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Chapter 1

Introduction

Any transmission of traits from one generation to the next via non–genetic means is a process of
culture. The goal of this dissertation is to harness the mechanisms of culture to enhance the power
of neuroevolution in sequential decision tasks.

To make that endeavor plausible requires first explicating the advantages of culture in the
natural world, and explaining how cultural mechanisms relate to neuroevolution. The second section
characterizes sequential decision problem domains and why they are a worthwhile challenge. Next,
the advantages of neuroevolution approaches to such tasks are explained. This introduction then
finishes with a guide to the rest of the document.

1.1 Advantages of Culture

Culture provides major advantages in the biological world. This section decomposes those advan-
tages, beginning by noting that genetically hard–wired behaviors are insufficient for creatures as
sophisticated as, say, a predator mammal. Thus, sophisticated creatures must learn. That learning
is cheaper when lead by a teacher. Justifying that chain of observations will expose attributes of
culture that can be related to neuroevolution, as follows.

Even casual observation of nature reveals that instinctual, hard–wired behaviors are insuf-
ficient for all but the simplest organisms existing in static environments. Successful organisms
are adaptive. Their behaviors are not completely determined by their genome. In the struggle for
survival they have available not only their genetic endowment, but also skills and abilities learnt
since birth. Sophisticated adaptive organisms not only learn from their own experience, but are also
taught skills by their parents or other elder members of their species. In fact, there are many bio-
logical cases where adults can be successful only when they have been taught skills by their elders.
For example, many species of songbirds learn their songs from older birds; training cubs to hunt
is ubiquitous in predatory mammals; social primates learn group norms by observation of adults,
sometimes with explicit teaching (Dawkins 1989).

1



Culture provides major advantages in the biological world (Hutchins and Hazlehurst 1991).
First, culture accelerates learning, because immature organisms do not have to use trial–and–error
for everything. They can take advantage of the learning and skills that have been acquired by
elders as stepping–stones in their developmental path. Learning from actual experience can also be
dangerous.

A second advantage of culture is that it enables the transmission of more information than
the genome can contain. The entire behavioral repertoire of an organism does not have to be encoded
in its genes.

Thirdly, culture provides organisms with both stability and flexibility. Stability, because
culturally–transmitted traits can persist beyond the lifetime of a single organism. Flexibility, be-
cause culturally–transmitted traits can be adapted faster than genetically–determined traits. In other
words, culture can change on a timescale that is intermediate between learning (during one lifetime)
and evolution (during many generations).

Fourthly, shared culture makes communication possible in at least one extreme but definitive
case: human language is a cultural construct. Language is not completely specified in the genome,
neither is it completely reconstructed by each new human. Indeed, language is only effective to the
extent it is shared, and thus it must be learned from elders.

None of these attributes of culture depend on artifacts, such as libraries and pyramids. The
non–artifactual component of culture resides completely in the behaviors1 of individuals.

The above observations of culture meshing with neuroevolution in nature,in vivo, motivate
my search for powerful problem solving systems based on simulated evolution of neural networks,
in silico. Neural networks can readily be trained by previous members of the population, and I
will also show other ways that behavior can influence evolution. This dissertation will demonstrate
how such cultural mechanisms can be exploited to enhance neuroevolution in terms of both speed
of learning as well as quality of solution. My novel method is called Culture–Enhanced Neuro–
Evolution, orCENE (pronounced to rhyme with gene).

The significance of theCENE contribution will be demonstrated by application to an impor-
tant and challenging domain of machine learning, sequential decision tasks.

1.2 Sequential Decision Tasks

Sequential decision tasks (Barto 1990; Moriarty 1997) are some of the most difficult and most
general problems in machine learning. A sequential decision task is one where an entire sequence
of decisions must be made before the outcome becomes known. For instance, in games such as
checkers, chess, or go, moves that appear to have near–term benefit may actually be responsible for
an eventual loss. The win or lose signal is not available until many decisions have been completed,
and there is no information about whether any particular decision was good, bad or did not make

1Producing sounds is also a behavior.
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a difference. Therefore it is difficult to determine how to adjust decision–making policies in a
sequential decision task. Minsky (1963) calls this thecredit assignment problem.

Improving the computational performance on sequential decision problems can have signif-
icant real world consequences. For instance, automobile and air traffic control are two arenas where
unknown and unpredictable delays occur between making a decision and realizing its full effect.
Feedback in such cases cannot be attributed to any specific single decision. Real–world tasks such
as these are a prime motivation for improving the speed of machine learning procedures. For ex-
ample, even if a perfect solution to highway traffic signal control was available, it would be of no
practical utility if the solution required multiple hours to compute.

Having described the tasks, next we turn to solutions.

1.3 Neuroevolution Approach

Reinforcement learning (Sutton and Barto 1998) is a robust symbolic approach to sequential deci-
sion tasks. Moriarty (1997, Chapters 2 and 5) compares evolutionary methods and reinforcement
learning in some detail. He shows that evolutionary methods have an advantage due to a more robust
credit assignment mechanism, at least in domains that are path–dependent. Many other investiga-
tors have likewise found neuroevolution, or the simulated evolution of artificial neural networks, to
be an effective strategy for solving sequential decision tasks (Belew 1993; Nolfi, Elman, and Parisi
1994).

Artificial neural networks2 are well–suited to complex problems for two reasons. First, they
can recognize patterns in complex inputs, and substantial problems have complex inputs. Second,
neural networks generalize well, which is a critical attribute because the available input states in se-
quential decision tasks are typically so complex that it is rare to encounter the exact same state with
any frequency, and thus difficult to apply discrete statistical techniques. Evolutionary algorithms
are well–suited to sequential decision tasks because they work with sparse reinforcement naturally
and because they search globally, requiring few assumptions about the solution domain.

My goal is to improve the ability of neuroevolution to tackle sequential decision tasks by
incorporating culture. In this dissertation the culture contained in an evolving population of neural
networks will be used to improve the performance of neuroevolution in sequential decision tasks.
The culture implicit in a population is the collection of behaviors of its members. The behavior of a
neural network is simply its input–output mapping. I use samples of these mappings to effectively
compare the behaviors of networks. Neural networks make an excellent subject for this cultural
focus as a supervised training method, backpropagation (Rumelhart, Hinton, and Williams 1986),
is available to implement teaching by elders, which is a primary mechanism of culture. I will show
how these observations can be combined to modify the standard genetic algorithm to take advantage
of culture exhibited by behavior.

2All neural networks in this work are artificial, but the adjective is generally dropped to avoid clutter.
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CENE includes four unique methods of exploiting culture in neuroevolution. Because each
method is carefully designed to leverage a different aspect of the genetic algorithm, the combination
of all four methods is a powerful and significant enhancement to neuroevolution. TheCENEmethods
do not examine the genome in any way, and have a relatively slender interface, with the intention
that they could be used in neuroevolution systems of other workers.

Empirical comparison will provide clear evidence of improved performance on significant
sequential decision tasks.

1.4 Guide for the Reader

This chapter has briefly introduced the problem domain of sequential decision tasks and my ap-
proach. The approach draws upon ideas of culture and observations of the natural world to develop
principled methods of modifying genetic algorithms through the exploitation of culture.

The next chapter provides a deeper discussion of foundations, including genetic algorithms,
neural networks, and learning and evolution. Prior studies of culture in evolutionary computation
are reviewed, noting similarities and contrasts with my approach. The third chapter describes my
experimental setup, including the performance metrics used to compare different techniques and
the statistical methods necessary to determine the significance of the comparisons. Each individual
method is then described in a separate chapter presenting the abstract opportunity, the rationale for
the chosen approach, specific implementation details, and empirical results and analysis of opera-
tion. After the individual methods are covered, Chapter 8 combines them together and evaluates
the combination on a more complex task. The discussion in Chapter 9 evaluates the significance of
the results for each of the previously presented methods and suggests several possibilities for future
work. Finally, the last chapter summarizes the contributions of this work to the advancement of
neuroevolution, and to understanding the possibilities of culturein silico.
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Chapter 2

Background and Related Work

My work focuses on problems where the target behavior is not known but must be learned through
exploration, which are called reinforcement learning tasks. This chapter provides the foundations
necessary to discuss such tasks, neuroevolution of solutions, and culture in neuroevolution. The
chapter begins with a review of reinforcement learning, a more general name for sequential deci-
sion tasks, and the fundamental trade–off between exploration and exploitation. There follow brief
introductions to genetic algorithms, my chosen approach to reinforcement learning, and neural net-
works as an appropriate way to express controllers for these tasks. Prior work utilizing culture in
evolutionary computation is reviewed.

2.1 Sequential Decision Tasks

Reinforcement learning occupies a middle ground between supervised learning utilizing an om-
niscient teacher, and unsupervised learning where no teacher is present. In supervised learning,
the student is given the correct answer after answering each problem, so the learning task is how
to adjust the student to produce that output for that input. In a discrete domain where exhaustive
enumeration is possible, supervised learning can be reduced to rote memorization. However, om-
niscient teachers are not available in many interesting domains,especially not in the natural world.
Therefore the natural world cannot provide clues about how to construct or utilize an omniscient
teacher.

In reinforcement learning the feedback for each question is not the correct answer, but a
measure of goodness of the current answer. When such measure is available only occasionally, the
reinforcement is said to be sparse. Sparse reinforcement means that a proposed solution will have
to be evaluated many times before any feedback information becomes available. Games are a prime
example of sparse domains: many moves must be made before the win or lose signal is available.

Control problems are typically sparse, as well. In control literature, the physical target
system to be controlled is typically referred to as the “plant,” whereas in machine learning it is often
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called the environment. In interesting problems, the plant must be operated for many cycles before
the solution quality can be assessed. For instance, in the pole–balancing problem, solution quality
is determined by how long the pole can be kept upright. The quality is unknown until the proposed
solution fails. Then thecredit assignment problemMinsky (1963) must be faced: How should
credit and blame be apportioned among the many actions in the sequence leading to a reward or
punishment signal? A genetic algorithm (GA) is the answer propounded in this work, as described
next.

2.2 Genetic Algorithms

This goal of this dissertation is to investigate the interaction of culture and neuroevolution. That
neuroevolution is an effective approach to sequential decision tasks has been previously established.
For example, Moriarty and Miikkulainen (1996a) contrast evolutionary and TD methods applied to
sequential decision tasks. Gomez and Miikkulainen (2001) perform more extensive comparisons.
They find evolutionary algorithms to be superior in continuous and noisy domains, and in those with
hidden state. Such problem domains are likely to occur in the natural world.

Genetic Algorithms are a form of search inspired by the processes of natural evolution.
There is an extensive prior literature. The classic introductions to genetic algorithms include those
of Holland (1975), Goldberg (1989), and Mitchell (1996). The related evolutionary computation
methods of Evolution Strategies, Evolutionary Programming, and Genetic Programming are not
applicable to this work, as the phenotypes they evolve necessarily have no independent training
method. Specifics of the vanilla genetic algorithm,SOTA, used as a baseline in this work are given
in Section 3.4.

Any reinforcement learning technique faces the trade–off between exploration and exploita-
tion (Sutton and Barto 1998). The only way to obtain new information about the solution space is
to generate a new candidate solution (called a population member in genetic algorithms) and submit
it to the fitness evaluator. The central thesis of hill–climbing is that higher fitness values are likely
to be found near points that have already been found to have high values. Indeed, if the fitness
landscape is monotonic (has only one peak) then searching near the current champion will always
succeed in finding that peak. Searching near known good regions is called exploitation, because it
exploits current knowledge. Unless the fitness landscape is completely chaotic, points near a known
good point have a much better chance of yielding some improvement than a random probe.

Interesting problems, however, are multi–modal. They contain many peaks, called local
optima, some of which may be far below the true global optimum. Strict hill–climbing techniques,
even if they make sophisticated use of local gradient information, are likely to converge to a local
optimum simply because there are more of them (Hertz, Krogh, and Palmer 1991). Thus hill–
climbers most often fall short of the global optimum. That is the hallmark of an overly–exploitative
technique. One cure for this problem is to restart from a random position when convergence is

6



detected. A random restart is an exploratory move. Hill–climbers are purely exploitative, so are
only intended for locating local optima.

There is an inherent tension between exploration and exploitation in any generate and test
machine learning method. For each test a decision is required whether to explore new territory or
to search near known good regions. Allocating an evaluation to explore a new region may reveal
something promising, but continual random guessing is as bad as exhaustive enumeration. Ideal
techniques would continually tune the balance between exploration and exploitation to match the
problem at hand. For example, the technique known as simulated annealing has a principled sched-
ule for changing gradually from exploratory to exploitative.

The exploration versus exploitation battle of machine learning is manifested by diversity
and selection pressure in evolutionary computation. Diversity, the variation in the population, will
concern us in Chapter 6. Selection pressure is simply a measure of how strongly the Darwinian
principle of “survival of the fittest” is applied. Low selection pressure means that even individuals
with low fitness are allowed to reproduce. High selection pressure means that high–fitness individ-
uals have a much greater chance of generating offspring than individuals of lower fitness. Choosing
a high–fitness individual to be a parent is exploitative, whereas letting a low–fitness individual mate
is exploratory.

The task of a GA may be viewed as just “asking the right questions,” that is, sampling
the fitness surface in informative places. Each sample (an evaluation of the fitness function) is
expensive, so the goal is to find the highest point with the fewest samples. Indeed, the design
principle I have adopted is that none of my methods introduce any additional fitness evaluations.
This rules out the entire class of “GA plus local search” hybrid methods (Braun and Zagorski 1994;
Hart and Belew 1996), and may be overly extreme, but serves to tightly focus my design efforts.
Future work could consider relaxing this prohibition, but, as will be seen in the body of this work,
there are many fruitful avenues to explore within this restriction.

The population of a GA can be seen as a memory of a finite number of previous samples.
Within evolutionary computing there are several different methods used to combine those memories
to determine the next sample point. In contrast, most function optimization techniques, including
simulated annealing, work with only one sample point at at time. Some of them can be made
“population–based” by running many sample points in parallel, but that is just a speed–up, because
there is no interaction between sample points.

The genetic material of an individual is called its genome, or genotype. The genome may be
composed of multiple chromosomes, but this work uses only one chromosome, which is sufficient
for the problems addressed. A chromosome is a string of functional units, or genes. The word
“locus” means a particular position along a chromosome. An allele is a specific value of a gene at a
locus. A schemata is a pattern of values that may contain wild–cards. Schemata 1*0 would match
alleles 110 or 100. The genetic algorithm manipulates genotypes via crossover and mutation.

For computation, a genotype must be interpreted as a phenotype, which could be a classifier
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system, a neural network, or even just the parameters of some given algorithm. Since my goal is
to investigate culture, learning must be involved in addition to evolution. Neural Networks have a
computationally convenient learning rule and are the phenotypes chosen for this study, as described
next.

2.3 Neural Networks

Phenotypes in this work are multi–layer feed–forward neural networks. Neural networks are good
phenotypes for sequential decision problems because they can recognize patterns in complex inputs,
and substantial problems have complex inputs. Indeed, neural networks can represent any com-
putable function (Hertz, Krogh, and Palmer 1991). Neural networks also generalize well, which
is a critical attribute because the available input states in sequential decision tasks are typically so
complex that it is rare to encounter the exact same state with any frequency, and thus difficult to
apply discrete statistical techniques. The other reasons for adopting neural networks for this study
is that they are easy to represent in a genetic algorithm, and a large prior literature exists on neu-
roevolution, some of which will be reviewed below. In order to study the interaction of learning
and evolution, the phenotype must also have a supervised learning procedure, and backpropagation
(Rumelhart et al. 1986) fills that role for neural networks.

The term “syllabus” is used herein to mean the collection of problem instances used for
backprop training and comparing behavior. Each syllabus item consists of an input vector and the
corresponding target output vector, as is normal for a training case in supervised learning. The
issue to be addressed in following chapters is how to construct a syllabus in sparse reinforcement
domains, where supervised training is normally not applicable.

A primary reason that neural networks are appropriate representations of solutions for this
work is that the goal is to reduce the number of fitness evaluations and neural networks can be
compared and trained without involving the fitness function. The output of a neural net anywhere
in its input space can be computed without being charged for a fitness evaluation. In Chapter 7
backpropagation will be used to train networks, again with no reliance on the fitness function.

2.4 Culture

As is well known, nature is not a function optimizer (De Jong 1993). Natural evolution does not
find optima; organisms adopt solutions that are adequate to allow them to reproduce. Nonetheless,
the problem–solving abilities of natural systems are impressive enough to inspire many researchers
to attempt to abstract the principles employed by biological learners, and incorporate them into
machine learning (Belew 1990, 1993).

Indeed, the natural world provides the only known existence proof that complex problem–
solvers can emerge from evolution. Researchers in evolutionary computation reason that perhaps
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some of the phenomena of natural evolution can be captured in computer simulation. Culture is a
natural phenomenon involved in sophisticated behaviors, such as bird songs and human language.
My work extends that same perspective to learning and culture. Culture is a powerful force in
natural evolution, so I seek techniques to enhance computational evolution with culture.

2.4.1 Culture in computation

Analogies between nature and computer are not perfect. Techniques suggested by observation of
nature are not guaranteed to be available or effective in computer simulation. The supposition that
“the natural way is the best way” has no objective content. These caveats notwithstanding, I will
demonstrate that cultural effects can be effectively harnessed to accelerate artificial neuroevolution.

A reasonable view of culture is that it is composed of assets and behavioral conventions.
A complete sociological study of culture would have to account for physical assets, such as food
crops and ships, but in computer simulations only informational assets can be considered. This is
not a restriction, however, because in neuroevolution the desired goal can be specified as a set of
information, such as, what are the correct control outputs for each point in the input space of the
pole–balancing task? Informational assets are also called knowledge.

An alternative view of culture is as theprocessof transmitting assets from one generation to
the next. Hutchins and Hazlehurst (1991, p.354) characterizes culture as “an adaptive process that
accumulates partial solutions to frequently encountered problems.” In either view, any non–genetic
transmission of knowledge, behavioral traits, conventions or beliefs from one generation to the next
is a process of culture.

The advantages of culture in natural biology were mentioned in the Introduction. Two of
these advantages have already been found operative in evolutionary computation. Belew (1989)
pointed out that culture operates on an timescale intermediate between learning (in a single life-
time) and evolution (over many generations). He advocated “culture” as a third adaptive mecha-
nism, so that all timescales could be covered. Belew (1990) observed that without culture, genetic
transmission of good solutions can only go to a few offspring. Cultural transmission allows the
same information to be available to many recipients. This increased “fan-out” can be harnessed to
increase the speed with which a novel, favorable trait spreads in the population. Belew (1990) also
demonstrated that adding culture to evolution and learning increases the speed of adaptation.

Cultural approaches may appear to resemble hybrid genetic algorithms, where evolution
is combined with some form of local search or hill–climbing. In fact, the gradient ascent hill–
climbing in Braun and Zagorski (1994) is described as learning. However, cultural techniques
differ from a hybrid GA in a fundamental way. Hill–climbing uses fitness evaluations, whereas
cultural manipulations are constructed without fitness evaluations. Thus, since the number of fitness
evaluations consumed is the figure of merit in this dissertation, cultural techniques will be inherently
more efficient, if they are effective at all.
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2.4.2 Nomenclature

Culture, evolution and neural networks are phenomena of the natural world which have inspired
computer simulations. This subsection cautions about the unreliability of biological metaphors in
machine learning, and defines some nomenclature adopted for this work.

In order to inform our intuitions, this dissertation uses several terms from the natural world,
including “culture,” “offspring,” and “artifact”. It is well to keep in mind that any remaining bio-
logical basis is at most metaphoric—the connotations of these terms are not likely to hold in their
entirety in machine learning. Only properties that are explicitly demonstrated to occurin silico can
be relied upon.

For instance, in evolutionary computation we speak of “mating” two “parents” to form a
new “child,” and all of our biological knowledge of the real world will cause us to intuit a loyalty of
parent toward child. But that is patently absurd: there is no loyalty, not even a simulation, in these
computations.

