements over CTR.

Though they improve performance in many settings, PTA, soft ordering,

CTR, and CMTR cannot be used to share modules across modalities, i.e.,

when the data for di↵erent tasks have a fundamentally di↵erent structure,

for example, vision vs. language. This restriction arises because, in these

approaches, modules are defined as layers or graphs of layers, so they can only

be applied where their input-output specification is satisfied, both technically

and semantically. For example, the spatial semantics of a 2D convolutional

layer are lost when applying this layer to non-spatial input.

The sixth system, Modular Universal Reparameterization (MUiR), over-

comes this restriction. It supports sharing of modules across arbitrary deep

architectures and task modalities, allowing regularities to be exploited across

diverse problem areas. This system decomposes the parameters of a given archi-

tectures for a set of tasks into a set of equally-sized linear maps. The parameters

of each map are then generated by a hypermodule, which reduces the parameters

to a small number of degrees of freedom. Hypermodules generalize the modules

of the other systems by allowing each module to be marginally tuned for

di↵erent purposes. This flexibility can be especially valuable when applications

are highly diverse. The mapping of modules to locations is optimized in a

manner similar to CTR, incrementally increasing sharing by interleaving gradi-

ent descent and evolution. However, for this system, coevolution of assembly

occurs not across tasks, but across all module locations, i.e., across all pseudo-

tasks. Coevolving at this level yields theoretically-grounded speedups that are

12



especially helpful when the number of pseudo-tasks is large. Coevolution is

implemented with a surrogate fitness function that uses the mixture-learning

mechanism of soft ordering. Experiments demonstrate intriguing dynamics

of MUiR, including positive sharing across tasks with fundamentally di↵erent

modalities, and the emergence of surprising sharing behaviors. Importantly, by

supporting sharing of modules across modalities, MUiR is especially valuable

when a task with a new modality arises with only a small amount of data,

for example, with temporal data collected from a new kind of geosensor, or a

rare disease detectable by data from a new kind of medical device. In such

a case, MUiR can boost models for the new modality by harnessing generic

functionality discovered from vast datasets and problem repositories for more

common modalities.

Since modules can now be shared across diverse architectures and

modalities, and improved by optimizing their topologies and the topologies in

which they are applied, a natural extension would be to combine these features

in an approach that optimizes cross-modal architectures to make modularity

even more e↵ective. Such an approach would be a straightforward unification

of CMTR and MUiR, and is left for future work.

Overall, by progressively increasing module generality, and developing

practical methods for assembling modules of various forms along the way,

these six systems verify the value of the deep multitask learning approach

to discovering multi-purpose modules at a level that humans cannot. These

developments provide a foundation for developing future systems that combine
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their advantages towards a fully-general and robust module discovery algorithm

that continuously refines itself to e�ciently construct high-performing solutions

to a broad range of critical real-world applications.

1.4 Guide to the Reader

The remainder of this dissertation is organized as follows:

Chapter 2 covers the foundations for the methods developed in this

dissertation, including neuroevolution, deep learning, multitask learning, other

forms of parameter sharing.

Chapter 3 introduces the framework that formalizes modules serving

multiple purposes as functions solving pseudo-tasks, and discusses design choices

that must be considered when developing a system within the framework, along

with methods for evaluating such systems.

Chapters 4-8 describe the six systems, including their development,

implementation, and evaluation: Chapter 4 covers General Reuse of Static

Modules; Chapter 5 covers Pseudo-task Augmentation; Chapter 6 covers soft

ordering of shared layers; Chapter 7 covers Coevolution of Task Routing, along

with Covevolution of Modules and Task Routing; and Chapter 8 covers Modular

Universal Reparameterization.

Chapter 9 reviews the systems and their applications, discusses tradeo↵s

that emerged, and promising avenues of future work, including taking an

explicitly ecological perspective, searching for modules o✏ine, and extending
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the systems to the setting of lifelong learning.

Finally, Chapter 10 reviews the contributions of this dissertation and

concludes that a modular approach to deep multitask learning is a practical

paradigm for discovering highly generic functionality that goes beyond what is

possible by humans.
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Chapter 2

Background

This chapter reviews the foundations and related work for the framework

and systems developed in the subsequent six chapters. First, two neural

networks methodologies are reviewed: neuroevolution and deep learning. These

methodologies provide powerful and well-established toolsets for developing

systems that uncover functional modules. Then, multitask learning is reviewed,

which provides the main problem definition considered in this dissertation. It

is discussed alongside other methods that improve generalization by training

multiple deep models. These methods set the background for the framework

developed in Chapter 3, which enables discovery of multi-purpose functional

modules by training and applying modules across di↵erent contexts.

2.1 Neuroevolution

Neuroevolution (Fogel et al., 1990; Yao, 1999; Floreano et al., 2008;

Miikkulainen, 2016) is one approach to designing and training neural networks.

It is grounded in methods of evolutionary computation (Bäck et al., 1997; Eiben

& Smith, 2003; De Jong, 2006), and was traditionally used to evolve the weights

of fixed structure neural networks directly (Yao, 1999). The general framework
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Algorithm 2.1 Generic Neuroevolution Framework

Initialize population of network representations from random distribution
Forever:

Assemble representations into functional networks
Evaluate all networks in task environment
Refine population by removing low performers
Generate new representations from top performers

for the classical neuroevolution algorithm is shown in Algorithm 2.1. The basic

idea is to iteratively generate networks that have a high chance of success, by

recombining the best networks found so far and discovering improvements in

their local neighborhoods. The initialization step starts with a population

that already covers some interesting and complementary areas of the search

space. The assembly step captures the fact that the substrate that is actually

evolved may not be a functional network, but rather the data that describes

it, e.g., the vector of its weights, or some more structured representation like

that one seen in Figure 2.1. The evaluate step is where the models are actually

run on the task of interest, and their fitnesses assigned; this step can often be

trivially parallelized for practical e�ciency. The refine step focuses search on

the most promising areas of the search space, and the generate step creates new

individuals based on recombination and variation of current high performers.

Neural networks are a good substrate for evolution, because they implement

smooth functions and tend to encode redundant distributed information, so

small changes to their weights tend not to break their functionality. This

robustness stands in contrast to more brittle substrates, such as evolving rigid
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physical structures.

Because it uses a population of neural networks is optimized simultane-

ously, neuroevolution performs global search in the space of models. This allows

it to avoid the pitfalls of local optima, which is an advantage over gradient

descent. This feature is especially useful in the case of relatively small models,

where such optima can occur frequently. Avoiding local optima is often also a

big advantage in sequential decision-making problems, where it can be di�cult

for an agent to explore its way out of deceptive sinks in a complex environment

(Lehman & Stanley, 2011a). Even in its most simple forms, neuroevolution

is competitive with state-of-the-art deep reinforcement algorithms (Salimans

et al., 2017; Such et al., 2017; Gaier et al., 2018), which is promising since it

has been relatively underexplored.

Also in contrast to deep learning, training parameters through evolution

does not require a di↵erentiable loss function for a task. Therefore, it can be

used when no such natural loss function is available, as is the case in sequential

decision-making problems. This general applicability makes neuroevolution

especially adept at evolving the structure, i.e., topology, of networks (Angeline

et al., 1994; Vittorio, 1994; Stanley & Miikkulainen, 2002). Evolving on

the single-neuron scale, starting with a minimal topology and incrementally

complexifying over a run of evolution was shown to ease learning, especially

in more complex domains (Gomez & Miikkulainen, 1997; Hausknecht et al.,

2013; Schrum & Miikkulainen, 2016). Coevolution of neurons as the basic

building block of neural networks also showed remarkable success, with canonical
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examples being the ESP (Gomez & Miikkulainen, 1997, 1999, 2003) and SANE

(Moriarty & Miikkulainen, 1996, 1997; Richards et al., 1998) algorithms.

SANE evolves a population of neurons, along with a population of

blueprints, each of which specifies which neuron to use at which location. Say

the population of neurons fi is given by {f1, . . . , fN}, and the architecture

has a single hidden layer of size H. Then, the complete model Mb for a given

blueprint b : {1, . . . , H}! {1, . . . , N} is given by:

Mb(x) = �(
HX

i=1

fb(i)) (2.1)

where � is an optional nonlinearity, e.g., sigmoid, applied before the output. The

performance of this model gives the blueprint its fitness, which is propagated

down to neurons based on the blueprints in which they were included. A

functional depiction of the SANE approach is given in Figure 2.1. By optimizing

this set of useful modules which can be used by any blueprint in the population,

SANE increases search e�ciency, since this modular information is transmitted

more quickly through the search process. In this approach, the size of the

module population is larger than the number of modules used in each network,

and each module is not expected to be used more than once in the final best

model. The main purpose of the modularization is to accelerate optimization

of a single task by sharing parameters throughout the population.

Evolving at a slightly higher level, coevolution of hierarchical modules

discovers compact sets of modules with complementary functionality (Moriarty

& Miikkulainen, 1998; Reisinger et al., 2004; Li & Miikkulainen, 2014). Related
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Figure 2.1: Functional View of SANE. This figure gives an overview of
the SANE (Symbiotic Adaptive Neuroevolution) architecture (Moriarty &
Miikkulainen, 1996). A set of N functions is evolved (in practice, individual
neurons), along with a set of blueprints, each of which specifies which function to
use in each function location in a fixed architecture neural network. Blueprints
receive fitness based on the performance of the assembled model, and fitness is
percolated down to individual functions based on the performance of blueprints
in which they are present. This architecture has been repeatedly shown to
outperform evolution of a monolithic neural network representation, as well as
many popular reinforcement learning methods.

methods have also been used in cases where the modularity and reuse is

more explicit at a higher symbolic level: to transfer learned functionality to

more complex tasks (Whiteson et al., 2005; Taylor et al., 2007; Verbancsics &

Stanley, 2010; Braylan & Miikkulainen, 2016), to reuse functionality across

various modes of operation (Pugh & Stanley, 2013; Schrum & Miikkulainen,

2016; Huizinga & Clune, 2018), and to evolve controllers for modular teams of

agents (D’Ambrosio et al., 2010; Nitschke et al., 2012; Bryant & Miikkulainen,
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2018).

Recently, a similar class of modular methods has been adopted to evolve

the architectures of deep models (Miikkulainen et al., 2017; Liu et al., 2018;

Real et al., 2018). By taking advantage of the complementary advantages of

deep learning and neuroevolution, these methods are able to scale automated

design of neural networks to a broad range of real world problems, even breaking

the benchmarks set by human design on the most battered largescale problem:

ImageNet (Real et al., 2017, 2018). These methods will be reviewed further

in Section 2.3.2. The evolutionary approaches developed in this dissertation

operate at a similar scale.

Some of these architecture search methods, as well as other neuroevo-

lution methods, rely on interleaving evolution and training through gradient

descent (Whiteson & Stone, 2006; Parker & Bryant, 2009; Real et al., 2017),

combining the ability of evolution to explore a broad space of solutions and

that of gradient descent to e�ciently optimize around a current solution. From

the analogy to natural evolution, this interleaving is an instance of Lamarckian

evolution, in which individuals genetically transfer what they have learned

to their o↵spring. Whatever the true magnitude of Lamarckian evolution

in nature, in neuroevolution interleaving can provide substantial benefits to

e�ciency, and as such it is used in several of the systems developed in this

dissertation.

Neuroevolution is one among many classes of evolutionary processes that

solve complex problems by discovering functionality incrementally (Bonner,
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1988; Iqbal et al., 2014). This feature makes evolution an appropriate tool for

systems that iteratively improve how they use functional modules to solve mul-

tiple problems, while refining the modules themselves. Evolutionary approaches

also benefit from modern techniques from the evolutionary computation field

that can be applied to any evolutionary system. One particularly useful class of

techniques is behavioral methods, which optimize a population with respect to

a higher-dimensional space of behaviors based on what a model actually does in

its task environment, as opposed to looking at the loss or fitness alone (Lehman

& Stanley, 2011a; Mouret & Doncieux, 2012; Pugh et al., 2016; Meyerson &

Miikkulainen, 2017). For example, novelty search (Lehman & Stanley, 2011a)

evaluates individual networks based on how di↵erent their behavior is from

that of other networks evaluated so far. More precisely, the fitness score of an

individual is replaced by a novelty score, given by a density estimate in the

behavior space:

novelty(x) =
1

k

kX

i=1

d(b(x), b(yi)) (2.2)

where b is a function that maps each individual to its behavior vector, d is

some distance metric between behaviors (e.g., L2 distance), and yi is the ith

nearest behavioral neighbor to x among the current population and an archive

of previously evaluated individuals. Thus, by optimizing with respect to the

novelty score, evolution will be driven to explore areas of the search space

with behavior qualitatively di↵erent from anything seen before. Similar to

discovering multi-purpose modules by solving diverse tasks, novelty search aims

to discover powerful functionality by collecting diverse experiences. Related to
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the multitask learning approach taken in this dissertation, there are existing

approaches that takes advantage of data from multiple tasks to learn a better

behavior function for neuroevolution (Meyerson et al., 2016). However, the

shared knowledge discovered by these algorithms are stored in the evolutionary

operators themselves, not neural network modules. Finally, apart from their

benefit when included in optimization schemes, behavioral evolutionary methods

have exhibited notable results in machine creativity (Secretan et al., 2008;

Lehman & Stanley, 2011b; Nguyen et al., 2015; Lehman et al., 2018). Existing

generic modules have been discovered through human creativity, so artificial

creativity should be useful for machines to have the same success.

2.2 Deep Learning

For investigating the extent to which functionality can be generalized

across diverse contexts, deep learning is a good option. Deep learning has

emerged in recent years as the dominant approach for solving machine learning

problems across a range of important subfields in artificial intelligence, including

computer vision (Krizhevsky et al., 2012; Jia et al., 2014; Szegedy et al., 2016),

natural language processing (Collobert & Weston, 2008; Suutskever et al., 2014;

Zhang et al., 2015), speech recognition (Hinton et al., 2012; Graves et al.,

2013; Chan et al., 2016), reinforcement learning (Mnih et al., 2015a,b; Lillicrap

et al., 2015), and even more classical unstructured machine learning problems

(Klambauer et al., 2017).

Even before deep learning, neural networks were a workhorse of ma-
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chine learning due to their general applicability. The ability to approximate

any function (Hornik et al., 1989), along with an e�cient training algorithm

(Rumelhart et al., 1986), and a plethora of successful applications (Fukuda &

Shibata, 1992; Hussain, 1999; Christodoulou & Georgiopoulos, 2000), made

neural networks a good option for many problems. That said, for many years,

it was di�cult to up neural networks to large, complex problems. Along with

the dramatic increase in computational resources over the past few decades,

several important ideas were recently introduced that made such scale possible.

They include more principled parameter initialization (Glorot & Bengio, 2010;

He et al., 2016) activation functions (Glorot et al., 2011; Klambauer et al.,

2017), and optimization schemes (Tieleman & Hinton, 2012; Kingma & Ba,

2014). These optimization schemes are based on stochastic gradient descent

(SGD), which moves the weights of any di↵erentiable function in the direction

of steepest descent with respect to its current empirical loss. For a model M

with parameters ✓M solving a task with N samples {(xi,yi)}Ni=1, this weight

update step is given by

✓M := ✓M �
↵

N

NX

i=1

r✓ML(M(xi; ✓M),yi), (2.3)

where L is a di↵erentiable loss function indicating the distance of the prediction

ŷi = M(xi; ✓M) from the target yi, and ↵ is the learning rate which controls

how far the optimizer steps in the direction of the gradient. The algorithm

for computing these gradients for arbitrary neural networks using the chain

rule is known as backpropagation (Rumelhart et al., 1986). Modern optimizers
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are all variants of this basic iterative algorithm, but include some additional

complexity, for example, in the form of momentum, learning rate decay, or

adaptive per-parameter learning rates. Overall, the goal of optimization is

to find ✓?M that minimizes the loss over the true distribution, or analogously,

maximizes the fitness of the model in its environment.

Now that reliable methods have been established, and powerful open-

source tools have emerged for constructing and training deep networks, including

Tensorflow (Abadi et al., 2015), PyTorch (Paske et al., 2017), Keras (Chollet

et al., 2015), and CuDNN (Chetlur et al., 2014), a new standard level of

abstraction has appeared at the level of layers and tensors. Instead of looking

at neural networks at the neuron level, these tools view them more compactly

as directed computational graphs in which each node is a potentially nonlinear

tensor transformation. Each such tensor may contain thousands or millions

of values. At this higher level there is a standard collection of building blocks

that are chained together to form most deep models. Standard modules include

the classic fully-connected layer, convolutional layers (Lecun & Bengio, 1995),

recurrent layers (in particular, LSTM (Hochreiter & Schmidhuber, 1997)),

attention blocks (Vaswani et al., 2017), residual blocks (He et al., 2016), and

regularization functions such as dropout (Srivastava et al., 2014) and batch

normalization (Io↵e & Szegedy, 2015). For example, the layer of neurons from

a classical neural network has been abstracted into a fully-connected layer or

dense layer function, given by the a�ne transformation

f(x) = �(W>x+ b), (2.4)
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Figure 2.2: Wide ResNet. As a relatively simple example of a state-
of-the-art deep architecture, this figure gives a graphical depiction of the
Wide Residual Network architecture family (Zagoruyko & Komodakis, 2016).
Functions containing trainable parameters are shown in blue. The architecture
contains three groups Gi of N residual blocks Bi1, . . . , BiN . In turn, each
block contains a pair of batch normalization layers, ReLU activation layers,
and 2D convolutional layers, as well as a short-cut connection that allows
information to pass through the block untouched. This example illustrates
key features of modern neural network architectures: depth, modular design,
shortcut connections, and various standard layer types.

where W is a weight matrix, and b is a vector of biases, both trained through

backpropagation, and � is an optional elementwise nonlinearity.

One illustrative example of a complete model constructed from such

components is shown in Figure 2.2. This figure gives a graphical depiction of the

Wide Residual Network architecture (Zagoruyko & Komodakis, 2016), which is

a relatively simple, and yet very high-performing and versatile, family of convo-

lutional neural networks, originally developed for image recognition, and then

reused for other computer vision problems. This architecture captures many of

the themes of modern deep architectures, including depth, modularity, short-cut

connections, and various standard components, i.e., 2D convolutions, batch

normalization, global average pooling, and a fully-connected final classification
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layer. In the architecture in Figure 2.2, human designers have compressed the

structural design space by working with multiple levels of modular hierarchy.

This indicates that information at di↵erent depths in the architecture benefit

from similar transformations. Furthermore, studies probing residual networks

have discovered that sets of their convolutional layers often have a high amount

of mutual information (Gre↵ et al., 2016). These observations suggest that con-

volutional networks can benefit not just from topological regularity, but more

direct functional sharing as well. Despite recently developed improvements

to convolutional networks, the fundamental building block of these networks

remains the convolutional layer. Convolutional layers were originally developed

for processing images, but they can operate over spatial input of any dimension

(Lecun & Bengio, 1995). In its standard form, a 2D convolutional layer f

performs an operation on an input X 2 Rwidth⇥height⇥m, i.e., with m input

channels, which produces f(X) 2 Rwidth⇥height⇥n, where

f(X)ij =
A�1X

a=0

B�1X

b=0

W>
abX(i+a)(j+b) + b (2.5)

for all (i, j) 2 {1, . . . ,width} ⇥ {1, . . . , height}, where W 2 RA⇥B⇥m⇥n is a

4-dimensional tensor of learned weights with spatial dimensions A⇥B (with

boundary-handling omitted for clarity), and b 2 Rn is an optional learned bias

vector. Notice that, like the classic fully-connected layer, the convolutional

layer is built from matrix products, but here they are combined in a more

involved way: each output value is computed from an A⇥ B receptive field of

the input. In other words, convolutional layers are designed to share parameters
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across space. For example, this layer uses the same parameters to compute the

output of the bottom left of an image (or intermediate 2D representation) as it

does the upper right. This translational invariance is one reason convolutional

networks are viewed as feature extractors: they search for the existence and

location of a set of features across the input space. Humans have designed

this parameter-sharing mechanism based on evidence that the same sort of

sharing happens in the human visual cortex (Lee et al., 2008). A goal of this

dissertation is to discover other valuable ways to share parameters that humans

could not discover through such analysis.

Another canonical and complementary example of a modern neural

network architecture is the LSTM (Hochreiter & Schmidhuber, 1997), which

has led to performance breakthroughs in several areas of artificial intelligence,

including natural language and speech. In contrast to the convolutional layer,

which operates simultaneously over space, the LSTM is a recurrent architecture,

which operates iteratively over time. A functional diagram of the standard

LSTM is given in Figure 2.3. At the tth timestep, the LSTM’s output is

a function of the current input xt, its previous hidden output ht�1, and

the previous state of its memory cell ct�1. To enable memory to be cleanly

stored, updated, and recalled over extended periods of time, the LSTM includes

multiplicative gating mechanisms: an input gate, which determines how much of

the current input should be written to memory; a forget gate, which determines

how much of the previous memory state should be discarded; and an output

gate, which determines how much of the current memory should be read as
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Figure 2.3: LSTM Architecture. This figure gives a functional depiction
of the standard LSTM architecture. In this figure, xt is the input, ht is the
output, and ct is the cell state, or memory, at the tth timestep. Functions
in blue contain trainable parameters. � denotes elementwise addition, and
⌦ denotes elementwise multiplication, which enables the implementation of
gates, for deciding how much to read from, update, and forget memory state.
The construction of these gates rely on learning four functions f1, f2, f3, f4,
which are implemented as fully-connected layers of equal shape. Dotted arrows
indicate the recurrence induced by applying this function iteratively over many
time steps. The LSTM architecture serves to illustrate the kinds of modular
designs arising from humans manually encoding knowledge about the world.

output. The complete equations describing the operation at a single timestep

are as follows:

ft = f1([xt,ht�1]) (forget gate)

it = f2([xt,ht�1]) (input gate)

ot = f4([xt,ht�1]) (output gate)

ct = (ft ⌦ ct�1)� (it ⌦ f3([xt,ht�1])) (cell update)

ht = ot � tanh(ct) (hidden output)
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where xt, ht, and ct are the input, hidden output, and updated memory cell

state of the LSTM at the tth timestep, [xt,ht�1] denotes the concatenation

of xt and ht�1, and f1, f2, f3, f4 are implemented with fully-connected layers.

The nonlinearity used by f3 is usually the hyperbolic tangent function (tanh),

or simply the identity function, while f1, f2, f4 use a sigmoid nonlinearity so

that they implement multiplicative gating.

Notice again that the operation that uses learned parameters in these

equations the same a�ne transformation as that of the fully-connected layer.

The LSTM is a way of linking these operations together to implement a memory

architecture inspired by how memory is controlled in computer hardware, and,

theoretically, in the human brain. Since the same learned parameters are

applied at each timestep, we can say that LSTMs share parameters over time.

That is, in principle, there could be separate parameter matrices applied at

each timestep, but humans have discovered that temporal sharing is indeed a

powerful regularizer. Again, we expect that machines will be able to discover

powerful parameter linkages that humans cannot. However, as of yet, despite

recent results that automatically discover new architectures, e.g., in the case

of LSTMs (Zoph & Le, 2017; Rawal & Miikkulainen, 2018) and convolutional

blocks (Real et al., 2018), the components in the standard deep learning toolbox

have all been discovered manually by humans.

That said, improvements, variations, and advancements upon this stan-

dard toolbox are being made continuously, taking advantage of the modular

subcomponents used to construct these tools, namely standard primitive dif-
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ferentiable tensor operations. By using these primitive operations to build

and improve broadly-applicable tools, deep learning has demonstrated the

power of functional modularity. This power makes it a promising substrate for

discovering further generic components automatically. The modules that learn

and store the majority of the information in a deep model contain learnable

parameter tensors whose scale determine the expressivity of the model. These

parameters are trained from scratch so they can take on any possible values

when a new model is trained for a particular application. So, the current

mainstream deep learning mindset is that a particular composition and learned

parameterization of a compact set of high-level high-dimensional components

can e↵ectively solve most machine learning problems.

However, although the set of parameterizable components may be small,

they have a high number of parameters, and therefore the set of functions

they can represent is still highly unconstrained. The goal of the methods

developed in this dissertation is to find sets of components whose parameters

are not completely unconstrained, but forced into a subspace where they must

support more generic functionality. We have already seen how convolutional

and recurrent layers used a hand-designed subspace to force parameters to

be used in multiple scenarios, i.e., to be used identically over space and time,

respectively. Complementary to these geometric parameter-sharing methods,

several approaches have been investigated for compressing the parameters

of deep models, motivated by evidence that learned parameters are highly

correlated. One early approach showed that the majority of parameters in deep
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networks could be generated from predictions based on a relatively small set of

parameters, without hurting performance (Denil et al., 2013). This observation,

along with theoretical compression results, led to the development of methods

that parameterize weight tensors with lower-dimensional parameterizations

(Chen et al., 2015; Cheng et al., 2015; Yang et al., 2015; Li et al., 2018). In one

extreme version of such compression, the parameters of an entire network are

viewed as a single long vector ✓ 2 RM , and are generated by a fixed random

projection P 2 RM⇥D and fixed random o↵set v 2 RM applied to a relatively

low-dimensional vector z 2 RD, i.e., D << M , and

✓ = P>z + v (2.6)

Since the only trainable parameters are in z, the intrinsic dimension of the

entire model is D, even though the model can implement the complete function

of a deep neural network (Li et al., 2018). Experiments with this intrinsic

dimension approach showed that many common task-architecture pairs could

be solved by setting D much smaller than M ; sometimes thousands of times

smaller. The success of such compression approaches is encouraging evidence

that there is a high amount of regularity in learned parameters of deep models

that is ripe for exploitation. The result of such approaches is more parsimonious

model representations, in which sets of parameters can be seen as having more

general applicability, since they are used to parameterize multiple locations

within a single model.

Towards an even greater level of generality, another approach, and the

one pursued in this dissertation, is multitask learning, in which parameters are
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shared across multiple tasks, so that their functionality becomes more general

than that required for solving only one task. Multitask learning is reviewed in

the next section, in the context of methods that train multiple deep models.

2.3 Training Multiple Deep Models

The methods developed in this dissertation all train multiple deep

models in order to discover generic functional modules. When searching for

improved generalization, the modules that find success across many of these

models emerge as successful generic building blocks. There is a broad range

of methods that exploit synergies across multiple deep models. This section

reviews these methods by classifying them into three types: Class 1: methods

that jointly train a model for multiple tasks; Class 2: methods that train

multiple models separately for a single task; and Class 3: methods that jointly

train multiple models for a single task. The high level ideas of these three

methods are depicted in Figure 2.4.
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Figure 2.4: Three Paradigms that Train Multiple Deep Models. This
figure gives a high-level view of three classes of methods that involve training
multiple deep models. (a) Joint training of models for multiple tasks trains
a distinct model for each task, and these models can share some of there
trained parameters, e.g., through shared layers (shown in green). This is the
foundational setup considered in this dissertation; (b) Separate training of
multiple models for a single task trains several disjoint models with the goal
of finding a single best model for one task; reused topological discoveries are
circled in green. Such model search techniques are used in this dissertation for
learning how to better share learned structure; (c) Joint training of multiple
models for a single task trains several models for a single task that share
parameters (again shown in green), on the way to finding a single best model
for that task. This third class of methods provides a bridge between a and b,
motivating the development of techniques that combine their advantages to
discover more general neural network modules.

Class 1 gives the background and setup for multitask learning. This

is the key problem formulation that is used throughout the systems and

experiments in the subsequent chapters. Class 2 covers non-multitask model
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search methods. Although not focused on multitask learning, these methods

provide solutions for how to automatically construct high-performing models

out of sets of existing building blocks, and thus gives a foundation for the

assembly methods investigated in subsequent chapters. Finally, Class 3 is given

as a connector between Classes 1 and 2. Overall, the review below motivates

the development of methods in Class 3 that unify the advantages of Classes 1

and 2. By showing how multiple models can be jointly trained for a single task,

Class 3 motivates the development of the framework in Chapter 3, which gives

a broad perspective of how functional modules can be used to serve di↵erent

purposes.

2.3.1 Joint training of models for multiple tasks

Joint training of models for multiple tasks, i.e., multitask learning (MTL),

was proposed decades ago (Caruana, 1998), to improve overall performance

by exploiting regularities present across tasks. There are many real-world

scenarios where harnessing data from multiple related tasks can improve

overall performance. In general, in multitask learning, there are T tasks

{{xti,yti}Nt

i=1}Tt=1, where Nt is the number of samples for the tth task. Note

that it is possible that for t1 6= t2, Nt
1

6= Nt
2

, dim(xt
1

) 6= dim(xt
2

), and/or

dim(yt
1

) 6= dim(yt
2

). The only requirement for multitask learning to be useful

is that there is some amount of information shared across tasks, and, in theory,

this is always the case (Mahmud & Ray, 2008; Mahmud, 2009).

The original substrate for multitask learning was the traditional neural
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network setting, i.e., with a single hidden layer (Caruana, 1998). In this model,

related tasks shared knowledge by sharing their input-to-hidden layer, and

having separate hidden-to-output layers. In this way, the shared first layer of

the joint model would be forced to learn more generic representations of the

world that were practical for all tasks. Since then, multitask learning has found

success across other machine learning substrates, including trees Jaśkowski

et al. (2008); Mahmud & Ray (2008), probabilistic models (Bonilla et al., 2008;

Durrett & Klein, 2014), and neuroevolution (Schrum & Miikkulainen, 2012).

Although originally introduced in a neural network setting, substan-

tial progress was made from more classical perspectives in the linear setting

(Evgeniou & Pontil, 2004; Argyriou et al., 2008; Kang et al., 2011; Kumar &

Daumé, 2012). For linear models, di↵erent multitask learning variants are im-

plemented as di↵erent forms of explicit regularization terms applied across task

models. The choice of regularization method implies what kinds of sharing are

possible. For example, in the simplest case, tasks were assumed to be related

and their weight vectors encouraged to be similar with respect to L2 distance

(Evgeniou & Pontil, 2004). Many subsequent approaches took a perspective

more similar to the neural network approach, in which the model for each task

is decomposed into a factor that is shared across multiple tasks, and a factor

that is task-specific (Argyriou et al., 2008). In this framework, it is possible

to implement regularization that models desirable multitask learning features,

such as automatically learning groupings of related tasks (Kang et al., 2011),

and modeling structural overlap across groups (Kumar & Daumé, 2012), which
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avoid pitfalls that may otherwise lead to negative transfer, i.e., when sharing

hurts more than it helps. As neural networks have regained popularity, many of

these linear approaches have been reunified from a neural networks perspective

(Yang & Hospedales, 2015). Overall, the factorization approach to multitask

learning leads naturally to deep learning, since deep models inherently factorize

models over their constituent layers.

Indeed, in recent years, MTL has been extended to deep learning, in

which it has improved performance in applications such as vision (Zhang et al.,

2014; Bilen & Vedaldi, 2016; Misra et al., 2016; Rudd et al., 2016; Lu et al., 2017;

Rebu� et al., 2017; Yang & Hospedales, 2017), natural language (Collobert &

Weston, 2008; Dong et al., 2015; Liu et al., 2015a; Luong et al., 2016; Hashimoto

et al., 2017), speech (Huang et al., 2013; Seltzer & Droppo, 2013; Huang et al.,

2015; Wu et al., 2015), reinforcement learning (Devin et al., 2016; Fernando

et al., 2017; Jaderberg et al., 2017b; Teh et al., 2017), and even seemingly

unrelated tasks from disparate domains (Kaiser et al., 2017). Deep MTL

relies on training signals from multiple datasets to train deep structure that is

shared across tasks. Since the shared structure must support solving multiple

problems, it is inherently more general, which leads to better generalization to

holdout data.

Though more sophisticated methods now exist, the most common ap-

proach to deep multitask learning is still based on the original work using

neural networks, in which a joint model is decomposed into an underlying

model F (parameterized by ✓F) that is shared across all tasks, and task-specific
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decoders Dt (parameterized by ✓D
t

) for each task. The model for the tth task

is then defined as

ŷti = Dt(F(xti; ✓F); ✓D
t

) . (2.7)

Given a fixed model architecture for all Dt and F, the joint model is completely

defined by the parameters ✓ = ({✓D
t

}Tt=1, ✓F). To maximize overall performance,

the goal is to find optimal parameters ✓⇤ such that

✓⇤ = argmin
✓

1

T

TX

t=1

1

Nt

N
tX

i=1

L(yti, ŷti) (2.8)

for a suitable sample-wise loss function L, e.g., mean squared error or cross-

entropy loss. More sophisticated deep MTL approaches can be characterized by

how thy answer the design question: How should learned parameters be shared

across tasks? The landscape of existing deep MTL approaches can be organized

based on how they answer this question at the joint network architecture level

(Figure 2.5):

Classical approaches. Many deep learning extensions remain close in

nature to this approach, learning a shared representation at a high-level layer,

followed by task-specific (i.e., unshared) decoders that extract labels for each

task (Devin et al., 2016; Dong et al., 2015; Huang et al., 2013, 2015; Jaderberg

et al., 2017b; Liu et al., 2015a; Ranjan et al., 2016; Wu et al., 2015; Zhang

et al., 2014) (Figure 2.5a). This approach can be extended to task-specific

input encoders (Devin et al., 2016; Luong et al., 2016), and the underlying

single-task model may be adapted to ease task integration (Ranjan et al., 2016;

Wu et al., 2015), but the core network is still shared in its entirety.
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core model layer

task-specific decoder

other per-task 
parameters

Figure 2.5: Classes of existing deep multitask learning architectures.
(a) Classical approaches add a task-specific decoder to the output of the core
single-task model for each task; (b) Column-based approaches include a network
column for each task, and define a mechanism for sharing between columns; (c)
Supervision at custom depths adds output decoders at depths based on a task
hierarchy; (d) Universal representations adapts each layer with a small number
of task-specific scaling parameters. Underlying each of these approaches is the
assumption of parallel ordering of shared layers (Section 6.2): each one requires
aligned sequences of feature extractors across tasks.

Column-based approaches. Column-based approaches (Jou & Chang,

2016; Misra et al., 2016; Rusu et al., 2016; Yang & Hospedales, 2017) assign

each task its own layer of task-specific parameters at each shared depth (Fig-

ure 2.5b). They then define a mechanism for sharing parameters between tasks

at each shared depth, e.g., by having a shared tensor factor across tasks (Yang

& Hospedales, 2017), or allowing some form of communication between columns

(Jou & Chang, 2016; Misra et al., 2016; Rusu et al., 2016). Observations of

negative e↵ects of sharing in column-based methods (Rusu et al., 2016) can

be attributed to mismatches between the features required at the same depth

between tasks that are too dissimilar.

Supervision at custom depths. There may be an intuitive hierar-

chy describing how a set of tasks are related. Several approaches integrate

supervised feedback from each task at levels consistent with such a hierar-
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chy (Hashimoto et al., 2017; Toshniwal et al., 2017; Zhang & Weiss, 2016)

(Figure 2.5c). This method can be sensitive to the design of the hierarchy

(Toshniwal et al., 2017), and to which tasks are included therein (Hashimoto

et al., 2017). One approach learns a task-relationship hierarchy during training

(Lu et al., 2017), for the problem of recognizing facial features from images,

though learned parameters are still only shared across matching depths. Super-

vision at custom depths has also been extended to include explicit recurrence

that reintegrates information from earlier predictions (Bilen & Vedaldi, 2016;

Zamir et al., 2016). Although these recurrent methods still rely on pre-defined

hierarchical relationships between tasks, they provide evidence of the potential

of learning transformations that have a di↵erent function for di↵erent tasks at

di↵erent depths, i.e., in this case, at di↵erent depths unrolled in time.

Universal representations. One approach shares all core model pa-

rameters except batch normalization scaling factors (Bilen & Vedaldi, 2017)

(Figure 2.5d). When the number of classes is equal across tasks, even the

output layers can be shared, and the small number of task-specific parameters

enables strong performance to be maintained. This method was applied to

a diverse array of vision tasks, demonstrating the power of a small number

of scaling parameters in adapting layer functionality for di↵erent tasks. This

observation helps to motivate the soft-merge method used in Chapters 6, 7,

and 8.

Overall, independently of how structure is shared, i.e., independently of
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how each ŷti is defined, in general the goal of training is to minimize the loss

aggregated over all tasks, as in Equation 2.8. Thus, by requiring models to fit

multiple real world datasets simultaneously, MTL is a promising approach to

learning more realistic, and thus more generalizable, models.

2.3.2 Separate training of multiple models for STL

How to construct and train a deep neural network e↵ectively is an open-

ended design problem even in the case of a single task. A range of methods

have been developed that aim at overcoming this problem by training multiple

models separately for a single task. One class of methods searches for optimal

fixed designs, e.g., by automatically optimizing learning hyperparameters

(Bergstra et al., 2011; Snoek et al., 2012) or more open-ended network topologies

(Miikkulainen et al., 2017; Real et al., 2017; Zoph & Le, 2017), or simply by

manual trial-and-error.

Among these methods, evolutionary approaches are some of the most

promising. For example, Covariance Matrix Adaptation Evolutionary Strategies

(CMA-ES) has emerged as one of the most robust hyperparameter search

methods (Loshchilov & Hutter, 2016). Evolutionary methods have also seen

success in architecture search (Miikkulainen et al., 2017; Suganuma et al., 2017;

Real et al., 2017, 2018), for which the ability of evolution to handle complex

non-di↵erentiable structures makes it particularly appropriate. For example,

one of these approaches, CoDeepNEAT (Miikkulainen et al., 2017), extends

the topology search methodology of neuron-level evolution, and is applied in
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Chapter 7 to the even higher-level problem of evolution of deep multitask

topologies. One advantage of this approach is that it is capable of discovering

modular, repetitive structures reflecting those seen in successful and heavily

hand-designed architectures Szegedy et al. (2015, 2016); He et al. (2016). An

example of the kind of sets of modular topologies that such a method can

discover is shown in Figure 2.4b.

When searching across multiple models for one that performs best

on a single task, the multiple models synergize by providing complementary

information about di↵erent areas of the search space, and, over time, the

results of past models can be used to generate better models. Population-

based training takes this one step further, by copying the weights of successful

models to new models (Jaderberg et al., 2017a). This weight copying is similar

to methods that transfer learned behavior across a sequence of pre-defined

architectures (Hinton et al., 2015; Chen et al., 2016; Wei et al., 2016). The

synergy of multiple models can also be exploited via ensembling, assuming

the models are su�ciently powerful and diverse (Dietterich, 2000). Overall,

the widespread success of the above methods have shown the value of training

multiple models separately, both sequentially and in parallel.

2.3.3 Joint training of multiple models for STL

Some existing methods can be viewed as jointly training multiple models

for a single task. For instance, to improve training of deep models, deep

supervision includes loss layers at multiple depths (Lee et al., 2015). An
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example of deep supervision is shown in Figure 2.4c. As a by-product, this

approach yields a distinct model for the task at each such depth, though only

the deepest model is ever evaluated. That is, after training, the shallower

models are discarded. The goal of this approach is not to discover multiple

high-performing models for the task, but to use shallower models to improve

the learning of the single deepest model.

As another example, dropout (Srivastava et al., 2014), and pseudo-

ensembles more generally (Bachman et al., 2014), can be seen as implicitly

training many relatively weak models that are combined during evaluation.

Also, PathNet (Fernando et al., 2017) jointly trains multiple networks induced

by various paths through a set of shared modules. However, the goal is not to

improve single task performance, but discover structure that can be e↵ectively

reused by future tasks. Although the above methods jointly train multiple

models for a single task, they do not perform joint training in the MTL sense.

Self-supervised training is an approach that is more aligned with the

MTL setting in that there are multiple complementary losses whose gradient is

combined when training (Doersch & Zisserman, 2017; Li et al., 2017; Jayaraman

et al., 2018). In self-supervised learning, auxiliary targets are created directly

from the input samples, without any additional hand-labeling, but taking

advantage of existing external knowledge about the structure of the universe.

Training towards these auxiliary targets jointly with the real target task can

improve the generalization of the model by forcing it to capture more general

structure in this universe. Since there is still only one underlying task of
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interest, self-supervised learning can still be categorized as training multiple

models for a single task. Advances in self-supervised learning are orthogonal

to the work in this dissertation: They focus on how to e↵ectively construct the

auxiliary tasks from external knowledge, whereas the work here focuses on how

to discover generic components given a fixed set of tasks.

Ideally, the benefits of the methods in Sections 2.3.1 and 2.3.2 could be

combined, yielding methods that train multiple models that share underlying

parameters and sample complementary high-performing areas of the model

space. The overarching angle taken in this dissertation is to approach this goal

by collecting high-performing complementary modules that can be e↵ectively

applied in di↵erent ways. The framework in which these methods take form is

introduced in the next chapter.

2.4 Conclusion

The methodologies and applications of neuroevolution and deep learning

demonstrate that neural networks are a natural substrate for discovering useful

modules. Multitask learning has been used to improve the generality of deep

models, and structure search methods, including neuroevolution, have been

used to optimize how they are designed. The functional perspectives from

these three areas motivate the pseudo-task framework developed in the next

chapter. The practical tools from these areas can then be used to develop

systems within this framework.
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Chapter 3

Framework: Functional Modules Solve
Pseudo-tasks

This chapter describes a general framework for systems that use deep

multitask learning to discover and apply collections of reusable functional

modules. First, the notion of pseudo-task is defined. It extends the idea of

decomposition into sub-problems from multitask learning to decomposition

within the model for each particular task. The definition of pseudo-task is

used to formalize what we mean by a functional module, i.e., a parameterizable

function that can be applied to solve multiple pseudo-tasks. The value, behavior,

and generality of a module can then be deduced based on the set of pseudo-tasks

it is able to e↵ectively solve. Given these definitions, there are a number of

design choices that should be taken into account when developing a system

that collects and applies functional modules. Finally, evaluation criteria are

described for analyzing the behavior of such a system. This framework is used

to characterize and analyze the concrete systems that have been developed and

applied in the subsequent five chapters.
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3.1 Pseudo-tasks

As in the standard multitask learning setup described in Chapter 2,

consider a setup with T tasks {{xti,yti}Nt

i=1}Tt=1, with each task associated with

a predictive model Mt. These tasks will be referred to as the true or underlying

tasks, with {Mt}Tt=1 referred to as the underlying models for these tasks. A

pseudo-task for the tth task is defined by the task data for this task, along with

a set of input nodes and a set of output nodes (all of which are constituent

nodes in Mt), and values for all parameters of Mt that are not contained in

the subgraph whose boundaries are these inputs and outputs. The subgraph

defined by the input and output nodes must be closed in the sense that every

path from the interior of the subgraph to a node outside of the subgraph must

pass through an output node before visiting any external node. This condition

implies that the subgraph can be cleanly cut out of the model, i.e., the only

new dangling nodes are the given inputs and outputs. Formally, suppose that

at any time, the joint model contains L pseudo-tasks, and the `th pseudo-task

has input and output nodes in Mt. Then, the `th pseudo-task is denoted by a

5-tuple

(E`, ✓E
`

,D`, ✓D
`

, {xti,yti}Nt

i=1), (3.1)

where E` is the encoder mapping each xti to the input of a function solving the

pseudo-task, and D` takes the output of that function (along with possibly xti

again) to the predicted output ŷti. The parameters ✓E
`

and ✓D
`

characterize E`

and D`, respectively.
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x y

Figure 3.1: Pseudo-task Decomposition. Model M, for the underlying task
{xi,yi}Ni=1, induces a pseudo-task solved by a function f . The block E is an
encoder that provides input to f , and D is a decoder which uses the output
of f to produce the final prediction. If f is e↵ective for many [task, encoder,
decoder] combinations, then it demonstrates generic functionality.

Given a pseudo-task, the model for the tth task is completed by speci-

fying a fully-parameterized function f , with parameters ✓f , that connects the

pseudo-task’s inputs to its outputs. The goal for solving this pseudo-task is to

find a function that minimizes the loss of the underlying task, while keeping

the remaining parameters of the model fixed. This perspective enables us

to decompose complex models into smaller problems, each of which can be

considered separately. In particular, the completed model is given by

ŷt = D`(f(E`(xt; ✓E
`

); ✓f ),xt; ✓D
`

). (3.2)

This formulation is depicted in Figure 3.1. Note that D` and E` can share

arbitrary subsets of their structure and parameters; the decomposition into D`,

E`, and f is designed make clear where the input to f comes from, and where

the output of f goes, i.e., how it is used to generate predictions.

The subproblems resulting from this decomposition are termed pseudo-
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tasks because the goal of each is to minimize the loss of a true underlying task,

but, since there is arbitrary nonlinear computation performed between the

outputs of the pseudo-task and the true task loss, for a given set of inputs the

pseudo-task may have many possible optimal outputs. In other words, it is

called a pseudo-task because, although the loss is well defined, the targets are

not unique. The prefix pseudo also conveys the transience of the pseudo-task;

since the remaining parameters in ✓M are usually trained simultaneously with

the function solving the pseudo-task, each particular instance of a pseudo-task

may only exist for a single learning iteration. Note that the definition of a

pseudo-task given above generalizes the definition presented by Meyerson &

Miikkulainen (2018b). Their definition took on a specific form coinciding with

classical multitask learning. Aside from the simplicity of only splitting models

into encoders followed by decoders, there is no inherent reason pseudo-tasks

should be restricted to cases of model decomposition of that form.

3.2 Functional Modules

Given a pseudo-task, the model is completed by a fully-parameterized

function with input-output description matching that of the pseudo-task. Say

this function f is parameterized by ✓f , then f can be applied anywhere (i.e., to

any pseudo-task) that has the same input-output dimensionality specification.

The goal is to collect a set of modules U = {fi}|U |
i=1, such that any pseudo-task in

a universe of domains and models can be solved satisfactorily by application of

modules in U . Importantly, for f to be considered a functional module it must
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have the capacity to be applied in more than one location in the pseudo-task

decomposition of a set of models.

The generality and generalizability of a module can then be characterized

by the set of pseudo-tasks it e↵ectively solves.

In the applications of this framework presented in this dissertation,

the input and output sets for each pseudo-task each reside in a single neural

network layer. This design allows us to neatly denote the input and output

specification of a pseudo-task by a single tuple of dimensions, and only consider

functional modules that map a single tensor of the input dimension to a single

tensor of the output dimension.

Furthermore, if f and M are di↵erentiable, then the completion of M

is also di↵erentiable, since di↵erentiability is conserved under composition.

This fact makes the functional module approach particularly well-suited to

the machine learning substrate of neural networks, since, with the application

of modules, M can still be trained end-to-end as if it were constructed in the

usual non-modular way.

As an example, notice that if a complete network M is used to solve two

distinct true task that have the same input and output shape, say CIFAR-10

and SVHN (Bilen & Vedaldi, 2017), then M itself is considered a module.

Notice also that their is a base case, where a single free parameter is a mod-

ule that is universal, in the sense that any model can be decomposed into

pseudo-tasks, each defined by withholding a single parameter from the model.
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Though seemingly trivial, even reparameterization at this atomic scale can

yield interesting results, and structural insights, as demonstrated by Hashing

Networks (Chen et al., 2015), where parameters in dense layers are randomly

grouped into bins in which their value is shared. However, generally we are

interested in finding useful sets of modules that are much more structured. For

example, a functional module could be a neural network layer of a standard type

that can be applied in multiple locations in a network, and shares parameters

across all of its usages. In fact, this is the starting point for the approach

taken in Chapter 6. This definition also captures other methods of parameter

tying, such as those described in Section 2.2. For example, the kernel of a

convolutional layer simultaneously solves many spatially related pseudo-tasks,

each defined by a particular pixel location. Similarly, the kernels of a recurrent

layer simultaneously solve many temporally related pseudo-tasks, each defined

by a timestep. Finding a highly structured set of e↵ective modules sheds light

on how knowledge can be accumulated, shared and reapplied in deep models.

3.3 System Design Considerations

When implementing a system for discovering functional modules with

application to a particular universe of tasks, there are some key design choices

that need to be made. These choices can a↵ect the applicability of the system,

the scalability, the kinds of analysis that can be performed on the results, and

the kinds of experimental e↵ects that can be observed.
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Learning. How are module weights learned? At the highest level, this

question amounts to how learnable parameters are updated via the underlying

machine learning method, e.g., via neuroevolution (Chapter 4) or gradient

descent (Chapters 6, 7, 5 and 8). More specific to the issue of module reuse,

there is the question of when module parameters are updated, i.e., they could

be frozen at some point to ensure their encapsulated knowledge is never lost.

Applicability. When and where can modules be applied? It may be that

modules are learned in one subset of pseudo-task locations and then are applied

afterwards to another, but not visa versa. There is also a choice in whether

di↵erent subsets in the set of collected modules have di↵erent input-output

specifications. If there are such disjoint subsets, this would imply that certain

subsets of pseudo-task locations would only accept the corresponding subsets

of modules.

Discovery. How are new modules created? It can be helpful to ground

modules by associating them initially with existing structure in a model.

Alternatively, it is possible for modules to appear out of the blue, or augment

the topology of an existing model. Similarly, once a module is initialized, it is

possible for it to change its structure over the lifetime of the system, i.e., grow

to better fit its particular niche. For modules that end up not being useful, it

can be practical to include a method of module deletion, to remove modules

that would otherwise simply be a performance drag.
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Integration. How are modules integrated into a model when they are applied

in new locations? This question is closely related to the learning question,

but with a particular focus on how to ensure that modules that are in fact

appropriate for a particular location are actually accepted and e↵ectively

utilized by the system. For example, if a new module is added at a location,

how can we ensure that the model does not go into shock, e.g., by rejecting

the module or having its performance tank?

Form. What is the functional form of the modules? This is one of the most

important questions, since it has clear consequences for the type of structure

that can be captured by the set of modules. The form of the modules can

also be induced by how the underlying models are decomposed into pseudo-

tasks. For example, the granularity of this decomposition can inform the

kinds of algorithms that are used to optimize how modules are repurposed. In

Chapters 4 and 6, modules take the form of neural network layers; in Chapters 7

and 5 they take the form of arbitrary subnetworks; and in Chapter 8 they take

the form of blocks of parameters that perform linear transformations within

layers.

Mapping. How are applicable modules mapped to locations where they will

succeed? It is possible to have all modules in consideration available at all

times at all locations (Chapters 6 and 5), to have only a subset of modules be

available for each training run (Chapter 4), or to have modules be dynamically
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mapped to locations by a search procedure auxiliary to the parameter-update

procedure (Chapters 7 and 8).

Of course, the above design considerations are closely intertwined, and

will inform each other based on the goals of the system.

3.4 Evaluation Criteria

The design considerations given in the previous section can give way

to a broad array of systems for discovering functional modules through deep

multitask learning. When evaluating the performance of such a system, there

may be some system-specific metrics that arise from particular choices. That

said, the following evaluation criteria are often relevant to understanding the

behavior of the system, and could be considered across all such systems.

Multitask Performance This is the most natural and universal performance

metric for evaluating multitask learning systems. As described in Chapter 2,

the multitask performance is defined as an aggregation (usually mean) of

performance metrics across tasks.

Single-task Performance Sometimes the aggregation of multitask perfor-

mance can be di�cult to apply clearly, for example, in the case where the

performance metrics for di↵erent tasks are on di↵erent and di�cult to compare

scales. In this case, the performance on each single task can be considered. If
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one multitask method performs better on some tasks than others, looking at

the single-task performance can shed light on when the method works well, and

suggest ways to improve it to work on tasks where it does not work as well.

Complexity of Solution Since the goal is to discover knowledge that can

be reused for di↵erent purposes, a parsimonious solution is preferred. The

simplest measure of complexity is the total number of parameters in the model.

Another measure is the number of modules that are collected. A third is what

fraction of the underlying models are able to be replaced by reusable modules.

In general, to make experiments comparable to baseline experiments with

underlying models, factors a↵ecting complexity should be kept constant across

the di↵erent setups.

Structural Insights Structural insights is probably the most important

criterion for the value of this kind of system. If the behavior of the system

suggests structural insights about how knowledge and information can be shared

across di↵erent problems, these insights can help identify which directions and

aspects of the framework are most interesting and promising to focus on.

Incidentally, the types of structural insights that can be observed depend

heavily on the design of the system.
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3.5 Overview of Implemented Systems

The next five chapters present particular implementations of systems

that discover functional modules. Each system takes a distinct approach

to multitask modularity, and progressively increase the generality of learned

modules. Together they constitute a comprehensive exploration of the space of

such systems.

Chapter 4 investigates the inherent generality of neural network modules.

To this end, it takes an optimistic approach, in which a layer of a network

learned for one task is frozen and can be used as a subcomponent in a network

for any other task. The new task is often able to exploit knowledge from this

frozen layer, however, the generality of the modules are limited by the fact that

the internals of reusable components are only learned in a single setting.

Chapter 5 focuses on increasing the generality of a single module by

increasing the number of pseudo-tasks. This e↵ect is investigated in the

classical case where all models share a single module and di↵er only in their

output decoders. The results show that additional pseudo-tasks can improve

generalization even in this foundational case.

Chapter 6 takes this idea of training modules for more pseudo-tasks

to the extreme. In this system, each layer is trained simultaneously across

di↵erent depths in di↵erent tasks, thus forcing their functionality to be general.

Each task model is constructed by applying a distinct mixture of these general

layers at each depth. Although general modules are learned and assembled
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in di↵erent ways for di↵erent tasks, the scalability of the system is limited

by the computational cost of applying each module at each location, and the

generality of the modules is limited by their single-layer form.

Chapter 7 addresses these limitations by using a coevolutionary approach

to incrementally complexify how modules are assembled in topologically distinct

ways for each task. This approach is also extended to the case where each

module may consist not only of a single layer but of an arbitrary topology, also

coevolved. These approaches rely on a novel coevolutionary mechanism that

jointly trains multiple models for each task.

Chapter 8 introduces a final system that enables sharing of modules

across qualitatively diverse cross-modal architectures and tasks. The key idea is

to decompose a set of models into a set of equal-sized linear subproblems, each of

which is solvable by modules of equivalent form. The practical implementation

of the approach draws on the ideas and mechanisms developed in the four

preceding chapters. In particular, the system can have orders of magnitude

more modules than the previous systems, so to address the scalability issues

that arose in Chapter 6, this system uses a coevolutionary mechanism like

that in 7, while using the mixture learning of 6 as a surrogate fitness function.

As a capstone system, the approach constitutes a significant step towards the

grand promise of multitask learning: All real world problems can be solved by

applying a compact set of universal modules.

56



Chapter 4

General Reuse of Static Modules

This chapter1 investigates how general trained modules are inherently,

i.e., when trained to solve a single pseudo-task. To that end, a general approach

to knowledge transfer in which an agent controlled by a neural network adapts

how it reuses existing networks as it learns in a new domain. Networks trained

in a new domain can improve their performance by routing activation selectively

through previously learned neural structure, regardless of how or for what it

was learned. Thus, modules learned for one pseudo-task are repurposed to

solve pseudo-tasks in other domains. A neuroevolution implementation of this

approach is presented with application to high-dimensional sequential decision-

making domains. This approach is more general than previous approaches to

neural transfer for reinforcement learning. It is domain-agnostic and requires

no prior assumptions about the nature of task relatedness or mappings. The

method is analyzed in a stochastic version of the Arcade Learning Environment,

demonstrating that it improves performance in some of the more complex

Atari 2600 games, and that the success of transfer can be predicted based on a

1The content of this chapter was previously presented at AAAI (Braylan, Hollenbeck,
Meyerson, and Miikkulainen, 2016). Alex Braylan and Mark Hollenbeck worked on experi-
mental design, implementation and analysis; while Risto Miikkulainen provided guidance
and feedback through discussions.
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high-level characterization of game dynamics. The conclusion is that neural

network modules already have potential for generality, which sets the stage for

the methods in subsequent chapters that seek to expand this generality.

4.1 Introduction

The ability to apply available previously learned knowledge to new tasks

is a hallmark of general intelligence. Transfer learning is the process of reusing

knowledge from previously learned source tasks to bootstrap learning of target

tasks. Transfer learning is thus a special case of multitask learning, in which

there is a fixed temporal order in which tasks must be learned. In long-range

sequential control domains, such as robotics and video game-playing, transfer

is particularly important, because previous experience can help agents explore

new environments e�ciently (Taylor & Stone, 2009; Konidaris et al., 2012).

Knowledge acquired during previous tasks also contains information about an

agent’s domain-independent decision making and learning dynamics, and thus

can be useful even if the domains seem unrelated.

Existing approaches to transfer learning in such domains have demon-

strated successful transfer of varying kinds of knowledge, but they make two

fundamental assumptions that restrict how generally applicable they are: (1)

some sort of a priori human-defined understanding of how tasks are related,

and (2) separability of knowledge extraction and target learning. The first

assumption limits how well the approach can be applied by restricting its use

only to cases where the agent has been provided with this additional relational
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knowledge, or, if it can be learned (Talvitie & Singh, 2007; Taylor et al., 2008;

Ammar et al., 2015b), cases where task mappings are useful. The second

assumption implies that it is known what knowledge will be useful and how it

should be incorporated before learning on the target task begins, preventing the

agent from adapting the way it uses source knowledge as it gains information

about the target domain.

General ReUse of Static Modules (GRUSM) is proposed in this chapter

as a general neural network approach to transfer learning that avoids both of

these assumptions. GRUSM augments the learning process to allow learning

networks to route through existing neural modules (source networks) selectively

as they simultaneously develop new structure for the target task. Unlike

previous work, which has dealt with mapping task variables between source

and target, GRUSM is domain-independent, in that no knowledge about the

structure of the source domain or even knowledge about where the network

came from is required for it to be reused. Instead of using mappings between

task-spaces to facilitate transfer, it searches directly for mappings in the solution

space, that is, connections between existing source networks and the target

network. This approach is motivated by studies that have shown in both

naturally occurring complex networks (Milo et al., 2002) and in artificial neural

networks (Swarup & Ray, 2006) that certain network structures repeat and can

be useful across domains, without any context for how exactly this structure

should be used. This work is further motivated by the idea that neural resources

in the human brain are reused for countless purposes in varying complex ways
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(Anderson, 2010).

In this chapter, an implementation of GRUSM based on the Enforced

Subpopulations (ESP) neuroevolution framework (Gomez & Miikkulainen, 1997,

1999) is presented. The approach is validated on the stochastic Atari 2600

general game playing platform, finding that GRUSM-ESP improves learning

for more complex target games, and that these improvements may be predicted

based on domain complexity features. This result demonstrates that even

without traditional transfer learning assumptions, successful knowledge transfer

via general reuse of existing neural modules is possible and useful for long-range

sequential control tasks. In principle, this approach scales naturally to transfer

from an arbitrary number of source tasks, which suggests that in the future it

may be possible to build GRUSM agents that accumulate and reuse knowledge

throughout their lifetimes across a variety of diverse domains.

The remainder of this chapter is organized as follows: The next section

provides background on transfer learning and related work. The subsequent

section describes the GRUSM approach in detail. Then, results from experi-

ments are analyzed, and the implications of these results and motivations for

future work are discussed.

4.2 Related Work in Transfer Learning

Transfer learning encompasses machine learning techniques that involve

reusing existing source knowledge in a di↵erent target task or domain. A

domain is an environment in which learning takes place, characterized by the
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input and output space; a task is a particular function from input to output

to be learned (Pan & Yang, 2010). In sequential-decision domains, a task

is characterized by the values of sensory-action sequences corresponding to

the pursuit of a given goal. A taxonomy of types of knowledge that may be

transferred was also enumerated by Pan and Yang. Because the GRUSM

approach reuses the structure of existing neural networks, it falls under feature

representation transfer.

4.2.1 Transfer Learning for Reinforcement Learning

Transfer learning for sequential decision-making domains has been

studied extensively within the reinforcement learning (RL) paradigm (Taylor

& Stone, 2009). Reinforcement learning domains are often formulated as

Markov decision processes (MDPs) in which the state space comprises all

possible observations, and the probability of an observation depends only on

the previous observation and action taken by a learning agent. However, many

real world RL domains are non-Markovian, including many Atari 2600 games,

for example, the velocity of a moving object cannot be determined by looking

at a single frame.

The Atari 2600 platform also supports a wide variety of games. Existing

RL approaches to transfer di↵er on the types of di↵erences allowed between

source and target task. Some approaches that are general with respect to the

kind of knowledge that can be transferred are restricted in that they require a

consistent agent-space (Konidaris et al., 2012), or an a priori specification of
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inter-task mappings defining relationships between source and target state and

action variables (Brys et al., 2015). Existing approaches to transfer learning

that encode policies as neural networks require such a specification (Taylor

et al., 2007; Verbancsics & Stanley, 2010). On the other hand, existing modular

neuroevolution approaches that are more general with respect to connectivity

(Reisinger et al., 2004; Khare et al., 2005) have not been applied to cross-domain

transfer.

Some of the most general existing approaches to transfer for RL au-

tomatically learn task mappings, so they need not be provided beforehand.

These approaches are general enough to apply to any reinforcement learn-

ing domains, but initial approaches (Taylor et al., 2008; Talvitie & Singh,

2007) were intractable for high dimensional state and action spaces due to

combinatorial blowup in the number of possible mappings. However, recent

approaches in policy gradient RL (Ammar et al., 2015a,b) can both tractably

learn mappings and be applied across diverse domains. These approaches have

been successful in continuous control domains, but it is unclear how they would

scale to domains with many discretely-valued features such as Atari. Also,

the above approaches assume MDP environments, whereas GRUSM can use

recurrent neural networks to extend to POMDPs.

4.2.2 General Neural Structure Transfer

There are existing algorithms similar to GRUSM in that they make it

possible to reuse existing neural structure. They can apply to a wide range of
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domains and tasks in that they automatically select source knowledge and avoid

inter-task mappings. For example, Shultz & Rivest (2001) developed a technique

to build increasingly complex networks by inserting source networks chosen by

how much they reduce error. This technique is only applicable to supervised

learning, because the source selection depends heavily on an immediate error

calculation. Also, connectivity between source and target networks is limited to

the input and output layer of the source. As another example, Swarup & Ray

(2006) introduced an approach that creates sparse networks out of primitives,

or commonly used sub-networks, mined from a library of source networks. This

subgraph mining approach depends on a computationally expensive graph

mining algorithm, and tends to favor exploitation over innovation and small

primitives rather than larger networks as sources.

The GRUSM approach is more general in that it can be applied to

unsupervised and reinforcement learning tasks, makes few a priori assumptions

about what kind of sources and mappings should work best, and is able to

develop memory via recurrent connections. Although an evolutionary approach

is developed in this chapter, GRUSM should be extensible to any neural

network-based learning algorithm.

4.3 Approach

This section introduces the general idea behind GRUSM, provides an

overview of the ESP neuroevolution framework, and describe the particular

implementation: GRUSM-ESP.

63



4.3.1 General ReUse of Static Modules (GRUSM)

The underlying idea is that an agent learning a neural network for a

target task can reuse knowledge selectively from existing neural modules (source

networks) while simultaneously developing new structure unique to a target

task. This approach attempts to balance reuse and innovation in an integrated

architecture. Both source networks and new hidden nodes are termed recruits.

Recruits are added to the target network during the learning process. Recruits

are incorporated adaptively into the target network as it learns connection

parameters from the target to the recruit and from the recruit to the target. All

internal structure of source networks is frozen to allow learning of connection

parameters to remain consistent across recruits. This mechanism forces the

target network to transfer learned knowledge, rather than simply overwrite

it. Connections to and from source networks can, in the most general case,

connect to any nodes in the source and target, minimizing assumptions about

what knowledge will be useful.

A GRUSM network is a 3-tuple G = (M, S, T ) where M is a traditional

neural network (feedforward or recurrent) containing the new nodes and con-

nections unique to the target task, with input and output nodes corresponding

to inputs and outputs defined by the target domain; S is a (possibly empty) set

of pointers to recruited source networks S1, ..., Sk; and T is a set of weighted

transfer connections between nodes in M and nodes in source networks, that

is, for any connection ((u, v), w) 2 T , (u 2M ^ v 2 Si) _ (u 2 Si ^ v 2M) for

some 0  i  k. This construction strictly extends traditional neural networks
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so that each Si can be a traditional neural network or a GRUSM network of its

own. When G is evaluated, only the network induced by directed paths from

inputs of M to outputs of M, including those which pass through some Si via

connections in T is evaluated, i.e., each Si solves a pseudo-task defined by these

paths. During each evaluation of G, all recruited source network inputs are

fixed at 0, since the agent is concerned only with performing the current target

task. The parameters to be learned are the usual parameters of M, along with

the contents of S and T . The internal parameters of each Si are frozen in that

they cannot be rewritten through G.