Another kind of danger in following nature too closely is that the analogies may be too
confining. For example, Lamarkian evolution is impossible in the real world (except in the immune
system), so by holding too tightly to analogy one might miss the fact that Lamarkian evolution is
quite possible in the computer.

Nonetheless, despite this metaphoric unreliability, these informal terms will be found to
provoke interesting questions. For example, Craighurst and Martin (1995) could notice that the
standard GA would permit “incest,” and so could study the effect of prohibiting it. A terminological
example from this work is culling of overlarge litters.

We call an “artifact” any trace that one individual can leave in the environment that can
be sensed by other individual(s) who did not witness the act of modification and who can tell that
the modification did not occur “naturally.” When other individuals can witness actions there is
the possibility of implicit communication, which is studied in some multi–agent scenarios but not
further developed here. Section 9.6 will present a few thoughts on how culture could affect explicit
communication.

Artifacts are an explicit representation of culture. This work explores implicit culture, with
no artifacts. However, prior work utilizing explicit representations of culture is reviewed next.

2.4.3 Explicit culture

Most prior work with the combination of learning and evolution was either non–cultural, where
each individual fends for itself, or used artifacts to represent culture. In biological systems, these
representations would be physical artifacts. In computational systems, any information that exists
apart from any individual in the population is an artifact. For instance, if there is any memory apart
from the phenotypes of the individuals in the population, that would be an artifact. Such information
has been known as agene bank, ablackboard, and aconcept library.
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The following studies of explicit culture utilize a variety of memory representations. In
Reynolds and Chung (1997) (Section 2.4.3) the meaning of the artifacts is predetermined by the
experimenter, while in Spector and Luke (1996b) (Section 2.4.3) the individuals develop their own
interpretation of the contents of memory. My work and related work described in Section 2.4.4 will
address culture without artifacts.

Shared Memory

Spector and Luke (1996a,b) definedculture as “any information transmitted between individuals
and between generations by non-genetic means.” Their culture resides in an explicit artifact. It is
represented as a global shared memory: a set of cells readable and writable by any individual at any
time. Intuitively, this approach can succeed if individuals record good ideas in this memory, and
later individuals exploit that knowledge. For example, location X might come to represent the best
policy to follow in situation Y.

Spector and Luke (1996b) found such culture to be useful in problem domains that contain
important regularities that can be taught and learned. They hold that the reasons for this utility are
(a) more information may be transmitted than the capacity of the genome, and (b) useful information
can spread faster than with evolution alone. Note the similarity to the conclusions of Belew (1990)
cited above.

Sebag, Schoenauer, and Ravisé (1997), reversed the typical approach of concentrating on
success. They recorded pastfailures in order to avoid them. Their mechanism maintained allele
frequencies of the worst performing offspring, in order to bias future offspring. This mechanism
is eugenic (operating on the genome); a cultural counterpart would be a global shared memory of
traits to be avoided.

Haynes (1998) shows culture in Genetic Programming with a type of blackboard mecha-
nism. He records good subtrees in an external memory available to all individuals. This “collective
memory is the body of common knowledge that a group shares.” He finds this memory being used
to express partial solutions that are larger than the allowed chromosomes.

Long Term Memory

Louis and Johnson (1997) reasoned that when confronting a series of similar problems prior so-
lutions might well provide useful information. Thus, they augmented a search algorithm with a
memory of past experience. In particular, they report work where a Genetic Algorithm is assisted
by a Case-Based Reasoning module. When a new problem is presented, the initial population is
seeded with individuals who did well on similar previous problems, as determined by the CBR
system.

Their approach is similar to mine, in that they exploit the partial domain knowledge that
appears in the behaviors of the population. The CBR stores genotypes (solutions), but they are

11



indexed by which problems they performed best on. This basis for selection is in contrast with other
systems that attempt to select candidates based on the representation of the phenotype or genotype:
Louis and Johnson (1997) defined similarity by a metric on theproblem, not on the solution.

Louis and Johnson (1997) found that it does not always pay to be overly greedy. Instead of
trying to find maximally similar cases, they “inject a set of individuals with different fitnesses saved
at different generations.” Their set of cases corresponds to my syllabus. I read their result to say
that the syllabus should not be overly concentrated on any single region of the problem space.

Normative Beliefs

Reynolds and Chung (1997); Reynolds, Michalewicz, and Cavaretta (1995) presented a model of
culture as an explicit “belief space.” The belief space stored a generalization of the problem solving
experiences of superior individuals. The rules for constructing beliefs were explicitly programmed
by the researcher, as were the rules on how beliefs affect the evolution of the population. Beliefs
were represented as a vector of intervals, one for each (real-valued) parameter (gene). These inter-
vals were widened and/or narrowed as new high-performing individuals were encountered. Intu-
itively, belief intervals are supposed to correspond to social norms, as in, “this culture honors those
who are virtuous,” where “honor” is implemented as increased reproductive success, and “virtue” is
determined by proximity to the norms. Actually, Reynolds and Chung (1997) implemented eugenic
breeding, whereby alleles were pushed toward the norms. This was possible because the phenotype
and genotype are identical. Otherwise, the beliefs would have to be expressed in genotype space to
allow eugenic engineering.

The intervals were used to control the amount and direction of mutation. This procedure can
be a big win: if some parameters are found to have narrow ranges they would be effectively frozen,
reducing the dimensionality of the search space.

On the other hand, this approach will have a hard time with highly epistatic problems (those
with a large degree of parameter interaction). For instance, if the two schemas (gene-X:high gene-
Y:low) and (gene-X:low gene-Y:high) both have high fitness, that means two disjoint regions of
parameter space should be sampled. The belief-space intervals will either exclude one of these
regions, or include almost all of the space. If there are two binary inputs this is exactly the exclusive-
or problem. This scheme could be advantageous if applied to problems that do not have any such
xor character.

Conceptually, the epistasis problem could be solved by extending the procedure to maintain
a set of neighborhoods rather than an axis–aligned parallelepiped. While such neighborhoods might
be good engineering, I think there is a fundamental problem with the belief–space approach: Pro-
cedures such as this are trying to directly determine promising regions of weight space. However, it
is always the case that we already know promising points in weight space: the phenotypes of high-
scoring individuals. Many different statistical decision procedures are available to generate regions
from those points. Direct identification of regions of weight space should be left to these polished
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and sophisticated statistical techniques.

Such statistics are effective in simple domains, but they tend to behave like hill–climbers,
great at exploitation but weak on exploration. Moreover, if polished statistical procedures are not
effective at generating optima from sample points, then the fixed algorithms of Reynolds and Chung
(1997) and Rychtyckyj and Reynolds (2001) will not be either. I conclude that raw weight space is
not the best place to look for culture. For neural networks there is even a further problem: since a
permutation of hidden units does not change the behavior of a neural network, the weight space has
many symmetries that can further confound the belief representation.

The belief space idea does suggest a possibility beyond the scope of this dissertation that
might prove to be interesting: Instead of fixed generalization algorithms, might it might be possible
to somehowevolverepresentations of belief and virtue?

Conclusion

These studies of explicit culture confirm that culture can enhance machine learning, but there seems
to be no principled way to choose the most appropriate representation of artifacts. Indeed, to harness
the full power of artifactual culture may turn out to require the interaction of several representations.
The resolution of that issue seems far in the future. This dissertation focuses on implicit culture,
which is reviewed next.

2.4.4 Implicit Culture

The above studies all included an explicit representation of the content of their culture. Let us now
turn to a study of implicit culture, where there are no artifacts. Information is transmitted from
one individual to another by direct observation or communication. When members of the current
population are viewed as imperfect domain theories, using their behaviors to provide guidance to
offspring is a cultural mechanism.

Cecconi, Menczer, and Belew (1996) arranged for inter–generational transmission of be-
havioral traits in a way that contrasts with my methods. They determined the syllabus by the hap-
penstance of parental experience: For a time after an offspring is created, it notionally “lives on its
parent’s shoulders.” That is, it is given the same sensory input that its parent receives. Its motor
outputs are ineffective, rather the differences between its outputs and its parent’s outputs are used
as an error vector for backpropagation training of the offspring. Thus, the offspring is taught by its
parent, just as in my technique. The difference is the content of the training, what I call the syllabus.

The offspring can only learn skills which the parent happens to exhibit, which will depend
on environmental conditions. During the limited training time it may often happen that the parent
is in a bland or benign part of the environment that limits the variety of skills which the offspring
would be exposed to. Conversely, in a hostile part of the environment the birth rate is likely to
be low and/or parental reactions may be cut short by death, except when the parent is already
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extremely competent. Even then, all of the offspring’s training is concentrated on an extreme set
of circumstances which may not help general competence. Of course, the variety of the learning
experience could be enhanced by simply increasing the training period, but that increases training
costs. I hypothesize that the emphasis on the quotidian exhibited in Cecconi et al. (1996) will often
lead to an impoverished learning experience.

In contrast, the syllabus in my technique can contain arbitrary input vectors, so it can sample
any ranges of the input parameters. On the other hand, some parameter combinations may never
in fact occur in the actual environment, which should be an advantage for Cecconi et al. (1996).
I hypothesize that my propensity to unrealistic situations is easier to adjust than Cecconi et al.
(1996)’s propensity to monotony, but that is beyond the scope of this dissertation.

Despite differing syllabi, both Cecconi et al. (1996) and my work, explained in Chapter 7,
show that teaching immature offspring to respond somewhat like a parent is effective. Extra–genetic
transmission of behavioral tendencies is a promising technique for evolutionary computation.

2.4.5 Summary of Culture in Neuroevolution

There are many aspects of full–blown culture, and thus many ways to represent artifacts have been
studied. It seems likely that many different representations could capture some significant aspect of
culture, but at present there seems to be no principled way to chose among them, except from the
engineering perspective of which ones are empirically faster. Since I do not know how to choose a
good representation of culture, this work is based on the minimum possible representation: just the
behaviors of the population members themselves, with no artifacts.

Thus, this work is an attempt to bridge the gap between no culture and full culture by
studying a restricted case: culture without artifacts. This simpler setting should be easier to analyze
than arbitrary culture, and yet more effective than learning alone.

2.5 Conclusion

This chapter has characterized the tasks and solutions to be learned in this dissertation, as well as
related previous work. Culture in the natural world is very powerful, and some of those advantages
have been shown to obtain in neuroevolution. There have been several approaches to combining
culture with evolutionary computation but none of them have the behavioral focus of my work.
It appears to me that focusing on behavior without the confounding possibilities of artifacts is a
promising route to further understanding of culture in neuroevolution.

Before beginning the chapters that develop my novel exploitations of culture, the specifics
of the tasks and measurements that will permit my results to be evaluated are provided in the next
chapter.
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Chapter 3

Experimental method

This chapter sets forth the experimental methodology employed in this work. First, the specific
learning tasks are described. Performance metrics, including both evolution speed and solution
quality, are presented. Then resampling statistical methods and their necessity are explained. Fi-
nally, benchmarks to compare the new methods are presented.

3.1 Task Descriptions

The tasks chosen to be measured in this dissertation are well–known non–linear control problems
with a rich prior literature. This section describes them, although the exact details needed to repli-
cate the tasks are relegated to the Appendix. The tasks include the ubiquitous Pole Balancing
problem, and the Acrobot swing–up task studied by Sutton and Barto (1998). Description of the
task in the more complex Khepera robot navigation is deferred to Chapter 8 where it is explored.

The two simpler tasks are used to measure the performance of the four component methods
to be developed in Chapters 4 through 7: Culling and teaching methods are tested in the Pole
Balancing task in order to be consistent with the proposal and earlier work by McQuesten and
Miikkulainen (1997). The fitness evaluations are very expensive in pole balancing, and therefore the
Acrobot task was used to test mate selection and diversity enhancement. After these measurements,
the implementations of the four component methods were frozen before they were exposed to the
more complex Khepera domain (Chapter 8). This rather large jump in complexity helps to assure
that the component techniques are general, that is, not overly adapted to the domains in which they
were developed.

3.1.1 Pole–Balancing task

The Pole–Balancing problem, also known as the Inverted Pendulum, or the Cart–Pole system of
Figure 3.1, is a well–known standard control problem which is often used in reinforcement learning
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Figure 3.1:Schematic of Inverted Pendulum system (not to scale). The cart mass is 1 kg and the pole is 0.1
kg. The pole is 1 meter long. The track is long enough for the center of the cart to move 4.8 meters. The task
is to keep the system within limits by application of a “bang–bang” force.

studies. The task is to keep the system within limits by choosing to apply a leftward or rightward
impulse (a “bang–bang” force) at each time step.

Analytic solutions are available from engineering literature, but they are not made available
to reinforcement learners. The only reinforcement available in this problem is the failure signal
when the pole falls or the cart moves beyond given bounds. A candidate control algorithm must
execute for many cycles before its quality can be assessed. Fitness evaluations in this problem are
very expensive, requiring thousands of simulation cycles.

There are four degrees of freedom in this system: position and velocity of the cart, angle
of the pole, and the angular velocity of the pole. Those are the four inputs to the neural network
controller. The output controls whether a leftward or rightward impulse will be applied.

The details of the problem studied herein are as follows: The fitness function is the total
number of simulator steps until the pole exceeds the limit angle (±12◦), taken over all eleven initial
conditions from Whitley, Gruau, and Pyeatt (1995). A pole–balance attempt is considered success-
ful if the system remains within limits for 1000 time steps, so a run is successful if a network with
a score of 11,000 is found. The details of the equations of motion are presented in Appendix B for
the sake of completeness.

3.1.2 Acrobot Swing-up problem

The Acrobot is a 2–joint robot shown in Figure 3.2. It is an abstraction of a human gymnast, but
both joints are completely free to rotate unrealistically through a full 360 degrees. The anchor pivot
is fixed in space. Torque is applied at the hip joint. The controller’s output determines whether the
applied torque will be clockwise or counter–clockwise at each timestep.

The goal is to swing the tip up above the fixed anchor joint to a height equal to one leg
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Hip joint

Figure 3.2:The Acrobot: an abstraction of a human gymnast. The joints are free to rotate. The anchor joint
is fixed in space, torque is applied only at the hip joint. The task can only be accomplished by swinging back
and forth to pump energy into the system.

length. The Acrobot is described by Sutton and Barto (1998, Sect. 11.3). The equations of motion
and enegery are derived in Spong and Vidyasagar (1989, example 6.4.2). DeJong and Spong (1994)
develops swing-up strategies in a symbolic form. The implementation is detailed in Appendix A for
those interested in duplicating the acrobot.

This system has four degrees of freedom and can be parameterized by four state variables:
θi andvi, the angles and angular velocities of each leg. Control is exercised five times per second
(5 Hz), but the Eulerian update would be too inaccurate at that rate, so the simulation code divides
each controller timestep into four subslices, which gives thedelta = 1/5 ÷ 4 = 50msec shown
above. Angular velocities are bounded byθ̇1 ∈ [−4π, 4π] andθ̇2 ∈ [−9π, 9π]. The starting state on
each trial isθi = vi = 0, that is, at rest hanging straight down.

The Q-learning techniques of Sutton and Barto (1998) require the investigator to specify
a decomposition of the input space. For the acrobot task they used a tiling of 18648 tiles The Q-
learning task is then to learn the quality values of these eighteen thousand regions. Reasonable
neural networks for this problem have orders of magnitude fewer parameters than that.
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3.2 Performance Metrics

For the genetic algorithms considered in this work all coupling with the task environment is supplied
by a black–box fitness function. A fitness function takes as input a candidate controller produced
by the GA, exercises that controller in the specified task environment, and returns a real number
reply with the standard semantics of “bigger is better.” For example, in the pole–balancing problem
the fitness reply is the amount of time the network could keep the pole from falling. As in any
reinforcement learning, no feedback is given as to what the network did wrong or could do to
improve next time.

A fitness evaluation requires plant simulation and network activation for many iterations.
This takes many more CPU cycles than used by the genetic manipulations, even for the relatively
simple problems investigated in this dissertation. Simulation of more significant and realistic prob-
lems would be even more expensive.

In fact, the plant need not be simulated—in the extreme, the fitness evaluation could as well
be done in the physical target system itself. Since the fitness function is a complete black box to
the genetic algorithm, these techniques work just as well when fitness is evaluated in the real world.
For example, a candidate solution can be evaluated by downloading it into a physical robot and
measuring actual performance, as shown by Miglino, Lund, and Nolfi (1995) and Nolfi and Parisi
(1995a).

Physical exercise of a plant is very much more expensive than a computer simulator, and
sometimes even dangerous. Therefore, in complex domains it is important to learn from as few
fitness evaluations as possible. Thus this work seeks to reduce the number of full fitness evaluations
required to solve a problem.

Fitness evaluation functions can be arbitrarily expensive, so large amounts of computation
performed outside the fitness function are justified. Thus quite elaborate inheritance, development,
training, and learning mechanisms can be utilized, as long as they reduce the number of fitness
evaluations.

Unless otherwise explicitly noted, and without loss of generality, all fitness values herein
are non–negative real numbers, where larger is more fit. In many cases, fitnesses are scaled so that
the maximum is unity for ease of presentation.

Speed versus Quality

Trade–offs emerge when choosing to measure speed of evolution or solution quality. Even when
a natural metric of solution quality exists, using it may not be appropriate. For example, in Pole–
Balancing the number of steps until failure could be called the solution quality. But in actuality,
most networks that can avoid failure for 10,000 steps can keep going for a million steps, so that
metric quickly begins to measure only differences of useless subtlety. A far better approach defines
success as some specified solution quality (see Koza (1992, success predicate)).
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Machine learning techniques are then rated by how much effort is required, on average,
to generate a success. For example, in the Acrobot task a success is a network that can achieve
one leg–height above the anchor joint. In pole–balancing success is defined as avoiding falling for
11,000 steps.

As stated above (Section 3.2,) the measure of effort in this dissertation is the number of
fitness evaluations consumed. Different evolutionary methods are compared on the basis of the av-
erage number of individual networks evaluated to reach the specified success criteria. When com-
paring multiple methods, the success threshold must be set low enough that the weakest methods
find some solutions. I prefer that there be at least twenty successes to average over.

Reported averages are useful to the extent that they are true expectations of future behavior.
Since the true expectation would take an astronomical number of runs, confidence intervals are nec-
essary to adaquately characterize the trustworthiness of the reported average. Section 3.3 describes
the statistics necessary for satisfactory confidence intervals.

A learning curve plots solution quality as a function of the time expended to achieve it.
While plots of learning curves do show both speed of evolution and quality of solution, the ap-
pearance of parallelism between two curves may hide significant differences, as will be shown in
Section 8.2.3.

For many tasks a learning curve provides insight into the functioning of the solution genera-
tor, but learning curves are not universally applicable. For some problems the quality of the solution
is inherently binary. The Acrobot either achieves the straight-up position or it does not, so a learning
curve is a line alongx = 0 until time runs out or success is achieved. Thus, learning curves are not
useful for binary qualities. Further, learning curves are not sensible forRBHC, because it does not
get better over time.

Like many studies, this work uses a stagnation criterion when speed of evolution is being
measured. A run is terminated as unsuccessful if no improvement occurs over sixteen consecutive
generations. When the purpose of an experiment is to measure the solution quality achieved over
time, the stagnation criteria is disabled.

The standard performance metric in this work is the number of evaluations used per solution
found. When appropriate, some performance tables include a column for relative performance,
titled÷BASELINE, which gives the ratio of that row’s performance to the performance of a baseline
method.

3.3 Resampling Statistics

In order to report reliable measures of statistical significance and confidence intervals in this dis-
sertation, the modern method of resampling is used. This section describes some pitfalls of more
tradtional procedures based on the standard bell curve, and the requirement to carefully account
for failure results. Since resampling is not so well known as traditional methods, a brief sketch is
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provided.