The motivation for this architecture is that if the solution to a source

task contains any information relevant to solving a target task, then the neural

network constructed for the source task will contain some structure (subnetwork

or module) that will be useful for a target network. This has been previously

observed in naturally occurring complex networks (Milo et al., 2002), as well

as cross-domain artificial neural networks (Swarup & Ray, 2006). Unlike the

subgraph-mining approach to neural structure transfer (Swarup & Ray, 2006),

this general formalism makes no assumptions as to what subnetworks actually

will be useful. One interpretation is that a lifelong learning agent maintains a

system of interconnected neural modules that it can potentially reuse at any

time for a new task. Even if existing modules are unlabeled, they may still

be useful, due to the fact that they contain knowledge of how the agent can

successfully learn. Furthermore, advances in reservoir computing (Lukoševičius

& Jaeger, 2009) have demonstrated the power of using large amounts of frozen
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neural structure to facilitate learning of complex and chaotic tasks.

The above formalism is general enough to allow for an arbitrary number

of source networks and arbitrary connectivity between source and target. In this

chapter, to validate the approach and simplify analysis, at most one source net-

work is used at a time and only connections from target input to source hidden

layer and source output layer to target output are permitted. By not allowing

target input to connect to source input, this restriction avoids high-dimensional

transformations between domain-specific sensor substrates, and more intu-

itively captures the domain-agnostic goals of the approach, di↵erentiating the

approach from previous methods that have used direct mappings between

sensor spaces. This restriction is su�cient to show that the implementation

can reuse hidden source features successfully, and it is possible to analyze the

cases in which transfer is most useful. Future refinements are discussed in the

Discussion and Future Work section. The current implementation, described

below, is a neuroevolution approach based on ESP.

4.3.2 Enforced Subpopulations (ESP)

Enforced Sub-Populations (ESP; Gomez & Miikkulainen 1997; 1999) is a

neuroevolution technique in which di↵erent components of a neural network are

evolved in separate subpopulations rather than evolving the whole network in a

single population, or evolving a single population of neurons as in SANE (see

Section 2.1) (Moriarty & Miikkulainen, 1996). ESP has been shown to perform

well in a variety of reinforcement learning domains, and has shown promise
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in extending to POMDP environments, in which use of recurrent connections

for memory is critical (Gomez & Miikkulainen, 1999; Gomez & Schmidhuber,

2005; Schmidhuber et al., 2007). In traditional ESP, there is a single hidden

layer, each neuron of which is evolved in its own subpopulation. Recombination

occurs only between members of the same subpopulation, and mutants in a

subpopulation derive only from members of that subpopulation. The genome of

each individual in a subpopulation is a vector of weights corresponding to the

weights of connections to and from that neuron, including node bias. In each

generation, networks to be evaluated are randomly constructed by inserting

one neuron from each subpopulation. Each individual that participated in the

network receives the fitness achieved by that network.

When fitness converges, i.e., does not improve over several consecutive

generations, ESP makes use of �-coding, also known as burst phases. In initial

burst phases each subpopulation is repopulated by mutations of the single best

neuron ever occurring in that subpopulation, so that it reverts to searching a

�-neighborhood around the best solution found so far. If a second consecutive

burst phase is reached, i.e., no improvements were made since the previous

burst phase, a new neuron with a new subpopulation may be added (Gomez,

2003).

4.3.3 GRUSM-ESP

The idea of enforced sub-populations is extended to transfer learning via

GRUSM networks. For each reused source network Si, the transfer connections

67



in T between Si and M evolve in a distinct subpopulation. At the same

time new hidden nodes can be added to M; they evolve within their own

subpopulations in the manner of standard ESP. In this way, the integrated

evolutionary process simultaneously searches the space for how to reuse each

potential source network and how to innovate with each new node. The

GRUSM-ESP architecture (Figure 4.1) is composed of the following elements:

(1) A pool of potential source networks. In the experiments in this chapter,

each target network reuses at most one source at a time; (2) Transfer genomes

encoding the weights of cross-network connections between source and target.

Each potential source network in the pool has its own subpopulation for

evolving transfer genomes between it and the target network. Each connection

in T is contained in some transfer genome. In our experiments, the transfer

connections included are those such that the target’s inputs are fully connected

to the source’s hidden layer, and the source’s outputs are fully connected into

the target’s outputs; (3) A burst mechanism that determines when innovation is

necessary based on a recent history of performance improvement. New hidden

recruits (source networks when available, and single nodes otherwise) added

during the burst phase evolve within their own subpopulations as in standard

ESP.

All hidden and output neurons use a hyperbolic tangent activation

function. Base networks include a single hidden layer, and include recurrent

self loops on hidden nodes; they are otherwise feedforward. When a network

contains a layer from a previous task as a submodule, it has more than one
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Figure 4.1: The GRUSM-ESP architecture, showing the balance between reused
and new structure. In this example, the target network has three recruits:
one source network, and two single nodes. Each bold edge between target
network nodes and source network recruit indicate connections to multiple
source nodes. The genome in each subpopulation encodes weight information
for the connections from and to the corresponding recruit.

hidden depth, and can be considered a deep model. The details of the genetic

algorithm in our implementation used to evolve each subpopulation mirror

those described by Gomez (2003). This algorithm has been shown to work well

within the ESP framework, though any suitable evolutionary algorithm could

potentially be substituted in its place.
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4.4 Experiments

GRUSM-ESP was evaluated in a stochastic version of the Atari 2600

general video game-playing platform using the Arcade Learning Environment

simulator (ALE; Bellemare et al. 2013). Atari 2600 is currently a very popular

platform, because it challenges modern approaches, contains non-markovian

games, and entertained a generation of human video game players, who would

regularly reuse knowledge gained from previous games when playing new

games. To make the simulator more closely resemble the human game-playing

experience, the ✏-repeat action approach as suggested by Hausknecht & Stone

(2015) is used in this chapter to make the environment stochastic; in this

manner, like human players, the algorithm cannot as easily find loopholes in

the deterministic nature of the simulator. The recommended ✏ = 0.252 is used.

Note that the vast majority of previously published Atari 2600 results are in

the deterministic setting; we are unaware of any existing scores that have been

published in the ✏-repeat setting.

Agents were trained to play eight games: Pong, Breakout, Asterix,

Bowling, Freeway, Boxing, Space Invaders, and Seaquest. Neuroevolution

techniques are competitive in the Atari 2600 platform (Hausknecht et al., 2013),

and ESP in particular has yielded state-of-the-art performance for several games

(Braylan et al., 2015). Three GRUSM-ESP conditions are evaluated: scratch,

transfer, and random. In the scratch condition, networks are trained from

2https://github.com/mgbellemare/Arcade-Learning-Environment/tree/dev
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scratch on a game using standard ESP (GRUSM-ESP with S = ;). In the

transfer condition, each scratch network is reused as a source network in

training new GRUSM networks for di↵erent target games. In the random control

condition, random networks are initialized and reused as source networks. Such

networks contain on average the same number of parameters as fully-trained

scratch networks.

Each run lasted 200 generations with 100 evaluations per generation.

Since the environment is stochastic, each evaluation consists of five independent

trials of individual i playing game g, and the resulting score s(i, g) is the average

of the scores across these trials. The score of an evolutionary run at a given

generation is the highest s(i, g) achieved by an individual by that generation.

A total of 333 runs were run split across all possible setups. Evolutionary

parameters were selected based on their success with standard ESP.

To interface with ALE, the output layer of each network consists of a

3x3 substrate representing the nine directional movements of the Atari joystick

in addition to a single node representing the Fire button. The input layer

consisted of a series of object representations manually generated as previously

described by Hausknecht et al. (2013). The location of each object on the

screen was represented in an 8 ⇥ 10 input substrate corresponding to the

object’s class. The numbers of object classes varied between one and four.

Although object representations were used in these experiments, pixel-level

vision could also be learned from scratch below the neuroevolution process,

e.g., via convolutional networks as was done by Koutńık et al. (2014).
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Domain Characterization Understanding when transfer will be useful is

important for any transfer learning approach. In many cases, attempting

transfer can impede learning, leading to negative transfer, when an approach is

not able to successfully adapt knowledge from the source to the target domain.

Negative transfer is a serious concern for many practitioners (Taylor & Stone,

2009; Pan & Yang, 2010). To help understand when GRUSM-ESP should be

applied, it is useful to consider the diverse array of games within a unified

descriptive framework. Biological neural reuse is generally thought to be most

useful in transferring knowledge from simple behaviors to more complex, and

the vast majority of previous computational approaches do exactly that. Thus,

the characterization of games in this chapter is grounded by a sense of relative

complexity.

Each game can be characterized by generic binary features that deter-

mine what successful game play requires: (1) horizontal movement (joystick

left/right), (2) vertical movement (joystick up/down), (3) shooting (fire button);

(4) delayed rewards; and (5) long-term planning. Intuitively, more complex

games will include more of these features. A partial ordering of games by

complexity defined by these features is shown in Figure 4.2. The assignment

of features (1), (2) and (3) is completely defined based on game interface

(Bellemare et al., 2013). Freeway and Seaquest are said to have delayed rewards

because a high score can only be achieved by long sequences of rewardless

behavior. Only Space Invaders and Seaquest were deemed to require long-term
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pong
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bowling
freeway
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v = vertical movement
h = horizontal movement
s = shooting
d = delayed rewards
p = long-term planning
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Figure 4.2: (left) Feature representation for each game, and (right) games
partially-ordered by feature inclusion: every path from none to g contains along
its edges each complexity feature of g exactly once, showing how games are
related across the feature space. The existence of such a hierarchy motivates
the use of atari for transfer.

planning (Mnih et al., 2015a), since the long-range dynamics of these games

penalize reflexive strategies, and as such, agents in these games can perform

well with a low frequency decision-making (Braylan et al., 2015). In addition

to being intuitive, these features are validated below based on how well they

characterize games by complexity and how well they predict successful transfer.

Analysis Methods There are many possible metrics for evaluating success of

transfer, depending on what kind of transfer is desired or expected. Learning

curves are irregular across di↵erent games, as illustrated in Figure 4.3, which
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makes it di�cult to choose a single metric that makes sense across all source-

target pairs. Thus, the analysis is focused on a broad notion of transfer

e↵ectiveness (TE), which aggregates metrics such as jumpstart and max overall

score, with a weighted approximation of area under the curve (Taylor & Stone,

2009). Success of a setup is defined as the sum of the average score of that

setup at a series of non-uniformly-spaced generations: [1, 10, 50, 100, 200]. This

series favors early performance over later performance, as in general, in the long

run, training from transfer and scratch should converge, as scratch eventually

relearns everything that was e↵ectively transferred. Then, the TE of a setup is

its success minus the success of the control on the target game, the di↵erence

normalized by the size of the range of max scores achieved across all runs for

that game, in order to draw comparison across games.

The first hypothesis is that transfer would outperform scratch in

some setups, and that those setups could be predicted (i.e., they are not

coincidental). However, any outperformance of transfer over scratch could

be due to a larger number of network parameters. Therefore, as a second

hypothesis, random setups were used as a control for the number of parameters,

to test how transfer could predictably outperform random. We postulated and

tested several useful indicators for predicting the outperformance of transfer,

i.e., TE: (1) feature similarity : count of features that are 1 for both source and

target); (2) source feature complexity : feature count of source game; (3) target

feature complexity : feature count of target game; (4) source training complexity :

source game average time to threshold; (5) target training complexity : target
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Figure 4.3: Raw mean score learning curves by generation for each target game
aggregated over transfer (solid), random (dashed), and scratch (dotted)
setups. The diversity of these learning curves shows the di�culty in comparing
performance across games.

game average time to threshold, where the threshold for each game is the

minimum max score achieved across all scratch runs for that game, and time

to threshold is the average number of generations to reach this threshold.

To predict TE, a linear regression model was trained in a leave-one-out

cross-validation analysis. For each possible source-target pair (s, t), the model

was trained on all pairs (s0, t0 6= t) with TE as the dependent variable and

the five indicators as the independent variables. Subsequently, the trained

model was used to predict the TE of (s, t). Correlation between the actual and

predicted TE across all test pairs was used to gauge the predictability of TE.

This experiment was conducted identically for both transfer versus scratch

and transfer versus random conditions.
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Figure 4.4: Predicted vs. actual transfer e↵ectiveness with respect to scratch

(left) and random (right). Both predictors have a significant correlation between
predicated and actual transfer e↵ectiveness.

Results For both hypotheses, the indicator-based model proved to be a

statistically significant predictor of transfer e↵ectiveness in the test data: corre-

lation R = 0.40 and p-value < 0.0025 for transfer versus scratch; correlation

R = 0.53 and p-value < 10�7 for transfer versus random (Figure 4.4). The

strongest indicators for transfer versus scratch were target feature com-

plexity and target training complexity, and for transfer versus random the

strongest indicator was target feature complexity.

The fact that more complex games are more successful targets should

not be surprising. As noted before, in most transfer learning scenarios, only

simple-to-complex transfer is considered. The ability to predict when GRUSM-

ESP will work is an important tool when applying this method to larger

problems, and it is encouraging that the predictive indicator coincides with the

‘common sense’ expectations of transfer e↵ectiveness in the current experiments.

TE for all source-target pairs is visualized in Figure 4.5. Also, although it is

di�cult to compare to the deterministic Atari 2600 domain, Table 4.1 provides
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Figure 4.5: Transferability graphs over all pairs of tasks with respect to
scratch (top) and random (bottom) illustrating the target-centric clustering
of successful source-target pairs. Each graph includes a directed edge from g1
to g2 () the TE (see Analysis) for g2 reusing g1 is positive.
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Game scratch random transfer human DQN

Pong 0.0 21.0 10.0ast 9.3 18.9
Breakout 31.0 35.0 30.3box 31.8 401.2
Asterix 2800 3216.7 3355bow 8503 6012
Bowling 249.3 265.0 265.0fr 154.8 42.4
Freeway 31.4 31.5 32.2brk 29.6 30.3
Boxing 93.9 92.7 95.0sea 4.3 71.8
Space Invaders 1438.0 1407.5 1655.0po 1652 1976
Seaquest 466.0 460.0 975.0sp 20182 5286

Table 4.1: For each game, average scores for scratch, random, and transfer

from best source (subscripted). Interestingly, the best source for each target
is unique. We also show human and DQN scores (Mnih et al., 2015a). Note:
DQN uses deterministic ALE, so the most apt external comparison here may
be to humans, who cannot deterministically optimize trajectories at the frame
level.

a comparison of GRUSM-ESP to recent results in that domain for context

(Mnih et al., 2015a).

4.5 Discussion and Future Work

The results show that GRUSM-ESP (an evolutionary algorithm for

general transfer of neural network structure) can improve learning in Atari

game playing by reusing previously developed knowledge. They also make it

possible to characterize the conditions under which transfer may be useful.

More specifically, the improvement in learning performance in the target domain

depends heavily on the complexity of the target domain. The e↵ectiveness of

transfer in complex games aligns with the common-sense notion of hierarchical

knowledge representation, as argued previously in transfer learning (Konidaris
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et al., 2012) as well as in biology (Anderson, 2010; Milo et al., 2002). It will be

interesting to investigate whether the same principles extend to other general

video game playing platforms, such as VGDL (Perez et al., 2015; Schaul, 2013).

Such work should help understand how subsymbolic knowledge can be recycled

indefinitely across diverse domains.

Transfer is likely ine�cient in simpler games due to the e↵ort involved

in finding the necessary connections for reusing knowledge from a given source

network e↵ectively, in which case it is more e�cient to relearn from scratch. For

particular low-complexity games, it can also be seen that random consistently

outperforms both scratch and transfer (e.g., pong). The initial flexibility

of untrained parameters in the random condition may explain this result.

Unfreezing reused networks, and allowing them to change with a low learning

rate may help close this gap. In the methods presented in the following

four chapters, no freezing is performed, and the benefits from learning across

multiple tasks are more consistent.

Some transfer pairs do not consistently outperform training from

scratch or random, indicating negative transfer. This highlights the importance

of source and target selection in transfer learning. These results have taken

a step towards answering the target-selection problem: What kinds of games

make good targets for transfer? More data across many more games is required

to answer the source-selection problem: For a given game, what sources should

be used? A next step will involve pooling multiple candidate sources and

testing GRUSM-ESP’s ability to exploit the most useful structure available.
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Ultimately, methods must be developed that are robust enough to handle cases

in which negative transfer is possible. For example, the method introduced

in Chapter 8 addresses the case when tasks are drawn from domains with

fundamentally di↵erent modalities.

Despite negative transfer in some of the setups, the technique of training

a classifier to predict transfer success is shown to be a useful approach for

helping decide when to transfer: given some space of complex disparate domains,

try transfer with a subset of source-target pairs, and use the results to build

a classifier to inform when to attempt transfer in the future. In this chapter,

domain-characterization features were provided, but domain-agnostic features

could be learned from analysis of the networks and/or learning process; this is

an interesting avenue for future work.

Another area of future work involves increasing the flexibility in the com-

bined architecture by (1) relaxing the requirement for all transfer connections

to be input-to-hidden and output-to-output, (2) allowing deeper architectures

for the source and target networks, and (3) including multiple source networks

with adaptive connectivity to each. These extensions will promote reuse of

subnetworks of varying depth, along with flexible positioning and combination

of modules. The following four chapters include these generalizations. Note

that, for GRUSM-ESP, as networks become large and plentiful, maintaining full

connectivity between layers will become intractable, and it will be necessary to

enforcing sparsity. Chapters 7 and 8 present approaches that enforce sparsity,

and enable such scaling.
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4.6 Conclusion

To investigate the inherent generality of neural network modules, this

chapter introduced an approach for general transfer learning in neural networks.

The approach minimizes a priori assumptions of task relatedness and makes

it possible to learn adaptively in many domains. In a stochastic version of

the Atari 2600 general video game-playing platform, a specific implementation

developed in this chapter as GRUSM-ESP can boost learning by reusing

neural structure across disparate domains. The success of transfer is shown to

correlate with intuitive notions of domain complexity. These results indicate

the potential for general neural reuse to predictably assist agents in increasingly

complex environments. In other words, trained neural networks modules can

be inherently general, and this propensity increases as problems become more

complex. These observations motivate the system developed in the next chapter,

which aims to improve the generality of larger deep models in high-dimensional

domains.
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Chapter 5

Pseudo-task Augmentation

This chapter1 investigates the e↵ects of forcing a single deep module to

be more general, by training it with additional pseudo-tasks. As described in

Section 2.3.1, deep multitask learning boosts performance by sharing learned

structure across related tasks. This chapter adapts ideas from deep multitask

learning to the setting where only a single task is available. The method is

formalized as pseudo-task augmentation, in which models are trained with

multiple decoders for each task. The additional pseudo-tasks simulate the

e↵ect of training towards closely-related tasks drawn from the same universe.

This formalization is a special case of the framework introduced in Chapter 3,

in which a single encoder module simultaneously solves all pseudo-tasks. In

a suite of experiments, pseudo-task augmentation improves performance on

single-task learning problems. When combined with multitask learning, further

improvements are achieved, including state-of-the-art performance on the

CelebA dataset, showing that pseudo-task augmentation and multitask learning

have complementary value. All in all, pseudo-task augmentation is a broadly

applicable and e�cient way to boost performance in deep learning systems.

1The content of this chapter was previously presented at ICML (Meyerson & Miikkulainen,
2018b). Risto Miikkulainen provided guidance and feedback through discussions.
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Furthermore, the success of PTA in making a single module more general

motivates the systems in subsequent sections, which train multiple modules

across more diverse pseudo-task locations.

5.1 Introduction

This chapter adapts ideas from deep MTL to the single-task learning

(STL) case, i.e., when only a single task is available for training. The method

is formalized as pseudo-task augmentation (PTA), in which a single task has

multiple distinct decoders projecting the output of the shared structure to

task predictions. By training the shared structure to solve the same problem

in multiple ways, PTA simulates the e↵ect of training towards distinct but

closely-related tasks drawn from the same universe. Theoretical justification

shows how training dynamics with multiple pseudo-tasks strictly subsumes

training with just one, and a class of algorithms is introduced for controlling

pseudo-tasks in practice.

In an suite of experiments, PTA is shown to significantly improve per-

formance in single-task settings. Although di↵erent variants of PTA traverse

the space of pseudo-tasks in qualitatively di↵erent ways, they all demonstrate

substantial gains. Experiments also show that when PTA is combined with

MTL, further improvements are achieved, including state-of-the-art perfor-

mance on the CelebA dataset. In other words, although PTA can be seen as a

base case of MTL, PTA and MTL have complementary value in learning more

generalizable models. The conclusion is that pseudo-task augmentation is an
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e�cient, reliable, and broadly applicable method for boosting performance in

deep learning systems.

The remainder of this chapter is organized as follows: Section 2.3 covers

background on deep learning methods that train multiple models; Section 5.2

introduces the pseudo-task augmentation framework and practical implementa-

tions; Section 5.3 describes experimental setups and results; Sections 5.4 and

5.5 discuss future work and overall implications.

5.2 Pseudo-task Augmentation (PTA)

This section introduces the PTA method. First, the classical deep

MTL approach is extended to the case of multiple decoders per task. Then,

the concept of a pseudo-task is introduced, and increased training dynamics

under multiple pseudo-tasks is demonstrated. Finally, practical methods for

controlling pseudo-tasks during training are described, which will be compared

empirically in Section 5.3.

5.2.1 A Classical Approach

The most common approach to deep MTL is still the “classical” approach

(Eq. 2.7), in which all layers are shared across all tasks up to a high level,

after which each task learns a distinct decoder that maps high-level points to

its task-specific output space (Caruana, 1998; Ranjan et al., 2016; Lu et al.,

2017). Even when more sophisticated methods are developed, the classical

approach is often used as a baseline for comparison. The classical approach is
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also computationally e�cient, in that the only additional parameters beyond a

single task model are in the additional decoders. Thus, when applying ideas

from deep MTL to single-task multi-model learning, the classical approach is a

natural starting point.

Consider again the case where there are T distinct true tasks, but now

let there be D decoders for each task. Then, the model for the dth decoder of

the tth task is given by

ŷtdi = Dtd(F(xti; ✓F); ✓D
td

) , (5.1)

and the overall loss for the joint model from Eq. 2.8 becomes

✓⇤ = argmin
✓

1

TD

TX

t=1

1

Nt

N
tX

i=1

DX

d=1

L(yti, ŷtdi) , (5.2)

where ✓ = ({{✓D
td

}Dd=1}Tt=1, ✓F). In the same way as the classical approach to

MTL encourages F to be more general and robust by requiring it to support

multiple tasks, here F is required to support solving the same task in multiple

ways. A visualization of a resulting joint model is shown in Figure 5.1. A

theme in MTL is that models for related tasks will have similar decoders,

as implemented by explicit regularization (Evgeniou & Pontil, 2004; Kumar

& Daumé, 2012; Long et al., 2017; Yang & Hospedales, 2017). Similarly, in

Eq. 5.2, through training, two decoders for the same task will instantiate similar

models, and, as long as they do not converge completely to equality, they will

simulate the e↵ect of training with multiple closely-related tasks.

Notice that the innermost summation in Eq. 5.2 is over decoders. This

calculation is computationally e�cient: because each decoder for a given task
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(c)X1

X2
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Y1

Y2

Figure 5.1: General setup for pseudo-task augmentation with two tasks. (a)
Underlying model. All task inputs are embedded through an underlying model
that is completely shared; (b) Multiple decoders. Each task has multiple
decoders (solid black lines) each projecting the embedding to a distinct clas-
sification layer; (c) Parallel traversal of model space. The underlying model
coupled with a decoder defines a task model. Task models populate a model
space, with current models shown as black dots and previous models shown as
gray dots; (d) Multiple loss signals. Each current task model receives a distinct
loss to compute its distinct gradient. A task coupled with a decoder and its
parameters defines a pseudo-task for the underlying model.

takes the same input, F(xti) (usually the most expensive part of the model)

need only be computed once per sample (and only once over all tasks if all tasks

share xti). However, when evaluating the performance of a model, since each

decoder induces a distinct model for a task, what matters is not the average

over decoders, but the best performing decoder for each task, i.e.,

✓⇤eval = argmin
✓

1

T

TX

t=1

1

Nt

argmin
d21..D

N
tX

i=1

L(yti, ŷtdi). (5.3)

Eq. 5.2 is used in training because it is smoother; Equation 5.3 is used for model

validation, and to select the best performing decoder for each task from the
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final joint model. This decoder is then applied to future data, e.g., a holdout

set. Once the models are trained, in principle they form a set of distinct

and equally powerful models for each task. It may therefore be tempting to

ensemble them for evaluation, i.e.,

✓⇤ens = argmin
✓

1

T

TX

t=1

1

Nt

N
tX

i=1

L

✓
yti,

1

D

DX

d=1

ŷtdi

◆
. (5.4)

However, with linear decoders, training with Eq. 5.4 is equivalent to training

with a single decoder for each task, while training with Eq. 5.2 with multiple

decoders yields more expressive training dynamics. These ideas are developed

more fully in the next section.

5.2.2 Pseudo-tasks Defined by Decoders

Following the intuition that training F with multiple decoders amounts

to solving the task in multiple ways, each “way” is defined by a pseudo-task

(Etd = I, ✓E
td

= ;,Dtd, ✓D
td

= ✓td, {xti,yti}Nt

i=1) (5.5)

of the underlying task {xti,yti}Nt

i=1, where I is the identity function. This

is a special case of the definition of psuedo-task from Chapter 3, where all

encoders Etd are the identity function. Since the encoders are trivial, we can

write ✓D
td

= ✓td for clarity. Now, when D > 1, training F amounts to training

each task with multiple pseudo-tasks for each task at each gradient update

step. Thus, F becomes a functional module that solves all such pseudo-tasks

simultaneously. This process is the essence of PTA.
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As a first step, this chapter considers linear decoders, i.e. each Dtd

consists of a single dense layer of weights (any following nonlinearity can be

considered part of the loss function). Prior work has assumed that models for

closely-related tasks di↵er only by a linear transformation (Evgeniou & Pontil,

2004; Kang et al., 2011; Argyriou et al., 2008). Similarly, with linear decoders,

distinct pseudo-tasks for the same task simulate multiple closely-related tasks.

When ✓td are considered fixed, the learning problem (Eq. 5.2) reduces to

✓⇤F = argmin
✓F

1

TD

TX

t=1

1

Nt

N
tX

i=1

DX

d=1

L(yti, ŷtdi) . (5.6)

In other words, although the overall goal is to learn models for T tasks, F is at

each step optimized towards DT pseudo-tasks. Thus, training with multiple

decoders may yield positive e↵ects similar to training with multiple true tasks.

After training, the best model for a given task is selected from the final

joint model, and used as the final model for that task (Eq. 5.3). Of course,

using multiple decoders with identical architectures for a single task does not

make the final learned predictive models more expressive. It is therefore natural

to ask whether including additional decoders has any fundamental e↵ect on

learning dynamics. It turns out that even in the case of linear decoders, the

training dynamics of using multiple pseudo-tasks strictly subsumes using just

one.

Definition 5.2.1 (Pseudo-task Simulation). A set of pseudo-tasks S1 simulates

another S2 on F if for all ✓F the gradient update to ✓F when trained with S1 is

equal to that with S2.
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Theorem 5.2.1 (Augmented Training Dynamics). There exist di↵erentiable

functions F and sets of pseudo-tasks of a single task that cannot be simulated

by a single pseudo-task of that task, even when all decoders are linear.

Proof. Consider a task with a single sample (x, y), where y is a scalar. Suppose

L (from Eq. 5.6) computes mean squared error, F has output dimension M ,

and all decoders are linear, with bias terms omitted for clarity. Dd is then

completely specified by the vector wd = hw1
d, w

2
d, ..., w

M
d i>. Suppose parameter

updates are performed by gradient descent. The update rule for ✓F with fixed

decoders {Dd}Dd=1 and learning rate ↵ is then given by

✓F := ✓F � ↵
DX

d=1

rF

�
y �w>

d F(x; ✓F)
�2

. (5.7)

For a single fixed decoder to yield equivalent behavior, it must have equivalent

update steps. The goal then is to choose (x, y), F, {✓k}Kk=1, {wd}Dd=1, and

↵ > 0, such that there are no wo, � > 0, for which 8 k

↵
DX

d=1

rF(y �w>
d F(x; ✓k))

2 = �rF(y �w>
o F(x; ✓k))

2

=) ↵
DX

d=1

2(y �w>
d F(x; ✓k))w

>
d JF(x; ✓k) =

2�(y �w>
o F(x; ✓k))w

>
o JF(x; ✓k) , (5.8)

where JF is the Jacobian of F. By choosing F and {✓k}Kk=1 so that all JF(x; ✓k)

have full row rank, Eq. 5.8 reduces to

↵
DX

d=1

(y �w>
d F(x; ✓k))w

i
d = �(y �w>

o F(x; ✓k))w
i
o 8 i 2 1..M. (5.9)

89



Choosing F, {✓k}Kk=1, {wd}Dd=1, and ↵ > 0 such that the left hand side of Eq. 5.9

is never zero, we can safely write

PD
d=1(y �w>

d F(x; ✓k))w
i
d

(y �w>
o F(x; ✓k))w

i
o

=

PD
d=1(y �w>

d F(x; ✓k))w
j
d

(y �w>
o F(x; ✓k))w

j
o

8 (i, j)

=)
PD

d=1(y �w>
d F(x; ✓k))w

i
dPD

d=1(y �w>
d F(x; ✓k))w

j
d

=
wi

o

wj
o

. (5.10)

Then, since wo is fixed, it su�ces to find F(x; ✓1), F(x; ✓2) such that for some

(i, j)

PD
d=1(y �w>

d F(x; ✓1))w
i
dPD

d=1(y �w>
d F(x; ✓1))w

j
d

6=
PD

d=1(y �w>
d F(x; ✓2))w

i
dPD

d=1(y �w>
d F(x; ✓2))w

j
d

. (5.11)

For instance, withD = 2, choosing y = 1, w1 = h2, 3i>, w2 = h4, 5i>, F(x; ✓1) =

h6, 7i>, and F(x; ✓1) = h8, 9i> satisfies the inequality. Note F(x; ✓1) and

F(x; ✓2) can be chosen arbitrarily since F is only required to be di↵erentiable,

e.g., implemented by a neural network.

Showing that a single pseudo-task can be simulated by D pseudo-tasks

for anyD > 1 is more direct: For anywo and �, choosewd = wo 8 d 2 1..D and

↵ = �/D. Further extensions to tasks with more samples, higher dimensional

outputs, and cross-entropy loss are straightforward. Note that this result is

related to work on the dynamics of deep linear models (Saxe et al., 2014), in that

adding additional linear structure complexifies training dynamics. However,

training an ensemble directly, i.e., via Eq. 5.4, does not yield augmented
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training dynamics, since

1

D

DX

d=1

ŷtdi =
1

D

DX

d=1

W>
tdF(xti; ✓F)

=) W>
to =

1

D

DX

d=1

W>
td and � = ↵ . (5.12)

Now that we know that training with additional pseudo-tasks yields

augmented training dynamics that may be exploited, the question is how to

take advantage of these dynamics in practice. The next section introduces

methods to address this question.

5.2.3 Control of Multiple Pseudo-task Trajectories

Given linear decoders, the primary goal is to optimize F; if an optimal

F were found, optimal decoders for each task could be derived analytically.

So, given multiple linear decoders for each task, how should their induced

pseudo-tasks be controlled to maximize the benefit to F? For one, their weights

{Wtd}Dd=1 must not all be equal, otherwise we would have Wto = Wt1 and

� = D↵ in the proof of Theorem 5.2.1. Following Eq. 5.2, decoders can be

trained jointly with F via gradient-based methods, so that they learn to work

well with F. Through optimization, a trained decoder induces a trajectory

of pseudo-tasks. Going beyond this implicit control, Algorithm 5.1 gives a

high-level framework for applying explicit control to pseudo-task trajectories.

An instance of the algorithm is parameterized by choices forDecInitialize,

which defines how decoders are initialized; and DecUpdate, which defines non-
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Algorithm 5.1 PTA Training Framework

1: Given T tasks {{xti,yti}Nt

i=1}Tt=1, and D decoders per task
2: {{✓D

td

}Dd=1}Tt=1  DecInitialize()
3: Initialize ✓F
4: Initialize decoder costs ctd  1 8 (t, d)
5: while not done training do

6: for m = 1 to M do B M is meta-iteration length

7: Update ✓F and ✓D
td

via a joint gradient step.
8: for t = 1 to T do

9: for d = 1 to D do

10: ctd  evaluate(✓D
td

, ✓F, t) B e.g., get validation error

11: for d = 1 to D do

12: ✓D
td

 DecUpdate
�
d, {✓D

td

o

, ctd
o

}Dd
o

=1

�

13: return

�
{{✓D

td

}Dd=1}Tt=1, ✓F
�

gradient-based updates to decoders every M gradient steps, i.e., every meta-

iteration, based on the performance of each decoder (DecUpdate defaults to

no-op). As a first step, several intuitive methods are evaluated in this chapter

for instantiating Algorithm 5.1. These methods can be used together in any

combination:

Independent Initialization (I) DecInitialize randomly initializes all ✓D
td

independently. This is the obvious initialization method, and is assumed in all

methods below.

Freeze (F) DecInitialize freezes all decoder weights except ✓D
t1

for each task.

Frozen weights do not receive gradient updates in Line 7 of Algorithm 5.1.

Because they cannot adapt to F, constant pseudo-task trajectories provide

a stricter constraint on F. One decoder is left unfrozen so that the optimal
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model for each task can still be learned.

Independent Dropout (D) DecInitialize sets up the dropout layers pre-

ceding linear decoder layers to drop out values independently for each decoder.

Thus, even when the weights of two decoders for a task are equal, their resulting

gradient updates to F and to themselves will be di↵erent.

For the next three methods, let cmin
t = min(ct1, . . . , ctD).

Perturb (P) DecUpdate adds noise ⇠ N(0, ✏pI) to each ✓D
td

for all d where

ctd 6= cmin
t . This method ensures that ✓D

td

are su�ciently distinct before each

training period.

Hyperperturb (H) Like Perturb, except DecUpdate updates the hyperpa-

rameters of each decoder other than the best for each task, by adding noise

⇠ N(0, ✏h). In this chapter, each decoder has only one hyperparameter: the

dropout rate of any Independent Dropout layer, because adapting dropout rates

can be beneficial (Ba & Frey, 2013; Li et al., 2016; Jaderberg et al., 2017a).

Greedy (G) For each task, let ✓min
t be the weights of a decoder with cost

cmin
t . DecUpdate updates all ✓td := ✓min

t , including hyperparameters. This

biases training to explore the highest-performing areas of the pseudo-task space.

When combined with any of the previous three methods, decoder weights are

still ensured to be distinct through training.
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Combinations of these six methods induce an initial class of PTA training

algorithms PTA-* for the case of linear decoders. The next section evaluates

eight representative combinations of these methods, i.e., PTA-I, PTA-F, PTA-P,

PTA-D, PTA-FP, PTA-GP, PTA-GD, and PTA-HGD, in various experimental

settings. Note that H and G are related to methods that copy the weights of

the entire network (Jaderberg et al., 2017a). Also note that, in a possible future

extension to the nonlinear case, the space of possible PTA control methods

becomes much more broad, as will be discussed in Section 5.4.

5.3 Experiments

In this section, PTA methods are evaluated and shown to excel in a

range of settings: (1) single-task character recognition; (2) multitask character

recognition; (3) single-task sentiment classification; and (4) multitask visual

attribute classification. All experiments are implemented using the Keras

framework (Chollet et al., 2015). For PTA-P and PTA-GP, ✏p = 0.01; for

PTA-HGD, ✏h = 0.1 and dropout rates range from 0.2 to 0.8. A dropout layer

with dropout rate initialized to 0.5 precedes each decoder.

5.3.1 Omniglot Character Recognition

This section evaluates and compares the various PTA methods on

Omniglot character recognition (Lake et al., 2015). The Omniglot dataset

consists of 50 alphabets of handwritten characters, each of which induces its

own character recognition task. Each character instance is a 105⇥ 105 black-
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and-white image, and each character has 20 instances, each drawn by a di↵erent

individual. To reduce variance and improve reproducibility of experiments, a

fixed random 50/20/30% train/validation/test split was used for each task.

Methods are evaluated with respect to all 50 tasks as well as a subset consisting

of the first 20 tasks in a fixed random ordering of alphabets used in previous

work (Meyerson & Miikkulainen, 2018a). The underlying model F for all setups

is a simple four layer convolutional network that has been shown to yield good

performance on Omniglot (Meyerson & Miikkulainen, 2018a). This model

has four convolutional layers each with 53 filters and 3⇥ 3 kernels, and each

followed by a 2 ⇥ 2 max-pooling layer and dropout layer with 0.5 dropout

probability. At each meta-iteration, 250 gradient updates are performed via

Adam (Kingma & Ba, 2014); each setup is trained for 100 meta-iterations.

5.3.1.1 Omniglot: Single-task Learning

The single-task learning case is considered first. For each of the 20

initial Omniglot tasks, the eight PTA methods were applied to the task with 2,

3, and 4 decoders. At least three trials were run with each setup; the mean

performance averaged across trials and tasks is shown in Figure 5.2. Every

PTA setup outperforms the baseline, i.e., training with a single decoder. The

methods that use decoder freezing, PTA-F and PTA-FP, perform best, showing

how this problem can benefit from strong regularization. Notably, the mean

improvement across all methods increases with D: 1.86% for D = 2; 2.33% for

D = 3; and 2.70% for D = 4. Like MTL can benefit from adding more tasks

95



Figure 5.2: Omniglot single-task learning results. For each number of
decoders D, mean improvement (absolute % decrease in error) over D = 1 is
plotted for each setup, averaged across all tasks. All setups outperform the
baseline. PTA-F and PTA-FP performs best, as this problem benefits from
strong regularization. The mean improvement across all methods also increases
with D: 1.86% for D = 2; 2.33% for D = 3; and 2.70% for D = 4.

(Caruana, 1998; Hashimoto et al., 2017; Jaderberg et al., 2017b), single-task

learning can benefit from adding more pseudo-tasks.

5.3.1.2 Omniglot: Multitask Learning

Omniglot models have also been shown to benefit from MTL (Maclaurin

et al., 2015; Rebu� et al., 2017; Yang & Hospedales, 2017; Meyerson &

Miikkulainen, 2018a). This section extends the experiments in Section 5.3.1.1

to MTL. The setup is exactly the same, except now the underlying convolutional

model is fully shared across all tasks for each method. The results are shown

in Figure 5.3. All setups outperform the STL baseline, and all, except for

PTA-I with D = 2, outperform the MTL baseline. Again, PTA-F and PTA-FP
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Figure 5.3: Omniglot multitask learning results. For each number of
decoders D, mean improvement (absolute % decrease in error) across all tasks
is plotted over STL with D = 1. All setups outperform the STL baseline, and
all except PTA-I with D = 2 outperform the MTL baseline. Again, PTA-F
and PTA-FP perform best, and the mean improvement across all methods
increases with D: 3.63% for D = 2; 4.07% for D = 3; and 4.37% for D = 4.

perform best, and the mean improvement across all methods increases with

D. The results show that although PTA implements behavior similar to MTL,

when combined, their positive e↵ects are complementary. Finally, to test

the scalability of these results, three diverse PTA methods with D = 4 and

D = 10 were applied to the complete 50-task dataset: PTA-I, because it is the

baseline PTA method; PTA-F, because it is simple and high-performing; and

PTA-HGD, because it is the most di↵erent from PTA-F, but also relatively

high-performing. The results are given in Table 5.1. The results agree with the

20-task results, with all methods improving upon the baseline, and performance

overall improving as D is increased.
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Method Single-task Learning Multitask Learning

Baseline 35.49 29.02

D = 4 D = 10 D = 4 D = 10

PTA-I 31.72 32.56 27.26 24.50
PTA-HGD 31.63 30.39 25.77 26.55
PTA-F 29.37 28.48 23.45 23.36

PTA-Mean 30.91 30.48 25.49 24.80

Table 5.1: Omniglot 50-task results. Test error averaged across all tasks
for each setup is shown. Overall, the performance gains from MTL complement
those from PTA, with PTA-F again the highest-performing and most robust
method.

5.3.2 IMDB Sentiment Analysis

The experiments in this section apply PTA to LSTM models in the

IMDB sentiment classification problem (Maas et al., 2011). The dataset consists

of 50K natural-language movie reviews, 25K for training and 25K for testing.

There is a single binary classification task: whether a review is positive or

negative. As in previous work, 2500 of the training reviews are withheld for

validation (McCann et al., 2017). The underlying model F is the o↵-the-shelf

LSTM model for IMDB provided by Keras, with no parameters or preprocessing

changed. In particular, the vocabulary is capped at 20K words, the LSTM

layer has 128 units and dropout rate 0.2, and each meta-iteration consists

of one epoch of training with Adam (Kingma & Ba, 2014). This is not a

state-of-the-art model, but it is a very di↵erent architecture from that used in

Omniglot, and therefore serves to demonstrate the broad applicability of PTA.
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Method Test Accuracy %

LSTM Baseline (D = 1) 82.75 (±0.13)

D = 4 D = 10

PTA-I 83.20 (±0.07) 83.02 (±0.11)
PTA-HGD 83.22 (±0.05) 83.51 (±0.08)
PTA-F 83.30 (±0.12) 83.30 (±0.08)

Table 5.2: IMDB Results. All PTA methods outperform the LSTM baseline.
The best performance is achieved by PTA-HGD with D = 10. This method
receives a substantial boost from increasing the number of decoders from 4 to
10, as the greedy algorithm gets to perform broader search. On the other hand,
PTA-I and PTA-F do not improve with the additional decoders, suggesting
that, without careful control, too many decoders can overconstrain F.

The final three PTA methods from Section 5.3.1 were evaluated with 4

and 10 decoders (Table 5.2). As in Section 5.3.1, all PTA methods outperform

the baseline. In this case, however, PTA-HGD with D = 10 performs best.

Notably, PTA-I and PTA-F do not improve from D = 4 to D = 10, suggesting

that underlying models have a critical point after which, without careful control,

too many decoders can be overconstraining. To contrast PTA with standard

regularization, additional Baseline experiments were run with dropout rates

[0.3, 0.4, ..., 0.9]. At 0.5 the best accuracy was achieved: 83.14 (±0.05), which

is less than all PTA variants except PTA-I with D = 10, thus confirming

that PTA adds value. To help understand what each PTA method is actually

doing, snapshots of decoder parameters taken every epoch are visualized in

Figure 5.4 with t-SNE (van der Maaten & Hinton, 2008) using cosine distance.

The behavior matches our intuition for what should be happening in each
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(a) PTA-I (b) PTA-F (c) PTA-HGD

Figure 5.4: Pseudo-task Trajectories. t-SNE (van der Maaten & Hinton,
2008) projections of pseudo-task trajectories, for runs of PTA-I, PTA-F, and
PTA-HGD on IMDB. Each shape corresponds to a particular decoder; each
point is a projection of the length-129 weight vector at the end of an epoch,
with opacity increasing by epoch. The behavior matches our intuition for
what should be happening in each case: (a) When decoders are only initialized
independently, their pseudo-tasks gradually converge; (b) when all but one
decoder is frozen, the unfrozen one settles between the others; (c) when a
greedy method is used, decoders perform local exploration as they traverse the
pseudo-task space together.

case: When decoders are only initialized independently, their pseudo-tasks

gradually converge; when all but one decoder is frozen, the unfrozen one settles

between the others; and when a greedy method is used, decoders perform local

exploration as they traverse the pseudo-task space together.

5.3.3 CelebA Facial Attribute Recognition

To further test applicability and scalability, PTA was evaluated on

CelebA large-scale facial attribute recognition (Liu et al., 2015b). The dataset
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consists of ⇡200K 178⇥ 218 color images. Each image has binary labels for

40 facial attributes; each attribute induces a binary classification task. Facial

attributes are related at a high level that deep models can exploit, making

CelebA a popular deep MTL benchmark. Thus, this experiment focuses on

the MTL setting.

The underlying model was Inception-ResNet-v2 (Szegedy et al., 2016),

with weights initialized from training on ImageNet (Russakovsky et al., 2015).

Due to computational constraints, only one PTA method was evaluated:

PTA-HGD with D = 10. PTA-HGD was chosen because of its superior

performance on IMDB, and because CelebA is a large-scale problem that may

require extended pseudo-task exploration; Figure 5.4 shows how PTA-HGD may

support such exploration above other methods. Each meta-iteration consists of

250 gradient updates with batch size 32. The optimizer schedule is co-opted

from previous work (Günther et al., 2017): RMSprop is initialized with a

learning rate of 10�4, which is decreased to 10�5 and 10�6 when the model

converges. PTA-HGD and the MTL baseline were each trained three times.

The computational overhead of PTA-HGD is marginal, since the underlying

model has 54M parameters, while each decoder has only 1.5K. Table 5.3 shows

the results. PTA-HGD outperforms all other methods, thus establishing a new

state-of-the-art in CelebA. Figure 5.5 shows resulting dropout schedules for

PTA-HGD. No one type of schedule dominates; PTA-HGD gives each task the

flexibility to adapt its own schedule via the performance of its pseudo-tasks.
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MTL Method % Error

Single Task (He et al., 2017) 10.37
MOON (Rudd et al., 2016) 9.06
Adaptive Sharing (Lu et al., 2017) 8.74
MCNN-AUX (Hand & Chellappa, 2017) 8.71
Soft Order (Meyerson & Miikkulainen, 2018a) 8.64
VGG-16 MTL (Lu et al., 2017) 8.56
Adaptive Weighting (He et al., 2017) 8.20
AFFACT (Günther et al., 2017) (best of 3) 8.16

MTL Baseline (Ours; mean of 3) 8.14
PTA-HGD, D = 10 (mean of 3) 8.10

Ensemble of 3: AFFACT (Günther et al., 2017) 8.00
Ensemble of 3: PTA-HGD, D = 10 7.94

Table 5.3: CelebA results. Comparison of PTA against state-of-the-art
methods for CelebA, with and without ensembling. Test error is averaged
across all attributes. PTA-HGD outperforms all other methods, establishing
a new state-of-the-art in this benchmark, and becoming the first method to
crack the 8% barrier on this dataset.

Figure 5.5: CelebA dropout schedules. The thick blue line shows the
mean dropout schedule across all 400 pseudo-tasks in a run of PTA-HGD. Each
of the remaining lines shows the schedule of a particular task, averaged across
their 10 pseudo-tasks. All lines are plotted with a simple moving average of
length 10. The diversity of schedules shows that the system is taking advantage
of PTA-HGD’s ability to adapt task-specific hyperparameter schedules.
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5.4 Discussion and Future Work

The experiments in this chapter demonstrated that PTA is broadly

applicable, and that it can boost performance in a variety of single-task and

multitask problems. Training with multiple decoders for a single task allows a

broader set of models to be visited. If these decoders are diverse and perform

well, then the shared structure has learned to solve the same problem in diverse

ways, which is a hallmark of robust intelligence. In the MTL setting, controlling

each task’s pseudo-tasks independently makes it possible to discover diverse

task-specific learning dynamics (Figure 5.5). Increasing the number of decoders

can also increase the chance that pairs of decoders align well across tasks.

The crux of PTA is the method for controlling pseudo-task trajectories.

Experiments showed that the amount of improvement from PTA is dependent

on the choice of control method. Di↵erent methods exhibit highly structured

but di↵erent behavior (Figure 5.4). The success of initial methods indicates

that developing more sophisticated methods is a promising avenue of future

work. In particular, methods from Section 2.3.2 can be co-opted to control

pseudo-task trajectories more e↵ectively. Consider, for instance, the most

involved method evaluated in this chapter: PTA-HGD. This online decoder

search method could be replaced by methods that generate new models more

intelligently (Bergstra et al., 2011; Snoek et al., 2012; Miikkulainen et al.,

2017; Real et al., 2017; Zoph & Le, 2017). Such methods will be especially

useful in extending PTA beyond the linear case considered in this chapter,

to complex nonlinear decoders. For example, since a set of decoders is being
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trained in parallel, it could be natural to use neural architecture search methods

(Miikkulainen et al., 2017; Real et al., 2017; Zoph & Le, 2017) to search for

optimal decoder architectures. While ensembling separate PTA models is useful

(Table 5.3), in preliminary tests näıvely ensembling decoders for evaluation

(Eq. 5.4) did not yield remarkable improvements over the single best (Eq. 5.3).

In a further preliminary test with IMDB, when F was not shared, PTA-I

outperformed PTA-HGD and PTA-F, indicating that the latter two methods

address dynamics that arise in joint training but not näıve ensemble training.

Developing PTA training methods for generating a more complementary set of

decoders, coupled with e↵ective methods for ensembling this set, could push

performance even further, especially when decoders are more complex. PTA

also resembles generic data augmentation (Taylor & Nitschke, 2017), except

applied to output of the model, instead of the input. It will be interesting to

see how PTA performs when combined with modern generic data augmentation

methods like cutout (Devries & Taylor, 2017).

5.5 Conclusion

This chapter introduced pseudo-task augmentation, a method that makes

it possible to apply ideas from deep MTL to single-task learning. By train-

ing shared structure to solve the same task in multiple ways, pseudo-task

augmentation simulates training with multiple closely-related tasks, yielding

performance improvements similar to those in MTL. However, the methods

are complementary: Combining pseudo-task augmentation with MTL results
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in further performance gains. Broadly applicable, pseudo-task augmentation is

thus a promising method for improving deep learning performance. Overall,

this chapter has taken first steps towards a future class of e�cient model search

algorithms that exploit intratask parameter sharing. The systems presented in

subsequent chapter instantiate such algorithms, using multiple modules, and

using modules multiple times within task models.
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Chapter 6

Soft Layer Ordering

This chapter1 takes PTA to an extreme, by training each module at

each possible depth in each task model. This approach is presented in contrast

to an underlying assumption of existing deep multitask learning (MTL) meth-

ods: They align layers shared between tasks in a parallel ordering. Such an

organization significantly constricts the types of shared structure that can be

learned. In this chapter, the necessity of parallel ordering for deep MTL is first

tested by comparing it with permuted ordering of shared layers, in which layers

must solve qualitatively distinct pseudo-tasks for di↵erent underlying tasks.

The results indicate that a flexible ordering can enable more e↵ective sharing;

thus, they lead to a soft ordering approach, which learns how shared layers

are applied in di↵erent ways for di↵erent tasks. The resulting models apply

a distinct mixture of the available set of layers at each pseudo-task location,

that is, at each depth for each task. Deep MTL with soft ordering outperforms

parallel ordering methods across a series of domains. These results suggest that

the power of deep MTL comes from learning highly general building blocks

that can be assembled to meet the demands of each task. Chapters 7 and 8

1The content of this chapter was previously presented at ICLR (Meyerson & Miikkulainen,
2018a). Risto Miikkulainen provided guidance and feedback through discussions.
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then aim to scale this idea towards more practical deep learning systems.

6.1 Introduction

Although existing multitask learning approaches typically improve per-

formance over single-task learning in these settings, these approaches have

generally been constrained to joint training of relatively few and/or closely-

related tasks. On the other hand, from a perspective of Kolmogorov complexity,

“transfer should always be useful”; any pair of distributions underlying a pair of

tasks must have something in common (Mahmud, 2009; Mahmud & Ray, 2008).

In principle, even tasks that are “superficially unrelated” such as those in vision

and NLP can benefit from sharing (even without an adaptor task, such as

image captioning). In other words, for a su�ciently expressive class of models,

the inductive bias of requiring a model to fit multiple tasks simultaneously

should encourage learning to converge to more realistic representations. The

expressivity and success of deep models suggest they are ideal candidates for

improvement via MTL. So, why have existing approaches to deep MTL been

so restricted in scope?

MTL is based on the assumption that learned transformations can be

shared across tasks. This chapter identifies an additional implicit assumption

underlying existing approaches to deep MTL: this sharing takes place through

parallel ordering of layers. That is, sharing between tasks occurs only at aligned

levels (layers) in the feature hierarchy implied by the model architecture. This

constraint limits the kind of sharing that can occur between tasks. It requires
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subsequences of task feature hierarchies to match, which may be di�cult to

establish as tasks become plentiful and diverse.

This chapter investigates whether parallel ordering of layers is necessary

for deep MTL. As an alternative, it introduces methods that make deep

MTL more flexible. First, existing approaches are reviewed in the context

of their reliance on parallel ordering. Then, as a foil to parallel ordering,

permuted ordering is introduced, in which shared layers are applied in di↵erent

orders for di↵erent tasks. These permutations force each layer to have more

generic functionality, since it must solve qualitatively distinct pseudo-tasks

for di↵erent underlying tasks. The increased ability of permuted ordering to

support integration of information across tasks is analyzed, and the results

are used to develop a soft ordering approach to deep MTL. In this approach,

a joint model learns how to apply shared layers in di↵erent ways at di↵erent

depths for di↵erent tasks as it simultaneously learns the parameters of the

layers themselves. In a suite of experiments, soft ordering is shown to improve

performance over single-task learning as well as over fixed order deep MTL

methods.

Importantly, soft ordering is not simply a technical improvement, but

a new way of thinking about deep MTL. Learning a di↵erent soft ordering of

layers for each task amounts to discovering a set of generalizable modules that

are assembled in di↵erent ways for di↵erent tasks. This perspective points to

future approaches that train a collection of layers on a set of training tasks,

which can then be assembled in novel ways for future unseen tasks. Some of the
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most striking structural regularities observed in the natural, technological and

sociological worlds are those that are repeatedly observed across settings and

scales; they are ubiquitous and universal. By forcing shared transformations to

occur at matching depths in hierarchical feature extraction, deep MTL falls

short of capturing this sort of functional regularity. Soft ordering is thus a

step towards enabling deep MTL to realize the diverse array of structural

regularities found across complex tasks drawn from the real world.

6.2 Parallel Ordering of Layers in Deep MTL

Based on the high-level classification of existing deep MTL approaches

presented in Section 2.3.1, this section exposes the reliance of these approaches

on the parallel ordering assumption.

A common interpretation of deep learning is that layers extract pro-

gressively higher level features at later depths (Lecun et al., 2015). A natural

assumption is then that the learned transformations that extract these features

are also tied to the depth at which they are learned. The core assumption

motivating MTL is that regularities across tasks will result in learned transfor-

mations that can be leveraged to improve generalization. However, the methods

reviewed in Section 2.3.1 add the further assumption that subsequences of the

feature hierarchy align across tasks and sharing between tasks occurs only at

aligned depths (Figure 2.5); we call this the parallel ordering assumption.

Consider T tasks t1, . . . , tT to be learned jointly, with each ti associated

with a model yi = Fi(xi). Suppose sharing across tasks occurs at D consecutive
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depths. Let Ei (Di) be ti’s task-specific encoder (decoder) to (from) the core

sharable portion of the network from its inputs (to its outputs). Let W i
k be the

layer of learned weights (e.g., a�ne or convolutional) for task i at shared depth

k, with �k an optional nonlinearity. The parallel ordering assumption implies

yi = (Di � �D �W i
D � �D�1 �W i

D�1 � . . . � �1 �W i
1 � Ei)(xi),

with W i
k ⇡ W j

k 8 (i, j, k). (6.1)

The approximate equality “⇡” means that at each shared depth the applied

weight tensors for each task are similar and compatible for sharing. For example,

learned parameters may be shared across all W i
k for a given k, but not between

W i
k and W j

l for any k 6= l. For closely-related tasks, this assumption may be a

reasonable constraint. However, as more tasks are added to a joint model, it

may be more di�cult for each layer to represent features of its given depth for

all tasks. Furthermore, for very distant tasks, it may be unreasonable to expect

that task feature hierarchies match up at all, even if the tasks are related

intuitively. The conjecture explored in this chapter is that parallel ordering

limits the potential of deep MTL by the strong constraint it enforces on the

use of each layer.

6.3 Deep MTL with Soft Ordering of Layers

Now that parallel ordering has been identified as a constricting feature of

deep MTL approaches, its necessity can be tested, and the resulting observations

can be used to develop more flexible methods.
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6.3.1 A Foil for the Parallel Ordering Assumption: Permuting
Shared Layers

Consider the most common deep MTL setting: hard-sharing of layers,

where each layer in {Wk}Dk=1 is shared in its entirety across all tasks. The

baseline deep MTL model for each task ti is given by

yi = (Di � �D �WD � �D�1 �WD�1 � . . . � �1 �W1 � Ei)(xi). (6.2)

This setup satisfies the parallel ordering assumption. Consider now an alter-

native scheme, equivalent to the above, except with learned layers applied in

di↵erent orders for di↵erent task. That is,

yi = (Di � �D �W⇢
i

(D) � �D�1 �W⇢
i

(D�1) � . . . � �1 �W⇢
i

(1) � Ei)(xi), (6.3)

where ⇢i is a task-specific permutation of size D, and ⇢i is fixed before training.

If there are sets of tasks for which joint training of the model defined by Eq. 6.3

achieves similar or improved performance over Eq. 6.2, then parallel ordering is

not a necessary requirement for deep MTL. Of course, in this formulation, it is

required that the Wk can be applied in any order. See Section 6.6 for examples

of possible generalizations.

Note that this multitask permuted ordering di↵ers from an approach of

training layers in multiple orders for a single task. The single-task case results

in a model with increased commutativity between layers, a behavior that has

also been observed in residual networks (Veit et al., 2016), whereas here the

result is a set of layers that are assembled in di↵erent ways for di↵erent tasks.
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6.3.2 The increased expressivity of permuted ordering

Fitting tasks of random patterns. Permuted ordering is evaluated

by comparing it to parallel ordering on a set of tasks. Randomly generated

tasks (similar to (Kirkpatrick et al., 2017)) are the most disparate possible

tasks, in that they share minimal information, and thus help build intuition

for how permuting layers could help integrate information in broad settings.

The following experiments investigate how accurately a model can jointly fit

two tasks of n samples. The data set for task ti is {(xij, yij)}nj=1, with each

xij drawn uniformly from [0, 1]m, and each yij drawn uniformly from {0, 1}.

There are two shared learned a�ne layers Wk : Rm ! Rm. The models with

permuted ordering (Eq. 6.3) are given by

y1 = (O � � �W2 � � �W1)(x1) and y2 = (O � � �W1 � � �W2)(x2), (6.4)

where O is a final shared classification layer. The reference parallel ordering

models are defined identically, but with Wk in the same order for both tasks.

Note that fitting the parallel model with n samples is equivalent to a single-task

model with 2n. In the first experiment, m = 128 and � = I. Although adding

depth does not add expressivity in the single-task linear case, it is useful for

examining the e↵ects of permuted ordering, and deep linear networks are known

to share properties with nonlinear networks (Saxe et al., 2014). In the second

experiment, m = 16 and � = ReLU.

The results are shown in Figure 6.1. Remarkably, in the linear case,

permuted ordering of shared layers does not lose accuracy compared to the
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Figure 6.1: Fitting two random tasks. (a) The dotted lines show that
permuted ordering fits n samples as well as parallel fits n/2 for linear networks;
(b) For ReLU networks, permuted ordering enjoys a similar advantage. Thus,
permuted ordering of shared layers eases integration of information across
disparate tasks.

single-task case. A similar gap in performance is seen in the nonlinear case,

indicating that this behavior extends to more powerful models. Thus, the

learned permuted layers are able to successfully adapt to their di↵erent orderings

in di↵erent tasks.

Looking at conditions that make this result possible can shed further

light on this behavior. For instance, consider T tasks t1, . . . , tT , with input and

output size both m, and optimal linear solutions F1, . . . , FT , respectively. Let

F1, . . . , FT be m ⇥m matrices, and suppose there exist matrices G1, . . . , GT

such that Fi = GiG(i+1 mod T ) . . . G(i�1 mod T ) 8 i. Then, because the matrix

trace is invariant under cyclic permutations, the constraint arises that

tr(F1) = tr(F2) = . . . = tr(FT ). (6.5)

In the case of random matrices induced by the random tasks above, the traces of

the Fi are all equal in expectation and concentrate well as their dimensionality
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increases. So, the restrictive e↵ect of Eq. 6.5 on the expressivity of permuted

ordering here is negligible.

Adding a small number of task-specific scaling parameters.

Of course, real world tasks are generally much more structured than random

ones, so such reliable expressivity of permuted ordering might not always be

expected. However, adding a small number of task-specific scaling parameters

can help adapt learned layers to particular tasks. This observation has been

previously exploited in the parallel ordering setting, for learning task-specific

batch normalization scaling parameters (Bilen & Vedaldi, 2017) and controlling

communication between columns (Misra et al., 2016). Similarly, in the permuted

ordering setting, the constraint induced by Eq. 6.5 can be reduced by adding

task-specific scalars {si}Ti=2 such that Fi = siGiG(i+1 mod T ) . . . G(i�1 mod T ), and

s1 = 1. The constraint given by Eq. 6.5 then reduces to

tr(Fi/s
i

) = tr(Fi+1/s
i+1

) 8 1  i < T =) si+1 = si(tr(Fi+1

)/tr(F
i

)), (6.6)

which are defined when tr(Fi) 6= 0 8 i < T . Importantly, the number of

task-specific parameters does not depend on m, which is useful for scalability

as well as encouraging maximal sharing between tasks. The idea of using a

small number of task-specific scaling parameters is incorporated in the soft

ordering approach introduced in the next section.

6.3.3 Soft ordering of shared layers

Permuted ordering tests the parallel ordering assumption, but still fixes

an a priori layer ordering for each task before training. Here, a more flexible
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Figure 6.2: Soft ordering of shared layers. Sample soft ordering network
with three shared layers. Soft ordering (Eq. 6.7) generalizes Eqs. 6.2 and 6.3, by
learning a tensor S of task-specific scaling parameters. S is learned jointly with
the Fj , to allow flexible sharing across tasks and depths. The Fj in this figure
each include a shared weight layer and any nonlinearity. This architecture
enables the learning of layers that are used in di↵erent ways at di↵erent depths
for di↵erent tasks.

soft ordering approach is introduced, which allows jointly trained models to

learn how layers are applied while simultaneously learning the layers themselves.

Consider again a core network of depth D with layers W1, . . . ,WD learned and

shared across tasks. The soft ordering model for task ti is defined as follows:

yki =
DX

j=1

s(i,j,k)(�k[Wj(y
k�1
i )]), with

DX

j=1

s(i,j,k) = 1 8 (i, k), (6.7)

where y0i = Ei(xi), yi = Di(yDi ), and each s(i,j,k) is drawn from S: a tensor of

learned scales for each task ti for each layer Wj at each depth k. Figure 6.2

shows an example of a resulting depth three model. Motivated by Section 6.3.2

and previous work (Misra et al., 2016), S adds only D2 scaling parameters per

task, which is notably not a function of the size of any Wj . The constraint that

all s(i,j,k) sum to 1 for any (i, k) is implemented via softmax, and emphasizes

the idea that a soft ordering is what is being learned; in particular, this
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formulation subsumes any fixed layer ordering ⇢i by s(i,⇢
i

(k),k) = 1 8 (i, k). S

can be learned jointly with the other learnable parameters in the Wk, Ei, and

Di via backpropagation. In training, all s(i,j,k) are initialized with equal values,

to reduce initial bias of layer function across tasks. It is also helpful to apply

dropout after each shared layer. Aside from its usual benefits (Srivastava et al.,

2014), dropout has been shown to be useful in increasing the generalization

capacity of shared representations (Devin et al., 2016). Since the trained layers

in Eq. 6.7 are used for di↵erent tasks and in di↵erent locations, dropout makes

them more robust to supporting di↵erent functionalities. These ideas are tested

empirically on the MNIST, UCI, Omniglot, and CelebA data sets in the next

section.

6.4 Empirical Evaluation of Soft Layer Ordering

These experiments evaluate soft ordering against fixed ordering MTL

and single-task learning. The first experiment applies them to intuitively

related MNIST tasks, the second to “superficially unrelated” UCI tasks, the

third to the real-world problem of Omniglot character recognition, and the

fourth to large-scale facial attribute recognition. In each experiment, single

task, parallel ordering (Eq. 6.2), permuted ordering (Eq. 6.3), and soft ordering

(Eq. 6.7) train an equivalent set of core layers. In permuted ordering, the order

of layers were randomly generated for each task each trial.

116



6.4.1 Disentangling related tasks: MNIST digit1-vs.-digit2 binary
classification

This experiment evaluates the ability of multitask methods to exploit

tasks that are intuitively related, but have disparate input representations.