Many standard statistical tests assume that the measurements have a normal Gaussian dis-
tribution. This assumption is often a fine approximation. Indeed, when the quantities of interest are
averages of many components, the Central Limit Theorem guarantees they will be close to a normal
distribution (Moore and McCabe 1993). However, strongly non–normal measurements with long
tails and outliers abound in this dissertation. Standard tests of significance can be misleading or
erroneous (Weiss and Kulikowski 1991).

There are “non-parametric” statistical procedures, so called because they assume nothing
about the actual distributions, and therefore have no parameters, like average and standard deviation.
Many of these techniques were known but impractical until the advent of cheap computing power,
and therefore were not used in machine learning until recently.

The number of fitness evaluations required to find a solution is figure of merit (page 9) to
compare different machine learning methods in this work. Since not every run will find a solution, a
principled way to account for the evaluations expended on unsuccessful runs is required. Table 3.1
is a small artificial example of this point.

Evaluations Success? Method

10 pass Standard
20 pass Standard
50 FAIL Standard
25 pass Improved
30 pass Improved
35 pass Improved

Table 3.1: Artificial example comparing two methods, “Standard” and “Improved.” TheEvaluations
column is the number of evaluations the method consumed in a particular simulation.Success?indicates
whether the success criterion was met. The averages are misleading unless the FAILed run is included.

To report these example results, one plausible practice would be to give the success per-
centage along with the evaluations per solution of successful runs. The Standard method has an
average of 15 with a success rate of 67% while the supposedly Improved method has an average
of 30, which seems twice as expensive. That is misleading. The Standard method actually has an
average of 40 evaluations per solution (10 + 20 + 50÷ 2), and so is expected to be more expensive
in the long run.

When two sets of numbers are drawn from the same distribution their averages are likely
to be somewhat different. Could such random noise account for the difference in the observed
scores of Standard and Improved? Thenull hypothesisis that both sets of observations are random
draws from the same underlying distribution. Resampling computes the probability that the null
hypothesis could be true, given the actual observations.

Some works just report the success percentage along with the evaluations per solution of
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successful runs. This is not too bad when the methods have similiar success rates. Reporting total
evaluations expended divided by the number of solutions found is fine for comparing averages—the
expectations of the methods involved.

However, one also needs to know how much to trust the averages (standard deviation, per-
haps), and, most importantly, whether the difference between two averages is significant, or could be
due to random chance. Thus, many works also report a statistical test of significance, often Student’s
t-test (Moore and McCabe 1993). Whereas theaverageof many runs tends to be normally dis-
tributed, there is no guarentee that the performance of each individual run will be so well–behaved,
so significance tests based on the normal distribution are not applicable.

Furthermore, such tests take as input a simple set of numbers: there is no place to input the
pass/fail indicator! A significance test on the data of Table 3.1 is not meaningful, because some of
the runs failed. Eliminating the failed runs from the data submitted to the test understates the cost.

A machine learning method that sometimes fails can often be redefined to be a ”restart”
type, wherein it reinitializes to a random state when the failure predicate becomes true. It is then
natural to add the unsuccessful evaluations to those of the following successful run. That requires
that an experiment only be terminated immediately after a successful run, which can sometimes be
practical. However, if the restarts are truly independent, it is equally likely that the sequence of runs
could have occurred in any order, which means that the unsuccessful runs have no logical association
with the following successful run to which their evaluations are being added. The computed average
evaluations per solution will be correct under any ordering, but the distribution of averages will be
multi–modal because some runs are combined with a failed run (or runs) and some are not. For a
multi–modal distributions the calculated standard deviation may not have the statistical properties
expected of it, for instance that 68% of the measurements are within±1σ of the average. Thus,
conclusions based on reasoning about such a standard deviation are not sound.

Resampling offers an easy and principled way to solve the problem of non–normal distri-
butions and also can handle failed runs accurately. For a comprehensive introduction to resampling
see Lunneborg (1999) and David C. Howell’s resampling page at
http://www.uvm.edu/ dhowell/StatPages/Resampling.

In order to compute the probability that two sets of measurements are not significantly dif-
ferent, begin with the standardnull hypothesis, which is that the two sets are samples from the same
distribution. According to the null hypothesis, any assignment of the actual measurements to the
sets is equally likely. In principle, the exact method is then to exhaustively generate all possible
combinations of the data, and compute the two groups’ averages for each arrangement, counting
the number of times the difference in the two averages exceeds the actual observed difference. That
count is exactly the support in the data for the null hypothesis. Dividing by the number of permuta-
tions gives the frequency of cases that support the null, called theP–value. IfP–value is small, say,
P < 0.01, the null hypothesis is unlikely, so one concludes that the sets are drawn from different
distributions. Statistical significance is a low probability of the null hypothesis, or lowP-value.
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Since the number of permutations grows exponentially with the size of the datasets, practical
resampling performs a Monte Carlo estimate of the count by examining a large random subset of all
possible combinations. Instead of a simple average any other statistic of interest can be computed,
for example, the median or some quantile.

Since resampling can sample from sets of vectors as well as any other kind of set, failed runs
are easy to account for, as follows: Each measurement, such as a run of some learning algorithm, is
treated as a 2–vector consisting of (1) the number of fitness evaluations used, and (2) the pass/fail
flag. The number of evaluations per solution is computed for each rearrangement of the data.

The only assumption of resampling is that the input samples be unbiased, and that an
adaquate number be available to approximate the entire universe of possibilities. The use of quality
random number generators prevents bias. The sample size requirement is not stringent: With only
20 unbiased samples the probability that they are all above or all below the true average is only
about one in a million. The number of samples available in the results reported in this dissertation
varies according to the computational load of the various experiments, but is always at least 20, and
more often 50–100.

The resampling analysis takes the availableN samples as a description of the underlying
distribution, assuming that each sample is equally likely. That assumption is sound because each of
the samples was in fact observed once in a series of unbiased experiments. Thus, another possible set
of observations from that distribution is obtained by randomly drawingN values with replacement.
For each such possible set the statistic of interest is calculated, for example, the mean of the set.
Additional sets are drawn many thousands of times, for example 5000–fold resampling of the mean
draws five thousand independent sets ofN observations, calcuating the mean of each. The 95%
confidence interval of the mean is then available by discarding the 250 lowest and 250 highest.

In the situation described above, where each observation is actually a 2–vector consisting
of a number of evaluations accompanied by a pass/fail flag, the statistic of interest is number of
evaluations per solution, which is just the sum of all evaluations consumed divided by the number
of successful observation. The confidence interval calculation of the previous paragraph is just as
valid for this statistic if “mean” is replaced throughout by “evaluations per solution.”

Exact accuracy limits on resampling can be calculated when the distribution is normal.
Specifically, if the exactP–value for some test is 0.050, then 5000–fold resampling will, 99% of
the time, yield aP -value that falls between 0.042 and 0.058. When the exactP–value is 0.010, then
99% of the time a 10,000–fold resample will yield a value between 0.007 and 0.013 (Lunneborg
1999). These uncertainites are modest.

The confidence intervals and significance measurements reported in this dissertation (for
example, Table 4.2) are computed by the resampling procedure summarized above.
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3.4 SOTA: a State of the Art Genetic Algorithm

There is no one agreed–upon standard for all genetic algorithm studies. My intention is to develop
enhancements that will benefit genetic algorithms in general, but my techniques need to be measured
against some specific benchmark. A vanilla, but state of the art GA abbreviated asSOTA, for “State
of the Art,” is adopted as the concrete benchmark in this work. This section documents theSOTA

implementation and common parameter values, and defines the interfaces to the advanced methods
to be developed in subsequent chapters. The interfaces are designed so that oneSOTA method can be
precisely replaced by an alternative method. The contribution of a new method can thus be clearly
determined by comparing performance with the new method intstalled and removed, confident that
no other code differences exist.

This benchmark GA is intended to represent current best practice in the field, with the host
of parameter choices set to reasonable values.SOTA is a steady state genetic algorithm, whereby
each child is inserted into the population as it is generated. For reporting purposes a new generation
is declared everyP -th individual, whereP is the population size. For more about steady-state GAs,
see, for example, Whitley (1989), Syswerda (1991), or DeJong and Sarma (1993, 1995).

All populations consist of 200 individuals unless otherwise specified. The initial individuals
are randomly generated. Since the population size is fixed after initialization, each new offspring
must displace some existing individual. Classical genetic algorithms tended to replace a parent with
its offspring (sometimes, only if the offspring was more fit). Function KILL SELECT in Figure 3.4
selects an individual to be discarded (decedent) as the least fit of a random sample of 4 individuals
(a 4–tournament). This means that good parents will remain elegible to reproduce again, even if
they once produce a modestly better offspring.

The population is not sorted, but the current best individual, called the champion, is always
preserved in the population due to the method of selecting decedents. By definition, there is always
an individual of lesser fitness than the champion. Preservation of the champion is referred to as
“elitism” in the GA community. Leaving the population unsorted preserves the inherent parallelism
of the basic genetic algorithm.

Many different mating strategies are possible, but binary tournament selection is used here
because it requires no global calculation and thus is not a parallelization chokepoint, and because
it spreads the mating opportunities across fitness ranks in a smooth and reasonable fashion (Blickle
and Thiele 1995; DeJong and Sarma 1995; Goldberg and Deb 1991; Whitley 1989). InSOTA

each mating parent is chosen by an independent binary tournament (function MATESELECT in
Figure 3.4).

As recommended by Masters (1993), one–point crossover is used2
3 of the time, and two–

point crossover13 of the time, This crossover blend results in a constant probability of disruption
of schemata, independent of defining length, just like uniform crossover, but still permits building–
block linkage (Schaffer, Eshelman, and Offutt 1991).

This work uses the same type of gene encoding as Moriarty (1997, Section 4.5), who demon-
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program SOTA () {
input: popSize = population size
input: genLim = generation limit
input: EVAL FITNESS= the fitness evaluation function
input: SUCCESSPREDICATE = function defining success
initialize population array P[popSize] with random genomes
evalLim= popSize * genLim
numEvals = 0
while numEvals< evalLim

choose first parent A =SOTA.MATESELECT()
choose second parent B = MATESELECT()
choose individual to replace D = KILL SELECT()
child C = BREED( A, B)
replace D by C
kidFit = EVAL FITNESS( C ) evaluate fitness of new offspring
numEvals += 1count evaluations
if SUCCESSPREDICATE( kidFit ) then exit
if (numEvals mod popSize == 0) then report population attributes

}

Figure 3.3: SOTA, the State–Of–The–Art genetic algorithm used as the baseline for this work. SUC-
CESSPREDICATE always returnsfalsewhen ultimate solution quality is to be measured. EVAL FITNESSeval-
uates an individual in one of the tasks described in Section 3.1. MATESELECT, K ILL SELECT, and BREED

are functions which are replaced in advanced methods developed in succeeding chapters. The baselineSOTA

subroutines are shown in Figure 3.4.

strated the advantages of such encodings. Each hidden unit has several genes, how many depends
on the application. Each gene encodes a connection from or to its hidden unit, and consists of two
parts: (1) tag: 8 bits designating the input or output unit on the other end of the connection, and
(2) weight: 16 bits interpreted as the floating–point weight of the connection. This encoding can
describe any feed–forward network with one layer of hidden units, which is sufficient for the tasks
measured in this dissertation. A trivial change in interpretation of the tag to allow hidden units to
be addressed permits any network to be described, including recurrent ones.

To the mutation and crossover operators in this work, a chromosome is manipulated as a
binary bit–string1 that is just the concatnation of the genes. A small amount of mutation is in-
cluded: 0.1% probability of each bit flipping. The learning rate for backpropagation is 0.15, with
no momentum. These are middle–of–the–road parameter values for neuroevolution.

1Some workers have found other representations to be more effective in some domains, but that is still an area of
research.
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function SOTA.MATESELECT () {
binary tournament selection
choose two individuals randomly without replacement
return the individual of greater fitness in that sample

}
function SOTA.K ILL SELECT () {

the champion will never be killed
four–way tournament selection
choose four individuals randomly without replacement
return the individual of least fitness in that sample

}
function SOTA.BREED ( A, B ) {

standard breeding
create new child C = CrossOver( A, B )
apply mutation to C
return C

}

Figure 3.4: Subroutines of theSOTA implementation. These functions called from Figure 3.3 are overridden
in advanced methods developed in succeeding chapters.

3.5 RBHC: Random Bit Hill–Climber strawman

As a baseline comparison and sanity check, Random Bit Hill–Climbing,RBHC, per Davis (1991)
was implemented and tested.RBHC is a form of next-ascent. It views the genome as a binary string,
and flips bits in a random order.RBHC does not use the stagnation criteria; by design it stops only
at the top of a hill, when no single bit flip will improve the current score. As a hill–climber, its
performance is reasonable for uni–modal fitness landscapes.

RBHC does no learning—it is a strawman. However,RBHC is useful in the negative sense
that any machine learning method that does not do better is surely deficient. Because eachRBHC

trial is independent of all others, learning curves are not appropriate.

3.6 Conclusion

This chapter described the experimental methodology of this study. Complex non–linear sequential
decision tasks are chosen to evaluate neuroevolution techniques in this dissertation. Acrobot, Pole
Balancing, and Khepera Chapter 8 are well–known and provide connections to the prior literature.
Fitness evaluations are the appropriate measure of effort for these tasks. Speed of evolution is
measured by the number of fitness evaluations required to reach a fixed solution quality. Ultimate
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solution quality in a fixed number of fitness evaluations is an important alternate metric. Due to
the highly non–normal distributions encountered in these studies and the requirement to account for
unsuccessful runs, resampling statistical methods will be used to compute significance values and
confidence intervals. Finally,SOTA is a serious benchmark for measuring the contributions of this
work, while RBHC is a strawman to help detect fallacious measurement.

Having described the tasks and measurement tools, the next four chapters proceed to develop
novel exploitations of behavior to improve neuroevolution.
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Chapter 4

CE-CULL : Selection from overlarge
litters

With the foundation laid down in the previous chapters, we can now turn to the first exploitation of
culture devised in this work,CE-CULL. A litter is the set of offspring produced from each mating.
In CE-CULL, unlike in standard neuroevolution, overlarge litters are produced, and one offspring is
selected based on cultural techniques. This is found to increase the performance of neuroevolution.

In this chapter I first show the dismal distribution of fitness that results from the usual prac-
tice of crossover in standard neuroevolution. Then I show how that distribution could be improved
by an imaginary, costless fitness estimator, that is, an unrealizable perfect oracle. Next I construct
a less–than–perfect but implementable estimator from the behavior of the current population, re-
sulting in theCE-CULL method. An empirical test shows theCE-CULL method to be practical and
effective. Finally, the effects of litter size and questionnaire length are determined to be not critical
over a broad range.

4.1 Culling motivation

In the standard GA the litter size is usually one or two1. Overly large litters or overproduction
of offspring results from producing from each mating a litter whose size is beyond the carrying
capacity of the environment. For example, hundreds of sea turtles hatch for each one that actually
survives to reproduce. In this work, overlarge means more offspring are generated than are going
to be added to the population. In fact, only one offspring from each litter will be added to the
population. The issue is how to select that one in such a way as to best accelerate progress.

Culling in biology,in vivo, is accomplished by the environment, in parallel. Neuroevolution
in silico has rather less compute power available, so reducing the number of fitness evaluations is

1A litter size of two is used when both complementary possibilities of crossover are retained. Whatever the size, a
standard GA will insert the entire litter into the population, so it is not overly large by my terminology.
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crucial. The novel discovery of this work is that an inaccurate and inexpensiveestimateof fitness
can be effectively used for culling. An effective estimate is constructed from cultural mechanisms.

The genetic operator of crossover poses special hazards for evolving neural networks. With
typical encodings, the same network can be represented in many ways, since changing the order of
hidden units will not affect the output. That is, many different genotypes specify indistinguishable
phenotypes. When phenotypically similar individuals mate, and their genotypes use a different
permutation of hidden units, the result of crossover is most likely to be nonsense. Whitley, Dominic,
and Das (1991) described these “disastrous crossovers” as resulting from the symmetries in neural
net representations. To overcome this problem, they used very small populations to force early
convergence to a single one of the equivalent permutations. Nolfi, Elman, and Parisi (1994) omitted
crossover entirely, claiming that the problem must be better understood before crossover would be
productive.

Such early convergence has a high cost: it compromises the exploratory ability of neu-
roevolution because crossover is ineffective in converged populations. When crossover is absent or
ineffective, mutation bears the entire load of evolution, which requires very high mutation rates. As
a matter of fact, pair–wise mating through crossover is the essential feature that distinguishes ge-
netic algorithms from population-based hillclimbers (Eshelman and Schaffer 1993). I contend that
mutation alone will be found to suffice only for relatively simple problem domains. In such simple
domains learning is likely to be an overkill, and not competitive with less sophisticated techniques.
Developing methods for more difficult domains demands that crossover be the primary genetic op-
erator. Thus the challenge adopted in this work is to discover how to properly utilize crossover.

To gain insight into crossover’s operation, let us first inspect the distribution of fitness of
offspring in a standard Genetic Algorithm. The task is the well–known control problem of the
inverted pendulum, described in Section 3.1.1. The histogram of Figure 4.1 reports the relative
fitness from crossover observed during 100 runs ofSOTA. Over 400,000 individuals were generated
and 53% of the runs succeeded.

The ordinate in Figure 4.1 is the ratio of offspring fitness to average parental fitness: the
offspring of an individual crossed with itself would be identical to its parent and therefore would
have a ratio of one. Analyzing crossover in terms of this relative fitness is more appropriate than
absolute fitness, because absolute fitness has an upward bias as the evolution proceeds2. Relative
fitness, even when aggregated into a histogram, focuses on the incremental operation of the genetic
algorithm. For instance, if we could obtain a distribution with an average relative fitness of 1.07,
then the population fitness would be expected to double in eight generations. In practice the average
relative fitness is far less than one, so without selection pressure fitness would continually drop.
Nonetheless, higher average relative fitness does cause faster growth.

The distribution in Figure 4.1 is largely deleterious. Most offspring are much worse than
their parent. In fact, the average offspring is only 30% as fit as its parents. That most crossovers are

2at least there is an upward bias in any run where the procedure is successful!
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Figure 4.1: Fitness distribution of standard crossover in 100 runs containing over 400,000 individuals. The
last bin contains all values≥ 2. The average offspring is only 30% as fit as its parents. The lower lobe is so
large that it is possible to suppress it, dramatically improving the quality of offspring.

poor has been previously observed by, for example, Nordin and Banzhaf (1995). The distribution is
dominated by an enormous peak just above zero fitness, with a slight lump near the average of the
parents. This leftward trend is intuitively plausible: in any difficult domain, there are simply many
more ways to do things wrong than right.

To be sure, a few crossovers are outstanding. The lump at the right side of Figure 4.1 is
due to the roughly 7 of each 1000 offspring that had fitness exceeding twice their parents’ average.
These rare high performers compensate for a lot of poor crossovers.

Note that Figure 4.1 shows the fitness of offspring was below 5% of average of parental
fitness 100 times as often as it was greater than average parental fitness. That observation suggests
a method of making crossover more productive. The effective crossover distribution could be im-
proved by suppressing the lower lobe of the distribution. This is the main idea of culling. Before
trying to find a method of suppression, however, it is instructive to first assume it can be done and
determine whether it would really be useful. Such a study is in the next section.

29



function PerfectCulling.BREED ( Parent1, Parent2 ){
input: Parent1 and Parent2
sethighSoFar=−∞
repeat litterSizetimes

generate candidate offspring C =SOTA.BREED

let F = fitness of C
if F > highSoFar

highSoFar= F
bestKid= C

insertbestKidinto the population
}

Figure 4.2: Perfect Culling implementation. Candidate offspring are generated by standard breeding,
Figure 3.4. Only one fitness evaluation per actual offspring is charged against performance. The exact best
offspring from each litter is retained, so no culling method can do better.