Binary classification problems derived from the MNIST hand-written digit

dataset are a common test bed for evaluating deep learning methods that

require multiple tasks (Fernando et al., 2017; Kirkpatrick et al., 2017; Yang

& Hospedales, 2017). Here, the goal of each task is to distinguish between

two distinct randomly selected digits. To create initial dissimilarity across

tasks that multitask models must disentangle, each Ei is a random frozen

fully-connected ReLU layer with output size 64. There are four core layers,

each a fully-connected ReLU layer with 64 units. Each Di is an unshared dense

layer with a single sigmoid classification output.

Results are shown in Figure 6.3. The relative performance of permuted

ordering and soft ordering compared to parallel ordering increases with the

number of tasks trained jointly (Figure 6.3a), showing how flexibility of order

can help in scaling to more tasks. This result is consistent with the hypothesis

that parallel ordering has increased negative e↵ects as the number of tasks

increases. Figure 6.3b-d show what soft ordering actually learns: The scalings

for tasks diverge as layers specialize to di↵erent functions for di↵erent tasks.
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Figure 6.3: MNIST results. (a) Relative performance of permuted and soft
ordering compared to parallel ordering improves as the number of tasks increases,
showing how flexibility of order can help in scaling to more tasks. Note that cost
savings of multitask over single task models in terms of number of trainable
parameters scales linearly with the number of tasks. For a representative
two-task soft order experiment (b) the layer-wise distance between scalings
of the tasks increases by iteration, and (c) the scalings move towards a hard
ordering. (d) The final learned relative scale of each shared layer at each depth
for each task is indicated by shading, with the strongest path drawn, showing
that a distinct soft order is learned for each task (• marks the shared model
boundary).
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Dataset Input Features Output classes Samples

Australian credit 14 2 690
Breast cancer 30 2 569
Ecoli 7 8 336
German credit 24 2 1000
Heart disease 13 5 303
Hepatitis 19 2 155
Iris 4 3 150
Pima diabetes 8 2 768
Wine 13 3 178
Yeast 8 10 1484

Table 6.1: UCI data set descriptions. The ten UCI tasks used in joint
training; the varying types of problems and dataset characteristics show the
diversity of this set of tasks.

6.4.2 Superficially Unrelated Tasks: Joint Training of Ten Popular
UCI Datasets

The next experiment evaluates the ability of soft ordering to integrate

information across a diverse set of “superficially unrelated” tasks (Mahmud

& Ray, 2008), i.e., tasks with no immediate intuition for how they may be

related. Ten tasks are taken from some of most popular UCI classification

data sets (Lichman, 2013). Descriptions of these tasks are given in Figure 6.1.

Inputs and outputs have no a priori shared meaning across tasks. Each Ei

is a learned fully-connected ReLU layer with output size 32. There are four

core layers, each a fully-connected ReLU layer with 32 units. Each Di is an

unshared dense softmax layer for the given number of classes. The results in

Figure 6.4 show that, while parallel and permuted show no improvement in

error after the first 1000 iterations, soft ordering significantly outperforms the
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Figure 6.4: UCI results. Mean test error over all ten tasks by iteration.
Permuted and parallel order show no improvement after the first 1000 iterations,
while soft order decisively outperforms the other methods.

other methods. With this flexible layer ordering, the model is eventually able

to exploit significant regularities underlying these seemingly disparate domains.

6.4.3 Extension to Convolutions: Multi-alphabet Character Recog-
nition

The Omniglot dataset (Lake et al., 2015) consists of fifty alphabets, each

of which induces a di↵erent character recognition task. Deep MTL approaches

have recently shown promise on this dataset (Yang & Hospedales, 2017). It is

a useful benchmark for MTL because the large number of tasks allows analysis

of performance as a function of the number of tasks trained jointly, and there

is clear intuition for how knowledge of some alphabets will increase the ability

to learn others. Omniglot is also a good setting for evaluating the ability of

soft ordering to learn how to compose layers in di↵erent ways for di↵erent
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tasks: it was developed as a problem with inherent composability, e.g., similar

kinds of strokes are applied in di↵erent ways to draw characters from di↵erent

alphabets (Lake et al., 2015). Consequently, it has been used as a test bed

for deep generative models (Rezende et al., 2016). To evaluate performance

for a given number of tasks T , a single random ordering of tasks was created,

from which the first T tasks are considered. Train/test splits are created in

the same way as previous work (Yang & Hospedales, 2017), using 10% or 20%

of data for testing.

This experiment is a scale-up of the previous experiments in that it

evaluates soft ordering of convolutional layers. The models are made as

close as possible in architecture to previous work (Yang & Hospedales, 2017),

while allowing soft ordering to be applied. There are four core layers, each

convolutional followed by max pooling. Ei(xi) = xi 8 i, and each Di is a

fully-connected softmax layer with output size equal to the number of classes.

The results show that soft ordering is able to consistently outperform other deep

MTL approaches (Figure 6.5). The improvements are robust to the number of

tasks (Figure 6.5a) and the amount of training data (Figure 6.5c), suggesting

that soft ordering, not task complexity or model complexity, is responsible for

the improvement.

Permuted ordering performs significantly worse than parallel ordering

in this domain. This is not surprising, as deep vision systems are known to

induce a common feature hierarchy, especially within the first couple of layers

(Lee et al., 2008; Lecun et al., 2015). Parallel ordering has this hierarchy built
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(c)

Deep MTL method 10% Test Split 20% Test Split

STL 34.36 (± 0.53) 35.92 (± 0.74)
UD-MTL 29.98 (± 1.33) 29.53 (± 0.99)
DMTRL-LAF 31.08 (± 0.65) 33.37 (± 0.97)
DMTRL-Tucker 29.67 (± 1.25) 31.11 (± 1.16)
DMTRL-TT 28.78 (± 0.61) 30.61 (± 0.65)

Single task (ours) 38.49 (± 0.87) 38.10 (± 0.88)
Parallel order 27.17 (± 0.57) 28.24 (± 0.67)
Permuted order 32.64 (± 0.64) 33.18 (± 0.74)
Soft order 23.19 (± 0.34) 24.11 (± 0.48)

Figure 6.5: Omniglot results. (a) Error by number of tasks trained jointly.
Soft ordering significantly outperforms single task and both fixed ordering
approaches for each number of tasks; (b) Distribution of learned layer usage
by depth across all 50 tasks for a soft order run. The usage of each layer
is correlated (or inversely correlated) with depth. This coincides with the
understanding that there is some innate hierarchy in convolutional networks,
which soft ordering is able to discover. For instance, the usage of Layer 3
decreases as the depth increases, suggesting that its primary purpose is low-level
feature extraction, though it is still sees substantial use in deeper contexts; (c)
Errors with all 50 tasks for di↵erent training set sizes. The first five methods
are previous deep MTL results (Yang & Hospedales, 2017), which use multitask
tensor factorization methods in a shared parallel ordering. Soft ordering
significantly outperforms the other approaches, showing the approach scales to
real-world tasks requiring specialized components such as convolutional layers.
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in; for permuted ordering it is more di�cult to exploit. However, the existence

of this feature hierarchy does not preclude the possibility that the functions

(i.e., layers) used to produce the hierarchy may be useful in other contexts.

Soft ordering allows the discovery of such uses. Figure 6.5b shows how each

layer is used more or less at di↵erent depths. The soft ordering model learns a

“soft hierarchy” of layers, in which each layer has a distribution of increased

or decreased usage at each depth. In this case, the usage of each layer is

correlated (or inversely correlated) with depth. For instance, the usage of

Layer 3 decreases as the depth increases, suggesting that its primary purpose

is low-level feature extraction, though it is still sees substantial use in deeper

contexts. Section 6.5 describes an experiment that further investigates the

behavior of a single layer in di↵erent contexts.

6.4.4 Large-scale Application: Facial Attribute Recognition

Although facial attributes are all high-level concepts, they do not intu-

itively exist at the same level of a shared hierarchy (even one that is learned; Lu

et al., 2017). Rather, these concepts are related in multiple subtle and overlap-

ping ways in semantic space. This experiment investigates how a soft ordering

approach, as a component in a larger system, can exploit these relationships.

The CelebA dataset consists of ⇡200K 178⇥218 color images, each with

binary labels for 40 facial attributes (Liu et al., 2015b). In this experiment,

each label defines a task, and parallel and soft order models are based on a

ResNet-50 vision model (He et al., 2016), which has also been used in recent
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state-of-the-art approaches to CelebA (Günther et al., 2017; He et al., 2017).

Let Ei be a ResNet-50 model truncated to the final average pooling layer,

followed by a linear layer projecting the embedding to size 256. Ei is shared

across all tasks. There are four core layers, each a dense ReLU layer with 256

units. Each Di is an unshared dense sigmoid layer. Parallel ordering and soft

ordering models were compared. To further test the robustness of learning,

models were trained with and without the inclusion of an additional facial

landmark detection regression task. Soft order models were also tested with

and without the inclusion of a fixed identity layer at each depth. The identity

layer can increase consistency of representation across contexts, which can ease

learning of each layer, while also allowing soft ordering to tune how much total

non-identity transformation to use for each individual task. This is especially

relevant for the case of attributes, since di↵erent tasks can have di↵erent levels

of complexity and abstraction.

The results are given in Figure 6.6c. Existing work that used a ResNet-

50 vision model showed that using a parallel order multitask model improved

test error over single-task learning from 10.37 to 9.58 (He et al., 2017). With

our faster training strategy and the added core layers, our parallel ordering

model achieves a test error of 10.21. The soft ordering model yielded a sub-

stantial improvement beyond this to 8.79, demonstrating that soft ordering

can add value to a larger deep learning system. Including landmark detec-

tion yielded a marginal improvement to 8.75, while for parallel ordering it

degraded performance slightly, indicating that soft ordering is more robust
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to joint training of diverse kinds of tasks. Including the identity layer im-

proved performance to 8.64, though with both the landmark detection and

the identity layer this improvement was slightly diminished. One explanation

for this degradation is that the added flexibility provided by the identity layer

o↵sets the regularization provided by landmark detection. Note that previous

work has shown that adaptive weighting of task loss (He et al., 2017; Rudd

et al., 2016), data augmentation and ensembling (Günther et al., 2017), and a

larger underlying vision model (Lu et al., 2017) each can also yield significant

improvements. Aside from soft ordering, none of these improvements alter the

multitask topology, so their benefits are expected to be complementary to that

of soft ordering demonstrated in this experiment. By coupling them with soft

ordering, greater improvements should be possible.

Figures 6.6a-b characterize the usage of each layer learned by soft order

models. Like in the case of Omniglot, layers that are used less at lower depths

are used more at higher depths, and vice versa, giving further evidence that

the models learn a “soft hierarchy” of layer usage. When the identity layer is

included, its usage is almost always increased through training, as it allows the

model to use smaller specialized proportions of nonlinear structure for each

individual task.

6.5 Visualizing the Behavior of Soft Ordering Layers

The success of soft layer ordering suggests that layers learn functional

primitives with similar e↵ects in di↵erent contexts. To explore this idea
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(c)

Deep MTL method Test Error %

Single Task (He et al., 2017) 10.37
MTL Baseline (He et al., 2017) 9.58

Parallel Order 10.21
Parallel Order + Landmarks 10.29
Soft Order 8.79
Soft Order + Landmarks 8.75
Soft Order + Identity 8.64

Soft Order + Landmarks + Identity 8.68

Figure 6.6: CelebA results. Layer usage by depth (a) without and (b) with
inclusion of the identity layer. In both cases, layers with lower usage at lower
depths have higher usage at higher depths, and vice versa. The identity layer
almost always sees increased usage; its application can increase consistency
of representation across contexts. (c) Soft order models achieve a significant
improvement over parallel ordering, and receive a boost from including the
identity layer. The first two rows are previous work with ResNet-50 that show
their baseline improvement from single task to multitask.

126



qualitatively, the following experiment uses generative visual tasks. The goal

of each task is to learn a function (x, y)! v, where (x, y) is a pixel coordinate

and v is a brightness value, all normalized to [0, 1]. Each task is defined by a

single image of a “4” drawn from the MNIST dataset; all of its pixels are used

as training data. Ten tasks are trained using soft ordering with four shared

dense ReLU layers of 100 units each. Ei is a linear encoder that is shared

across tasks, and Di is a global average pooling decoder. Thus, task models are

distinguished completely by their learned soft ordering scaling parameters st.

To visualize the behavior of layer l at depth d for task t, the predicted image

for task t is generated across varying magnitudes of s(t,l,d). The results for the

first two tasks and the first layer are shown in Table 6.2. Similar function is

observed in each of the six contexts, suggesting that the layers indeed learn

functional primitives.

6.6 Discussion and Future Work

In the interest of clarity, the soft ordering approach in this chapter was

developed as a relatively small step away from the parallel ordering assumption.

To develop more practical and specialized methods, inspiration can be taken

from recurrent architectures, the approach can be extended to layers of more

general structure, and applied to training and understanding general functional

building blocks.

Connections to recurrent architectures. Eq. 6.7 is defined re-

cursively with respect to the learned layers shared across tasks. Thus, the
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d, t Layer inactive �! Layer active

1, 1

2, 1

3, 1

d, t Layer inactive �! Layer active

1, 2

2, 2

3, 2

Table 6.2: Example behavior of a soft order layer. For each task t, and
at each depth d, the e↵ect of increasing the activation of of this particular layer
is to expand the left side of the “4” in a manner appropriate to the functional
context (e.g., the magnitude of the e↵ect decreases with depth). Results
for other layers are similar, suggesting that the layers implement functional
primitives.

soft-ordering architecture can be viewed as a new type of recurrent architecture

designed specifically for MTL. From this perspective, Figure 6.2 shows an

unrolling of a soft layer module: Di↵erent scaling parameters are applied at

di↵erent depths when unrolled for di↵erent tasks. Since the type of recurrence

induced by soft ordering does not require task input or output to be sequential,

methods that use recurrence in such a setting are of particular interest (Liang

& Hu, 2015; Liao & Poggio, 2016; Pinheiro & Collobert, 2014; Socher et al.,
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2011; Zamir et al., 2016). Recurrent methods can also be used to reduce the

size of S below O(TD2), e.g., via recurrent hypernetworks (Ha et al., 2017).

Finally, Section 6.4 demonstrated soft ordering where shared learned layers

were fully-connected or convolutional; it is also straightforward to extend soft

ordering to shared layers with internal recurrence, such as LSTMs (Hochreiter

& Schmidhuber, 1997). In this setting, soft ordering can be viewed as inducing

a higher-level recurrence.

Generalizing the structure of shared layers. For clarity, in this

chapter all core layers in a given setup had the same shape. Of course, it would

be useful to have a generalization of soft ordering that could subsume any

modern deep architecture with many layers of varying structure. As given by

Eq. 6.7, soft ordering requires the same shape inputs to the element-wise sum

at each depth. Reshapes and/or resampling can be added as adapters between

tensors of di↵erent shape; alternatively, a function other than a sum could be

used. For example, instead of learning a weighting across layers at each depth,

a probability of applying each module could be learned in a manner similar to

adaptive dropout (Ba & Frey, 2013; Li et al., 2016) or a sparsely-gated mixture

of experts (Shazeer et al., 2017). Furthermore, the idea of a soft ordering

of layers can be extended to soft ordering over modules with more general

structure, which may more succinctly capture recurring modularity. One such

approach to more general module structure is presented in Chapter 7.

Training generalizable building blocks. Because they are used in

di↵erent ways at di↵erent locations for di↵erent tasks, the shared trained layers
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in permuted and soft ordering have learned more general functionality than

layers trained in a fixed location or for a single task. A natural hypothesis is

that they are then more likely to generalize to future unseen tasks, perhaps

even without further training. This ability would be especially useful in the

small data regime, where the number of trainable parameters should be limited.

For example, given a collection of these layers trained on a previous set of tasks,

a model for a new task could learn how to apply these building blocks, e.g., by

learning a soft order, while keeping their internal parameters fixed. Learning

an e�cient set of such generalizable layers would then be akin to learning

a set of functional primitives. Such functional modularity and repetition is

evident in the natural, technological and sociological worlds, so such a set of

functional primitives may align well with complex real-world models. This

perspective is related to recent work in reusing modules in the parallel ordering

setting (Fernando et al., 2017). The di↵erent ways in which di↵erent tasks

learn to use the same set of modules can also help shed light on how tasks are

related, especially those that seem superficially disparate (e.g., by extending the

analysis performed for Figure 6.3d), thus assisting in the discovery of real-world

regularities. Further methods for training generalizable building blocks are

considered in the next two chapters.

6.7 Conclusion

This chapter extended the idea of PTA (Chapter 5) to joint training of

each module (here, layers) at multiple depths in each task model, to give them
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another level of generality. This extension was motivated by parallel ordering

of shared layers, which was identified as a common assumption underlying

existing deep MTL approaches. This assumption restricts the kinds of shared

structure that can be learned between tasks. Experiments demonstrate how

direct approaches to removing this assumption can ease the integration of

information across plentiful and diverse tasks. Soft ordering is introduced as a

method for learning how to apply layers in di↵erent ways at di↵erent depths

for di↵erent tasks, while simultaneously learning the layers themselves. The

resulting multitask models are constructed by applying mixtures of a set of

core layers at each pseudo-task location. Soft ordering is shown to outperform

parallel ordering methods as well as single-task learning across a suite of

domains. These results show that deep MTL can be improved while generating

a compact set of multipurpose functional primitives, thus aligning more closely

with our understanding of complex real-world processes. However, vanilla soft

ordering does not scale well, since each layer is executed at each depth. The

next two chapters automatically select which module to use at each location,

in order to scale this idea to more practical deep learning systems: Chapter 7

scales it to complex automatically-discovered topologies, and Chapter 8 scales

it to modules that can be shared across diverse kinds of architectures and task

modalities.
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Chapter 7

Multitask Architecture Search

This chapter1 improves the scalability of soft ordering, and the generality

of the learned modules, by automatically designing a multitask architecture

assembled from modules, while simultaneously learning the internal parameters

of the modules themselves. Designing deep neural network architectures for

multitask learning is a challenge: There are many ways to tie the tasks to-

gether, and the design choices matter. The size and complexity of this problem

exceeds human design ability, making it a compelling domain for evolutionary

optimization. Using the soft ordering approach from Chapter 6 as the start-

ing point, this chapter develops a method for learning sets of modules that

generalize across tasks while simultaneously discovering topologically distinct

ways to assemble these modules to solve each task. The approach is based on

complexifying task-specific topologies, by incrementally adding new locations

to apply modules. Evolution and deep training are performed on a single GPU

by jointly training all candidate topologies for all tasks. This approach is then

extended by using evolution to design the topological structure of the modules

1The content of this chapter was previously presented at GECCO (Liang, Meyerson,
and Miikkulainen, 2018). Jason Liang worked on experimental design, implementation, and
analysis, particularly with respect to all experiments involving CoDeepNEAT (Miikkulainen
et al., 2017). Risto Miikkulainen provided guidance and feedback through discussions.
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themselves. The methods significantly improve upon previous results in the

Omniglot multitask, multialphabet character recognition domain. This result

demonstrates how evolution can play a key role in advancing the design of deep

neural networks and complex systems in general. In particular, it shows deep

multitask learning can be improved by optimizing architectures explicitly for

the goal of discovering and sharing generic modules.

7.1 Introduction

Much of the research in deep learning in recent years has focused on

coming up with better architectures, and MTL is no exception. As a matter of

fact, architecture plays possibly an even larger role in MTL because there are

many ways to tie the multiple tasks together. The best network architectures

are large and complex, and have become very hard for human designers to

optimize (Szegedy et al., 2015, 2016; Jaderberg et al., 2017a; Zoph & Le,

2017). This chapter develops an automated, flexible approach for evolving

architectures, i.e. hyperparameters, modules, and module routing topologies,

of deep multitask networks.

The architecture presented in Chapter 6 is used as a starting point, in

which distinct soft sequences of layers are learned by gradient descent for each

task. This chapter extends this architecture in several ways. First, a novel

algorithm for evolving task specific routings that create an unique routing be-

tween modules for each task is proposed. From the perspective of pseudo-tasks,

evolution precedes by incrementally adding pseudo-task locations to each task
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Algorithm 7.1 CTR (Sec. 7.2)

Given set of modules
Initialize topology population for each task
Randomly initialize all weights

Each meta-iteration:
Assemble networks
Jointly train all networks with backprop
Assign fitnesses to topologies
Update topology populations

Algorithm 7.2 CMTR (Sec. 7.3)

Initialize module population
Each generation:

Assemble sets of modules
Train sets of modules with CTR
Assign fitnesses to modules
Update module populations

Figure 7.1: High-level algorithm outlines of the two algorithms introduced in
this Chapter. CTR evolves custom routings for each task on a single GPU by
interleaving evolution and backpropagation; CMTR coevolves the architectures
of the modules themselves, evaluating them in parallel by training with CTR
in an inner loop.

model, where solving these pseudo-tasks leads to improvements for the under-

lying task. This approach is then extended by evolving the architectures of the

modules themselves in an outer loop, taking advantage of concurrent work that

developed a multitask version of the CoDeepNEAT algorithm (Miikkulainen

et al., 2017). High-level descriptions of these algorithms are given in Figure 7.1.

These approaches are evaluated in the Omniglot task (Lake et al., 2015)

of learning to recognize characters from many di↵erent alphabets. Evolution of

task-specific topologies significantly improves upon soft ordering, and coevolu-

tion of modules and topologies together improves performance even further.

The results thus demonstrate three general points: evolutionary architecture

search can make a large di↵erence in performance of deep learning networks;
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MTL can improve performance of deep learning tasks; and putting these to-

gether results in a particularly powerful approach. In the future it can be

applied to various problems in vision, language, and control, and in particular

to domains with multimodal inputs and outputs (e.g., see Chapter 8).

The rest of this chapter is organized as follows: In Sections 7.2 and

7.3, the key contribution of this chapter, novel evolutionary algorithms for

architecture search of multitask networks are described. Finally, in Section 7.4

and Section 7.5 experimental results on the Omniglot domain are presented

and analyzed.

7.2 Coevolution of Task-Specific Routings (CTR)

This section introduces Coevolution of Task Routing (CTR), a multitask

architecture search approach that takes advantage of the dynamics of soft

ordering by evolving task-specific topologies instead of using a single fixed

architecture for all tasks. The algorithm learns a set of shared generic modules

while simultaneously evolving task-specific routings for each task. The algorithm

begins with the soft module mixing operation, or soft merge, used to construct

soft ordering networks in Chapter 6. A soft merge is a learnable function given

by

softmerge(in1, . . . , inM) =
X

m=1..M

sminm, with
X

m=1..M

sm = 1 , (7.1)

where the inm are a list of incoming tensors, sm are scalars trained simultane-

ously with internal layer weights via backpropagation, and the constraint that
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all sm sum to 1 is enforced via a softmax function.

7.2.1 Algorithm Overview

Like in soft ordering, in CTR there are K modules whose weights

are shared everywhere they are used across all tasks. CTR searches for a

distinct module routing scheme for each task, and trains a single set of modules

throughout evolution. Having a distinct routing scheme for each task makes

sense if the shared modules are seen as a set of building blocks that are assembled

to meet the di↵ering demands of di↵erent problems. Training a single set of

modules throughout evolution then makes sense as well: As modules are trained

in di↵erent locations for di↵erent purposes during evolution, their functionality

should become increasingly general, and it should thus become easier for them

to adapt to the needs of a new location. Such training is e�cient since the core

structure of the network need not be retrained from scratch at every generation.

In other words, CTR incurs no additional iterations of backpropagation over

training a single fixed-topology multitask model. Because of this feature, CTR

is related to PathNet (Fernando et al., 2017), which evolves pathways through

modules as those modules are being trained. However, unlike in PathNet,

in CTR distinct routing schemes are coevolved across tasks, modules can

be applied in any location, and module usage is adapted via the soft merge

operation.

CTR operates a variant of a (1+ 1) evolutionary algorithm ((1+ 1)-EA)

for each task. Running separate EAs in parallel for each task is possible because
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an evaluation of a multitask network yields a performance metric for each task.

The (1 + 1)-EA is chosen because it is e�cient and su�ciently powerful in

experiments, though it can potentially be replaced by any population-based

method. To make it clear that a single set of modules is trained during evolution,

and to disambiguate from the terminology of CoDeepNEAT, which is used in

the outer loop in the next section, for CTR the term meta-iteration is used in

place of generation.

7.2.2 Representation

Each individual constitutes a module routing scheme for a particular

task. At any point in evolution, the ith individual for the tth task is represented

by a tuple (Eti, Gti,Dti), where Eti is an encoder, Gti is a DAG, which specifies

the module routing scheme, and Dti is a decoder. The complete model for an

individual is then given by

yt =
�
Dti � R

�
Gti,

�
fk
 K

k=1

�
� Eti

�
(xt) , (7.2)

where R is the canonical routing function, which contains any learned soft

merge parameters, and indicates the execution of the computational graph of

shared modules fk based on the DAG Gti. Note that Eti, and Dti can be any

neural network functions that are compatible with the set of shared modules.

In the experiments in this chapter, each Eti is an identity transformation layer,

and each Dti is a fully connected classification layer.

Gti is a DAG, whose single source node represents the input layer for

that task, and whose single sink node represents the output layer, e.g., a
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classification layer. All other nodes either point to a module fk to be applied at

that location, or a parameterless adapter layer that ensures adjacent modules

are technically compatible. In the experiments in this chapter, all adapters are

2⇥ 2 max-pooling layers. Whenever a node of Gti has multiple incoming edges,

their contents are combined in a learned soft merge (Eq. 7.1).

7.2.3 Initialization

The algorithm begins by initializing the shared modules {fk}Kk=1 with

random weights. Then, each champion (Et1, Gt1,Dt1) is initialized, with Et1

and Dt1 initialized with random weights, and Gt1 according to some graph

initialization policy. For example, the initialization of Gt1 can be minimal or

random. In the experiments in this chapter, Gt1 is initialized to reflect the

classical deep multitask learning approach, i.e., the graph is given by

Et1 ! f1 ! f2 ! . . .! fK ! Dt1 (7.3)

with adapters added as needed.

7.2.4 Variation

At the start of each meta-iteration, a challenger (Et2, Gt2,Dt2) is gen-

erated by mutating the tth champion as follows (the insertion of adapters is

omitted for clarity):

1. The challenger starts as a copy of the champion, including learned weights,

i.e., (Et2, Gt2,Dt2) := (Et1, Gt1,Dt1).
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2. A pair of nodes (u, v) is randomly selected from Gt2 such that v is an

ancestor of u.

3. A module Mk is randomly selected from {fk}Kk=1.

4. A new node w is added to Gt2 with fk as its function.

5. New edges (u, w) and (w, v) are added to Gt2.

6. The scalar weight of (w, v) is set such that its value after the softmax is

some ↵ 2 (0, 1). To initially preserve champion behavior, ↵ is set to be

small. I.e., if s1, . . . , sm are the scales of the existing inbound edges to

v, sm+1 is the initial scale of the new edge, and smax = max(s1, . . . , sm)

then

sm+1 = ln
� ↵

1� ↵
X

j=1..m

esj�s
max

�
+ smax . (7.4)

7.2.5 Training

After challengers are generated, all champions and challengers are

trained jointly for M iterations with a gradient-based optimizer. Note that

the scales of Gt1 and Gt2 diverge during training, as do the weights of Dt1

and Dt2. After training, all champions and challengers are evaluated on a

validation set that is disjoint from the training data. The fitness for each

individual is its performance for its task on the validation set. In this chapter,

accuracy is the performance metric. If the challenger has higher fitness than the

champion, then the champion is replaced, i.e.,(Et1, Gt1,Dt1) := (Et2, Gt2,Dt2).
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After selection, if the average accuracy across all champions is the best achieved

so far, the entire system is checkpointed, including the states of the modules.

After evolution, the champions and modules from the last checkpoint constitute

the final trained model, and are evaluated on a held out test set.

7.2.6 An Ecological Perspective

More than most evolutionary methods, this algorithm reflects an ar-

tificial ecology. The shared modules can be viewed as a shared finite set of

environmental resources that is constantly exploited and altered by the actions

of di↵erent tasks, which can correspond to di↵erent species in an environment.

Within each task, individuals compete and cooperate to develop mutualis-

tic relationships with the other tasks via their interaction with this shared

environment. A visualization of CTR under this perspective is shown in Fig-

ure 7.2. Importantly, even if a challenger does not outperform its champion,

its developmental (learning) process still a↵ects the shared resources. This

perspective suggests a more optimistic view of evolution, in which individuals

can have substantial positive e↵ects on the future of the ecosystem even without

reproducing.

7.3 Coevolution of Modules and Task Routing (CMTR)

Concurrently to this work, the soft ordering approach has been extended

to evolve the module architectures themselves using CoDeepNEAT (Miikku-

lainen et al., 2017). Though it also considers evolving multitask topologies,
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Figure 7.2: This figure shows an instance of CTR with three tasks and
four modules that are shared across all tasks. Each individual assembles the
modules in di↵erent ways. Through gradient-based training, individuals exploit
the shared resources to compete within a task, and over time must develop
mutualistic relationships with other tasks via their use of the shared modules.

the improvements achieved with that approach are largely orthogonal to those

of CTR, and they can be combined to form an even more powerful algorithm

called Coevolution of Modules and Task Routing (CMTR). Since evolution in

CTR occurs during training and is highly computational e�cient, it is feasible

to use CoDeepNEAT as an outer evolutionary loop to evolve modules. To

evaluate and assign fitness to the modules, they are passed on to CTR (the

inner evolutionary loop) for evolving and assembling the task specific routings.

The performance of the final task-specific routings is returned to CoDeepNEAT

and attributed to the modules in the standard way, i.e., by averaging over their

performance in independent runs of CTR. The resulting algorithm searches for

multitask solutions in a highly general space aligning with the grand vision of

deep multitask learning: functional modules can take on arbitrary topological

form and are assembled in arbitrarily diverse topologies for each task. CMTR’s
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evolutionary loop works as follows:

1. CoDeepNEAT initializes a population of modules. The blueprints that

are normally specify module connectivity in CoDeepNEAT are not used.

2. Modules are randomly chosen from automatically-determined species and

grouped together into sets of K modules each.

3. Each set of modules is fed to CTR, which assembles the modules by

evolving task-specific routings. The performance of the evolved routings

on a task is returned as fitness.

4. Fitness is attributed to the modules, and NEAT’s evolutionary operators

applied to evolve the modules.

5. The process repeats from step 1 until CoDeepNEAT terminates, i.e. no

improvement for a given number of generations.

Like in CTR, the weights between modules are always shared in CMTR across

all locations they are applied. Thus, even though the module architectures are

evolved to for the specific set of tasks, their learned behavior of each module is

forced to be general through the CTR training process.

7.4 Experiments

This section details experiments comparing the methods in the Omniglot

MTL domain.
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7.4.1 Omniglot Character Recognition

The Omniglot dataset is the same one used in Chapter 6. Previous deep

MTL approaches used random training/testing splits for evaluation (Bilen &

Vedaldi, 2017; Meyerson & Miikkulainen, 2018a; Yang & Hospedales, 2017).

However, with model search (i.e. when the model architecture is learned as

well), a validation set separate from the training and testing sets is needed.

Therefore, in the experiments in this chapter, a fixed training/validation/testing

split of 50%/20%/30% is introduced for each task. Because training is slow

and increases linearly with the number of tasks, a subset of 20 tasks out of the

50 possible is used in the current experiments. These tasks are trained in the

same fixed random order used in (Meyerson & Miikkulainen, 2018a).

7.4.2 Experimental Setup

All networks are trained using Adam (?). For CTR, the network is

trained for 120 meta-iterations of 3,000 backprop iterations each. For CMTR,

for e�ciency, each network is only trained for 12 meta-iterations before its fitness

is reported. Each iteration is equivalent to one full forward and backward pass

through the network with a single example image and label chosen randomly

from each task. The fitness assigned to each network is the average validation

accuracy across the 20 tasks. All setups use a total of four modules, as in

previous work.

Since CTR uses a (1+1) evolutionary algorithm and trains all candidates

jointly, it is run on a single GPU. CMTR uses a module population of 25 with
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two species. During each generation, 100 module sets are assembled from this

population. The evaluation of these module sets via CTR is distributed over

100 separate EC2 instances with a K80 GPU in AWS. The average time for

training is around 1-2 hours depending on the size of the modules in the set.

Since each multitask model generated with CMTR is only trained for 12

meta-iterations during evolution, to find the best module set, the top 50 sets

from the run are retrained for the full 120 meta-iterations. During training, a

snapshot of the network is taken at the point of highest validation accuracy.

This snapshot is then evaluated and the average test accuracy over all tasks

returned.

7.4.3 Results

Figure 7.3 compares how fitness (i.e. average validation accuracy) im-

proves for CTR (using the default modules) and CMTR (using the best evolved

modules discovered by CMTR) during training, averaged over 10 runs. Inter-

estingly, while CTR improves faster in the first 10 meta-iterations, it is soon

overtaken by CMTR, demonstrating how evolution discovers modules that

leverage the available training better. Table 7.1 shows the validation and test

errors for the best evolved network produced by each method, averaged over

10 runs. The best-performing methods are highlighted in bold and standard

error for the 10 runs is shown in parenthesis. In addition, performance of the

baseline methods are shown, namely (1) a single-task architecture, i.e. where

each task is trained and evaluated separately, and (2) the soft ordering network

144



0 20 40 60 80 100 120
1umber RI 0eta-IteratiRnV

0.2

0.4

0.6

0.8

)i
tn

eV
V 

(0
ea

n 
Va

l A
FF

ur
aF

y)

CTR
C0TR

Figure 7.3: Comparison of fitness over number of meta-iterations of training
for CTR and CMTR. Evolution discovers modules that leverage the available
training better, forming a synergy of the two processes.

Method Best Val Error (%) Test Error (%)

Single Task 36.41 (0.53) 39.19 (0.50)
Soft Ordering 32.33 (0.74) 33.41 (0.71)

CTR 17.52 (0.21) 17.64 (0.19)
CMTR 11.80 (1.02) 12.18 (1.02)

Table 7.1: Average validation and test errors over all 20 tasks for each algorithm.
CMTR performs the best as it combines both module and routing evolution.
Pairwise t-tests show all di↵erences are statistically significant with p < 0.05.
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architecture (Meyerson & Miikkulainen, 2018a). The evolutionary methods

substantially improve upon the baselines: Evolving task-specific routings is

better than using fixed routings, and evolving module architectures gives an

additional boost, as CMTR performs the best.

The best networks have approximately three million parameters. Fig-

ure 7.4 visualizes one of the best performing sets of modules from the CMTR

experiment; Figure 7.5 visualizes sample routing topologies evolved for the

di↵erent alphabets for this same CMTR experiment. Because the CoDeep-

NEAT outer loop is based on two species, the four modules passed to the CTR

inner loop consist of two di↵erent designs (but still separate weights). Thus,

evolution has discovered that a combination of simple and complex modules

is beneficial. Similarly, while the routing topologies for some alphabets are

simple, others are very complex. Moreover, similar topologies emerge for similar

alphabets (such as those that contain prominent horizontal lines, like Gurmukhi

and Manipuri). Also, when evolution is run multiple times, similar topologies

for the same alphabet result. Such useful diversity in modules and routing

topologies, i.e. structures that complement each other and work well together,

would be remarkably di�cult to develop by hand. However, evolution discovers

them consistently and e↵ectively, demonstrating the power of the approach.

To further analyze the distribution of evolved architectures, the topolo-

gies are embedded as vectors in a 29-dimensional hand-designed feature space.

For each module, there is a feature indicating how many times that module

is used in the topology. The rest of the features are based on the depth of
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chromo_id: 2047
global_actv: relu

global_dropout: 0.135469530501
global_kernel_size: 3
global_num_filter: 57

initalizer: glorot_normal
lr: 0.000181484990488

module_depth: 4
num_modules: 4

weight_decay: 3.52765020047e-09

input_1 (InputLayer)
batch_input_shape: (None, 105, 105, 57)

dtype: float32
name: input_1

input:

output:

(None, 105, 105, 57)

(None, 105, 105, 57)

layer_2 (Conv2D)
activation: relu

bias_initializer_class_name: Zeros
data_format: channels_last

dilation_rate: (1, 1)
filters: 57

kernel_initializer_class_name: VarianceScaling
kernel_initializer_config_distribution: normal

kernel_initializer_config_mode: fan_avg
kernel_initializer_config_scale: 1.0

kernel_regularizer_class_name: L1L2
kernel_regularizer_config_l1: 0.0

kernel_regularizer_config_l2: 3.52765017197e-09
kernel_size: (3, 3)

name: layer_2
padding: same
strides: (1, 1)

input:

output:

(None, 105, 105, 57)

(None, 105, 105, 57)

layer_2_d (Dropout)
name: layer_2_d

rate: 0.135469530501

input:

output:

(None, 105, 105, 57)

(None, 105, 105, 57)

layer_2_mp (MaxPooling2D)
data_format: channels_last

name: layer_2_mp
padding: valid

pool_size: (2, 2)
strides: (2, 2)

input:

output:

(None, 105, 105, 57)

(None, 52, 52, 57)

(a) Topology of modules one and three.

chromo_id: 2047
global_actv: relu

global_dropout: 0.135469530501
global_kernel_size: 3
global_num_filter: 57

initalizer: glorot_normal
lr: 0.000181484990488

module_depth: 4
num_modules: 4

weight_decay: 3.52765020047e-09

input_2 (InputLayer)
batch_input_shape: (None, 105, 105, 57)

dtype: float32
name: input_2

input:

output:

(None, 105, 105, 57)

(None, 105, 105, 57)

layer_4 (Conv2D)
activation: relu

bias_initializer_class_name: Zeros
data_format: channels_last

dilation_rate: (1, 1)
filters: 95

kernel_initializer_class_name: VarianceScaling
kernel_initializer_config_distribution: normal

kernel_initializer_config_mode: fan_avg
kernel_initializer_config_scale: 1.0

kernel_regularizer_class_name: L1L2
kernel_regularizer_config_l1: 0.0

kernel_regularizer_config_l2: 3.52765017197e-09
kernel_size: (3, 3)

name: layer_4
padding: same
strides: (1, 1)

input:

output:

(None, 105, 105, 57)

(None, 105, 105, 95)

layer_3 (Conv2D)
activation: linear

bias_initializer_class_name: Zeros
data_format: channels_last

dilation_rate: (1, 1)
filters: 26

kernel_initializer_class_name: VarianceScaling
kernel_initializer_config_distribution: normal

kernel_initializer_config_mode: fan_avg
kernel_initializer_config_scale: 1.0

kernel_regularizer_class_name: L1L2
kernel_regularizer_config_l1: 0.0

kernel_regularizer_config_l2: 3.52765017197e-09
kernel_size: (1, 1)

name: layer_3
padding: same
strides: (1, 1)

input:

output:

(None, 105, 105, 57)

(None, 105, 105, 26)

layer_4_d (Dropout)
name: layer_4_d

rate: 0.105830350147

input:

output:

(None, 105, 105, 95)

(None, 105, 105, 95)

layer_5 (Conv2D)
activation: relu

bias_initializer_class_name: Zeros
data_format: channels_last

dilation_rate: (1, 1)
filters: 35

kernel_initializer_class_name: VarianceScaling
kernel_initializer_config_distribution: normal

kernel_initializer_config_mode: fan_avg
kernel_initializer_config_scale: 1.0

kernel_regularizer_class_name: L1L2
kernel_regularizer_config_l1: 0.0

kernel_regularizer_config_l2: 3.52765017197e-09
kernel_size: (3, 3)

name: layer_5
padding: same
strides: (1, 1)

input:

output:

(None, 105, 105, 95)

(None, 105, 105, 35)

merge_layer_3_layer_4_layer_5 (Concatenate)
axis: -1

name: merge_layer_3_layer_4_layer_5

input:

output:

[(None, 105, 105, 26), (None, 105, 105, 95), (None, 105, 105, 35)]

(None, 105, 105, 156)

layer_3_d (Dropout)
name: layer_3_d

rate: 0.386217054374

input:

output:

(None, 105, 105, 26)

(None, 105, 105, 26)

layer_5_d (Dropout)
name: layer_5_d

rate: 0.0309610304016

input:

output:

(None, 105, 105, 35)

(None, 105, 105, 35)

layer_2 (Conv2D)
activation: relu

bias_initializer_class_name: Zeros
data_format: channels_last

dilation_rate: (1, 1)
filters: 57

kernel_initializer_class_name: VarianceScaling
kernel_initializer_config_distribution: normal

kernel_initializer_config_mode: fan_avg
kernel_initializer_config_scale: 1.0

kernel_regularizer_class_name: L1L2
kernel_regularizer_config_l1: 0.0

kernel_regularizer_config_l2: 3.52765017197e-09
kernel_size: (3, 3)

name: layer_2
padding: same
strides: (1, 1)

input:

output:

(None, 105, 105, 156)

(None, 105, 105, 57)

layer_2_d (Dropout)
name: layer_2_d

rate: 0.135469530501

input:

output:

(None, 105, 105, 57)

(None, 105, 105, 57)

layer_2_mp (MaxPooling2D)
data_format: channels_last

name: layer_2_mp
padding: valid

pool_size: (2, 2)
strides: (2, 2)

input:

output:

(None, 105, 105, 57)

(None, 52, 52, 57)

(b) Topology of modules two and four.

Figure 7.4: Structures of the best module set discovered by CMTR. The two
species in CMTR evolve very di↵erent modules: one simple and one complex.
The thick boxes represent convolutional, medium max pooling, and thin dropout
layers, with hyperparameters listed on the left. This complementarity would be
di�cult to develop by hand, demonstrating the power of evolution in designing
complex systems.
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Figure 7.5: Structures of the best routing topologies discovered by evolution.
The routing topologies represent a range from simple to complex; similar
alphabets have similar topologies, and the structure is consistently found. Again,
such useful diversity would be di�cult to develop by hand, demonstrating the
power of evolution in designing complex systems.
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a module, defined as the length of the largest subsequence of pooling layers

between the input and that module, i.e., how much downsampling has been

performed. For each depth, there is a feature indicating how many modules are

used at that depth. For each module-depth pair, there is a feature indicating

how many times that module is used at that depth. Since there are four

modules and five depths, i.e., zero to four pooling layers can precede each

module, there are a total of 4 + 5 + 4⇥ 5 = 29 dimensions in the feature space.

Each dimension is then normalized across all topologies to have a mean of zero

and a variance of one. Although this featurization ignores much of the graph

structure of each topology, it incorporates the idea that di↵erent depths induce

qualitatively di↵erent pseudo-tasks.

A two-dimensional t-SNE (van der Maaten & Hinton, 2008) visualization

of the final topologies from a fifty-task run of CTR is shown in Figure 7.6.

Although the evolutionary process does incur a substantial amount of noise,

there is still evident structure. For example, the North American alphabets

are o↵ to the left, the Invented languages are towards the top, while the Asian

languages are towards the bottom. Such structure is intriguing, since alphabets

in the real world tend to develop incrementally by region and across regions

(Daniels & Bright, 1996), while CTR can incrementally exploit knowledge

accumulated across alphabets.

The topology embeddings were also compared to visual embeddings

of the alphabets themselves. Such embeddings of dimensionality 1024 were

generated using the MobileNet vision architecture pretrained on ImageNet
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Figure 7.6: Visualization of CTR topology embeddings. This figure
shows a t-SNE projection (van der Maaten & Hinton, 2008) of the featurization
of evolved topologies from a run of CTR on all fifty Omniglot tasks, colored
according to geography (including Invented alphabets in orange). Although
the evolutionary process does incur significant noise, there is still evident
structure. For example, the North American alphabets are o↵ to the left, the
Invented languages are towards the top, while the Asian languages are towards
the bottom. Such structure is intriguing, since alphabets tend to develop
incrementally by region and across regions, while CTR can incrementally
exploit knowledge accumulated across alphabets.

(Howard et al., 2017). The visual embedding for each alphabet was the mean

over that of all of its characters. The t-SNE projection of these visual alphabet

embeddings is given in Figure 7.7.

In order to compare the topologies and alphabets quantitatively, for

each alphabet, the nearest-neighbor alphabet was computed both respect to

topology and visual embedding using L1 distance. Out of the fifty alpha-

bets, there were three cases where the nearest neighbor was the same for

150



Figure 7.7: Visualization of CTR visual embeddings. This figure shows
a t-SNE projection of alphabets as in Figure 7.6, but using visual embeddings
for each alphabet produced via MobileNet, instead of using embedding derived
from evolved topologies. This projection has a structure similar to that in
Figure 7.6, although both European and Indian alphabets are more tightly
grouped. Overall, the organization is similar to that of 7.6, demonstrating that
similar topologies are discovered for similar alphabets.

both kinds of embedding: the nearest neighbor of Sanskrit was Gurmukhi,

a related Indian alphabet; that of Anglo-Saxon Futhorc was Early Aramaic,

both ancient cuniform-looking alphabets; and that of Atlantean was Futurama,

both alphabets invented for use in animated worlds. Note that there is less

than a 6% chance of seeing at least this number of matches (permutation test

by permuting alphabet labels). These connections between the topological

and visual representations suggest that CTR indeed captures intuitive visual

regularities.
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7.5 Discussion and Future Work

The experiments show that MTL can improve performance significantly

across tasks, and that the architecture used for it matters a lot. Multiple ways

of optimizing the architecture are proposed in this chapter and the results

lead to several insights. First, module architectures used in the joint multitask

model can be optimized, and their designs end up diverging in a systematic way.

Unlike in the original soft ordering architecture, evolution in CMTR results

in discovery of a wide variety of simple and complex modules, and which are

reused many times. Evolution thus discovers a useful set of building blocks

that are diverse in structure. Second, the routing of the modules matters. The

power of CTR is from evolving di↵erent topologies for di↵erent tasks, and

tying the tasks together by sharing their constituent modules. In addition,

sharing components (including learned parameter values) in CMTR is crucial

to its performance. If indeed the power from multitask learning comes from

integrating requirements of multiple tasks, this integration will happen in the

core functions that modules encode, so it makes sense that sharing plays a

central role.

There are several directions for future work. The proposed algorithms

can be extended to many applications that lend themselves to a multitask

setting. For instance, it will be interesting to see how it can be used to find

synergies in di↵erent tasks in vision, and in language. Further, as has been

shown in related work, the tasks do not even have to be closely related to

gain the benefit from MTL. For instance, object recognition can be paired
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with caption generation. It is possible that the need to express the contents

of an image in words will help object recognition, and vice versa. Discovering

ways to tie such multimodal tasks together should be a good opportunity for

evolutionary optimization, and constitutes a most interesting direction for

future work. One such approach to this problem is considered in Chapter 8.

7.6 Conclusion

This chapter presented EAs for optimizing the architectures of deep

multitask networks constructed from multi-purpose modules. They extend

upon previous work which has shown that carefully designed routing and

sharing of modules can significantly help multitask learning. The power of

the proposed algorithms is shown by dramatically improving performance on

an existing multitask learning benchmark problem. By discovering new ways

to use modules, and training them in these new locations, these architecture

search approaches increase their breadth of applicability. The next chapter

takes an orthogonal approach by enabling modules to be shared across diverse

kinds of architectures and problem areas.
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Chapter 8

Modular Universal Reparameterization

This chapter presents a final system for learning sets of generic functional

modules. This system solves two problems that limit the systems in previous

chapters: It scales many-module systems to complex modern architectures, and

it shares modules across diverse architectures and problem areas. Unlike the

systems in Chapter 7, the one in this chapter makes no changes to the functional

form of the underlying predictive model. Instead, it breaks the parameter set

for a model into parameter blocks, each of which is parameterized by a module.

As a result, the modules that are learned are fully generic, in that they can

be applied to any kind of architecture whose parameters can be chunked into

blocks of the given size. This generality enables sharing across problems of

di↵erent modalities, e.g., from vision to text to genomics, and di↵erent layer

types, e.g., from convolutions to LSTMs to fully-connected layers. The results

indicate that sharing can be beneficial in this setting, which opens the door

to future methods that accumulate vast knowledge bases over highly diverse

problems and indefinite lifetimes.
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8.1 Motivation

One of the grand promises of multitask learning is to provide a means

for sharing knowledge across seemingly disparate settings. The simple fact

that all tasks of interest have been generated from our world and formulated

in a way that makes sense to us is evidence that any set of real world tasks

could be practical to share across: They share these physical and human biases.

The idea that sharing should always be useful has been formalized from a

theoretical perspective (Mahmud & Ray, 2008; Mahmud, 2009). From a more

practical perspective, it is already possible to see how this knowledge is shared

when the same machine learning method is applied across a wide range of

problems. Knowledge is accumulated from one or more domains as the method

is developed, and the generalizability of this knowledge is demonstrated when

the method is successfully applied to further domains.

An especially striking instance of this generalizability has been the

recent dominance of broad swathes of machine learning problems by deep

neural networks. A standard deep neural network has many (often millions of)

free parameters, often allowing it to memorize training data exactly if trained

to complete convergence. However, the fact that, architecturally, di↵erent

variants of the same underlying components are successfully applied across the

board shows that this same “stu↵” that deep neural networks are made of is

very general. From this perspective, all standard deep learning approaches are

successfully performing multitask learning where the knowledge shared takes

the form of the topological components used to construct the models for each
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task. But is there more that can be shared beyond topological components

and training methods? This chapter investigates how we can learn more about

where the values of these many parameters come from, rather than simply

saying they can take on any values, which are separately determined for each

single-task model.

The perspective starts with the observation that the parameterization

of the vast majority of deep models is encoded as linear transformations. A

given model’s behavior is given by the the assembly of many of these linear

mappings into its architecture. Functional modules can parameterize these

linear mappings, and to make each module universally applicable to all pseudo-

tasks, a joint model is decomposed into equally-sized blocks of parameters

B` 2 Rm⇥n, each inducing a pseudo-task. Modules generate these parameters

by mapping a context associated with each location to the parameters for the

block at that location. Importantly, this reparameterization neither depends

on nor a↵ects the architecture of the underlying model. Thus, it provides a

clear framework for discovering modules that can be used across any problem,

in particular, across problems requiring qualitatively diverse architectures. The

remainder of this chapter describes the reparameterization in more detail, then

introduces and evaluates an algorithm for mapping modules to pseudo-task

locations across diverse tasks.
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8.2 Reparameterization by Hypermodules

Suppose you have T tasks {{xi, yi}Nt

i=1}Tt=1, with corresponding model

architectures {Mt}Ti=1, each parameterized by a set of parameters ✓M
t

. Suppose

each ✓M
t

can be decomposed into equally-sized parameter blocksB` of sizem⇥n,

and there are L such blocks total across all ✓M
t

. Then, the parameterization

for the entire joint model can be rewritten as:

T[

t=1

✓M
t

= (B1, . . . ,BL) (8.1)

That is, the entire parameter set can be regarded as a single tensorB 2 RL⇥m⇥n.

In the standard deep learning setup, each B` is parameterized separately. In

another approach, taken in this chapter, each B` is generated by a hypermod-

ule. This perspective draws from previous work on using hypernetworks to

reparameterize neural networks (Stanley et al., 2009; Ha et al., 2017).

8.2.1 Hypermodules

Associate with the `th block location a context vector z` 2 Rc. These

contexts contain the location-specific parameters that are not shared across

locations, analogous to the task-specific factors found in factorization-based

MTL methods (Argyriou et al., 2008; Kang et al., 2011; Yang & Hospedales,

2015, 2017), and task-specific parameters more generally. Suppose that we

also have a collection of K hypermodules U = {Hk}Kk=1, where Hk 2 Rc⇥m⇥n.

Finally, let  : {1, . . . , L}! U be a hypermodule mapping function that tells

us which hypermodule generates the parameters of the `th block. Then, the
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Figure 8.1: Hypermodule Parameter Generation. The parameters of a
parameter block B` are generated by applying a hypermodule Hk to the block’s
context vector z`. The blocks parameters are generated as the 1-mode (vector)
product of the hypermodule and the context. That is, instead of learning all of
its parameters independently, the block gets its parameters by tuning a generic
module to this particular location.

parameters of the model are generated by

B` =  (`) ⇥̄1 z` (8.2)

where ⇥̄1 denotes the 1-mode (vector) product of a tensor and a vector (Kolda

& Bader, 2009). Elementwise, this is written as

B`ij = h (`):ij, z`i (8.3)

In other words, the value at B`ij is the dot product between z` and the fiber in

 (`) associated with the (i, j)th element ofB`. A visualization of this generation

of block parameters via a hypermodule is shown in Figure 8.1. Notice that the 1-

mode multiplication could also be implemented as a transposed 2D convolution

when considering z` to be a single spatial pixel with c channels. However, in

practice it is more convenient and computationally e�cient to generate all B`

simultaneously as a batch matrix multiplication between (z1, . . . , zL) and the
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mode-1 matricizations of ( (1)(1), . . . , (L)(1)). This operation coupled with

an H` defines a functional module for this system.

Since each pseudo-task is associated with a single hypermodule, the

generation of parameters is block-sparse with respect to which parameters are

used at each location. This sparsity mirrors the desirable quality of discovering

e↵ective block-sparse matrices for grouping related tasks in the case of linear

multitask feature learning (Kang et al., 2011; Kumar & Daumé, 2012). Of

course, with this reparameterization, since all newly introduced operations are

di↵erentiable, the joint model can still be trained end-to-end with gradient

descent.

Through this reparameterization by hypermodules, the block decompo-

sition (Equation 8.1) can now be written as

T[

t=1

✓M
t

= [(H1, . . . ,HK), (z1, . . . , zL)] (8.4)

where ✓M
t

is the original parameter set for the tth task, Hk are hypermodules,

and z` are contexts, one of which is associated with each pseudo-task.

8.2.2 Decomposition of Common Neural Network Layers

This section gives concrete examples of how the parameters of a neural

network layer can be broken into equally-sized blocks, so that each block

parameterizes a linear transformation. The blocks for an entire network are

then just the concatenation of the blocks for each of its constituent layers. The

decomposition of the three layer types below are used in the experiments in
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subsequent sections in this chapter.

Fully-Connected Layers. The weight matrix of a fully-connected layer with

pm inputs and qn outputs characterizes a linear transformation W 2 Rpm⇥qn.

This matrix W can be broken into pq blocks of size m⇥ n. The (i, j)th block

then defines a linear transformation between the im to (i+ 1)m units of the

input space and the jn to (j + 1)n units of the output space. The final output

of the layer for each subset of output units jn to (j+1)n is the sum over all i of

the output of the (i, j)th block. Since these locations all join together to solve

a single problem, i.e., the problem the complete fully-connected layer solves,

it is understandable that they may be able to share information e↵ectively.

Indeed, previous work has shown that fully-connected layers often contain

redundant information that can be reduced or reorganized via other kinds of

reparameterizations (Stanley et al., 2009; Denil et al., 2013; Chen et al., 2015;

Cheng et al., 2015; Li et al., 2018).

Convolutional Layers. The case of convolutional layers is similar to the

case of fully-connected layers, with additional dimensions included, based on

the shape of the convolutional kernel defining the spatial field of the layer.

A convolutional weight tensor applies a distinct dense linear transformation

to each element in the spatial field, e.g., to each word token in the 1D case,

or to each pixel in the 2D case. The outputs of these linear transformations

are then aggregated over the entire spatial field. Each of the transformations
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can be viewed as solving the distinct but related task of: What outputs do I

want given that I am looking at this particular element of the spatial field?

Thus, the most natural way to decompose a convolutional weight tensor with F

elements in its spatial field is to decompose each of the F linear transformations

independently as in the fully-connected case. If the convolutional layer has pm

input channels and qn output channels, the resulting decomposition will have

Fpq blocks.

LSTMs. The parameters of an LSTM layer can be viewed as a tuple of

fully-connected layers, each of which solves a distinct but related purpose, e.g.,

how to process new input, update cell state, and produce updated output. Each

of these linear transformations can be broken down into blocks independently,

as in the case of the fully-connected layer.

From the three above examples, it should be easy to see how this

decomposition can be extended to other types of layers whose parameters are

grounded in linear transformations. The key idea is that the decomposition

does not care about the network overall or even individual layers, but works

at the level of decomposing the linear transformations that constitute the

core of the knowledge learned by and stored in the model. Of course, these

decompositions rely on the fact that for each linear transformation in the

layer, its input size is divisible by m and its output size is divisible by n. This

assumption is not unreasonable, since layer sizes in deep models often have
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many common factors, and can be adjusted to a minor extent with negligible

e↵ects on performance. In all experiments in this chapter this assumption is

met; however, it would even be reasonable to simply truncate any generated

parameters that do not fit into blocks of size less than m⇥ n. Other potential

solutions to this question are proposed in Chapter 9.

8.2.3 Parameter Initialization

In order to take advantage of the desirable features of the underlying

model, these features should be preserved when possible. One of these features

is parameter initialization. Historically, neural networks trained with back-

propagration have been very sensitive to initialization, and it has taken several

recent advances in theory and experimentation to develop simple, e�cient and

reliable initialization schemes (Glorot & Bengio, 2010; He et al., 2016).

Currently, the most popular method is to initialize each layer by de-

termining analytically an ideal variance �2 of parameters in that layer and

initializing the parameters from either a uniform or normal distribution with

variance �2 and mean 0. Suppose each block location is associated with a

distinct hypermodule H`. To enable reparameterization to strictly subsume the

original model parameterization, the parameters of H` 2 Rc⇥m⇥n and z` 2 Rc

should be initialized so that B`ij = hH`:ij, z`i (from Equation 8.3) is drawn

from the intended distribution. To avoid introducing unintended bias into the

models, H` and z` much each have i.i.d. initialization.

Notice that whenever c > 1, B`ij is the sum of two or more random
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variables. This fact immediately rules out the possibility of initializing B`ij

from a uniform distribution. However, it is possible to initialize from a normal

distribution, which is the standard initialization for the models used in the

experiment sections in this chapter. One solution is to initialize H` from a

normal distribution N(0, �2
o), and initialize z` to have constant magnitude |z|.

Specifically,

B`ij = hH`:ij, z`i ⇠ |z|cN(0, �2
o) = N(0, z2c2�2

o) = N(0, �2)

=) |z| = �

c�o
(8.5)

Given c and �, there is no unique satisfying choice for |z| and �o. However,

hypermodules would ideally be initialized independently of the locations in

which they are used: hypermodules should only contain generic information,

and all location-specific information should be contained in the context vector

associated with that location. So, all H` are initialized from the same normal

distribution N(0, �2
o), and each z` initialized accordingly with a potentially

distinct |z|.

Now, in the above formulation, z` can either be initialized with a

constant value z or uniformly at random from {�z, z}c. If  is initialized with

the same hypermodule used at multiple locations in the same layer, initializing

z` to be constant will cause some parameters of the layer to be initialized to the

exact same values, locking them into a symmetry that cannot be broken through

training, e↵ectively destroying some fraction of the model. For example, if the

model is initialized with a single hypermodule, similar to previous work on
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hypernetworks (Ha et al., 2017), the e↵ect on the model will be unrecoverable.

Initializing z` uniformly at random from {�z, z}c successfully avoids this pitfall

if c is large enough so that the chance of collisions is su�ciently low.

That said, in the experiments in this chapter, each location is always

initialized with a distinct hypermodule, so all z` can be safely initialized to be

constant, which avoids any unintended bias as to the a priori semantics of each

location. In particular, in the experiments in this chapter, all �2 and �2
o are

determined by He normal initialization (He et al., 2016), i.e., they are computed

based on the fan-in of the layer in which they are initialized. Although it

may seem pessimistic to initialize each location with its own hypermodule, the

analysis in Section 8.3.2 shows that this initialization need not induce slower

convergence to the optimal hypermodule mapping.

8.2.4 Ensuring Consistent I/O Semantics across Pseudo-tasks

For the same module to be successfully applied to di↵erent locations in

qualitatively distinct areas of the joint model, it is important that its inputs

always have the same meaning. For example, consider the possible pitfall that,

if there are two tasks that are equivalent except that their input spaces are

permuted, a model that works for one will not work for the other. This issue is

avoided by ensuring each task model has an input adapter and output adapter.

The input adapter maps the raw task input space to a space consistent with the

module set; the output adapter maps a space consistent with the module set

to the task output. These adapters are task or domain specific, so, to enable
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maximal sharing, they should have limited capacity. In the experiments in this

chapter, for vision tasks the input adapter is the initial convolutional layer with

m output channels; for language and genomic tasks, the input adapter is the

initial embedding layer with embedding dimension m. Similarly, the output

adapter for each task is simply the final fully-connected layer whose output is

the predictions for the task. Since these adapters are linear transformations,

they can capture any necessary permutations and scaling of inputs that enable

module cross-compatibility. Finally, note that between the input and output

adapters, the modules themselves are trusted to ensure input and output are

meaningful at each location. By evaluating the success of a model parameterized

by modules, it is possible to verify that the adapters and modules have indeed

avoided this pitfall successfully.

Input and output adapters contain domain-specific parameters that

are not included in ✓M
t

. In addition, there may be other model parameters

that are not convenient or practical to include in the reparameterization. For

clarity, these are left out of the formalization above. They can be considered as

additional adapters that make up a relatively small portion of the architecture

and parameter set. They help the system run smoothly, preserving structural

properties of the underlying model.

8.2.5 Model Complexity

Note that the parameter generation method given by Equation 8.2

makes no additional assumptions about the values of the parameters, aside
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from the fact that they are each some linear combination of the context. This

generality is in contrast to other tensor factorization approaches whose goal

is to show that a particular structure of tensor factorization can yield more

parsimonious representations (Long et al., 2017; Yang & Hospedales, 2017), and

means that the reparameterized model strictly subsumes the original (standard)

parameterization. If reparameterization is to achieve parsimony, it must do so

autonomously by reusing hypermodules e�ciently through optimizing  . By

reusing hypermodules, the system can reduce the number of total parameters

in the model. That is, the system may decide to reuse the same hypermodule in

multiple locations, which has the side-benefit of reducing the model parameter

complexity.

When rewritten as B in Equation 8.1, it is easy to see that the original

joint model has Lmn trainable parameters. When reparameterized as hyper-

modules, the model has Lc+Kcmn trainable parameters. In particular, the

reparameterized model has fewer parameters than the original only when

K <
L(mn� c)

cmn
<

L

c
(8.6)

which means that on average each hypermodule is used in c di↵erent locations.

However, when the model has been trained, any hypermodules used fewer than

c times can be replaced with the parameters they generate, thus never incurring

any increase of parameters due to redundant hypermodule capacity. Thus, the

model complexity at inference is never greater than that of the original model:

(L� Lo)c+Kcmn+ Lomn  Lmn (8.7)
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where Lo is the number of block locations parameters by hypermodules used

fewer than c times. Intuitively, more parameters should never be needed at

inference, since the reparameterization only provides another way of generating

the parameters ✓M
t

. The expressivity and functional form of the model at

inference is exactly the same as that of the original.

8.3 Theoretical Perspective on Optimizing
Module Mappings

The previous sections described how joint models can be decomposed

into blocks that are reparameterized by sets of hypermodules, and how the

parameters in the reparameterization can be learned through gradient descent.

There remains the question: How should hypermodules be mapped to block

locations? In other words, how can an optimal  be found? This section presents

an analysis of a simplified version of the problem from the perspective of the

(1 + �) evolutionary algorithm (EA), which is a relatively simple evolutionary

algorithm (stochastic global search) that is amenable to theoretical analysis

(Droste et al., 2002; Doerr et al., 2008; Doerr & Auger, 2011; Durrett et al.,

2011; Witt, 2013). The analysis extends existing convergence results of the

(1 + �)-EA on the Onemax problem (Doerr & Auger, 2011) to the case where

there are more than two options for each location, where multiple EAs are run

simultaneously, and where the number of possible values for each location is

not known a priori.

Section 8.3.1 analyzes the e↵ect that decomposing the problem into
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subproblems has on expected time to convergence to the optimal  . Section 8.3.2

demonstrates that the same asymptotic convergence rate can be achieved

without knowing the optimal number of hypermodules a priori. Together, these

results motivate the design of the practical algorithm presented in Section 8.4.

8.3.1 The Advantage of Problem Decomposition

Given that task architectures are fixed, the joint model is decomposed

into a fixed number of blocks L. Suppose that there are K available hypermod-

ules {Hk}Kk=1. Suppose there is a unique optimal  ?. This optimal solution

can be represented as a vector ( ?(0), . . . , ?(L)), where there are K possible

choices for each element of this vector. Suppose also that an ideal scoring

function h is known, where h( ) returns the Hamming distance between the

vector representations of  and  ?. Then, the problem of optimizing  is

equivalent to Onemax with K choices for every bit.