4.2 A perfect oracle

To determine how effective culling could be in principle, a perfect oracle is employed. The perfect
oracle actually computes a full fitness evaluation. The purpose of the perfect oracle is to determine
the effectiveness of culling, while ignoring efficiency, so the fitness evaluations used to implement
this “magic” oracle are not counted in reporting its performance. In other words, a perfect oracle
knows exactly how good each offspring is, so such an oracle can retain the truly best ones.

Perfect culling is not realizable in practice because it requires a full fitness evaluation of
each candidate offspring, but its performance is scored as if only one evaluation per actual offspring
was used. However, the perfect oracle will later be replaced by an efficient, although imperfect,
estimator of fitness based on culture. The performance of the perfect oracle

an efficient method because it allocates too many evaluations to each mating, while a stan-
dard GA would explore many more different matings with that many evaluations.

The implementation of Perfect Culling is shown in Figure 4.2. To produce each new off-
spring for the population, first produce a litter of, say, eight. Grade each by consulting the oracle.
Discard all but the one estimated as best, which will in fact be the best, since this oracle is perfect.
The resulting distribution is shown in Figure 4.3, which represents the 264,000 total crossovers per-
formed in 30 runs of 8–fold culling with a perfect oracle, where 30,000 individuals were placed in
the population. All runs succeeded on the pole–balancing task, on average taking 1300 chargeable
evaluations.

The shape of the crossover distribution in Figure 4.3 is much better than that of the standard
GA shown in Figure 4.1. The average offspring is now 62% as fit as its parents, compared to 30%
for SOTA. Over 2% (21 per 1000) of the offspring are twice as good as the parental average, which
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Figure 4.3: Distribution of fitness by crossover with perfect oracle. The abscissa scale matches Figure 4.1.
Average fitness is 0.64, almost double that of standard crossover (Figure 4.1). The performance of Perfect
Culling is driven by this distribution, which is much better than the offspring distribution ofSOTA(Figure 4.1).

is triple (21 : 7) the rate ofSOTAin Figure 4.1.

Table 4.1 (page 34) shows that culling with a perfect oracle improves performance dramat-
ically. We have found what we want: a method to improve the yield from crossover. However, it
cannot be constructed, so the next challenge is to devise a practical culling plan based on a less than
perfect oracle that can preserve some of this improved efficiency.

4.3 CE-CULL implementation

To devise a practical culling scheme the perfect oracle used above must be replaced with a method
that estimates fitness without making full fitness evaluations. The low performance peak of Fig-
ure 4.1 is so dominant that all that is needed to make crossover more productive is to recognize
abysmal individuals with reasonable probability. For instance, poor neural nets could be identified
as those with no connections to their inputs or outputs. Other suchad hocrules to determine poor
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quality by examining the genotype are possible as well, but domain–independent rules seem to be
rather binary, as in the no–connection example. Determining relative performance of two networks
requires rules specific to the problem domain, which are not available outside the fitness function.
Instead, my cultural approach is to perform a preliminary evaluation guided by the behaviors of the
individuals in the current population.

My practical culling method,CE-CULL, quizzes the new offspring and grades them with
respect to the current population’s knowledge of the answers. An individual that can answer simple
questions as well as an above–average performer is probably better than the vast majority of po-
tential offspring. In short, the method selects an elder conspecific as a benchmark and applies the
syllabus (8) as a quiz. The algorithm is shown in Figure 4.4.

function CE-CULL.BREED ( Parent1, Parent2 ){
input: Parent1 and Parent2
input: set of questions, Q[]// the culling syllabus
input: a benchmark individual, B
for each question q in Q[]

activate benchmark B on input q
let BV[q][] = resulting output vector

sethighSoFar= +∞
repeat litterSizetimes

generate candidate offspring C =SOTA.BREED( Parent1, Parent2 )
for each question q in Q[]

activate child C on input q
let CV[] = resulting output vector

computedist = CV[] - BV[] // Euclidean distance
if dist < highSoFar

highSoFar= dist
bestKid= C

returnbestKid
}

Figure 4.4: CE-CULL implementation. Candidate offspring are generated by standard breeding, Figure 3.4.
See text for how questions and benchmark individual are composed. Selection is made without any fitness
evaluations, by choosing the offspring whose answers are closest to the benchmark.

The syllabus contains a list of questions, which are just random input vectors. The target
answers for the quiz are obtained by activating the benchmark network on each question and saving
each resulting output vector. Then each candidate offspring is activated on each question, and the
difference between its answer (output vector) and the benchmark answer is summed. The grade is
the Euclidean distance between the candidate’s output vector and the benchmark’s output vector.
Since the benchmark is drawn from the current population, a truly genius candidate will inadver-
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tently be penalized. Thus, if over–applied, this technique would result in continual mediocrity. The
low lobe of the crossover distribution (Figure 4.1), however, is so large that there is little possibility
that culling will fail in the long run.

In the experiments reported in this work the benchmark is the highest scoring individual
found so far. This current champion is guaranteed to have above–average performance. Other
potential methods of constructing the benchmark will be discussed in Section 9.7.

This investigation uses an elementary method to determine the questions included in the
culling quiz: they are chosen randomly. Each element of the input vector is set to a value chosen
uniformly from the interval [0.45, 0.55]. The notion behind the small interval is that this is only a
qualifying exam. Neither the imperfect elder nor the child is likely to know how to answer sensibly
in extreme circumstances.

The work of Sebag et al. (1997), discussed in Section 2.4.3, with avoiding past failures
suggests a negative variety of culling: favor those offspring with the least similarity to a loser. A
similar generalization is a syllabus containing negative questions, that is, questions that will be rated
higher when the answer is farther from the benchmark. The problem with negative questions is that
it is too easy to generate wild answers. That type of selection pressure tends to reward networks
that can merely generate large but otherwise inappropriate numbers. Preliminary experiments (not
shown) confirmed this observation, so there are no negative questions in this work. (However, there
are uses for diversity of opinion, and other ways to evaluate it, as will be found in Chapters 5 and 6.)

4.4 Culling results

The main result is thatCE-CULL is about 3 times more efficient thanSOTA, i.e., CE-CULL takes
less than 35% of the evaluations needed bySOTA(Table 4.1). CE-CULL requires over twice as
many evaluations per solution as perfect culling (2776 vs. 1300), but that is true only because
the evaluations used by the perfect oracle are not counted. The Global Culling row represents the
very same runs as Perfect Culling, except that its score counts those free fitness evaluations. The
improvement ofCE-CULL over Global Culling is 10,400:2776, equal to a factor of 3.7.. Thus,CE-
CULL allocates its fitness evaluations so as to make them over three times as effective as overlarge
litters with no questionnaire.

The HighXO column of Table 4.1 shows thatCE-CULL has almost twice (0.012 : 0.007)
as many offspring with fitness≥ double the parental average asSOTA. The AvgXOcolumn also
shows great improvement (0.569 : 0.328) in average relative fitness, a substantial fraction of the
improvement of Perfect Culling (0.642 : 0.328).

In this problemRBHC(Section 3.5) performs as well asSOTA, suggesting that the error
surface is quite smooth and without too many deceptive local minima. In fact, the 4% performance
difference betweenRBHC andSOTA is not statistically significant (Table 4.2). However,RBHC only
finds a solution 80% as often as the standard GA does (42% vs. 53%).
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Method Eval/Soln ÷SOTA Success% AvgXO HighXO

Global Culling 10,400 1.29 100% 0.642 0.021
RBHC 8,340 1.04 42%
SOTA 8,037 1.00 53% 0.328 0.007
CE-CULL 2,776 0.35 85% 0.569 0.012
Perfect Culling 1,300 0.16 100% 0.642 0.021

Table 4.1: Performance of culling and standard methods on the pole–balancing task. Performance is shown
asEval/Soln= the number of evaluations used in all runs divided by the number of successful runs. The
÷SOTA column is the ratio of the score toSOTA’s score. Success%is the percentage of runs that found a
solution. AvgXO is the average relative fitness from crossover.HighXO is the fraction of offspring with
relative fitness≥ 2. At least 20 runs were averaged per row.CE-CULL takes only 35% of the evaluations
needed bySOTA, which means it is a practical, effective implementation of culling based on culture.

Eval/soln Method Perfect Cull Sota

1,300 Perfect
2,776 Cull 0.0
8,038 SOTA 0.0 0.0
8,341 RBHC 0.0 0.4 43.9

Table 4.2:Likelihood of null hypothesis: Probability of equal means (in %) for each pair of datasets. A small
value implies true means are different.RBHC andSOTA are indistinguishable, but the rest of the differences
are significant.

Table 4.2 shows that the performance differences of Table 4.1 are statistically significant,
using the resampling method described in Section 3.3. For instance, the table says that if there is
no difference betweenCE-CULL andRBHC, then the chance of the actual observations occurring is
P < 0.004. This is a small chance, so the null hypothesis is rejected at the 1% level. The other
differences are significant, as well, except thatRBHC andSOTA are indistinguishable.

Figure 4.5 shows the histogram of relative fitness resulting from crossover inCE-CULL.
Consistent with the performance averages, theCE-CULL distribution is not as good as the Perfect
Culling distribution shown in Figure 4.3, but the overall shape is comparable. In contrast to both
of these results, the crossover distribution of Figure 4.1 has almost no central peak, and its lower
lobe is many times larger than the central value. An explicit comparison is provided in Figure 4.6,
which plots the cumulative distribution functions of all three histograms.CE-CULL is much closer
to Perfect Culling than toSOTA, so much of the benefit of Perfect Culling should be attained.
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Figure 4.5: Distribution of relative fitness of crossover fromCE-CULL. The abscissa scale matches Fig-
ures 4.1 and 4.3. Average fitness is 0.57. The shape nearly matches Perfect Culling, Figure 4.3, so much of
the benefit of Perfect Culling should be attained.

4.5 Parameter effects

CE-CULL introduces two new parameters to neuroevolution. LitterSize is the number of offspring
reproduced at each mating, and QueryLength is the number of questions asked of each offspring. It
is important to know whetherCE-CULL is sensitive to these parameters.

Larger litter sizes can be expected to tend to better performance because the expected max-
imum of any random sample becomes larger as the sample size increases. Figure 4.7 shows the
performance of culling with various litter sizes. A litter size of one performs just like the standard
GA, as it should. For Perfect Culling, performance continues to improve with larger litter sizes
as expected, although the rate of improvement diminishes. The rate of improvement for practical
culling, CE-CULL, cannot continue like Perfect Culling because it has only an estimate of fitness.
The argmax of a noisy function will eventually become very noisy itself as sample size increases.
Even the CPU time consumed by administration of the questionnaires will eventually become no-
ticeable.

35



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0.5 1 1.5 2

C
u

m
u

la
ti

ve
 F

re
q

u
en

cy
 (

p
er

ce
n

t)

Relative fitness

Cumulative Distribution of Crossover Fitness

Perfect
CENE-Cull

s.o.t.a.

Figure 4.6: Comparison of cumulative distributions of relative fitness of crossover.CE-CULL is much
closer to Perfect Culling than to standard crossover, indicating that it achieves much of the benefit of Perfect
Culling.

The incremental improvement ofCE-CULL is slight after 8 offspring per litter. These results
suggests that litter size does not need to be optimized carefully. Anything from about 8 through 20
should perform satisfactorily.

It is clear that the number of items in the questionnaire can make a difference. An extremely
short questionnaire is not reliable, because it might just happen to sample an input vector for which
the benchmark and the candidate were atypically far apart. Obversely, a very large questionnaire
would have the effect of requiring the offspring to be excessively similar to the imperfect bench-
mark, and that would stifle progress. Figure 4.8 plots performance ofCE-CULL by questionnaire
length. Performance varies little in the range of 4 to 16 questions. This is good because it means
that the questionnaire size does not have to be carefully optimized.
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Figure 4.7: Effect of litter size on culling, plotted as evaluations per solution, with 25 runs per data point.
Culling from a litter of 8 or more works well.

4.6 Conclusion

This chapter has demonstrated how culling over–large litters can be utilized to improve neuroevo-
lution. A perfect oracle would provide a large improvement in the crossover distribution, but would
cost too much.CE-CULL, uses an imperfect but increasingly competent elder to inexpensively select
that offspring in a litter whose behavior most closely matches, and is therefore likely to be compe-
tent. The culling test should be thought of as only a general estimator of competence. It only needs
to discriminate enough to reduce that huge lower lobe of Figure 4.1. Empirical tests verified that
CE-CULL enhanced performance in the Cart-Pole domain, and demonstrated that parameter settings
are not critical.

CE-CULL is based on selecting offspring that can be expected to perform better. The next
chapter shifts focus from offspring to parents. It describes the development of a technique to choose
mates by behavior.
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Chapter 5

CE-MATE : Mate Selection

The second exploitation of the behaviors of population members isCE-MATE, mate selection by
complementary strength. This chapter begins with the idea that competency in a limited region of
the input space is akin to a solved subproblem The vigor of hybrids in nature is a reflection of the
fact that crossover can combine traits of the parents. After discussing how such complementary in-
dividuals can be recognized with non–vanishing probability, my novelCE-MATE method is detailed
and potential pitfalls are identified. Empirical results show thatCE-MATE yields a substantial im-
provement in performance over a range of parameters. Analysis of fitness distributions of mates and
offspring show thatCE-MATEś recognition of complementary behavior enables it to trade decreased
fitness or mates for increased fitness of offspring.

5.1 Motivation

The machine learning view of why crossover is more powerful than mutation alone is that crossover
can combine partial solutions, or solved subgoals—that is, the good traits of both parents. For
example, given an individual that performs well in high–speed situations, it should be desirable to
mate it with one that is competent in low–speed situations. It is much more likely that crossover of
such complementary individuals could result in an offspring competent in both speed regimes than
crossover of two individuals that both perform well in the same circumstance. How can we take
advantage of this?

An individual of above average competence in only one region of the input space represents
a partial solution of a subproblem. The goal of complementary mate selection is to enhance the odds
of combining solved subproblems by mating pairs whose strengths cover each others’ weaknesses.
The standard genetic algorithm, Figure 3.3, chooses both parents by fitness, so they will often have
similar behavior. When both parents have similar strengths and weaknesses the recombination of
the two can be but little different.CE-MATE attempts to enhance the frequency with which mating
pairs have complementary competencies, and thus the frequency with which crossover generates
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good combinations. Of course, this will also increase the frequency of doubly–weak offspring, but
survival of the fittest will weed them out. The genetic algorithm needs variation more than it needs
a high average.

Since the fitness function is a black box, we have noa priori knowledge of a good decom-
position of the problem at hand. That lack is not all bad, since the ultimate goal is machine learning
methods that can handle problems for which there are no known good decompositions. Lacking
any principled decomposition, the line of attack in this work is to rely on behavior, as represented
by sampling the input space. My hypothesis is that the behavioral traits of an individual will prove
to be an adequate proxy for decomposition—that behavioral strength will be correlated with solved
subproblems.

Divide and conquer techniques are common in machine learning, but require knowledge of
how to decompose the problem. The idea of mate selection by complementary strength is a way
to encourage partial solutions to combine, assuming that behavioral differences are a satisfactory
proxy for decomposition.

5.2 CE-MATE Implementation

This section describes the design issues and final implementation ofCE-MATE. The first design
choice is that one parent will continue to be chosen by fitness, as in the standard GA (Figure 3.3).
This is so that fitness can continue to drive the evolution.CE-MATE differs from a standard genetic
algorithm in how the second mate is chosen. The goal is that the behavior of second parent com-
plement the first one’s traits. This is accomplished by selecting an individual from a sample of the
population whose behavior is most different from the behavior of the first parent. The sample is
called a pool of suitors. With a perfect metric, the most different behavior would correlate with
complementary competencies. With a feasible metric, Euclidean distance, the behavior measured
as most different will at least be different, and will have a better chance of being complementary
than when the behaviors are similar.

As always in this work, the concrete measure of behavior is obtained with a syllabus. Like-
wise, only the most simplistic syllabus construction is considered in this dissertation, a set of random
input vectors. In similar vein, the population sample used as a mating pool is chosen at random.
Hindsight indicates that the mating pool should have been chosen with some fitness bias, but (1) it
is an interesting challenge for behavioral methods to determine if the simpler choice is workable,
and (2) that hindsight arrived too late in the construction of this dissertation.

These considerations lead to the implementation shown in Figure 5.1. A list of questions is
presented to the pool, as well as to the specified first parent. Each question is a vector from the input
space of the problem. The behavior of each neural network is taken to be the resultant output vector.
The difference in behavior is the Euclidean distance between the outputs of a suitor and the outputs
of the specified first parent. The largest distance among the suitors represents the maximally unlike
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function CE-MATE.MATESELECT () {
input: Parent1 already selected
input: a set of questions, Q[]the mate selection syllabus
select a set of random individuals, W[]the lek, or pool of suitors
clear distance accumulator array D[w]
for each question q in Q[]

activate Parent1 on input q
let U[] = resulting output vector
for each network w in W[]

activate w on input q
let V[w][] = resulting output vector
compute H = V[w][] - U[] Euclidean distance
add H into D[w]

select that individual with the least total distance in D[w],
as the second parent

}

Figure 5.1: CE-MATE implementation.

behavior, so that is the mate chosen byCE-MATE.

SOTA chooses the second parent as the one of highest fitness in the mating pool.CE-MATE

ignores the fitness of the second parent, so they will be weaker than those chosen bySOTA. The
success ofCE-MATE hinges on complementary behavior producing offspring enough better than
their parents to overcome this handicap. An empirical comparison of performance will show that it
does so.

5.3 Empirical analysis

As promised in Section 3.1,CE-MATE was tested on the Acrobot swing–up task of Section 3.1.2. In
this section, empirical results first compare performance ofCE-MATE andSOTA. Then examination
of the fitness distribution of mates and offspring during these tests illuminate the worth of the trade–
offs in CE-MATE.

5.3.1 CE-MATE performance

Performance results show thatCE-MATE yields a substantial improvement in speed over plainSOTA.
Table 5.1 reports the average number of fitness evaluations required to find a solution forCE-MATE

with different syllabus lengths, versusSOTA. Longer questionnaires tend to result in better perfor-
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Evals/soln ÷SOTA Method # queries Success%

2,258 0.60 CE-MATE 40 98%
2,386 0.63 CE-MATE 10 98%
2,400 0.64 CE-MATE 20 98%
2,649 0.70 CE-MATE 5 98%
3,769 1.00 SOTA – 84%

Table 5.1: Comparison of evolution speed inCE-MATE and SOTA. Evals/solnis the average number of
evaluations required to generate each successful solution. The÷SOTA column gives ratio of score toSOTA.
Successis the percentage of runs that found a solution.Queriesis the length of the syllabus. Each row of the
table is an average of 50 runs.CE-MATE performs well, particularly when using 10 or more questions.

Score Method # queries 40 10 20 5 SOTA

2,258.4 Mate 40
2,386.2 Mate 10 39.3
2,400.3 Mate 20 38.0 47.5
2,649.7 Mate 5 20.3 27.8 29.7
3,769.5 SOTA – 2.8 3.8 3.8 7.8

Table 5.2:Probability of equal means (in %) for each pair ofCE-MATE experiments. The differences between
CE-MATE andSOTA are significant at the 95% level when the questionnaire length is≥ 10.

mance, but even when only five answers are compared,CE-MATE is still 30% faster thanSOTA.
To determine whether these speed differences are significant, a 10,000–fold resampling test

was performed (see Section 3.3). The results are in Table 5.2. The bottom row shows less than a 4%
chance that the differences betweenCE-MATE andSOTA observed in Table 5.1 are due to chance
when the questionnaire length is≥ 10.

5.3.2 Fitness of mates

Because it ignores fitness of the second parent,CE-MATE will necessarily select mates that are less
fit than those chosen bySOTA. This subsection quantifies the result of that prediction. Figure 5.2
compares the fitness distribution of second parents for the bestCE-MATE variant (a questionnaire
length of 40) versusSOTA during the same 50 runs reported in Table 5.1. To normalize the graph
a fitness ratio is plotted. Fitness relative to the then–current population champion is plotted, since
that ratio completely determines what mates will be chosen by the binary tournament ofSOTA. A
reverse cumulative distribution is plotted so that higher lines represent better distributions.