On a problem of optimizing a vector of length L with K possible values

at each location, with h a function that gives the utility (fitness) of a solution,

the (1 + �)-EA works as follow:

1. Initialize the current solution  0 uniformly at random over all LK possible

solutions.

2. Generate � new candidate solutions  1, . . . , �. Each candidate solution

is a copy of the current solution, but, for each location, set its value to a

new random value with probability p.
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3. Set  0 := argmax
 
i

(h( i)), with 0  i  �.

4. Go to step 2.

In other words, the current best is replaced whenever a better solution is

found, i.e., the h( 0) improves monotonically over time. So, this algorithm

is inherently a greedy algorithm. However, notice that compared to random

local search, in which each iteration alters a single location and checks for

improvement, the (1 + �)-EA is able to escape local optima by simultaneously

altering multiple locations. Further di↵erences between random local search

and the (1 + �)-EA have been documented in previous work (Doerr et al.,

2008).

The optimal value for p is 1
L
, and with it, the (1 + 1)-EA solves One-

max with binary values in O(L logL) time (number of iterations) with high

probability (Witt, 2013). This result can be straightforwardly extended to

show that in the case of K possible values for each location, the algorithm

converges in O(KL logL) time with high probability. In the cases of � > 1,

such convergence times are generally reduced by a factor of �.

The above analysis assumes that there is a single function h that gives

the score of the entire mapping function, i.e., a single score for the entire

multitask model. However, in the systems presented in Chapters 7 and 5,

the best performers were selected on a per task basis, using variations of the

(1 + 1)-EA. This is a natural choice, because each task produces a distinct

validation loss that indicates how well the model performed on that task.

169



Intuitively, this per-task decomposition should make optimization easier, since

the system is taking advantage of more detailed information, and is assigning

performance more precisely based on per-task performance than if a single value

were assigned to the joint model based on aggregated multitask performance.

But how much should per-task decomposition be expected to help in

theory? Suppose the model for each task is decomposed into Lt blocks, so

that
PT

t=1 Lt = L. For simplicity, assume Lt =
L
T
8 t. Similarly,  can be

decomposed into per-task subsolutions  1, . . . , T , and h into per-task scoring

functions h1, . . . , hT , such that ht( t) gives the hamming distance between

 t and optimal subsolution  t?. Then, each  t can be optimized with an

independent instance of the (1 + 1)-EA, all of which are run in parallel. Each

of these instances converges in O(KLt logLt) = O(KL(logL�log T )
T

) with high

probability, and so we can show that the expected time for all of them to

complete (equivalent to the time for the slowest of them to complete) is

O(KL(logL�log T ) log T
T

), when each location is mutated with probability T
L
. This

is because the CDF of the runtime for the (1 + 1)-EA is dominated by the

CDF of an exponential random variable with mean O(L logL) (Witt, 2013),

and the maximum of T i.i.d. exponential random variables with mean 1
⇢
is

H
T

⇢
, where HT is the T th harmonic number

PT
t=1

1
t
= O(log T ) (Eisenberg,

2008). The factor of T
log T

speedup compared to the non-decomposed runtime

of O(KL logL) yields tremendous speedups for large T . In particular, when

the number of locations per task L
T
is relatively small, as in the experiments in

Chapters 7 and 5, this convergence rate is satisfactory and practical.
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However, in the block decomposition considered in this chapter (Equa-

tion 8.1), L
T
can grow large as the approach is scaled. For example, in the

experiments in Section 8.7, T = 3 and each task is decomposed into thousands

of blocks. In this case, the factor of L
T
becomes the bottleneck: The algorithm

will be impractically slow even when K is small, i.e., even when the set of

hypermodules is su�ciently compact. How can this bottleneck be addressed?

Note that each location in the block decomposition of the joint model

defines a pseudo-task. So, if the problem were decomposed into L pseudo-tasks,

each of length 1, the expected runtime would be reduced to O(K logL), when

each location is mutated at every step. Similar to the case with T tasks, this is

because the expected value of maximum of L geometric random variables with

mean 1
⇢
is also O(⇢ logL). Importantly, now L only shows up as a log factor,

making it highly scalable to large models with relatively small blocks. The

di↵erences in convergence time between the non-decomposed, task-decomposed,

and block-decomposed algorithms are summarized in Table 8.1.

Thus, decomposing the optimization problem by pseudo-task can make

a big di↵erence The question is how to come up with functions that provide

an accurate assessment of the utility of hypermodules at each location, i.e.,

approximations of ideal location-specific score functions h`. The Section 8.4

presents a practical solution to this problem.
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Decomposition Level Convergence Time Speedup over None

None (Multitask) ⇥(KL logL) 1

Per-task (Single-task) ⇥(KL(logL�log T ) log T
T ) ⇥( T

(logL�log T ) log T ) = ⌦( T
log T )

Per-block (Pseudo-task) ⇥(K logL) ⇥(L)

Table 8.1: Runtime Complexity of Optimizing Hypermodule Map-
ping. This table gives the expected time to convergence of the (1 + 1)-EA
on the problem of finding the optimal mapping of L block locations to K
hypermodules, in a joint model containing T tasks. These theoretical results
assume an ideal scoring function described in Section 8.3. The runtime of
per-block decomposition (which assigns fitness to hypermodule mappings at the
granularity of single-block pseudo-tasks) scales logarithmically as the number
of blocks in the joint model increases, providing significant speedup.

8.3.2 Determining the Optimal Number of Hypermodules

Decomposing the optimization problem by location as described above

dramatically reduces the dependence of the runtime on L. However, when the

number of hypermodules K is large, the probability of a location selecting the

correct hypermodule in a mutation becomes small, and this becomes the major

bottleneck in optimization.

In general, the optimal number of hypermodules is not known a priori,

so it is necessary to allow for the worst-case possibility that L hypermodules

are required, i.e., the system is initialized with a distinct hypermodule at every

location. Initializing with a distinct hypermodule at each location also satisfies

the parameter initialization conditions discussed in Section 8.2.3. To enable

this initialization feature, while preserving convergence rates, new candidate
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hypermodules are selected from a dynamic distribution at each location. This

distribution corresponds to the likelihood that each hypermodule would be

correct for a new location.

Consider again the case where the problem is fully decomposed into

pseudo-tasks by location, so that L instances of the (1 + 1)-EA are run in

parallel. Suppose  is initialized such that  (`) = H`, with all H` distinct, and

that  ?(`) = H1 8`. Now, suppose that during a mutation each hypermodule

is selected with probability proportional to the number of times it is used in

the current  . Then, the expected time for the algorithm to converge to  ?

is O(logL), i.e., it is asymptotically equivalent to the case from Section 8.3.1

where K is fixed to be constant.

The proof proceeds as follows. Let Wi be a variable tracking the number

of locations whose hypermodule is wrong at iteration i. Now, W0 = L � 1,

since the first location has its hypermodule initialized correctly. Let Wi+1 be

the expected number of locations whose hypermodule is incorrect at iteration

i+ 1 given that Wi are incorrect at iteration i. Then,

Wi+1 = Wi(1�
L�Wi

L
) =

W 2
i

L
, (8.8)

which yields a closed form for Wt:

Wt =
1

L
(. . . (

1

L
(
1

L
(L� 1)2)2) . . .)2 =

(L� 1)2
t

L2t�1
. (8.9)

If there is at most 1 incorrect location, optimizing this final location clearly

takes constant time. The goal is then to find t such that Wt < 1:

Wt =
(L� 1)2

t

L2t�1
= L(

L� 1

L
)2

t

< 1 (8.10)

173



=) (
L� 1

L
)2

t

<
1

L

=) 2t < logL�1

L

1

L
=

ln 1
L

ln L�1
L

<
ln 1

L

� 1
L�1

= L lnL� lnL < L lnL

=) t < log (L lnL) < log (L logL) = logL+ log logL

=) t = O(logL) . (8.11)

Since the expected time for the algorithm to get from Wi to Wi+1 is one

iteration, and it converges faster when there are fewer errors, the sum of the

expected times to cross each of the t thresholds, is an upper bound on the

expected runtime of the algorithm.

This observation that the number of necessary hypermodules can be

discovered automatically during optimization lends itself to more realistic

cases considered in the remainder of this chapter, where very little about the

underlying modular structure of a problem may be known a priori.

8.4 Integrated Algorithm for Hypermodule
Mapping and Learning

This section presents a practical implementation of the system based

on the observations above. First, a method of selection at the location level is

presented. Then, this selection method is integrated into a complete stochastic

algorithm for optimizing  while simultaneously learning the trainable param-

eters. The complete algorithm is then applied to a suite of problems in the

subsequent three sections.
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8.4.1 The Softmax Surrogate Fitness for Hypermodules

Section 8.3 showed that evaluating the performance of  at the granular-

ity of particular block locations could in theory give a huge advantage in terms

of convergence speed, especially when the number of locations per task is large.

Evaluating performance at each location requires a utility metric, or fitness,

associated with each location, and using metrics based on validation perfor-

mance can only be applied at the granularity of tasks. The solution adopted

is to have the model indicate its hypermodule preference directly through

backpropagation, by learning a softmax distribution over hypermodules at

each location. The approach is based on the same soft-merge module-mixing

mechanism used in Chapters 6 and 7.

Say that at a given point in time, there are Q + 1 active mapping

functions { q}Qq=0, each associating with each location a corresponding potential

hypermodule  q(`). Through backpropagation, these hypermodules compete

at each location by generalizing the parameterization of B` (Equation 8.2) to

include a soft-merge operation over hypermodules:

B` =
QX

q=0

 q(`) ⇥̄1 z` · softmax(s`)q (8.12)

where s` 2 RQ+1 is the vector of soft weights associated with the `th location

that induces the probability distribution over hypermodules. Through training,

when interpreted as a probability distribution, the learned value of softmax(s`)q

is the model’s belief that  q(`) is the best option for location ` out of the

current choices { q(`)}Qq=0. A visual depiction of this competition between
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Figure 8.2: Competition Between Hypermodules. This figure depicts the
competition between hypermodules for being selected for a particular location,
i.e., to parameterize a particular blockB within weight matrixW in the original
model. Here, z is the context vector associated with B which is mapped to
candidate parameter blocks by hypermodules  q(`). These candidate blocks
are mixed by a soft sum based on the model’s belief that each hypermodule is
the best for this location out of the current Q+ 1 options.

hypermodules is given in Figure 8.2. In particular, the estimate of the best

hypermodule for the `th location at any given time is  argmax s
`

(`). Identifying

this current best hypermodule at each location is a key component of the

complete iterative algorithm introduced in the next section.

In order for the model to learn its hypermodule preferences reliably and

quickly, a special learning rate ↵s is associated with the learning of these soft

weights. This rate is distinct from the learning rate ↵ associated with the rest

of the parameters in the model. In the experiments in this chapter, setting ↵s

two orders of magnitudes larger than the learning rate of the rest of the model

yields reliable and satisfactory results.
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8.4.2 Evolutionary Optimization of Hypermodule Mappings

Using the soft-merge hypermodule-mixing selection function described

above, a complete algorithm can be constructed for optimizing  while simul-

taneously learning the model parameters. Every iteration the algorithm will

sample a set of possible alternative hypermodules to use at some fraction of

block locations and then train with backpropagation until the best of these

alternatives is identified. At a high level, the algorithm is described as follows:

1. Initialize U = {H`}L`=1, {z`}L`=1, and  =  0 with  (`) = H`, and

initialize any other non-sharable model parameters.

2. Set  q :=  0 8 q = 1, . . . , Q, and set s` = 0 8 `.

3. Select dpLe locations from {1, . . . , L} without replacement (p 2 (0, 1]).

4. For the ith of these dpLe locations, select Q hypermodules at random as

the new values of  1(i), . . . , Q(i). To randomly select a hypermodule,

with probability ✏ create a new hypermodule, and with probability 1� ✏

select an existing hypermodule with probability proportional to the

number of times it is currently used.

5. Train the joint model for a fixed number of steps, based on Equation 8.12.

6. Evaluate the model on the validation set for each task.

7. Set  0(`) :=  argmax s
`

(`) 8 `.

8. If not the final iteration, go to step 2.
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9. Revert the state of the system (including parameters) to the state when

the best validation performance was achieved, and continue training from

there until convergence.

Additional details for these steps are given below:

Soft Weight Reinitialization. At every iteration, the soft weights S are

all reinitialized to 0. This reinitialization associates with each hypermodule

at each location the same initial softmax probability of success, and avoids

aggregating bias over iterations.

More generally, to control the smoothness of evolution and reduce the

shock of mutations, as in Chapter 7, we can set the initial probability of new

candidates to something small. Then, our bias is towards not accepting new

candidates, since the current winner has already demonstrated its relative value.

Say, we would like to allocate probability ↵ evenly over all Q new candidates

for each location `. Fix s`0 = 0. Then, for 0 < q < Q,

softmax(s`)q =
↵

Q
=) s`q = ln↵� lnQ� ln(1� ↵) (8.13)

So, by initialization s`q to this value, we can achieve the desired behavior.

Selecting dpLe Locations. In the highly simplified theoretical case discussed

in Section 8.3, it is clear that all locations should be selected at every iteration,

since that allows the fastest exploration and optimization of the static, noiseless

problem. However, in the real problem, there may be noise in evaluation, and
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the changing use of hypermodules in other locations will have a dynamic e↵ect

on the performance of a particular hypermodule at the `th location. Therefore,

in the experiments in this chapter, p is set to be less than one, in order to

give more stability to the system to make the optimization process smoother.

Although setting p = 1 did yield interesting and acceptable results in some

cases, setting p = 0.5 yields reliably strong performance across all problems

tried.

Selecting Hypermodules at Random. The distribution for selecting new

hypermodules for a location is motivated by the analysis given in Section 8.3.2.

Selecting hypermodules at random according to the distribution specified in

Step 4 ensures that hypermodules that work well in many places can have

their use spread quickly through the model. In other words, the distribution

corresponds to the likelihood that each module is best for a given location about

which there is no prior knowledge. This bias makes it possible to start with a

parameterization equivalent to the original model, i.e., where each location is

associated with a unique hypermodule, and then automatically collapse and

group the set of hypermodules as regularities are discovered which can be

exploited. The creation and selection of a new hypermodule with probability ✏

allows the model to avoid getting stuck, since the noisy and dynamic evaluation

cannot guarantee that the current set of actively used modules is a superset of

the optimal set of modules. In the experiments in this chapter, ✏ is always set

to 10�4. Taking a random action with probability ✏ to avoid local optima is
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related to the ✏-greedy approach in reinforcement learning (Sutton & Barto,

1998).

Notice also that in this algorithm, if there is a time when a hypermodule

is not actively used at any location, then it will have zero probability of ever

being used again, i.e., it has been permanently deleted. Deletion makes sense

as long as all potentially useful task models are considered when tabulating

hypermodule usage: If a hypermodule is not useful anywhere, it should not be

preferred over a new randomly initialized hypermodule. The maximum number

of distinct hypermodules that can be in use at any time is L. By initializing

the system with L modules, and allowing these deletions, the system can

automatically determine the optimal number of modules during optimization.

Training. In all experiments in this chapter, backpropagation training is

performed using Adam with the default learning rate of 0.001 (Kingma & Ba,

2014). The models were implemented using the PyTorch framework (Paske

et al., 2017).

Evaluation Step. Notice that the evaluation Step 6 plays no role in the opti-

mization of  . It is only used to track training progress, and for early stopping

when returning the final model, i.e., parameters for all hypermodules, contexts,

and  =  0. This disregard for validation performance is in stark contrast to

other methods that combine deep learning and evolution by making validation

a crucial point of the optimization process: performing back propagation with
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the training data and basing fitness for evolution on validation performance.

Updating  0. Note that the method for generating new hypermodule options

at each locations does not forbid multiple copies of the same hypermodule to

be used as candidates at a single location. If such duplication occurs, through

training the model will converge to assigning equal probability to each copy.

So, the score for this hypermodule is the sum of these equal probabilities, since

this sum is the total belief that this hypermodule is best.

Final Training. The final training performed at Step 9 is designed to allow

the model to perform final tuning without the shocks and noise of adding and

removing hypermodules. This final tuning may or may not yield improved

performance over that achieved during evolution; it is always useful to include

for completeness.

8.5 Experiments: Synthetic Dataset

The first set of experiments is on a synthetic dataset on which it is easy

to illustrate and analyze the behavior and performance of the approach. Once

the intended behavior is confirmed in this dataset, the approach can be applied

to real world problems. Summary characteristics of the problems considered in

this and subsequent sections are given in Table 8.2.
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Section Dataset Architecture Core Layer Raw Params. Blocks
8.5 Synthetic Linear Dense 20⇥ 30 1⇥ 30
8.6 MNIST Small Conv Conv-2D 15K 49
8.6 IMDB Small Conv Conv-1D 171K 40
8.6 CRISPR DeepBind Conv-1D 7K 26
8.7 CIFAR-10 WideResNet Conv-2D 0.59M 2268
8.7 Wikitext-2 Stacked RNN LSTM 9.60M 4096
8.7 CRISPR 1layer 256motif Conv-1D 1.64M 6400

Table 8.2: Problem Summaries for Universal Reparameterization.
This table summarizes the problems considered in experiments for reparameter-
ization by hypermodules. The experiments begin with small models, and are
scaled up in two steps. Importantly, the problems cover qualitatively di↵erent
model architectures (Fully-connected vs. 1D Convolutional vs. 2D Convo-
lutional vs. LSTM), input domains (Vision, Text, Genomic, and arbitrary
Unstructured Features), and target metrics (Accuracy vs. Perplexity vs. MSE).
With these diverse characteristics, the generality of the method introduced
in Section 8.4 can be demonstrated. Note that models with non-dense core
layer type may also contain reparameterized dense layers. Also note that a big
source of the di↵erence in size between the NLP models and the other models is
the high number of parameters in the word embedding (input adapter) layers.

8.5.1 Domain Descriptions

The synthetic dataset was first introduced as a toy problem for linear

multitask learning approaches (Kang et al., 2011), and was used in subsequent

work on modeling task overlap (Kumar & Daumé, 2012). The dataset is

designed to capture an ideal situation in multitask feature learning, that is,

methods that take a factorization approach. Thus, it is a perfect problem for

our approach of factoring linear blocks into contexts and hypermodules.

The dataset consists of 30 linear regression tasks. Each task has the

same 20-dimensional input space, and 1-dimensional output, so no input or
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output adapters are needed. Each task has 15 randomly generated training

samples, and 50 randomly generated test samples. The outputs for these

samples are generated by multiplying a random input vector by the true

underlying parameter vector for the task. The goal for each task is to minimize

the root mean squared error (RMSE) on the test set. The overall goal for the

problem is to minimize the average RMSE aggregated over all tasks. The tasks

are grouped into three groups of ten tasks each. The underlying parameter

vector for tasks within a group di↵er only by a scalar factor. Since the number

of training samples for each task is less than the input dimensionality, each

task cannot be solved accurately without drawing the connection between its

parameters and the parameters of other tasks in its group. The experiments in

this chapter implement early stopping, and a random five of the 15 training

samples for each task is withheld as validation data. This withholding of

validation data was not done in previous work, and makes the setup slightly

more di�cult.

In this section, two versions of the problem are considered, one in which

Gaussian noise has been added to all sample outputs, and one in which no

noise is added. The noisy case corresponds exactly to the dataset introduced

by Kang et al. (2011). The noiseless case uses exactly the same sample inputs

and underlying parameter vectors, but does not add Gaussian noise to the

outputs. Clearly, the noisy case is more di�cult. The noiseless case is included

to demonstrate the behavior of the approach in an ideal setting.
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8.5.2 Model Description

As in previous work, the model for each task is a linear regression

model parameterized by a single 20-dimensional vector. In the baseline single-

task case, these vectors are parameterized and trained independently. In the

reparameterization case, c = 1, and each task is reparameterized using a

single hypermodule of dimension 1⇥ 20⇥ 1, which is su�cient to capture the

structural regularity within a group of tasks. So, per the algorithm described

in the previous section, the system is initialized with 30 hypermodules, and

over iterations it should converge to using only three, i.e., one for all tasks

within each group. As an upperbound on performance, an Oracle comparison

is included, in which  is fixed to the perfect mapping corresponding to the

true groups.

8.5.3 Noiseless Domain Results

The convergence of the mapping to the true underlying grouping is

summarized in Figure 8.3. Evolution quickly converges to the true underlying

grouping. A more detailed visualization of how the mapping converges is

given in Figure 8.4. This optimal convergence yields optimal performance with

respect to test loss. The test losses for evolution along with comparisons are

given in Table 8.3. Along with Oracle, Evolution achieves a perfect test loss,

showing dramatic improvement over the other baselines. These results all show

that the algorithm works as expected in this ideal domain. Importantly, these

results show that the softmax surrogate fitness function is e↵ectively serving
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Figure 8.3: Grouping Convergence. This figure shows the convergence of
the mapping to the correct underlying grouping for the noiseless version of
the synthetic dataset. The group score for a task is 0 if its hypermodule is
used by no other tasks; 1 if it is used by at least one other task and all such
tasks are in its underlying group; and -1 otherwise, i.e., if the task uses the
same hypermodule as a task not in its true group. The total grouping score
is the sum over all task scores. Thus, the maximum possible score is 30. In
this problem, evolution quickly converges to the optimal grouping and remains
there indefinitely. Likewise, the number of hypermodules used by the system
quickly converges to 3, the true number needed.

Method Test MSE

Single Task 2.873
Random Search 1.537
Oracle 0.000
Evolution 0.000

Table 8.3: Synthetic Noiseless Results. Evolution achieves a perfect test
loss equivalent to that of the perfect fixed (Oracle) grouping. This is a dramatic
improvement over Single Task (i.e., separate hypermodule for each task), and
Random Search, which is equivalent to evolution, except every iteration each
hypermodule receives a random fitness instead of the softmax surrogate fitness.
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Figure 8.4: Visualizing Convergence. This series of images shows the
progression of convergence of  on the synthetic dataset. Each color corresponds
to a distinct hypermodule. The color shown at each location is the hypermodule
currently in use for that task. At generation 59 and beyond, the model remains
at the optimal solution indefinitely.
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Method Test RMSE

STL (Kang et al., 2011) 0.97
DG-MTL (Kang et al., 2011) 0.42
GO-MTL (Kumar & Daumé, 2012) 0.36

STL (ours) 1.31
Evolution (ours) 0.38
Oracle (ours) 0.37

Table 8.4: Synthetic Noisy Results. Evolution provides a substantial boost
over the baselines in this domain, with results on par with the best known
from the linear MTL literature. The fact that our Single Task Learning setup
performs poorly and Oracle does not do quite as well as the best previous work,
suggests the di↵erence is due to a feature in the setup, e.g., using a validation
set, or lack of L2 regularization. Note also that Evolution learns the number of
groups automatically, whereas in the previous work it was fixed.

its purpose of determining the value of hypermodules at each location.

8.5.4 Noisy Domain Results

Now that the algorithm is shown to work as expected in the noiseless

case, it will be tested with noise, which is more in line with real-world problems.

The performance results for the noisy case are shown in Table 8.4. Again,

evolution gives a substantial improvement over the baselines, on par with

the best known results in the linear MTL literature for this domain. Note

that this performance is achieved despite di↵erences in the setup that make

generalization more di�cult: withholding data for validation and absence of

L2 regularization.
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8.6 Experiments: Cross-modal Multitask Learning
(Scale-up 1)

In this section, the algorithm is applied to a set of standard benchmark

problems with highly diverse modalities: The system jointly trains a vision

model, an NLP model, and a genomics model. The models used for each task are

relatively small, permitting rapid testing and analysis. However, by consisting

of tasks from these disparate modalities, these experiments demonstrate the

ability of the system to train across highly-diverse tasks and architectures.

8.6.1 Domain Descriptions

In this section, models are jointly trained for three tasks, each of a

distinct modality.

MNIST. The dataset for MNIST is the same one used for experiments

in Chapter 6. The main di↵erence is that the problem is taken as a single

multi-class classification task with ten classes, one for each digit, which is the

standard setup for MNIST. Five thousand random samples are withheld from

the training set for validation. The goal is to minimize multi-class error. Also,

for consistency with previous work, and to prevent overfitting, the dataset is

augmented by padding images to 30⇥ 30, and performing random crops during

training (Ha et al., 2017).

IMDB. The IMDB movie review sentiment classification dataset is the same

one used for experiments in Chapter 5 (Maas et al., 2011). The main di↵erence
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is that the vocab size is capped at 5,000 words, and the maximum input

sequence length is 400 instead of 80. The sequence length is longer because

a convolutional model is used instead of an LSTM model, so increasing the

input length has a negligible a↵ect on computational cost on GPU, and there

is less of problem of overfitting to long reviews.

CRISPR. The third dataset is a private genomics regression dataset. The

dataset consists of the propensity of a CRISPR protein complex with a given

guide RNA molecule to bind to specific locations in the reference human

genome (Jung et al., 2017). The regression problem is to predict this binding

a�nity at each location. This is an important problem in genetic engineering

and personalized medicine, since it gives the risk of using a particular protein

complex and guide RNA on a particular human. When using the technology,

there is one particular (target) location that is intended to be cut out by the

CRISPR complex, so that this location can be edited. If the complex makes

other (o↵-target) cuts, there may be unintended consequences. Predicting the

binding a�nity at o↵-target locations gives an assessment of the risk of the

procedure. More interestingly, having an accurate regressor for this problem

would enable a method of selecting an optimal guide RNA that minimizes risk

for a particular genome. The experiments in this chapter focus on building

an accurate regression model; the guide RNA design problem is left as future

work, which will require further physical experiments.

In the dataset there are reported binding a�nities for around 30 million
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base pair (bp) locations in the genome. From these raw binding a�nities, a

dataset is constructed by taking windows of length 200bp centered around

sequences for which there is data. The data at each bp location is represented

as a one-hot vector of length five: four for the four bases (A, C, T, G) and

one for the null base (N), which indicates that there was no base pair reported

for this location in the reference human genome. The goal of the model is

to predict the binding a�nity at the central location. With the motivation

that big errors for this problem are much more significant than small ones,

the loss to minimize is mean squared error (MSE). The samples for the 30

million total base pairs are split into training, validation, and test sets so that

no sets have any of their input windows overlapping with another split. With

this constraint, the samples are split uniformly at random. Approximately one

million samples are withheld for validation, and one million for testing.

8.6.2 Model Description

Hypermodules. The context size for each location is set to c = 4, and the

block size is set to m ⇥ n = 16 ⇥ 16, so each hypermodule has dimension

4 ⇥ 16 ⇥ 16. These values were chosen to coincide with previous known

satisfactory settings used in the case of hypernetworks (Ha et al., 2017). Also,

for the task models described below, 16 ⇥ 16 is the largest block size that

cleanly divides the weight kernels of all sharable layers.
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MNIST: 2D Convolutional Vision Classifier. The model for MNIST is

one used in previous work to validate the behavior of hypernetworks (Ha et al.,

2017). The model has three layers of weights. The first is a 2D convolutional

layer that maps the single-channel gray-scale image to a space with 16 channels.

This layer is the input adapter (as described in Section 8.2.4). The second is a

2D convolutional layer with 16 output channels and a 7⇥ 7 spatial kernel. This

layer is the only one that is decomposed into blocks for reparameterization;

the kernel is decomposed into 49 blocks, each of which yields a mapping to

all output channels that depends only on a view of a single spatial location.

The third is a fully-connected layer that maps the output of the second to a

softmax over digit classes. This layer is the output adapter.

IMDB: 1D Convolutional Text Classifier. The task model for the IMDB

sentiment classification problem is based on the o↵-the-shelf Keras example

convolutional model for this problem (Chollet et al., 2015). The model begins

with a standard word embedding layer, which maps words in the vocabulary

to embeddings of size 32. This first layer is the input adapter. This layer is

followed by a 1D convolutional layer with kernel size 3 and 64 output channels.

This convolutional layer is followed by a fully-connected layer with output

size 64. Finally, a fully connected layer maps the output of the third layer

to a single sigmoidal unit that indicates the probability of a review being

positive or negative. This final layer is the output adapter. All layers aside

from the input and output adapters have their weight kernels reparameterized
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by hypermodules. The reparameterization results in a total of 40 blocks for

this model.

CRISPR: DeepBind Genomics Regressor. The model for the CRISPR

binding regression problem is the DeepBind model, which was introduced as

a deep learning solution to protein binding problems (Alipanahi et al., 2015).

In form, it is similar to the convolutional model used for IMDB. The model

begins with an embedding layer, that matches each of the five elements of the

vocabulary (A, C, T, G, N) to 16-dimensional embeddings. The second layer

is a 1D convolution with kernel size 24, and 16 output channels. The third

layer is fully-connected with 32 hidden units. The final layer is fully-connected

with a single output that outputs the predicted binding a�nity. The middle

two layers can be reparameterized by hypermodules, while the outer two are

adapters. Thus, when reparameterized, the model is decomposed into 26 blocks.

Notice that the 1D kernel size of 24 is much larger than is regularly seen in

NLP, thus making this model qualitatively distinct from 1D convolutional text

classifiers, although the topological components are the same.

8.6.3 Results

Performance results and comparisons for the tasks and models used in

this section are given in Table 8.5. Although the single task baseline does best

for MNIST, both versions of evolution outperform the baseline on IMDB, and

multitask evolution outperforms the baseline on CRISPR. This indicates that
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Method MNIST % Err. IMDB % Err. CRISPR MSE

Single Task Baseline 0.77 14.34 0.1549
Intra-task Evolution 1.13 13.90 0.1557
Multitask Evolution 0.91 14.15 0.1545

Table 8.5: Scale-up 1 Performance Summary. This table reports the test
set results for each of the three tasks and models used in the experiments in
this section. Although the single task baseline does best for MNIST, both
versions of evolution outperform the baseline on IMDB, and multitask evolution
outperforms the baseline on CRISPR.

by sharing modules with other modalities, the CRISPR model learns functions

that generalize better.

8.7 Experiments: Cross-modal Multitask Learning
(Scale-up 2)

This section applies the algorithm to a larger cross-modal multitask

learning problem. There is still one vision task-model pair, one text, and one

genomic, but with thousands of blocks per task instead of tens. The domains

and models are described below, followed by experimental results and analysis.

8.7.1 Domain Descriptions

CIFAR-10. The standard CIFAR-10 multiclass image classification bench-

mark problem is used (Krizhevsky, 2009). The dataset consists of 50,000

training images and 10,000 test images. Of the training images, 5,000 are ran-

domly withheld for validation. Data augmentation is performed as in previous

work, with random crops and horizontal flips (Ha et al., 2017).
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Wikitext-2. Wikitext-2 is a standard language modeling problem (Merity

et al., 2016). Preprocessing is performed as in previous work (Zaremba et al.,

2014). The dataset consists of 2,551,843 total word tokens, 2,088,628 reserved

for training, 217,646 for validation, and 245,569 for testing. Since the dataset

is relatively clean in terms of language quality, all words are included in the

vocabulary, for a total of 33,278 words. As is standard for language modeling

problems, the target metric for the model to minimize is perplexity, which is

the exponentiation of cross-entropy loss averaged over all test samples.

CRISPR. The CRISPR regression dataset is the same one used in the

previous section. Because this is the first work that approaches this dataset

with deep learning, it is included in both the small and large cross-modality

experiments. This inclusion helps to give a more complete picture of what is

possible on this problem.

8.7.2 Model Description

Hypermodules. The hypermodules used in this section have equivalent form

to those used in the previous section, i.e., they have dimension 4⇥16⇥16. Since

the task models used in this section are larger, they will each be parameterized

by many more hypermodule usages (around two orders of magnitude more

overall).

CIFAR-10: WideResNet Vision Classifier. WideResNet has been es-

tablished as an e↵ective, relatively simple, and computationally e�cient vision
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model in the last couple of years (Zagoruyko & Komodakis, 2016). It was

developed specifically for CIFAR and ImageNet. Due to its relative simplicity,

it is a good underlying model for experimentation, and has been used for

previous work on hypernetworks (Ha et al., 2017). WideResNet defines a family

of vision models, each defined by a depth parameter N and a width parameter

k. The model considered in this section has N = 6 and k = 1, which has 40

layers and is known as WideResNet-40-1. This model is the smallest (in terms

of parameters) high-performing model in the standard WideResNet family.

This model was used in previous work on hypernetworks as well. As in the

case of the 2D convolutional vision model for MNIST in the previous section,

the first and last layers of the model are reserved as input and output adapter

layers, respectively. All remaining intermediate convolutional layers can be

reparameterized by hypermodules, yielding a total of 2268 blocks.