The standard GA is choosing the second parent based solely on fitness, whileCE-MATE ig-
nores its fitness. Indeed, since the first parent is of above–average fitness, andCE-MATE deliberately
selects for the behavior most unlike the first, there is an implicit bias for below average fitness in
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Figure 5.2: Distributions of relative fitness of second mates during the 50 runs summarized in Table 5.1 for
CE-MATE-40 andSOTA. Fitness of current champion = 1.0.CE-MATE forgoes a lot of fitness.

the second parent. The lower curve shows that about 45% of the mates chosen byCE-MATE have
relative fitness above 0.2, whereasSOTA picks mates at least that fit over 80% of the time.

The surprise contained in this chart is how much fitness is sacrificed. Nonetheless,CE-MATE

did evolve solutions faster, as hypothesized above.

5.3.3 Fitness of offspring

In order to determine howCE-MATE can perform so well, the fitness distribution of offspring is
compared in Figure 5.3. Again, it contains all the offspring generated by the runs summarized in
Table 5.1. To normalize the graph a fitness ratio is plotted, but in this chart the ratio is fitness relative
to the average of the parents, because that is what determines the rate at which the evolution can
proceed.

Less than 7% of the offspring generated bySOTA have a fitness as great as their parents’
average, whereasCE-MATE generates offspring better than the parental average twice as often (over
15% of the time). The advantage ofCE-MATE gets more extreme for very high fitness ratios. At 1.5
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Figure 5.3: Distribution of fitness of offspring relative to parental average during the 50 runs summarized
in Table 5.1 forCE-MATE–40 andSOTA. Average of parents = 1.0. The good performance ofCE-MATE–40 is
explained by the fact that it has much more area under the curve above 1.0 than doesSOTA.

times parental averageSOTA is below 1.3%, butCE-MATE generates fitness that high over 6% of the
time—four times as often.

Combined with the evidence in Figure 5.2, which shows that the second parents are not
themselves very good, this performance data suggest thatCE-MATE must be making better combi-
nations available to crossover.

5.4 Conclusion

This chapter has shown how intelligent selection of mates based on complementary behavior can be
utilized to improve neuroevolution. TheCE-MATE method selects mates of complementary behav-
ior, instead of strictly by fitness as the standard GA does. That the mates chosen are necessarily of
lower fitness than the mates chosen bySOTA is confirmed by the empirical distribution of fitnesses
of second mates.CE-MATE sacrifices performance of second parents, but it evolves solutions faster
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than the standard GA. Thus, the parental weakness is more than compensated by the improvement
in offspring fitness, validating my assumption of the importance of hybridization. This non–obvious
trade–off of complementary behavior for fitness is surprisingly good, given the measured weakness
of the mates.

A secondary effect ofCE-MATE is an improvement in population diversity, since the differ-
ent phenotypes of the chosen mates tend to correlate with different genotypes. This result will be
explicitly confirmed later in Section 8.3.4.

All my techniques involve relatively simple modifications toSOTA. CE-CULL inserted a
choice between alternative offspring.CE-MATE is based on manipulating mate preference. The next
chapter describes the development of a technique to manipulate the third type of individual selection
in the genetic algorithm: Is there a better way to choose which individuals should be discarded to
make room for new offspring?
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Chapter 6

CE-DIVERSE: Diversity Enhancement

CE-DIVERSE is the third exploitation of population behavior devised for this dissertation. By en-
hancing phenotypic diversity premature convergence of the population is avoided, so progress can
continue. First, I precisely define genetic diversity, describe its impact on evolution, and character-
ize traditional approaches to diversity management. Then phenotypic diversity and how it is utilized
in this approach is described. Next, theCE-DIVERSE design and potential pitfalls are addressed, re-
sulting in the concrete implementation. Finally, empirical results show that behavioral diversity
enhancement yields a substantial improvement in performance, and its operation is analyzed to
confirm its mechanism.

6.1 Genotypic Diversity

Diversity can help keep progress going in neuroevolution. In this section the collapse of diversity,
called convergence, is first described, and then the formula for the numeric measure of diversity is
defined. Finally, approaches to diversity promotion are categorized.

As evolution proceeds selection pressure causes alleles associated with high fitness increase
in frequency in the population. When most or all of the population has the same allele (value) for
a locus, the population is said to beconvergedat that locus. When the entire genome is converged
change comes only from random mutation, and is unlikely to make any more progress. The most
likely state for a converged population is very near some peak in the fitness landscape. If that
peak is the highest one, theglobal optimum, the algorithm has succeeded (at least for a stationary
problem, where the optimum does not move). Peaks with fitness values less than the global optimum
are calledlocal optima. Convergence to a local optimum is calledprematureconvergence. In the
language of machine learning, premature convergence is the consequence of too much exploitation.

Darwinian evolution operates by selection of variations. Thus, the members of the popula-
tion must vary in fitness in order for the genetic algorithm to make progress. Crossover alone can
never change a fully converged locus, so crossover is ineffective in a highly converged population.
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With only mutation remaining operational, a genetic algorithm becomes a hill–climber, and is likely
to be less efficient than algorithms specifically designed for hill–climbing. Progress is slow when
the population is highly converged.

An intuitive view of the effect of convergence is that when the population is 90% converged,
essentially only1

10 of the population is performing useful work, but the cost includes evaluating and
reproducing the entire population, a highly inefficient situation.

The degree of convergence in a population is measured by the diversity of the alleles present
in the population (see for example, Eshelman and Schaffer (1991) and Moriarty (1997, Sec. 4.2.3)).
For the binary chromosomes in this work, the diversity of each locus is simply the proportion of
zeroes and ones at that locus of the genotype in all the members of the population. Specifically, the
diversity of each bit position,b is computed as:

Φb =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

Xi,b ⊗Xj,b

wheren is the population size,Xi is the bitstring representing thei-th individual,Xi,b is theb-th
bit of Xi, and⊗ is theexclusive oroperation. The leading factor of2/(n(n − 1)) normalizes for
the number of terms summed, such thatΦb is the probability that two randomly chosen individuals
would have the same value of bitb. For a random population allΦb = 0.5; i.e., it is 50/50 whether
any two bits differ.

The average population diversity is the average over all bit positions,

Φ =
1
l

l∑
b=1

Φb

wherel is the number of bits in each individual. SinceH(i, j), theHamming distancebetween two
individualsi andj is

H(i, j) =
l∑

b=1

Xi,b ⊗Xj,b,

we have

Φ =
2

n(n− 1)l

n∑
i=1

n∑
j=i+1

H(i, j)

Thus,Φ is the average Hamming distance between every two chromosomes.
Since lack of diversity means convergence means no further progress, several diversity en-

hancement techniques have been developed:

• Monitor the diversity level in the population, and take some action when it seems too low.
One crude but sometimes effective method is simply to increase the mutation rate whenever
the population diversity drops below some threshold (Cobb and Grefenstette 1993). Another
example is to restart when the population converges.
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• Island models like ESP (Gomez and Miikkulainen 1999) increase diversity by periodically
injecting an individual from a different population.

• Take some action in the reproductive mechanism that tends to prevent diversity from ever
becoming excessively low. The neuron populations ofSANE (Moriarty and Miikkulainen
1996b) accomplish this because they are forced to cooperate and cannot become too similar.
In another example Eshelman and Schaffer (1991) use a distance metric between genotypes
and prohibit overly similar individuals from mating. Craighurst and Martin (1995) record
kinship relations to enforce a prohibition against mating close kin. Crowding (De Jong 1975)
and niching (Mahfoud 1995a,b) are also techniques of this class.

CE-DIVERSE is an instance of the second approach, because it does not directly manipulate
the genome. Instead, by focusing on cultureCE-DIVERSE obtains the advantages of genotypic
diversity by enhancing phenotypic diversity, as will be shown below.

6.2 Phenotypic Diversity

The behavior of population members can be monitored to guard against loss of diversity without
looking at their genomes.CE-DIVERSE enhances phenotypic diversity by increasing the repro-
ductive odds of those individuals whose behaviors are least typical. To accomplish that objective
requires an operational definition of typical behavior.

Two schemes, already mentioned in the previous section, crowding (De Jong 1975) and
niching (Mahfoud 1995a,b), can also be based on phenotypic similarity, but in both of them the
definition of phenotypic distance is based solely on fitness values. Thus, the entire population is
represented by points on a single line, which is too crude forCE-DIVERSE. As we have seen inCE-
MATE, a suitable characterization of behavior of a network is a sample of its input–output mapping.
To emphasize the parallels with otherCENEmethods, this sample is called a diversity questionnaire,
or syllabus.

In CE-DIVERSE the networks’ responses to the questionnaire are combined to produce a
measurement of diversity by regarding theaverageresponse of a crowd as representingtypical
response. Thus, the design goal ofCE-DIVERSE is to increase the chance that the individuals with
the most typical behavior will be discarded.

The geometric average of several output vectors, the centroid, is an appropriate measure
of typicality, and is simple to compute. That individual with the least Euclidean distance from
the centroid is regarded as the most typical. Thus that individual demonstrates the behaviorCE-
DIVERSE seeks to suppress. The chosen individual is deleted from the population to make room for
a new offspring.

SOTA, the baseline genetic algorithm in this work, uses steady state breeding, where creating
one new individual requires that one be discarded. As shown in Figure 3.4 on page 25,SOTA
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function CE-DIVERSE.K ILL SELECT () {
input: a set of questions, Q[]
select a set of individuals, W[]
clear distance accumulator array D[w]
for each question q in Q[]

for each network w in W[]
activate w on input q
let V[w][] = resulting output vector

compute K[]= centroid of V[][]average over all w
for each network w in W[]

compute H[w]= distance of V[w] from K
add H into D

select those two individuals with the least total distance in D[w],
let them bew0 andw1, the two most conventional

kill the least fit ofw0 andw1

}

Figure 6.1:

discards the least fit individual found in a 4–tournament. InCE-DIVERSE that tournament on fitness
is replaced with ann-tournament (n ≥ 3) on behavior, as detailed in the next section.

6.3 CE-DIVERSE implementation

In this section the design ofCE-DIVERSE is presented. First, it was found that a diversity enhance-
ment method that ignored fitness performed poorly. Thus, the actualCE-DIVERSE implementation
is biased toward weaker individuals.

In an initial implementation of phenotypic diversity preservation (not shown), fitness was
ignored when selecting the decedent. A sample chosen without regard to fitness will contain indi-
viduals with a range of fitnesses. If the population has converged to occupy a single fitness peak,
individuals of higher fitness are nearer the peak, and so will behave more similarly than those of
lower fitness, who are likely to be scattered around the base. Thus in the random sample of individ-
uals, the high fitness individuals tend to resemble each other while the low ones do not, so that when
they are all averaged to form the centroid the high fitness individuals tend to reinforce each other
while those of low fitness tend to cancel each other. The centroid is therefore strongly influenced by
individuals of higher fitness, and the closest individual may even be the most highly fit individual
of the sample. This tendency toward discarding the best individual is detrimental to performance.

Preliminary experiments with the simple mechanism that ignored fitness confirmed that
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argument. It does indeed preserve diversity, but increased diversity, by itself, does not increase
performance. For instance, diversity can be enhanced by merely inserting random individuals into
the population. However, inserting random individuals does not make progress toward increased
fitness.

The actual implementation ofCE-DIVERSE, shown in Figure 6.1, takes account of fitness in
a simple but effective way. The fitnesses of the two individuals in the sample with the least distance
are compared. The least fit of these two is eliminated from the population, which is a non–random
2–tournament.

CE-DIVERSEselects first by distance then by fitness. The opposite arrangement seems plau-
sible, that is, select first by fitness, then by distance. For example, initially perform three individual
two–tournaments on reverse fitness to obtain three weak individuals, and then discard the individual
closest to the centroid. Because lower fitness individuals tend to be more dispersed in weight space,
their response surfaces do not represent behavior that is actually typical. The centroid of a sample,
therefore, is more likely to merely reflect wild disagreement, rather than representing a consensus.
Thus, the individual who happens to be the closest to the centroid is not so much typical as just
unlucky, and choosing it to discard is not significantly more effective than the binary tournament of
planSOTA.

There are at least two potential problems with theCE-DIVERSE approach to behavioral di-
versity enhancement. First, if nearby genotypes give rise to widely scattered phenotypes, behavioral
diversity could appear high while the genotypic diversity was actually plummeting. Generally, phe-
notypic distance is correlated with genotypic distance, so this situation is unlikely. Second, since
many genotypes map into indistinguishable phenotypes, phenotypic convergence could occur while
the population was still genetically diverse. Such genetic diversity could be enough by itself to
permit escape from the local minimum. This is not likely because selection pressure operates on
phenotypes, so selection pressure is effectively disabled when phenotypic convergence occurs and
the population performs a slow random walk, much as it does when it is genotypically converged.

The CE-DIVERSE implementation is supposed to increase both performance and diversity
overSOTA. Empirical results in the next section verify that assumption.

6.4 CE-DIVERSE Results

This section presents empirical results comparingCE-DIVERSE and SOTA, in performance. The
operation of the method is analyzed by further comparisons of diversity over time, and the fitness
distribution of decedents.

6.4.1 CE-DIVERSE performance

Empirical results show thatCE-DIVERSE yields a substantial improvement in performance over
SOTA. The task is a modification of the Acrobot domain described in Section 3.1.2. The standard
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Acrobot problem proved too simple to reveal definite differences between the methods. That is,
SOTA is effective enough on the standard Acrobot task that enhanced diversity contributes little to
performance. In the modified Acrobot problem in this chapter applied force is reduced to only
90% of its normal value in the previous chapter, which makes the swing–up much more difficult to
achieve. The difficulty of this weak Acrobot task is seen by comparingSOTA results in Table 6.1
and Table 5.1.SOTA expends over three times the effort on this modified problem as on the standard
Acrobot problem (12,998 vs. 3769 evaluations per solution).

Evals/soln ÷SOTA Method Success%
9,080 0.70 CE-DIVERSE 66%

12,998 1.00 SOTA 51%

Table 6.1: Comparison of the performance ofCE-DIVERSE andSOTAon the more difficult Acrobot swing–
up task.Eval/Solnis the number of evaluations used in all runs divided by the number of successful runs.
Success%is the percentage of runs that found a solution. Each row of the table is an average of 200 runs.
CE-DIVERSE is 30% faster thanSOTA.

Table 6.1 compares the speed of evolution ofCE-DIVERSE andSOTAon the modified prob-
lem. The main result is thatCE-DIVERSEused 30% fewer evaluations thanSOTA. This difference is
statistically significant (p < 0.006).

6.4.2 Diversity over time

The performance ofCE-DIVERSE is good, but my hypothesis was also that it would be achieved by
enhancing diversity, so that needs to be analyzed. Figure 6.2 compares average population diversity
over time during the experiments reported in Table 6.1 above. The curves show thatCE-DIVERSE

maintains more diverse populations thanSOTA. Diversity in SOTA drops below 0.2 before 2000
evaluations, butCE-DIVERSE stays above that level three times as long.CE-DIVERSE still has a
respectable diversity of 0.158 after 10,000 evaluations, whereasSOTA has dropped below that level
very early, at only 2200 evaluations.

Together, these results show that behavioral diversity preservation,CE-DIVERSE, operates
as desired: (1) Table 6.1 shows thatCE-DIVERSE results in faster evolution, and (2) Figure 6.2
shows that it enhances genotypic diversity.

6.4.3 Fitness of decedents

Another useful analysis results from asking which individuals get discarded. Recall from Figure 6.1
that CE-DIVERSE finishes with a binary tournament on reverse fitness of two individuals. Thus, if
the distances in behaviors had no systematic effect,CE-DIVERSE would have the same effect as a
binary tournament, soCE-DIVERSE would discard individuals of higher average fitness thanSOTA,
which has a 4–tournament. Figure 6.3 shows the distribution of relative fitness of all individuals
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Figure 6.2: Comparison of population diversity by generation ofCE-DIVERSE versusSOTA dur-
ing the same 200 runs of Table 6.1. Numbers in legend are average final diversity.CE-DIVERSE

maintains much more diversity thanSOTA.

selected to be replaced during the same set of experiments summarized in Table 6.1. Fitness relative
to the current population champion is shown, because that ratio is an effective proxy for fitness rank
in the population, and tournament selection depends solely on rank.

The plots appear to show that individuals with a fitness ratio of 1.0 are being discarded, but
that is just an artifact of round–off. The reverse fitness tournaments used herein can never select
the actual champion. Nonetheless,SOTA is seen to discard many highly fit individuals. The reason
is that SOTA failed to achieve the goal in almost half of its simulations. Failure to achieve the
goal is usually associated with premature convergence, which means that later generations come to
contain individuals of almost identical fitness. Thus, in a converged population the relative fitness
of discarded individuals can be close to 1.0. The champion in a converged population is likely to
have only slight random differences from the others.

Despite a smaller tournament size,CE-DIVERSE kills individuals of lower fitness than the
standard GA does. This is especially evident in the peak just above zero, whereCE-DIVERSEselects
almost 25% of its decedents, whereasSOTA has less than 10% there. Thus,CE-DIVERSE does not
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Figure 6.3: Comparison of distribution of relative fitness of discarded individuals. Numbers in legend
indicate average of the distribution. The individuals discarded byCE-DIVERSEare of lesser fitness than those
chosen bySOTA, so it is not behaving like a binary tournament.

behave like a binary tournament, and the distances in behaviors are having an effect.

The distributions are easier to compare when integrated, as in Figure 6.4 which shows the
same data plotted as a cumulative distribution function. Higher curves are better because they mean
that more of the discarded individuals are to the left, at lower fitness. For example, the ordinate
for fitness = 0.6 shows thatSOTA had less than 40% of its discards below that, which means that
over 60% of the individuals it discarded were better than 0.6. In contrast,CE-DIVERSE discards
individuals below 0.6 fitness fully 65% of the time.

A large difference exists in the fitness of discarded individuals. One possible explanation
is that there are never any high–scoring individuals whenCE-DIVERSE is used. However, that is
not the case, because what is plotted in Figure 6.4 isrelativefitness, where the current population
champion is equal to one. Thus, the difference produced byCE-DIVERSE is real, and the chart
indicates that it is due to a plausible approach: kill only the very weakest.

SOTA could be be modified to kill individuals of lesser fitness than it does now, merely
by increasing the death tournament size. However, larger tournaments increase selection pressure
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Figure 6.4: Comparison of cumulative distribution of relative fitness of discarded individuals forCE-
DIVERSE versusSOTA. CE-DIVERSE discards individuals below 0.2 over twice as often asSOTA.

(Whitley 1989) and cause premature convergence. As shown by Figure 6.2,CE-DIVERSE does not
suffer from premature convergence so it is not the equivalent ofSOTA with a large tournament size.
Thus, my twin design goals are met: kill the weakest while preserving diversity.

Comparing the success percentages in Table 6.1 show thatSOTA finds a solution less than
80% as often asCE-DIVERSE(51 : 66). The diversity plot in Figure 6.2 shows thatSOTA’s diversity
falls much faster thanCE-DIVERSE. Thus, the diversity enhancement ofCE-DIVERSE leads to
substantially less premature convergence thanSOTA, as was desired.

6.5 Conclusion

This chapter has shown that behavioral diversity can be utilized to improve neuroevolution.CE-
DIVERSE, selects atypical but weak decedents and preserves diversity, and both portions of the
strategy are necessary. Merely selecting very weak decedents leads to premature convergence. Dis-
carding the most typical without regard to fitness leads to poor performance.CE-DIVERSEpreserves
diversity very well, and it is able to do so while discarding weaker individuals than those chosen by
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SOTA, leading to good performance.
Each of the three novel techniques developed so far—CE-CULL, CE-MATE, andCE-DIVERSE—

operate by examining the behavior of population members to select those with certain character-
istics. In contrast, the technique constructed in the next chapter goes on to actuallymodify the
behavior of evolved neural networks for even more powerful results.
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Chapter 7

CE-TEACH : Educating Offspring

The three cultural techniques developed in previous chapters operate by examining the behavior
of population members to select those with certain characteristics. In contrast,CE-TEACH, the
technique presented in this chapter, actuallymodifiesthe behavior of the neural networks evolved.
New offspring are taught to respond somewhat like an elder before they face a fitness examination.
The inspiration comes from the natural world, where parental education of offspring is widespread.

After expanding on the rationale behind teaching, the implementation plan is presented and
design issues resolved. Next, theCE-TEACH method is empirically determined to be effective on
the Inverted Pendulum task. Finally, the surprising pattern of fitness before learning inCE-TEACH

is found to explain how teaching widens the basins of attraction for the underlying GA.

7.1 Teaching rationale

As was reviewed in Section 2.4, culture is a powerful force in natural evolution, and so several re-
searchers have been motivated to exploit culture in computational evolution as well. TheCE-TEACH

approach is unique because it focuses on behavior as the embodiment of culture, thus excluding arti-
facts. The behavioral focus also implies that a convenient source of teaching targets can be obtained
from existing networks. The issue is how to find targets that will accelerate progress.

CE-TEACH constructs a teacher from the common knowledge contained in the current popu-
lation. Such teachers are imperfect, but continually improve over the course of evolution. The
important conclusion demonstrated in this chapter is that such imperfections are more than com-
pensated for by the increased speed of supervised learning.

To discuss the rest of the issues involved in making this approach work, let us first make it
concrete by proposing an implementation.

56



function CE-TEACH.BREED ( Parent1, Parent2 ){
input: Parent1 and Parent2
input: J = a new offspring, not yet evaluated
input: Q[] = a set of questions// the teaching syllabus
input: T = an individual of the population// the teacher
generate new offspring C =SOTA.BREED( Parent1, Parent2)
for each question q in Q[]

activate teacher T on input q
let TV[q][] = resulting output vector
activate student C on input q
let CV[q][] = resulting output vector
perform backprop on C with TV[q][] as the target vector

return the now trained C
}

Figure 7.1: CE-TEACH implementation. A new offspring is generated by standard breeding (Figure 3.4),
and trained via backpropagation to approximate target vectors produced by the teacher.

7.2 CE-TEACH implementation

The basic plan is to train offspring with backpropagation to emulate a teacher’s output vectors
over a set of training examples, before the offspring is subjected to the complete, expensive fitness
evaluation. A concrete proposal for implementingCE-TEACH shown in Figure 7.1 draws attention
to three issues: (1) how is the teacher specified, (2) what questions are to be taught, and (3) how
much backpropagation is to be used.

The set of training examples is called the syllabus. The teacher and syllabus ofCE-TEACH

correspond to the benchmark and questionnaire ofCE-CULL. As with the methods discussed earlier,
the syllabus and the teacher could be chosen in various ways, and again only the most straightfor-
ward choice is analyzed in this work. The teacher is chosen like the benchmark ofCE-CULL: the
current population champion. Possible development of alternative methods of composing teachers
is discussed in Section 9.7.

Just as in earlierCENE methods, the set of training examples consists of random input vec-
tors. The target vector that drives backpropagation is the output vector produced by the teacher
when activated on a given input vector. Whereas inCE-CULL errors between several candidates
were compared, and inCE-MATE andCE-DIVERSEoutputs of several candidates were compared, in
CE-TEACH error is used to adjust the weights of an offspring.

The third issue remains: how much backpropagation should be used? Excessive training
could lead to a student becoming a near copy of the teacher. That would stall any progress via
evolution, so the amount of training must be moderate, and therefore the method is restricted to
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only incremental improvement over an untrained individual. The design choice inCE-TEACH is
that the amount of training is limited to a single pass over the syllabus, that is, each training case
is presented and backpropagated only once. The effect of varying the length of the syllabus will be
tested, however, and the results will be shown below in Figure 7.3.

To understand whyCE-TEACH does not cause students to become overly similar to their
teachers, it is useful to discuss the effect of backpropagation on the student’s response surface.
Since backpropagation is based on error surfaces in weight space the difference between these two
spaces must first be clarified. For a network containingm weights1, the error surface is plotted
in a m + 1 dimensional space where the firstm dimensions correspond to the weights. For every
combination of weight values, the error value is plotted as height above them dimensional subspace,
forming a hyper–surface. In fact, backpropagation performs a gradient descent on that error surface
(Hertz et al. 1991).

The response surface is similar to the error surface only in the mechanics of plotting. The
response surface of a single output of some neural network is just a representation of the input–
output mapping of that network. If there aren inputs and one output, then the result can be plotted
as a surface in a space of dimensionalityn + 1. The output value is plotted as a point above the
input hyper–plane. Figure 7.2 shows example response curves for the case of a network with but a
single input (1–dimensional stimulus, and no bias unit). In the case of multiple outputs, each output
will have a separate response surface, each of which will individually behave as indicated.

Backpropagation does drive the total error of an offspring network toward zero. InCE-
TEACH that error is measured at only a finite number of sample points, so backprop is not reacting
to the teacher’s entire response surface. Thus,CE-TEACH could run backpropagation until the error
becomes very small, and the student’s response surface would still not be identical to that of the
teacher.

Figure 7.2 illustrates this finite sample effect schematically. Assume these two curves de-
scribe a student and a teacher inCE-TEACH, and that there are only two items in the syllabus,
marked here as A and B. The arrows show the error signals resulting from the mismatch of student
and target. Each backprop iteration will tend to try to push the student’s response surface toward the
teacher’s, but only at one input point. Since there are only a limited number of sample points, small
residual error does not imply that the response surfaces are similar anywhere else: they may touch
or cross near the sample points but flutter disparately elsewhere. With higher dimensional input
vectors, which are more typical, there is even more room for the two surfaces to diverge. Only if the
number of samples approaches the number of weights in the networks can the response surfaces be
perfectly aligned. InCE-TEACH the number of samples is only dozens, so the finite sample effect is
pronounced.

A syllabus construction based on accurate knowledge of the teacher’s response surface

1 The error surface concept is actually valid for any machine learning method that is completely characterized by the
values of its adjustable parameters. Just substitute such parameters for the weights in the rest of this discussion.
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would be very expensive. Fortunately,CE-TEACH does not need the exact response surface, as
shown next.

7.3 CE-TEACH results

For empirical testing ofCE-TEACH we return to the Inverted Pendulum task described in Sec-
tion 3.1.1 and used to evaluateCE-CULL. Table 7.1 reports the average number of fitness evaluations
required to find a solution for several methods. (RBHC andSOTA data is copied from Table 4.1.) Of
50 runs ofCE-TEACH, only one did not succeed. On average,CE-TEACH required only one–fifth of
the evaluations used bySOTA. Teaching provides a considerable performance boost.

The scores in Table 7.1 are significantly different, except forRBHC andSOTA. The signif-
icanceP–values shown in Table 7.2 are computed by 10,000 resamples of the data points corre-
sponding to each pair of methods.
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Method Eval/Soln ÷SOTA sec/Soln Success%

RBHC 8341 1.04 737.2 42%
SOTA 8037 1.00 380.5 53%
CE-TEACH 1710 0.21 35.5 98%
Perfect Culling 1300 0.16 262.6 100%

Table 7.1: Comparison of performance ofCE-TEACH versusSOTA. Eval/Solnis the number of evaluations
used in all runs divided by the number of successful runs.Success%is the percentage of runs that found a
solution. sec/Solnis the average CPU time per solution. TheRBHC andSOTA data previously appeared in
Table 4.1.CE-TEACH finds solutions with only one–fifth the effort ofSOTA.

Score Method Perfect CE-TEACH SOTA

1300.0 Perfect Culling
1710.2 CE-TEACH 0.2
8037.7 SOTA 0.0 0.0
8340.9 RBHC 0.0 0.0 45.0

Table 7.2:Probability of equal means (in %) for each pair ofCE-TEACH experiments. All differences are
significant, except forSOTA versusRBHC.

Fitness evaluations in Pole Balancing are many times as expensive as a neural network
activation. so it is a good example of an expensive sequential decision task for which the cultural
methods were designed. It was arranged for the runs in this table to be performed on a single,
unloaded machine, so comparative CPU times are available to evaluate the efficiency of the methods
in practice. Table 7.1 shows thatCE-TEACH was over ten times faster thanSOTA. The speed–up in
CPU time is better than the ratio of fitness evaluations because of the relatively high failure rate of
SOTA, and the fact that failures tend to achieve relatively high scores. High scores in this task are
achieved by keeping the pole up longer, which uses CPU time. Runs which do not find a solution
continue for 50 generations, i.e. 10,000 evaluations, whereas successful runs inSOTA averaged
only 4026 evaluations, andCE-TEACH only 1653. While almost half theSOTA runs failed, theCE-
TEACH time was burdened with only one failed runCE-TEACH is simply better at finding solutions.
Nonetheless, it is clear thatCE-TEACH is several times faster thanSOTA, and that ratio will be even
higher for tasks with more expensive fitness functions.

These results were obtained with a fixed–size syllabus of 20 vectors. Since backpropagation
has a larger effect with more training vectors, the size of the syllabus is an important parameter.
Figure 7.3 shows how the average evaluations per solution varies with the length of the syllabus.

Success rates were 98% or better when the syllabus contained 20 or more questions. This
graph indicates that the size of the syllabus does not have to be very carefully set, as long as it is
large enough (around 20). Too large a syllabus tends to train the offspring to be excessively similar
to the imperfect teacher, which stifles progress (not shown in the chart).
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7.4 Why is CE-TEACH successful?

The state of the network after teaching corresponds to the adult phenotype in biology. Phenotypic
fitness determines reproductive success, and is what drives a genetic algorithm. However, the dis-
tribution of pre–training fitness inCE-TEACH (called “natal” fitness) is interesting. Almost every
individual is born with surprisingly low fitness.

Even the winners (the networks that achieve the full score) behave poorly before training,
almost as poorly as random nets. In fact, the median natal fitness of the winners in a set of 185
teaching runs was less than 2% greater than the median fitness of a large set of random networks,
which was 88.42. Although not shown here, a performance histogram of winners before training
has essentially the same shape as a histogram of random networks.

The distribution of fitness relative to parental average in Figure 7.4 provides another useful
insight into the operation ofCE-TEACH. The figure compares offspring inCE-TEACH before and

2 The score for random networks is greater than zero because it takes some time for the pole to fall.
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Figure 7.4: Comparison of relative fitness distributions before and after teaching, along withSOTA. Average
fitness of parents = 1.0. Average natal fitness is only half that ofSOTA, but after training they are much better.

after training by showing the reverse cumulative distribution of the fitness of offspring relative to
their parents’ average. The curve labeledCE-TEACH is the phenotypes actually produced. Natal
labels the genotypes which became those phenotypes after training. For perspective,SOTA is also
shown. The natal fitness distribution is significantly below evenSOTA.

The ordinate is the ratio of offspring fitness to the average of its parents. Natal fitness
evaluation is not needed by the algorithm, and is expensive, so this set of runs was not included
in the timing data. Table 7.3 shows numeric data for selected ordinates of the chart. It shows that
6.09% ofCE-TEACH offspring are better than the average of their parents versus 4.22% ofSOTA,
and only 1.58% of natal fitnesses. The 1.87% difference betweenCE-TEACH andSOTA may seem
slight, but it is a ratio to parental fitness, so it works like compound interest. For example, during 30
generations a 4.22% growth rate yields a 3.45 growth factor, while a 6.09% rate gives an increase
of 5.87. Those factors (5.87 : 3.45) still understate the advantage ofCE-TEACH overSOTA, because
they do not account for the higher fitness ratios. At a ratio of double parental fitness, theCE-TEACH

advantage is overwhelming (1.65 : 0.69).
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Average Method ≥ 0.5 ≥ 1.0 ≥ 1.5 ≥ 2.0
0.336 CE-TEACH 18.08 6.09% 2.75% 1.65%
0.328 SOTA 21.45 4.22% 1.31% 0.69%
0.174 Natal 7.81 1.58% 0.70% 0.43%

Table 7.3:Percentage of offspring exceeding several relative fitnesses.CE-TEACH produces over twice as
many offspring that are twice as good as their parents as doesSOTA (1.65 : 0.69), even though the natal fitness
is much lower.

Table 7.3 also shows that the overall average natal fitness ratio is only about half ofCE-
TEACH or SOTA. The genomes evolved byCE-TEACH are worse than those ofSOTA. The rate of
improvement of natal fitness is so small that the agglomerated histogram of many runs is difficult to
distinguish from a histogram of random individuals.

These results ofCE-TEACH are surprising and counterintuitive. The normal pattern for
natal fitness in previous genetic algorithms, including the priorCENE methods, is to for fitness to
increase over the generations until some individual crosses the success threshold. InCE-TEACH,
however, natal fitness remains poor. Why is that? The answer lies in the observation thatCE-TEACH

does not evolve solutions directly, but rather evolves networks that will respond to the training
regimen. Consider a network to be a point in weight space, and call the “solution region” any point
representing a successful network. The genomes that win withCE-TEACH are not located in the
solution region, but rather at points that will be pulled into the solution region by an imperfect
teacher.

The performance increase of teaching over the standard GA shown in Table 7.1 indicates
that the area of the set of points representing winning genomes is larger than the solution region.
In effect CE-TEACH widens the basins of attraction so that the underlying genetic algorithm has a
larger target, and so faces an easier task. It is true that hybrid combinations of GA plus hill–climber
have the same effect of broadening the basins. However,CE-TEACH does so without the additional
fitness evaluations required by hill–climbers.

A possible alternative explanation of the distribution of natal fitness inCE-TEACH is that
perhaps the method is evolving extremely effective teachers—teachers so powerful that they can
train random networks. I performed an experiment to answer this question. Many random networks
were subjected to training by selected winners. None of them learned the task, indicating that
“trainability” requires some specific attributes of the initial weights.CE-TEACH can find such weight
combinations: evolution and learning are working in harmony.

There is an interesting similarity between these teaching results and those of Nolfi and Parisi
(1993a, 1994).CE-TEACH does not evolve genes that are immediately effective for the task: before
training the networks perform very poorly. As remarked above, natal fitnesses match the fitnesses
of random networks. Unlike random networks, however, winning nets are trainable in context. This
resembles the Nolfi and Parisi (1994) result that their networks do not evolve optimal weights, but
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rather weights that learn well. In Section 9.2 I suggest that these observations support the primacy
of learning over doing when learning and evolution are successfully combined, whether based on
self–teaching or learning from a teacher.

7.5 Conclusion

This chapter has shown how education of offspring can be utilized to improve neuroevolution. Many
previous researchers have studied the combination of learning and evolution, but usually with no
teacher. Unsupervised learning is slower than supervised learning, but supervised learning is not
possible without output targets, as is the case for the sequential decision tasks targeted by this dis-
sertation. TheCE-TEACH method presented in this chapter takes advantage of supervised learning
in this unsupervised context by constructing teaching targets from the behavior of the prior popula-
tion. Such targets are imperfect, but improve over the course of evolution. This chapter showed that
the targets improve fast enough so thatCE-TEACH has a positive impact on performance.

CE-TEACH has a resemblance to the arrangement of Cecconi et al. (1996), reviewed in
Section 2.4.4, where offspring were trained with situations encountered by their parents. The major
difference is that their syllabus was determined by parental experience, whereas my syllabus is
under independent control. Their scenario is more biologically plausible, but mine is more flexible,
and should be capable of better performance. Further discussion is postponed to Section 9.2.

This concludes the development of my four novel techniques. Since they all address separate
aspects of the genetic algorithm, they should be able to work well together. That expectation is
fulfilled in the next chapter.
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Chapter 8

CENE: Combined Cultural
Enhancements

The previous four chapters developed and tested each new method separately. Those presentations
are rather disjoint, because each method is targeted at a separate aspect of the genetic algorithm.
Because each of the four has a different target, they can operate together in synergy, as this chapter
will demonstrate. In this chapter, all four methods are utilized together in a combined method called
Culture–Enhanced NeuroEvolution,CENE, which is tested in a robot control task. After introducing
the Khepera task, the chapter has three main analytic sections: first the performance ofCENE is
compared with other modern benchmarks; second, the contributions of the individual component
methods are evaluated; and third, the interactions among the individual components are analyzed
by removing one at a time. All these analyses taken together support the conclusion thatCENE is a
very effective mix where diversity and selection pressure are balanced well.

Within each analytic part of the chapter, performance is first compared by ultimate solution
quality, then learning curves are presented to compare speed of evolution. Third, the time course
of diversity in the evolving population is analyzed. The benchmark comparisons of the first part
will show thatCENE excels on both performance metrics, and also has excellent diversity. Before
proceeding with the analyses, let us review the Khepera task domain.

8.1 The Khepera Domain

This section presents the Khepera robot and its simulator, and then details the task to be measured
in this chapter.
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Figure 8.1: The Khepera robot, designed, manufactured and distributed by K–Team S.A., Switzerland.
www.k–team.com Used by permission. The body diameter is about two inches (55 mm), and the wheels are
50 mm apart. (left) A picture of the physical robot. (right) A diagram of Khepera’s floor plan showing place-
ment of motors and wheels at left and right, and eight photosensors (blue rectangles) around the perimeter.
Khepera is inexpensive and appropriate for teaching and research. Figures used with permission, copyright
K–Team S.A.

8.1.1 The Khepera Robot and Simulator

The physical Khepera robot (Figure 8.1) is a small, two–wheeled vehicle with an embedded con-
troller. The main purpose of Khepera is research and education, as described by Nolfi and Floreano
(2000) and Murphy (2000). A widely used software simulator of Khepera is also available (Michel
1996). Importantly, the simulator allows perturbing both sensor inputs and effector outputs with
noise. The simulator has been found to be faithful enough to the physical robot that control algo-
rithms trained only in the simulator behave well when downloaded into a physical Khepera (Miglino
et al. 1995; Nolfi and Parisi 1995a). Thus, machine learning tasks with the Khepera simulator are
nearly real–world tasks. The simulator was chosen for this dissertation because experimenting with
the simulator is both faster and less expensive than using a physical robot.

Khepera has eight infrared emitter–sensors that report the amount of reflected light in their
field of view. A high value means an object is very close nearby, but due to the limited range of the
sensors, a low value only implies that no obstacle is detected within about 60 mm, which is only
somewhat more than one body diameter. The Khepera floorplan is bilaterally symmetric. Six of the
eight sensors are oriented forward, sideways, and diagonally forward, while the other two are aimed
backwards, as shown in Figure 8.1. These eight sensor readings (normalized to a range of 0 to +1)
are the inputs to the neural network.

Although there are other optional modules available for Khepera, such as grippers, the basic
Khepera in this simulator has only two effectors: the motors. The activation applied to each motor
is a signed integer with a magnitude up to 10 (scaled from neural network outputs). Full activation
of the same sign on both motors gives a maximum forward or reverse motion of 5 mm per timestep.
The simulator is tuned for a control frequency of 20 Hertz, so one timestep is 50 milliseconds, and
the maximum speed is 100 millimeters per second, or almost two body diameters per second. Full
activation with opposite signs causes the maximum turn rate of 0.1 radian per timestep, or 2 radians
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Figure 8.2:Maze–world, a complex Khepera environment. Each side of the square is one meter, so this
world is about1000 ÷ 55 = 18 body diameters across, and takes about 200 timesteps to cross at maximum
speed. The variety of geometries in this environment force Khepera to learn general strategies. Figure from
(Michel 1996), used with permission.

per second, so a90◦ turn in place can be done inπ4 rad÷ 2rad/sec = 393ms, or about 8 timesteps.
Since each motor can be driven independently, Khepera can exhibit a wide variety of turning rates,
including spinning in one spot. However, since the effectors are subject to noise, perfect turns and
straight lines require the controller to continually adjust the activation level applied to the motors.