Wikitext-2: Stacked LSTM Language Model. The model for Wikitext-

2 language modeling is the standard stacked LSTM language model (Zaremba

et al., 2014). This standard model has one main parameter, LSTM size. In

general, increasing the size improves performance. The standard LSTM sizes

are 200, 650, and 1000. In order to make the LSTM weight kernels divisible

by the output dimension of hypermodules, the experiments in this section use

an LSTM size of 256. As in the case of IMDB, the model begins with a word

embedding layer, mapping each word in the vocabulary to a vector of size

256. The embedding layer is followed by a stack of two LSTM layers, each
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of size 256. The second LSTM layer is followed by a fully connected layer

mapping its output to a softmax over the vocabulary. The LSTM layers can

be reparameterized by hypermodules, yielding a total of 4096 blocks.

CRISPR: Large 1D Convolutional Genomics Regressor. The model

used for the CRISPR dataset in this section was developed as an extension of

DeepBind as part of a more exhaustive architecture search for deep models for

genomics problems (Zeng et al., 2016). That work found that simply widening

the DeepBind model to 128 filters instead of 16 gave the best results; the id

for the model is “1layer 128motif”. Widening this model even further to 256

in the experiments in this section, and increasing the number of units in the

subsequent fully-connected layer to 256 improved performance even further

in the case of the CRISPR dataset, because of its scale and noise. So, the

model, called “1layer 256motif”, has equivalent topology to DeepBind, but

with larger layer sizes. Specifically, the output size of the embedding layer, the

number of output kernels in the convolutional layer, and the output size of the

first fully-connected layer are all increased to 256. The increased capacity is

useful for fitting this large and noisy dataset. There are 6400 blocks in the

decomposition of this model.

8.7.3 Results

For each of the task-architecture pairs, a chain of comparisons were

run, with increasing generality: a baseline run that simply trained the original
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architecture; an intratask run that applied MUiR evolution via block decom-

position of a single model; a cross-modal run across a pair of tasks for each

of the two remaining tasks; and a cross-modal run across all three tasks. The

performance in the tasks considered in this section is given in Figure 8.5. The

results are similar to those in the previous section. In particular, evolution

outperforms the baselines except on the vision problem. Although cross-modal

sharing does not improve performance on CIFAR, the performance in the other

tasks improve whenever they are trained jointly with CIFAR. This may be

because the pseudo-tasks in the CIFAR WideResNet model are more diverse

than those in the other models. That is, the DNA and text models consist of

relatively few parameter tensors, within which blocks are interchangeable a

priori, whereas WideResNet has more qualitatively separate tensors due to its

substantial depth. Such diversity can create more opportunities for regularities

to be exploited by the other models, but can make it more di�cult to find the

correct regularities for improving WideResNet.

Another possible reason for performance degradation on vision problems

is that the models used are relatively small versions of the vision models that

are best known for the tasks. That is, WideResNet-40-1 is already the most

compact high-performing models in the WideResNet family, which means all

of the parameters in the original model are most likely critical, making it

more di�cult to make progress in optimizing  without destroying critical

information that is not replicated elsewhere in the model.

Figure 8.6 shows the number of modules used by each combination of
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Figure 8.5: Scale-up 2 Performance Summary. This figure shows the
performance in each task across a chain of comparisons with increased module
sharing. For each plot, a lower score is better, i.e., classification error, perplexity
and mean squared error (MSE). Interestingly, CIFAR performs worse during
cross-modal sharing, while both Wikitext and CRISPR perform better whenever
they share with CIFAR. This may be because WideResNet contains a higher
diversity of pseudo-tasks than the other two models, which provides greater
opportunity for improving the other tasks, but also is more di�cult to optimize.
Overall, the ability of MUiR to improve performance, even in the intra-task case,
indicates that it is able to exploit underlying regularities across pseudo-tasks.
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Figure 8.6: Module Sharing Over Time. The number of modules shared by
each subset of the tasks is shown for a single run of multitask evolution. The
total number of modules used is the sum over all these sets. Interestingly, the
number of modules used by the CRISPR module alone quickly becomes very
small, while the number used by CIFAR and Wikitext stays relatively large.
Overall, the number of distinct active modules in each of subsets stabilizes as
 is optimized.

tasks over time. The proportion of distinct hypermodules in each of the subsets

converges as  is optimized. Interestingly, the number of modules used by the

CRISPR model along quickly becomes small, while the performance of the

model improves.

Looking more closely at how module usage evolves over time, an inter-

esting phenomena was uncovered: The emergence of a supermodule. That is,

there is a single module whose number of usages grows to dominate a significant

fraction of all of the tasks. The progression of usages of this single module
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Figure 8.7: Emergence of a Supermodule. The number of locations in
which the most used hypermodule is used is shown over time for a single
evolutionary run. Remarkably, a supermodule emerges that quickly spreads
to dominate a significant fraction of the locations in the entire model. The
fact that so much of the joint model can be parameterized by this single
hypermodule suggests that there is a surprisingly regular structure across block
pseudo-tasks. The reparameterization only requires assistance from a relatively
small number of more specific hypermodules to yield good performance on each
task.

is shown in Figure 8.7. Since each of these locations where the supermodule

is used share the same hypermodule parameters, they only incur additional

parameters in their contexts, i.e., they yield a 64⇥ reduction in parameters at

their location. Having this substantial portion of the model yield this reduction

implies that the model is substantially compressed. Aside from the parsimony

and structure it implies, it could give practical advantages in cases where

models need to be small, e.g., on mobile devices.

200



One important direction for future work is to analyze what kinds of

structure models end up capturing. In the case of MUiR, each module can

be viewed as a set of c matrices. Thus, standard matrix analysis techniques,

such as spectral methods, would be a good starting point for this analysis. It

will be interesting to see if, through training towards many diverse pseudo-

tasks, the modules converge towards crisp properties like those hand-coded

into convolutional and LSTM layers.

8.8 Conclusion

This chapter introduced a general framework for sharing information

across highly diverse architectures and tasks through block decomposition and

reparameterization by hypermodules. A stochastic algorithm was introduced

for optimizing the mapping of hypermodules to pseudo-tasks given such a

decomposition. The behavior of the algorithm was explored in a suite of

domains. The conclusion is that sharing between qualitatively distinct settings

is possible, and can be facilitated by generic decomposition and evolution.

This is a first step towards future multitask and lifelong learning systems that

accumulate and refine large libraries of useful reusable knowledge over a range

of diverse problems.
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Chapter 9

Discussion and Future Work

This chapter discusses some of the core themes that were presented

throughout this work, along with directions for future work. First, the contrast-

ing advantages of the various systems are reviewed and their most promising

areas of application identified. Second, tradeo↵s that emerged across the

various systems are reviewed, and ideas presented for how to harness their

complementary advantages better. Third, an ecological perspective arising from

the systems is discussed, including some directions for improving these based

on these perspectives. Fourth, the potential benefits of o✏ine model analysis

are discussed. Fifth, possible extensions to lifelong learning are described, with

ideas for how to address the new issues that arise in this more dynamic setting.

9.1 Outline of Systems and Applications

The systems presented in this dissertation were developed in a process

that explored methods for discovering deep multitask modules by increasing

the general applicability of modules step-by-step. A high-level characterization

of this progression based on technical mechanisms is given in the taxonomy of

Table 10.1. Though the taxonomy indicates that MUiR (Chapter 8) is indeed
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the technical capstone of this work, MUiR does not strictly subsume the other

systems. In fact, for each system there is some space of applications for which

it would be preferred over the others.

GRUSM (Chapter 4) improved performance by transferring knowledge

across diverse sets of video games, achieving results on par with humans

and DQN (Mnih et al., 2015a), the state-of-the-art at the time. Since its

implementation is derived from ESP (Gomez & Miikkulainen, 1997), GRUSM

is a natural fit for sequential decision-making problems with relatively low

intrinsic dimensionality. It is therefore a good choice for tasks of this form.

For problems where larger and more complex models are needed, subse-

quent systems are a better choice. The first one of these, soft ordering (Chap-

ter 6), improved performance over previous state-of-the-art deep multitask

learning approaches when tasks were drawn from the same high-dimensional

domain. However, the dramatic improvement of CTR (Chapter 7) over soft

ordering, while preserving e�ciency, suggests that CTR should always be pre-

ferred over soft ordering, if the only goal is performance. Similarly, if an order

of magnitude more compute is available, CMTR (Chapter 7) should always

be preferred over CTR, as it demonstrated the value of optimizing module

topologies. That said, soft ordering still has practical value in illuminating how

information can be shared across depths and tasks in a joint model; its simpler

uniform architecture is amenable to such analysis.

CTR and CMTR are powerful design systems especially in the case

where a near-optimal architecture is not known a priori. However, like soft
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ordering, they can only provide value when each subnetwork module can be

applied in many locations. This constraint discludes the exploitation of some

state-of-the-art design patterns, such as deep vision models in which the number

of filters increases with depth. PTA (Chapter 5) skirts this issue; it can be

applied directly to any deep learning architecture, and is especially valuable

when a single architecture that contains such design subtleties is already known

to be near-optimal across a tasks. This value was demonstrated by achieving

state-of-the-art performance on the CelebA dataset, using the highly-tuned

and complex InceptionResNet-V3 architecture (Szegedy et al., 2015) for the

underlying model. PTA was also shown to improve performance of natural-

language LSTM models. In contrast, it is unknown whether the methodology

of CTR can be practically extended to recurrent layers.

Still, PTA, CTR, and CMTR can only be applied to sets of tasks drawn

from the same domain. Their fundamental building blocks are modules whose

functional specification (e.g., input-output shapes and spatial semantics) are

highly dependent on the problems being solved, e.g., graphs of fully-formed

convolutional layers or LSTMs. MUiR (Chapter 8) provides a mechanism for

sharing modules across such diverse architecture types, and thus across tasks

from di↵erent domains and di↵erent modalities. The value of this mechanism is

demonstrated by improving performance through sharing across vision, natural

language, and genomics tasks. Thus, MUiR is the go-to system if this level of

general sharing is desired. In practice, such generality may be required when a

problem with a completely new modality arises, e.g., from a newly designed
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geosensor that collects a unique kind of climate data. Even without auxiliary

datasets of the same modality, MUiR can be used to provide this new problem

with a prior for what successful solutions to real world problems look like, i.e.,

they are composed of the modules MUiR has collected.

Note also that, in principle, MUiR should be preferred over PTA, even

when tasks are drawn from the same domain. Like PTA, MUiR can directly

take advantage of state-of-the-art architectures, and has much greater flexibility

in how knowledge can be shared. However, PTA is a much simpler system

to apply e↵ectively, as shown by its o↵-the-shelf application to a broad array

of problems. Investigating the application of MUiR to intradomain multitask

learning, and generally working to make MUiR a more robust tool, is an

important area of future work. Similarly, a direct comparison of the systems

across a comprehensive set of applications would help to clarify the assessment

of their advantages.

9.2 Tradeo↵s

In the development and evaluation of the systems presented in Chap-

ters 4-8, several underlying tradeo↵s became apparent. In particular, two

umbrella tradeo↵ themes were identified: mixing vs. matching and matching

vs. restructuring, along with a third cross-cutting theme: computational cost.

Mixing vs. matching is the question of whether a combination of

modules or a single module should be applied at each pseudo-task location.

In soft ordering (Chapter 6), CTR (Chapter 7), and CMTR (Chapter 7), the
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models include learned mixing of module outputs. In contrast, in GRUSM

(Chapter 4) and PTA (Chapter 5), single modules are applied in fixed locations.

Interestingly, in MUiR (Chapter 8), the inclusion of a task-specific context

vector at each location in MUiR can be interpreted as a compromise between

mixing and matching. Mixtures are learned in order to select for the best

module at each location, but once the best is selected, the rest are discarded.

Thus, the context vector at each location e↵ectively defines a mixture of linear

components within each hypermodule.

Allowing for module mixtures can make the required set of modules

much more compact, since mixtures add a level of combinatorial expressivity

to the model. This expressivity can capture any inherent overlap between the

functionality required across multiple locations. Such overlap has been exploited

similarly in the setting of linear multitask learning by representing each task

by a mixture of shared bases (Kumar & Daumé, 2012), yielding substantial

improvements over approaches that find strict task groupings (Kang et al.,

2011). This baseline approach that is analogous to the case of matching a single

module to each pseudo-task location. However, additional issues arise in the

deep learning setting. For one, there is a computational overhead to applying

multiple modules at each location. In the case of soft ordering, the cost scaled

linearly with the number of modules. This cost may be negligible in the case

of a linear model, or acceptable in the case of ensembling already-trained deep

models (Dietterich, 2000), but during the training of large deep models it can

quickly become overwhelming. Another issue is possible leakage of information
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from shared modules to unshared task-specific parameters. Though there may

only be one additional task-specific parameter per module application, when

the number of modules applied at a location becomes large, care must be taken

to ensure that the model is taking advantage of the shared structure, and

not simply exploiting the task-specific sca↵olding. On top of the complexity

incurred by task-specific parameters, mixtures may make results more di�cult

to interpret than a simple module-to-location mapping. Of course, if mixtures

are indeed fundamentally useful, their utility could be discovered automatically,

by a system that supports su�ciently expressive topological exploration.

Matching vs. restructuring is the question of whether such topological

alterations will be necessary for future systems that improve upon the work

in this dissertation. GRUSM expanded the topology of the target task model

by adding a module that the model could choose to exploit if it could find a

beneficial way to do so. Similarly, CTR allowed the incremental expansion of

task models, by iteratively adding new module applications and letting the

model decide how much to use the new module, via a learned soft mixture.

CMTR generalized CTR by evolving the topologies of the modules themselves.

On the other hand, soft ordering, PTA, and MUiR are all based on fixed

topologies, derived from the underlying model architecture for each task. When

architectures can be optimized as well, better performance is possible, as shown

by the dramatic performance gains of CTR and CMTR over soft ordering.

Because they are used in a greater diversity of locations, the modules learned in

CTR can even be said to be more general than those in soft ordering. However,
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architecture search adds additional layers of complexity, both computationally

and with respect to system dynamics. The improvements induced by this

complexification may be orthogonal to progress on other system aspects. For

example, PTA focused on one key training mechanism of the more compli-

cated CTR and CMTR methods, and was still able to yield state-of-the-art

performance on a well-established benchmark. Similarly, MUiR assumes the

problem is specified by a set of tasks and corresponding architectures, which

the system then reparameterizes without making topological alterations. One

benefit of using fixed architectures is that orthogonal improvements to the

state-of-the-art can be directly incorporated into the system.

One drawback of MUiR is that the given set of architectures must all be

decomposable into equally-sized chunks of parameters. Such decomposability

is not an unreasonable assumption for deep models, but allowing more flexible

module shapes, perhaps facilitated by structural search methods, could per-

formance further. It remains to be seen whether future methods can exploit

this kind of decomposed modularity within existing architectures, or whether

the most natural form of generic modules is not something that humans have

incidentally designed for individual tasks. Fixed architectures may be fine for

now, but eventually architectural adaptation will be necessary to push perfor-

mance. Further, to achieve this performance without incurring unacceptable

computational overhead, it will be necessary to include modern search methods

that complement those used in this dissertation. There is a wealth of recent

evolutionary techniques that could be used to improve these methods. For
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example, asynchronous evolutionary approaches (De Jong, 2006) can be used to

accelerate coevolution across pseudo-tasks, online hyperparameter adaptation

(Eiben et al., 1999) can be used to increase the robustness of long-running

systems, and multiobjective (Deb, 2015) approaches can be used to handle

architectural bloat and enforce su�cient module generality, by treating each of

these as separate objectives.

Overall, by looking at where tradeo↵s had to be made in the design of

the systems in this dissertation, the biggest pain points are identified, each of

which sets a direction for future work.

9.3 An Ecological Perspective

The systems developed in this dissertation interleave gradient descent

and evolution, and thereby capture properties of an artificial ecology more

than most other machine learning methods. An ecology is defined by how

independently-motivated organisms interact and adapt within an environment,

with a particular focus on how these behaviors a↵ect the distribution of re-

sources and the success of competing organisms over time. From an ecological

perspective, shared modules represent a set of limited environmental resources

that are constantly shaped and exploited by the optimization for each pseudo-

task through joint training. Pseudo-tasks with a shared fitness objective

constitute a species, and compete within their species by trying to exploit the

resources they have access to as well as possible. To increase their competitive

advantage, pseudo-tasks can develop either mutualistic or competitive relation-
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ships with other species, e.g., by harmoniously improving shared resources or

by fighting to monopolize resources for their own needs. Furthermore, the fact

that candidates optimize the shared resources through joint training points to

a more optimistic view of evolution than “survival of the fittest”. In particular,

it suggests that all individuals can have an important impact on the state of

the world, even if they never reproduce.

The ecological perspective has already been noted in Chapter 7 with

respect to CTR. In CTR, candidate models compete to be the best in each task.

These candidates must also e↵ectively share a fixed and relatively small number

of modules with the models from the other tasks. As task models complexify

through evolution, the environmental relationships within and across tasks

also become more complex. By optimizing module architectures in an outer

loop, CMTR extends CTR by searching for a class of resources that will lead

to the most fruitful ecological development. PTA also has similar ecological

dynamics to CTR, but with the shared resources constrained to a single shared

encoder. MUiR takes speciation to the extreme, with competition within a

species occurring at a sublayer level. Thus, the systems capture a range of

ecological dynamics.

It may then be possible to apply models from theoretical ecology (Gur-

ney & Nisbet, 1998; May & McLean, 2007), to see if they can help to model

the dynamics of such systems, since combinatorial interactions can make them

di�cult to scrutinize. Whether from ecology or somewhere else, adapting meth-

ods from other disciplines that analyze interaction networks is an interesting
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direction to pursue. Insights from such systems may help develop methods

that support more healthy and robust ecologies. For example, they may help

in interpreting the significance, advantages, and drawbacks of the emergence of

a supermodule that was observed in the experiments in Chapter 8, e.g., does it

represent the well-deserved incremental domination by a superior species, or

the epidemic spread of a destructive virus?

Closer to home, there are other systems within evolutionary computation

that also include some of these ecological properties explicitly. For example,

several neuroevolution systems have been developed to model coevolution of

agents that share resources in a single environment, and to investigate the

competitive or cooperative properties that emerge (Rawal et al., 2010; Nitschke

et al., 2012). The emergence of specialization is particularly indicative of

functional modularity (Nitschke, 2005). For example, the specialization of

robots in a construction task resembles an organic assembly line (Nitschke

et al., 2012). This specialization can be interpreted at a semantic level, with

distinct agents taking on complementary roles.

Going in the other direction, when interpreted from an ecological per-

spective, the systems developed in this dissertation could be used to advance the

study of the e↵ects of modularity on ecological dynamics. For example, in the

cases of PTA and MUiR, any set of tasks and corresponding fixed architectures

instantiate a unique environment for investigating ecological dynamics. Since

tasks and architectures are plentiful, general applicability yields a near-limitless

supply of distinct environments.
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9.4 O✏ine Analysis of Single-task Models

The systems developed in this dissertation discovered modularity while

learning the structure of the modules themselves. By learning modules from

scratch, the systems avoid bias towards the kind of modularity that may be

found in trained single-task models. However, introspecting such models may

lead to better understanding of what kinds of modularity can be expected to

naturally emerge from these systems, and at what scales modularity can be

expected to be most useful.

The systems in this dissertation operate under the assumption that sig-

nificant sharing via modularity is possible across a given set of tasks. Estimates

of the theoretical benefit of such sharing could be computed through o✏ine

analysis that attempts to modularize trained single-task models, including

indications of how modules can be shared across tasks. For example, as in

MUiR, the parameters of each model could be broken into equally-sized linear

maps, which are then clustered into K groups based on their functionality, e.g.,

using a Schatten norm. One result of such analysis would be a lower bound on

the amount of compression that sharing is able to provide without degrading

performance. Such analysis could also be used to initialize a pool of modules

from this already learned structure, which may provide a computational boost

by skipping the initial online module specialization process. Such analysis

techniques would rely on methods for accurately and e�ciently comparing the

functionality of high-dimensional nonlinear functions.

O✏ine analysis has already yielded positive results in identifying modu-
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larity in neural networks (Velez & Clune, 2016; Huizinga et al., 2018). In that

work, subnetworks are shown to exhibit modular behavior within the networks

in which they are trained. These methodologies must be extended to analyze

how much such modules have the potential to be used e↵ectively for problems

for which they were not trained. One challenge for such techniques is the per-

mutation problem in neural networks, where models represent the exact same

function by combinatorially many distinct parameterizations (Yao, 1999). One

approach to overcoming this issue could be to compare functions in the space

of behaviors, i.e., based on what the functions actually do during evaluation.

The power of this approach has been demonstrated through behavior-based

evolutionary techniques (Lehman & Stanley, 2011a; Mouret & Doncieux, 2012;

Pugh et al., 2016; Meyerson & Miikkulainen, 2017). For example, in the com-

puter vision domains used in experiments in this dissertation, modules can

be compared via the vectors of predicted classes they induce across di↵erent

pseudo-tasks.

The systems in this dissertation avoided the permutation problem by

initializing modules from scratch and jointly training them across all tasks,

so that their semantics were preserved in each of their applications (e.g.,

see Section 8.2.4). Aside from the theoretical insights and computational

advantages of o✏ine analysis, there may be scenarios in which we do not have

the luxury of training everything from scratch, e.g., when attempting to join

sets of tasks and modules into a unified system. Such a scenario is related to

the setting of lifelong learning discussed in the next section.
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9.5 Towards Lifelong Learning of Highly Diverse Tasks

For simplicity, the systems introduced in this dissertation focused on

multitask learning, where the data or simulators for training each task are

always available. Once the discovery of functional modules is reliable and

well-understood, it can be extended to lifelong learning systems (Thrun &

Pratt, 2012; Brunskill & Li, 2014), in which new tasks may appear over the

lifetime of an agent that can always keep learning and improving itself. Lifelong

learning has a well-trod history in classical machine learning methods, has

recently been extended to the deep learning realm (Silver et al., 2013; Tessler

et al., 2017). It is ripe for innovation via an approach of modular ecologies.

Because they are used in di↵erent ways at di↵erent locations for di↵erent

tasks, the shared modules trained in the systems in this dissertation have learned

more general functionality than layers trained in a fixed location or for a single

task. A natural hypothesis is that they are then more likely to generalize

to future unseen tasks, perhaps even without further training. This ability

would be especially useful in the small data regime, where the number of

trainable parameters should be limited. For example, given a collection of

these modules created from a previous set of tasks, a model for a new task

could learn how to assemble these building blocks e↵ectively while keeping

their internal parameters fixed.

Maintaining module diversity is also important in the lifelong learning

setting. If all modules are too similar in some important respect, e.g., they

all include some functionality that is overfit to previous tasks, they may not

214



generalize well to new problems. Such diversity can be critical when the

distribution from which tasks are drawn over time can change drastically. If

the system can maintain su�cient module diversity and functional coverage,

it will be in a position to quickly adapt to such changes. One approach to

achieving this robustness could be to apply recent advantages in behavior-based

evolutionary methods, i.e., novelty search (Lehman & Stanley, 2011a) and

related methods (Mouret & Doncieux, 2012; Pugh et al., 2016), which balance

performance with functional diversity of solutions. Such diversity mechanisms

require a metric for computing the distance between individual behaviors. As

suggested in the previous section, in the case of functional modules, this metric

could be based on some Schatten norm or vectors of model predictions.

It is also in this lifelong setting that the modular approach can dramat-

ically set itself apart from the shared feature extractor approach. Consider, for

example, the most ambitious alternative approach to MUiR for deep multitask

learning across diverse tasks with vastly di↵erent modalities: One Model to

Learn them All (Kaiser et al., 2017). In this alternative approach, there is a

single shared model with separate encoders and decoders for each modality.

To ensure the information is maximally sharable across tasks, the model is

autoregressive. In particular, to get a prediction for a particular task, produces

output for all modalities and reintegrates that output back into the core model

recurrently. This process proceeds over several recurrent steps until the output

for the target modality is finally read o↵ as a prediction. By reintegrating

knowledge from all modalities, using a single giant model of this form is indeed
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an elegant solution to the problem of preventing information from leaking into

task-specific components. However, such an approach has inherent scalability

issues: As more tasks are added and the number of modalities increases, the

model becomes more and more computationally expensive to operate, incurring

additional computational overhead for each task. In other words, because the

system is monolithic, it is expensive to adapt it to new purposes. The modular

approach is especially attractive in light of these drawbacks. By collecting

a compact set of modules that can be assembled in di↵erent ways to solve

di↵erent problems, the assembled model for each task can remain at a size

appropriate for that task, and yet the combinatorial applicability of modules

can enable a broad array of problems to be solved.

9.6 Conclusion

This Chapter reviewed the systems presented in this dissertation in var-

ious contexts. The systems were contrasted based on their areas of application,

leading to the identification of core tradeo↵s that must be considered for future

systems. Avenues for better understanding of modularity and pseudo-task

interactions were then discussed from the angles of ecological analysis and

o✏ine analysis of already-trained models. Based on the potential of this future

work and the success of the existing system, an extension to lifelong learning

was suggested, where the modular deep learning approach may find even greater

success. Overall, the systems embody a rich set of interaction dynamics that

yield endless streams of data If this data is properly analyzed and understood,
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the insights can be used to improve system performance and reliability.

217



Chapter 10

Conclusion

This chapter reviews the main contributions of this dissertation, and

then concludes with a big picture perspective on where we now stand with

respect to using deep multitask learning to discover multi-purpose modules.

10.1 Contributions

Chapter 3 introduced a multitask learning framework for situating meth-

ods that discover multi-purpose functional modules. This framework clarifies

what we mean by multi-purpose module, by defining the notion of a pseudo-task.

Systems can then be evaluated and compared based on what pseudo-tasks

their modules solve, and how they solve them. Within this framework, a

progression of six systems was introduced, with increasing levels of module

sharing. Table 10.1 compares these systems across five qualitative dimensions:

Whether discovered modules are universal, how many modules the system op-

timized, how the system is optimized, the functional form of the modules, and

whether the system modifies the underlying model topologies. Considering the

systems along these dimensions yields a simplified but informative view of the

progression and interconnectedness of the di↵ering approaches. In particular,
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Approach Universal Count Optimizer Module Form Topology

GRUSM Yes One Evolution Layer Altered
PTA No One Interleaved Subnetwork Fixed
Soft Ordering No Multiple Gradient-based Layer Fixed
CTR No Multiple Interleaved Layer Altered
CMTR No Multiple Interleaved Subnetwork Altered
MUiR Yes Many Interleaved Projective Fixed

Table 10.1: Taxonomy of Systems. This table displays the six systems
developed in this work in a simplified taxonomy along five salient high-level
dimensions: Universal indicates whether the discovered modules are intended
for application across arbitrary tasks; Count indicates the quantity of modules;
Module Form gives the functional form of modules in the system; Optimizer
describes how the system is trained, i.e., by evolution, by gradient descent,
or by interleaving the two; Topology indicates whether the system alters the
topology of task models when incorporating new modules. In particular, notice
that GRUSM constituted an initial attempt at uncover universally applicable
modules; an ambition that was finally revisited by MUiR, once more refined
mechanisms were developed.

from GRUSM to MUiR mechanisms were designed and joined for creating a

suite of module discovery systems.

To investigate the inherent generality of neural network modules, Chap-

ter 4 developed GRUSM, a general evolutionary method for reusing trained

neural network modules. This system was implemented as a generalization

of ESP, by adding subpopulations for evolving how to use previous structure

in the new task. Since it is derived from ESP, the system is a natural fit

for sequential decision-making domains. The performance of the system was

exemplified in general video game playing, where it was shown that reuse

helped more when the source was more complex, with results on par with
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the concurrent state-of-the-art. The observed generality potential of modules

motivated the development of systems that explicitly aim to make modules

more general. The value of complexity also motivated a turn towards larger,

deeper models and intrinsically higher-dimensional domains.

Chapter 5 developed a system, PTA, for making a single large encoder

module more general, by including multiple decoders for each task, thereby

training this module towards more pseudo-tasks. To improve generalization,

pseudo-tasks were optimized by an evolutionary process interleaved with gradi-

ent descent. This mechanism was theoretically shown to create more expressive

training dynamics. In experiments, this method alone was able to yield per-

formance gains for LSTM and convolutional models, in the case of multitask

learning and when only a single task was available, including achieving state-

of-the-art performance on the CelebA dataset. In this simplified system, the

trajectories of pseudo-tasks could be visualized, and were shown to coincide

with the intuition behind their behavior. Overall, the system showed broad

value and applicability in its ability to use any underlying deep architecture.

The success of PTA motivated the development of systems that further increase

the general applicability of shared modules.

In Chapter 6, soft ordering, took on this motivation by training multiple

modules (here, layers) each at all possible depths for each task in an end-to-

end deep learning system. While learning module parameters, the system

simultaneously learns how to assemble modules for each task by learning a

soft mixture of modules at each pseudo-task location. This mechanism is
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theoretically motivated by the increase in expressivity achieved by assembling

modules in di↵erent ways for di↵erent tasks. The value of this flexibility

was demonstrated by improving performance across seemingly unrelated UCI

tasks. The power of the method was then demonstrated in deep convolutional

networks, giving improvements over existing deep multitask learning methods.

Qualitative evidence that the resulting modules do indeed learn functional

primitives was observed.

Chapter 7 addressed inherent scalability issues of the approach developed

in Chapter 6 by combining its advantages with those of evolutionary architecture

search. First, CTR was introduced as a method that incrementally grows a

distinct topology of soft module mixtures for each task, so that the correct

complexity for each task can be discovered automatically. This architecture

search was made practical by coevolving task topologies while interleaving

evolution with joint gradient descent across all candidates. CTR was then

generalized to CMTR, which increases flexibility dramatically by evolving

the topology of the modules themselves using CoDeepNEAT in an outer loop

around CTR. The power of CTR was demonstrated by achieving state-of-the-art

results on the Omniglot multitask dataset, and CMTR provided an additional

significant improvement. Evolution reliably discovered diverse topologies, and

these topologies were similar across multiple runs, matching intuition about

how specialization can simultaneously manifest at di↵erent complexities.

Chapter 8 introduced a final system, MUiR, that scales the system

ideas in Chapter 6 to support a much more general form of sharing, returning
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to the ambition that was investigated in Chapter 4. In MUiR, an entire set

of multitask models is decomposed into an assembly of hypermodules. Each

hypermodule can be used at any location in this decomposition, so sharing

can occur across highly diverse architectures. As in the preceding systems, the

assembly of hypermodules is optimized by interleaving evolution and gradient

descent. To accelerate optimization, coevolution is performed at the module

level, using learned soft mixtures as a surrogate fitness function. This speed-up

was confirmed theoretically, and the expected behavior of the complete system

demonstrated on a classical synthetic multitask learning dataset. The ability

of the system to improve performance by sharing across vastly di↵erent deep

architectures and tasks was then shown in multitask experiments that include

vision, natural language, and genomics tasks, whose underlying models together

include fully-connected, 1D convolutional, 2D convolutional, and LSTM layers.

Through the optimization process, the number of parameters in the joint model

was decreased, and intriguing sharing dynamics emerged, such as a supermodule

that proliferates to parameterize the majority of pseudo-task locations. Overall,

MUiR encodes a rich set of dynamics for optimizing modular sharing across

arbitrary architecture-task pairs, and thus provides a promising starting point

for practical methods that share across any and all available datasets.

10.2 Big Picture

Modern machine learning models are so complex that humans can no

longer manually discern the functional regularities that exist across models
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for di↵erent tasks. Instead, deep multitask learning can be used to improve

generalization by discovering such subsymbolic regularities automatically. This

dissertation formalized a modular approach to deep multitask learning, which

provides increased flexibility, scalability, and interpretability over using mono-

lithic deep multitask models, and is more aligned with how functionality is

organized in human intelligence and nature. Within this framework, a pro-

gression of modular deep multitask learning systems were developed, whose

capabilities were demonstrated across a range of problem areas, including video

game playing, vision, natural language, and genomics; and across a range

of multitask scenarios, from intuitively related tasks to seemingly disparate

tasks, and even when only a single task was available. With the suite of

techniques developed for these systems, it is now practical to discover and

share multi-purpose modules in arbitrary multitask scenarios. These advances

point towards a future class of ecological machine learning systems that recycle

modularized subsymbolic knowledge over indefinite universes and timescales.
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