The simulator includes a facility for defining walls, and computes sensor activations from
the specified geometry. The slightly complex world shown in Figure 8.2 was chosen for the experi-
ments described in this chapter. This world exhibits a variety of geometries to the robot. It contains
narrow corridors, wider areas, dead ends, and curved walls. The narrow corridors and doors are so
close to the body diameter that rather precise motor control is required to navigate them.

The Khepera robot domain is suitable for a comprehensive evaluation of advanced neu-
roevolution techniques due to its complexity, and the wide availability of a free simulator which
has been shown to have near real–world behavior. Also, a concrete comparison with an existing
advanced neuroevolution method,SANE (Moriarty 1997), is available.

Analysis of results will be presented after the task is described.
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8.1.2 The Race task

This section provides details of the specific task chosen for this analysis. The task is one elementary
behavior that should be included in the repertoire of a successful physical robot: to achieve as
much linear motion as possible in a fixed time, turning only where necessary to avoid contact with
obstacles.

Khepera is small enough that its motion is dominated by friction, so momentum planning is
not a necessary issue. Indeed, the simulator assumes the task is Markovian; only the current state
matters. The task requires only local information, so it is compatible with the standard Khepera
sensors. Since neither the specific task nor the Khepera platform require memory, a feedforward
network is an appropriate controller. That is the phenotype used in this dissertation.

High scores are obtained by traveling at high speed in a straight line, while avoiding contact
with any wall. Running into a wall extracts a heavy penalty: the trial stops at that point. This forces
the controller to learn to steer to avoid walls. Thus, the score for this task consists of two factors:
(1) The total distance traveled in a trial, discounted by (2) the amount of turning done.

The turning penalty is necessary since without it high scores can be achieved by continually
turning in a small circle. That behavior is too easy to learn, and is not particularly useful for a real
robot. Turns are necessary in this environment to achieve more than minimal scores, but steps with
turns are penalized, so the network must learn to execute turns only when necessary.

The total score is the sum of the scores on each time step. The score for thei–th step is:

si = |F | ∗ (1− T 2)

whereF is the forward (or backward) movement, andT is the amount of turning as a fraction of
the maximum turn rate.

Even though Khepera is capable of moving just as fast in reverse as forward, and the scoring
function treats backward motion as just as valuable as forward motion, the asymmetric placement
of sensors makes achieving a high score moving backward very difficult. Since the initial networks
are random, reversers may initially, by happenstance, have the highest scores, and concomitant
mating success. This deceptiveness of the fitness function is just another challenge that a successful
evolution has to contend with, and they do, as will be shown below.

8.2 Comparison with other methods

To determine how wellCENE performs, test results were compared to other modern evolutionary
methods,SOTA and SANE, and to Perfect Culling as well.SOTA is the standard GA benchmark
used in all testing in this research (Section 3.4). It reflects current best practices in the field with
reasonable parameter values.CENE is built from SOTA by adding the cultural mechanisms of the
preceding four chapters, so the comparison toSOTA indicates how much they contribute. Compar-
ison with SANE (Moriarty 1997) provides a connection with the prior literature, as he found that
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Score ÷SOTA Method

196 100% SOTA

227 115% SANE

240 122% CENE

266 135% Perfect Culling

Table 8.1: Comparison of solution quality attained in a large fixed number of evaluations (8200). The scores
are averages of 50 runs each. The÷SOTA column contains the ratio of the score toSOTA’s score.CENE is the
best real method (recall that Perfect Culling is not implementable.)

SANE was superior to Genitor and the Adaptive Heuristic Critic in the Khepera domain. Perfect
Culling is the nondeterministic, unrealizable method derived in Section 4.2.

The first comparison examines results when solution quality is paramount, so a large number
of evaluations is desirable to ensure that all methods have reached a plateau.CENE is seen to be
the best real method. Following that, learning curves reveal larger differences during the earlier
stages of evolution. As a result the speed of evolution metric shows even larger differences. Finally,
CENE is shown to have excellent diversity as the evolution proceeds. Overall,CENE is the best of
the methods examined.

8.2.1 Ultimate scores

CENE achieved the best solution quality in a large, fixed number of of evaluations. The comparison
is shown in Table 8.1, the solution quality attained in a fixed number of evaluations. The number of
evaluations is 8200—large enough that all the methods have stopped making progress1. The 8200
evaluations include 81 generations forSANE, and 40 generations for the other methods, sinceSANE

uses a population size of 100 and my populations have 200 individuals.

In Table 8.1 it is clear thatCENE attains a higher score thanSANE andSOTA, but it is not
obvious whether the differences are large. Applying the resampling methods of Section 3.3 to this
data gives Table 8.2, which shows the probability of the null hypothesis for each pair of methods.
The observed difference betweenCENE andSANE is significant at the 95% level.

At the end of evolutionCENE is significantly better than the other methods in this task. In
order to determine if the performance relationships are the same at all stages of evolution the next
section contains learning curves, which provide details of the course of the evolution and allow
comparing learning speed.
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Score Method SOTA SANE CENE

196.41 SOTA

226.77 SANE 0.1
240.17 CENE 0.0 4.1
265.76 Perfect Culling 0.0 0.0 0.1

Table 8.2: Percentage probability that difference in observed scores from Table 8.1 is due to chance. A
small value implies that the true means are probably different. All of these differences are significant at the
95% level.

8.2.2 Learning Curves

While the final performances are significantly different, even larger differences exist earlier during
the course of evolution, as shown in Figure 8.3. The fact that all the curves flatten considerably
toward the right is an indication that the differences that remain are likely to be real. The very top
line is the unattainable Perfect Culling. It raises steeply and plateaus early. By 1400 evaluations it
has reached 90% of its final value. By 2000 evaluations its score exceeds what any other method
can do with 8000.

SANE pacesSOTA initially, but keeps rising longer.SOTA rises almost as fast asSANE until
about 1800 evaluations, but then it slows down considerably and by 4000 has been overtaken by
the other methods.CENE has a commanding lead early on, butSANE narrows the gap somewhat
by the end. It is clear thatCENE has better performance at all times except the very earliest. The
discussion so far has concentrated on the solution quality at equal times. The next section examines
a complementary metric, the time taken to achieve a specified test score.

8.2.3 Speed of evolution

There are many applications where ultimate performance is all that matters—where one percent
improvement could have an economic benefit greater than the cost of a large amount of computer
time. In such applications it is entirely appropriate to focus only on the highest score that can be
achieved, as in the previous section. But for domains where it is not worthwhile or practical to run all
methods until their learning curves flatten out, it is important to compare speed of learning. Speed
is also the useful metric for domains where several techniques can reach the maximum quality. In
addition, it is useful to report the speed metric in order to permit comparison with results presented
in previous chapters.

The speed of evolution is shown in Table 8.3 as the average number of evaluations taken
to reach a score of 200. A target of 200 was chosen for illustration, because it is the largest round

1Moriarty (1997) used 8100 evaluations in his Khepera task. Since my populations contain 200 individuals the limit
needs to be a multiple of 200.
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Figure 8.3:Comparison of learning curves over the course of evolution. Numbers in legend are final scores.
Although all curves flatten considerably by the end, there are are differences in how fast they progress.

score that is routinely achieved by all methods. The unrealizable Perfect Culling is six times faster
thanSOTA by this metric.SANE takes half again as long asCENE (62 : 41%).

The relative order of the methods is the same as in Table 8.1, but the percentage differences
are much more pronounced.CENE is much more efficient thanSANE. For example, if each fitness
evaluation cost a penny, then each solution would be expected to cost over $40 usingSANE, but
could be had for around $27 fromCENE.

The resampling procedure of Section 3.3 produces Table 8.4, which shows that all these
differences in speed are significant. This table is a case where parametric statistics such as Student’s
t-test are not useful.SOTA succeeded in attaining 200 only about two–thirds as often as the other
methods, and a significance test based on ignoring the failed runs is just as misleading as a test that
assumes all the runs succeeded2.

2Section 3.3 discusses yet other methods of averaging the successful and failed runs, but concludes that resampling is
the only reasonable significance computation.
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Evals/soln ÷SOTA Success% Method

1048 0.16 98 Perfect Culling
2710 0.41 90 CENE

4079 0.62 94 SANE

6621 1.00 66 SOTA

Table 8.3: Comparison of average number of evaluations required to achieve a score of 200, averaged over
50 runs.Success%is the fraction of runs that reached 200. The percentage differences in speed shown here
are larger than the differences in ultimate quality shown in Table 8.1.

Score Method Perfect CENE SANE

1048 Perfect
2710 CENE 0.0
4079 SANE 0.0 2.0
6621 SOTA 0.0 0.1 0.6

Table 8.4:Probability of equal means (in %) for each pair of datasets from Table 8.3. Resampling shows
that all these differences are significant.

8.2.4 Diversity

As shown above,CENE has excellent performance, both on quality and speed. This section begins
to analyze how that performance is achieved by comparing diversity over the course of evolution
with SANE. Diversity is shown not to completely determine final performance, but is needed in
abundance for realistic methods (i.e., everything except Perfect Culling).

A primary design goal ofSANE was automatic preservation of diversity (Moriarty 1997,
Section 3.3.1), and it excels at that. TheCE-DIVERSEcomponent ofCENE is a more active approach
to the same end. Genetic diversity of the population is defined in Section 6.1. Population diversity
over time during the execution of the runs shown in Figure 8.3 is shown in Figure 8.4. TheSANE

curve is virtually the same as the one shown in (Moriarty 1997, Figure 4.4), even though the task is
slightly different.

SANE’s ability to preserve diversity is remarkable. Even after 8000 evaluations, when the
population contains very competent networks,SANE’s diversity is almost 0.35, which is 70% of
the diversity of a purely random population3. A diversity of 0.35 represents a lot of randomness in
individual bit positions, yet the competence of the population members must tend to require patterns
in the chromosomes. A strong pattern carried by bits of such diversity implies that the bits in the
population genomes have been allocated in a very effective fashion.

In contrast toSANE, the diversities of Perfect Culling andSOTA fall precipitously, resem-
bling the “Standard Elite” method of Moriarty (1997). Both the highest and lowest scoring methods

3Section 6.1 explains that a random population has an expected diversity of 0.5

72



0

0.1

0.2

0.3

0.4

0.5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

D
iv

er
si

ty

Generation

Evolution of Diversity

SANE 0.411
CENE 0.306

SOTA 0.0885
Perfect 0.0754

Figure 8.4: Diversity over time. The numeric suffixes in the legend indicate average percent diversity over
all times.SANE andCENE remain diversified long after the others have converged.

exhibit this crash in diversity. It does not mean that diversity is a useless measure, however. Loss
of diversity is not harmful when it is in an excellent direction. Such early convergence to low di-
versity means that both Perfect Culling andSOTA quickly lose the ability to make much progress,
but for Perfect Culling that does not matter because its quality rises so quickly that it has already
achieved an excellent score by the time the loss of diversity converges the population. Deterministic,
realizable methods need to be smarter.

CENE has excellent diversity, even though not as extreme asSANE. It takes almost 8000
evaluations for its diversity to drop to half the initial level. This decline is gentle enough to permit
evolution to continue making progress. Diversity’s contribution toCENE will unfold further in
Section 8.3.4 which presents diversity for the component methods, but finally Section 8.4.3 will
reveal that the interaction of diversity and selection pressure is responsible for the success ofCENE.

This section has shown thatCENE has excellent performance, both on quality and speed,
and it maintains diversity well. In order to understand this performance in Section 8.4 we will
analyze contributions by removing components. Let us first, however, examine the performance of
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the individual component methods by themselves.

8.3 Components ofCENE performance

When the component methods ofCENE were developed in the previous four chapters they were
tested in isolation on several simple problems. This section provides a uniform comparison between
all four on the same task, controlling the Khepera robot. This task is more difficult than the tasks
reported in the individual component chapters, and, indeed, one method,CE-CULL, is clearly worse
than the others. More importantly, the combination of all four,CENE, performs better than any one
of its components.

This section follows the same overall plan as the previous section. First, solution quality
is described, followed by learning curves. Then speed of evolution is compared, and finally the
evolution of population diversity is shown. The results in this section confirm the findings of the in-
dividual component chapters that the components faithfully implement their design goals, although
the performance ofCE-CULL is found to be rather problem–dependent.CENE, the combination of the
components, can still be effective because its components leverage different aspects of the genetic
algorithm.

8.3.1 Component solution quality

The performance of each component method in isolation on the Khepera robot task is shown in
Table 8.5. Results from Table 8.1 are included to make comparisons easier, but the rest of this
section shows onlyCENEand its components, in order to avoid clutter. Comparing with the methods
of Table 8.1 reveals thatCE-MATE andCE-TEACH are competitive withSANE, and nearly as good
asCENE. Evidently,CE-CULL is too greedy to be competitive in a domain as complex as Khepera.
The result of eliminatingCE-CULL will be examined in Section 8.4.

In order to determine if the performance differences above are significant, the resampling
analysis of Section 3.3 was used to generate Table 8.6, which shows the probability that the differ-
ences could be due to chance alone. This table does not rule out thatCE-DIVERSE, CE-MATE and
CE-TEACH could all be equal to each other. Further, there is not enough difference in the actual
observations to distinguishCENE from CE-TEACH, andCENE is only distinguished fromCE-MATE

at the 90% level. So, at the end of evolution the component methods are roughly comparable, except
for CE-CULL. In the next subsection a more detailed look at the course of evolution over time will
expose more significant differences.

8.3.2 Component learning curves

Table 8.5 above shows that the best component methods eventually achieve comparable solution
quality. The learning curves which detail the paths taken to those destinations are presented in

74



Score ÷SOTA ÷CENE Method

160 0.81 0.67 CE-CULL

196 1.00 0.82 SOTA

220 1.12 0.92 CE-DIVERSE

227 1.15 0.95 SANE

229 1.17 0.95 CE-MATE

233 1.19 0.97 CE-TEACH

240 1.22 1.00 CENE

266 1.35 1.11 Perfect

Table 8.5: Comparison of solution quality attained in a fixed number of evaluations (8200) for each com-
ponent. Scores are average of 50 runs each. Columns labeled by÷ show ratio of scores. The components are
remarkably close together, except for Culling.

Score Method Cull Diverse Mate Teach

159.8 Cull
219.6 Diverse 0.0
229.3 Mate 0.0 14.0
233.4 Teach 0.0 9.0 30.9
240.2 CENE 0.0 2.4 9.2 22.3

Table 8.6: Percentage probability that difference in observed means is due to chance. A small value implies
true means are different.CE-TEACH, CE-MATE, andCE-DIVERSE are roughly equivalent, andCENE is not
well separated fromCE-TEACH nor CE-MATE.

Figure 8.5, and reveal that larger differences are present earlier in evolution. Section 8.2.2 compared
CENE to Perfect Culling,SANE, andSOTA, so only the components andCENE are shown here.

CE-TEACH andCENE finish just ahead of the other real methods, but have a commanding
lead for a substantial fraction of earlier times (between 2500 and 5000, for instance).CE-MATE and
CE-DIVERSEdo not rise as fast as the others initially, but they are steadier, still improving long after
the other methods converge. They appear to be the least flattened methods at the end, which means
they have not yet converged. That observation makes sense, as they are both anti–convergence
techniques.

CE-CULL has good initial performance, but eventually stagnates. Khepera is one problem
domain where culling actually performs worse than the standard GA (compare toSOTA in Fig-
ure 8.3). CE-CULL has good initial performance, and is competitive until about 1000 evaluations,
but then slows down. It achieves 90% of its final value by 3000 evaluations, so it does not make
much progress for the last five–eighths of this scenario.CE-CULL is a very greedy method, which
accounts for the quick initial acceleration. As we saw in Chapter 4, for some problem domains that
is a good strategy. However, for domains like Khepera, being too greedy does not pay off in the long
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Figure 8.5:Comparison of component learning curves. The scale of the abscissa is deliberately the same as
in Figure 8.3, to facilitate comparison. Despite ultimately converging, there are considerable differences in
how fast the components progress.

run. It leads to premature convergence and eventual stagnation, as will be seen in Section 8.3.4.

The disappointing performance ofCE-CULL raises the question of whetherCENE would be
improved by removingCE-CULL. Does the early good performance ofCE-CULL contribute enough
to counterbalance its ultimate poor performance? That question will be answered in Section 8.4.

Having examined the ultimate solution quality in a long evolution, the next subsection
presents the complementary metric, the number of evaluations needed to attain a fixed score.

8.3.3 Component speed

The evolution speed of the component techniques in isolation, measured by the average number of
evaluations needed to attain a score of 200, is shown in Table 8.7, which can be compared with
scores for the benchmark methods found in Table 8.3. Once again, the differences in speeds are
more pronounced than the differences in ultimate scores.

As was previously seen in Table 8.5,CE-CULL has a major problem with this task.CE-
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Evals/soln ÷SOTA Success% Method

2710 0.41 90% CENE

3407 0.52 88% CE-TEACH

5853 0.88 83% CE-MATE

6304 0.95 76% CE-DIVERSE

14182 2.14 44% CE-CULL

Table 8.7: Comparison of speed of evolution of component methods as average number of evaluations
required to achieve a score of 200 within 8200 evaluations, averaged over 50 runs. The÷SOTA column
contains ratio of the score toSOTA’s score.Success%is the fraction of runs that reached 200. The differences
between methods are more pronounced than those based on the ultimate quality scores in Table 8.5.

Score Method CENE Teach Mate Diverse

2710 CENE

3407 Teach 16.4
5853 Mate 0.0 0.1
6304 Diverse 0.0 0.3 31.2

14182 Cull 0.0 0.0 0.0 0.1

Table 8.8:Probability of equal means (in %) for each pair of datasets.CE-TEACH andCENE are not signifi-
cantly different, and neither areCE-MATE andCE-DIVERSE.

MATE is twice as slow asCENE, with CE-DIVERSE lagging relatively close behind it, but the÷SOTA

column shows thatCE-MATE andCE-DIVERSE are both better thanSOTA. CE-TEACH is the best of
the component techniques, being only 25% slower thanCENE.

To determine whether the performance differences shown in Table 8.7 are significant, Ta-
ble 8.8 shows the possibility of the null hypothesis given the actual observations for all pairs of
methods.CE-DIVERSEandCE-MATE are not proved different, and there is about a one in six chance
thatCE-TEACH andCENE have the same performance4 but the other differences are significant. On
both performance metrics discussed so far, ultimate quality and speed,CE-TEACH is competitive
with CENE. The picture diverges when diversity is examined.

8.3.4 Component diversity

Figure 8.6 shows population diversity over time of component methods on the Khepera task. Com-
paring Figure 8.4 shows thatCE-CULL loses diversity about as fast as Perfect Culling, once again
showing that greedy methods lose diversity quickly.

CE-TEACH has good diversity at first, but falls to very low levels. However,CE-TEACH has
reached 90% of its final score at 3200 evaluations (Figure 8.5), and its diversity is still above 0.1

4Although not reported in this table, resampling showed thatCE-DIVERSE and CE-MATE also have a reasonable
chance of being equivalent toSOTA, andCE-TEACH has a 17% chance of matchingSANE.
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Figure 8.6: Diversity over time of component methods. The numeric suffixes in the legend indicate the
average percent diversity. Because of the secondary diversity enhancement effects ofCE-MATE and CE-
TEACH, the diversity ofCENE eventually surpasses evenCE-DIVERSE.

at that point.CE-TEACH makes very little progress after its diversity falls below 0.1, an illustration
of the general point that converged populations do not evolve well.CE-TEACH reaches high scores
quickly enough to beat the other component methods, illustrating the other side of that point (i.e.,
high diversity is not the only attribute of a successful method). The diversity enhancement ofCE-
TEACH over SOTA can be understood as wider basins of attractions (see Discussion Section 7.4).
Thus, the underlying GA has less selection pressure, and diversity falls more slowly.

BothCE-MATE andCE-DIVERSEmaintain good diversity. They stay above 0.2 for over 7000
evaluations.CE-DIVERSE was designed to preserve diversity, so this is additional confirmation that
the implementation is sound. The longevity of diversity inCE-MATE is explained by the fact that
the complementary spousal behaviors promoted byCE-MATE also tend to be diverse genotypes.

CENE does better even thanCE-DIVERSE, due to the combined benefits ofCE-TEACH and
CE-MATE. CENE shows that the greed ofCE-CULL is overcome, perhaps even utilized, by the
combination of the other three components. Section 8.4.3 below will reveal more about the source
of CENE’s diversity.
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Score ÷CENE Include Omit

198 83% CD–T –Mate
200 83% C–MT –Diverse
215 90% –DMT –Cull
221 92% CDM– –Teach
240 100% CDMT CENE

Table 8.9: Comparison ofCENE with omitting one constituent at a time. The omission is marked as “–”.
The÷ CENEcolumn shows the ratio of the score toCENE. All components contribute to the success ofCENE.

The results in this section confirm the findings of the individual component chapters: the
components faithfully implement their design goals. However, the performance ofCE-CULL on
the Khepera task is disappointing, suggesting thatCE-CULL be removed from the combination.
Such an ablation, and others, will be examined in the next section.CENE, the combination of the
components, is effective because the components leverage different aspects of the genetic algorithm,
as will be substantiated by the ablation study.

8.4 Dissecting component interactions

The previous section exposed strengths and weakness of each individualCENE component method
in isolation in order to determine what they could contribute. This section analyzes the interactions
of the components to determine what they actually contribute, and whether there are any unexpected
redundancies or conflicts. The plan for this ablation study of the combined method,CENE, is to
remove each of its constituents, one at a time.

This study will reveal overlap between secondary effects of the components, but in no case
does one component render another inoperative. The component methods were designed to work
together, and they do, as will be shown by the fact that removing any one of them causes a significant
drop in performance.

After examining the performance of the ablated methods, diversity analysis will provide
sufficient evidence to conclude thatCENE is built on a solid foundation. But first, performance will
show that all four components are necessary forCENE’s success.

8.4.1 Ablated scores

Table 8.9 comparesCENEwith the result of omitting one constituent at a time. A label prefixed with
a dash in the last column tells which technique is omitted for that row. TheIncludecolumn is an
almost–graphic depiction of the constituents included in that row, by using their initial letters.

All components are seen to contribute to the performance ofCENE. Somewhat surprisingly,
omitting CE-MATE (CD–T) has the largest impact, dropping the solution quality by 17%, but omit-
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Score Method CD–T C–MT –DMT CDM–

197.8 CD–T
200.0 C–MT 41.2
215.4 –DMT 2.9 5.9
220.8 CDM– 1.2 2.2 29.1
240.2 CDMT 0.0 0.0 0.2 1.8

Table 8.10:Probability of equal means (in %) for all pairs of ablated datasets. CDMT isCENE, which is
significantly different from all others.

ting CE-DIVERSE (C–MT) is almost as bad. This implies that diversity, whether of mates or of
decedents, is crucial forCENE.

To omit Culling (10%) or Teaching (8%) has ponderable but lesser impact. Thus, the weak
performance of Culling by itself, shown in Table 8.5, does not harm the other techniques. It appears
that the diversity–enhancing properties of the other techniques combine well with the excessive
greed of Culling. It is sensible to conclude that high selection pressure is good when its diversity
reduction effect is counterbalanced.

The effect of omitting Teaching is another surprise. Table 8.5 (page 75) shows thatCE-
TEACH is the most powerful of the four component techniques, but the ablation Table 8.9 says that
leaving Teaching out (CDM–) is the least damaging choice, causing only an 8% degradation. The
other three techniques together (CDM–) are about as powerful asCE-TEACH. In particular, it is
necessary to combine all four techniques to beatSANE in this task.

To determine which performance differences are significant, resampling was employed to
generate Table 8.10, which once again shows the probability that the methods have equal means
given the actual observations. The performance advantage ofCENE over all the partial methods is
significant at the 98% level. This table also confirms what the comparatively close scores imply:
(CD–T) and (C–MT) are not significantly different, and neither are (–DMT) and (CDM–).

8.4.2 Ablated speed

As seen in the analyses of the two preceding sections, it is also instructive to contrast performance
measured by speed of evolution. The relative performance of the ablated techniques, measured by
the average number of evaluations needed to attain a score of 200 is shown in Table 8.11, which
can be compared with speed scores in Table 8.3 and Table 8.7. The differences in speeds are much
larger than the differences in ultimate quality.

However, the pattern of Table 8.7 still obtains: OmittingCE-MATE (CD–T) has the largest
impact, tripling the effort required to achieve a score of 200, and omittingCE-DIVERSE (C–MT)
is nearly as harmful. To omitCE-CULL (–DMT, 204%) only doubles the effort, and removingCE-
TEACH (CDM–, 180%) is almost as bad. Thus, measuring along the speed dimension reinforces the
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evals/soln ÷CENE Success% Method

2,709.6 1.00 90% CDMT CENE

4,876.2 1.80 78% CDM– –Teach
5,538.7 2.04 80% –DMT –Cull
7,194.3 2.65 64% C–MT –Diverse
8,399.9 3.10 60% CD–T –Mate

Table 8.11:Comparison of speed of evolution of ablated methods as average number of evaluations required
to achieve a score of 200, averaged over 50 runs. The÷CENE column contains ratio of the score toCENE’s
score. Success%is the fraction of runs that reached 200. The scores are much more separated than the
ultimate quality scores in Table 8.9.

conclusions reached along the quality dimension, Section 8.4.1.

8.4.3 Ablated Diversity

Diversity analysis of the ablated methods will supply enough observations to conclude howCENE

operates and what its components contribute. Figure 8.7 shows diversity over time for the ablated
methods. It can be compared with Figure 8.4 for the benchmark methods. In particular, theCENE

curve is the same in both figures.

CENE preserves diversity well, as we have already seen. When culling is omitted (–DMT)
diversity is even higher thanCENE. This is consistent with the extremely steep drop ofCE-CULL

by itself shown in Figure 8.6. It serves to reinforce the observation thatCE-CULL is a very greedy
method that converges quickly. ThereforeCE-CULL should only be expected to work well in do-
mains where there are few local optima. However, despite this caveat, in complex domains such
as Khepera,CE-CULL still helps performance when combined with other methods and therefore
contributes to forming an efficient general optimization method.

WhenCE-DIVERSE is omitted (C–MT), diversity falls almost as fast as that ofSOTA. This
result indicates thatCE-DIVERSE is most strongly responsible for maintaining the high diversity
seen inCENE, When Mate Selection is omitted (CD–T) the diversity loss is significant but smaller.

When Teaching is omitted (CDM–) diversity is almost as high as inCENE, confirming that
Diversity Preservation and Mate Selection are indeed the main components responsible for diversity
in CENE.

Diversity analysis of the ablated methods illuminates the relationship between diversity and
selection pressure. There is overlap between secondary effects of the components, in thatCE-TEACH

andCE-MATE both contribute to diversity, and almost completely offset the diversity loss due toCE-
CULL. The component methods were designed to work together, and they do, as was shown by the
fact that removing any one of them causes a significant drop in performance. Therefore,CENE is
built on a solid foundation.
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Figure 8.7: Comparison of diversity of ablated methods over time. In the legend, a preceding dash indicates
which component was removed fromCENEto generate that curve. The numeric suffixes give average diversity
over the entire course of evolution. These curves can be compared with the benchmarks in Figure 8.4 and the
components in Figure 8.6. BothCE-DIVERSE andCE-MATE contribute significantly to diversity, and almost
completely offset the loss of diversity due toCE-CULL.

8.5 Conclusion

The results presented in this chapter demonstrate that the four cultural methods ofCENE combine
to form an effective neuroevolution procedure. Each individual component is effective because
its design is derived from firm principles of evolution. The combination is effective because the
components leverage different aspects of the genetic algorithm. The fact that the combined method,
CENE, worked so well on the Khepera task after the component methods had been tested only on
simpler tasks (see chapters 4–7) suggests that this result is robust and general as well.

An ablation study ofCENErevealed overlap between secondary effects (i.e., diversity preser-
vation byCE-MATE) of the components, but no cases where one component would prevent another
from functioning. Further, removing any one of the four constituents caused a significant drop in
performance. The interaction of the components exposes an interesting relationship between diver-
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sity and selection pressure.CE-MATE contributes to diversity, even though it was designed for a
different purpose (to assist crossover).CE-TEACH also contributes to diversity, because it widens
the basins of attraction due to the plasticity of the individuals it evolves, but its diversity effect is
considerably smaller.

CENEbetteredSANE’s performance even thoughSANE remains the diversity champion. This
result underscores that diversity is not the only factor that contributes to the success of neuroevolu-
tion. The performance of Perfect Culling shows that selection pressure in a good direction is more
important than the absolute best diversity. Diversity prevents high selection pressure from causing
stagnation, so that high selection pressure can perform its job of accelerating progress toward the
goal. Thus, diversity is seen to be the handmaiden of selection pressure.SANE combines very high
diversity with very high selection pressure (Moriarty 1997).CENE is lower thanSANE in both diver-
sity and selection pressure, but sinceCENE has better performance thanSANE, I contend thatCENE

has a better balance between diversity and selection pressure.
Interestingly, while the high selection pressure ofCE-CULL is detrimental to diversity, the

method still makes an important contribution to the combined performance. The diversity enhance-
ment effects of the other components allow the exploitive tendency ofCE-CULL to flourish safely.
Thus, the components are leveraging each other.

The component methods were tested based on aSOTA implementation in order that their
contributions could be measured consistently and reliably. However, all components can in principle
be applied to more advanced neuroevolution algorithms, a prospect discussed in Section 9.3.

While CENE significantly exceeds other advanced methods on all metrics measured in this
task, the difference is most pronounced when speed of evolution is more important than ultimate
long–term solution quality, which will have important consequences when the methods are applied
to harder problems. For problems that are so difficult that it is impractical to continue evolution until
the learning curve levels out, speed of evolution is the most important criterion. Indeed, the defini-
tion of speed adopted in this work is precisely the number of fitness evaluations, andCE-CULL and
CE-TEACH work directly to avoid fitness evaluations.CE-CULL substitutes behavior comparison for
decisions about offspring that would otherwise require fitness evaluation.CE-TEACH uses behav-
ior modification to improve the fitness of otherwise unfit offspring, which increases the number of
target genotypes. More targets require fewer evaluations to find.

Having demonstrated that my cultural focus leads to effective and original neuroevolution
methods, the next chapter integrates my findings and discusses future directions made possible by
this work.

83



Chapter 9

Discussion and Future Directions

This dissertation contributes practical techniques that enhance the performance of neuroevolution
in sequential decision tasks. This chapter summarizes these contributions and details the scope of
the findings. Several of these issues lead to directions for future work.

The discussion begins with a recap of the performance enhancements developed herein,
with an elaboration of their operation and interactions. Next, how theCENE methods could be
combined with other neuroevolution substrates is discussed. Section 9.2 explores the interaction
between learning and evolution. Then Section 9.4 elaborates on artifacts in culture, and Section 9.5
proposes a lifelong learning extension. Section 9.6 argues that communicating cooperative agents
might benefit from the techniques developed in this work. Section 9.7 proposes alternative methods
to chose or compose a teacher. Lastly, Section 9.8 shows why myCENE techniques are likely to be
fruitful in non–stationary environments. I conclude that the work described in this dissertation is a
significant step toward incorporating new aspects of learning into neuroevolution research.

9.1 Performance contribution

Culture provides major advantages in the natural world. It enables skills to be acquired by offspring
without the cost and danger of learning those skills from scratch. This dissertation exploits culture
expressed by behavior to contribute enhanced performance techniques to neuroevolution. Behav-
ior of neural networks was found to be adequately characterized by samples of their input–output
mappings. TheCENE techniques compare and manipulate behaviors using such mappings to effect
cultural mechanisms that enhance the performance of new generations. This section elaborates on
the performance, effects, and interactions of those methods.

• CE-CULL: culling selects offspring that are more likely to succeed from an overlarge litter by
comparing performance of candidate offspring with a known above–average individual.

• CE-MATE: mate selection by complementary behavior provides crossover with more chances
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to combine solved subproblems by promoting the mating of individuals with complementary
behaviors.

• CE-DIVERSE: phenotypic diversity preservation increases diversity without weakening the
population.

• CE-TEACH: learning to respond like a somewhat competent elder leverages evolution by
widening basins of attraction.

• CENE: all four techniques combine gracefully since each one leverages a different aspect of
the genetic algorithm. The increased diversity due to three of the components permit the high
selection pressure ofCE-CULL to flourish. CENE both learns faster thanSANE, an existing
advanced method, and achieves higher ultimate solution quality.

All CENE methods are based on behavior represented by a syllabus that is a set of input–
output samples. InCE-CULL, the errors between several candidate offspring are compared. InCE-
MATE, the outputs of several candidate suitors are compared. InCE-DIVERSE, the outputs of several
candidate decedents are compared. inCE-TEACH, training error is used to adjust the weights of an
offspring. Since none of the methods introduce additional fitness evaluations they will be efficient
if they are at all effective, as demonstrated in previous chapters.

The component methods are well–designed by principles of evolution to not interfere with
each other, but can have secondary effects. The following table categorizes these effects as ex-
ploratory or exploitative.

Method Primary effect Secondary effect

Mate Exploitative: enhance the pro-
ductivity of crossover

Exploratory: encourage diversity
of mates

Cull Exploitative: find offspring of
higher estimated fitness

Diverse Exploratory: increase population
diversity

Exploitative: kill lower fitness
candidate

Teach Exploitative: improve fitness of
offspring

Exploratory: makes bigger target
for GA

Table 9.1: Comparison of primary and secondary effects of individual methods.CENEmethods complement
each other well.

The exploration versus exploitation battle of machine learning is manifested by diversity
and selection pressure in evolutionary computation. The individualCENE methods enhance one of
these factors without detracting from the other. The combined method,CENE, benefits from the
dovetailing of the effects of the components. As Moriarty (1997) demonstrated withSANE, good
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diversity allows higher selection pressure to be used. Diversity is thus seen not to compete with
selection pressure, but rather to enable it.

All CENE techniques are efficient because they operate with no fitness evaluations beyond
those that the underlying genetic algorithm would perform in any event. Rather, the methods are
designed to increase the utility of each fitness evaluation.

CE-MATE andCE-DIVERSE can be viewed as principled engineering enhancements of the
genetic algorithm.CE-MATE encourages the mating of individuals with complementary competen-
cies, which provides crossover with more opportunities to combine solved subproblems.CE-MATE

also has a positive effect on diversity, because it selects mates with disparate behaviors, and differ-
ent behavior is strongly correlated with diverse genotypes.CE-DIVERSEdirectly preserves diversity
in the population by choosing to remove individuals that are most like others. Population diver-
sity by itself is antithetical to progress, as can be seen by considering that a population kept in a
completely random state would be no more effective than random guessing.CE-DIVERSE can ac-
complish its diversity preservation without detracting from performance because it only removes
weak individuals.

In contrast to the clean engineering approaches ofCE-MATE and CE-DIVERSE, the other
two component techniques rely on a form of boot–strapping. Overly aggressive boot–straps can
quickly converge to mediocre performance, while timid boot–strapping may achieve no leverage
whatsoever.CE-CULL andCE-TEACH both rely on the increasingly competent population to provide
target outputs for constructing new individuals. The success ofCE-CULL is based on the ease of
recognizing abysmal performance, and so it can be viewed as an engineering approach to the large
lower lobe in the standard fitness distribution of Figure 4.1.

CE-CULL is a greedy technique that can have problems with deceptive domains, as shown in
Section 8.3. However, as discovered in Section 8.4,CE-CULL is a valuable component when com-
bined with sufficient diversity preservation, as done inCENE. An analogy with culling in biology is
suggestive: the smarter a species is, the less overproduction of offspring it does. Fish lay millions of
eggs, but primates produce small or singular litters and invest a large amount of time and resources
in each offspring. Such differences could be seen to suggest that the effectiveness of culling might
fall off in more sophisticated problem domains. The biological analogy is not dispositive, however,
as we can engineer a fix for the simplistic greed of culling, for exampleCENE. As was mentioned
in the introduction, biology can provide suggestions for neuroevolution but does not constrain the
programs we write.

CE-TEACH is also a boot–strapping approach inspired by observation of the effectiveness
of educating offspring in the real world. Diversity preservation withCE-TEACH is generally good
(Figure 8.6) because fitness does not depend just on the raw fitness of the genotype, but also on
its teachability: how well it responds to backpropagation learning. These trainable networks have
more diverse genotypes because they are located outside the basins of attraction of non–educated
networks.
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Empirical tests showed thatCENE techniques perform well, with diversity and selection
pressure in balance. InCE-TEACH learning, evolution, and culture exhibit non–obvious interactions
which deserve more attention, as in the next section.

9.2 Learning and evolution

Due to the interaction of learning and evolution, the effects ofCE-TEACH are more complex than
those of the otherCENE methods. This work has revealed a novel interaction between evolution
and learning. As described in Section 7.4 genomes produced by evolution did not improve as fast
as the trained phenotypes. That is, the evolved individuals were not particularly competent before
training, but rather were capable of being taught competent behavior. Prior evolutionary algorithms
result in genotypes that improve more–or–less continually to the desired performance level, when
they work at all, and that is the pattern in phenotypic fitness inCE-TEACH, too. But natal fitness in
CE-TEACH evolves not to better performance but to better trainability.

Three previous studies have reported unexpected interactions between evolution and learn-
ing whose root cause seems to me to be related to my finding. First, Nolfi and Parisi (1993b, 1994)
found that their evolved networks were better learners than doers, a result that was not the inten-
tion of the investigators. Second, Sasaki and Tokoro (1997) found that learning ability can be more
important than doing ability. Third, Ackley and Littman (1991) showed that it is easier to generate
a good evaluation function than a good action function. The genotypes in my results resemble the
first two: they are good learners and poor performers.

The similarity of those three studies and this work is that situations arise where learning abil-
ity is more important than doing ability. The learnability is useful is not that surprising. However,
the fact that a learning/doing differential surfaced so directly in such simple yet disparate settings
suggests that the primacy of learning ability over doing ability may be a quite general principle.

For instance, if that general principle holds, then I would predict it to manifest in a related
simulation of Cecconi et al. (1996), reviewed in Section 2.4.4. The parents in that work carried their
offspring around for some time after birth. During this time the immature offspring were exposed to
the same input stimuli as the parent, and were trained via backprop. Successful individuals adopted
the strategy of performing like an optimal teacher rather than an optimal forager.

If the parent in the Cecconi et al. (1996) work were to be given a boolean input which
specified that a child was currently on board, then an additional strategy becomes available: When
a child is present, act like an optimal teacher, else act like an optimal forager. There is no guarantee
that evolution would find that strategy, but if it did, I would regard that as a successful prediction of
the general principle of the primacy of learning. The ability to learn a task is so powerful that four
different systems have evolved networks that sacrifice fitness in order to improve learning ability.
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9.3 Generalization ofCENE

SOTA was designed so that it would be easy to combine theCENE methods with it. However,CENE

is not specific toSOTA, and could be used in other neuroevolution variants as well. The fact that
CENEdoes not examine the genotype in any way makes such integration easy. This section describes
what variants are compatible withCENE methods.

In general, a steady–state GA is an easier match than a strictly generational GA, which
sometimes discard entire chunks of the population at a time instead of calling a routine like KILL S-
ELECT (see the interface in Figure 3.3).CE-DIVERSE assumes that the underlying GA is able to
discard any member of the population except the current champion.

All CENE methods require that it is possible to sample the behavior of individuals without
invoking the fitness function. In most cases such sampling is straightforward, but how to do it is
less obvious for cooperative coevolution methods likeSANE. In such methods, the sampling can be
performed at the level of partial solutions. SinceCENE often computes distances between output
vectors, the outputs should be floating–point. If outputs are integers or strongly quantized,CENE

will probably need longer syllabi in order to develop useful discrimination.

CE-CULL requires the ability to create a temporary pool of individuals outside of the current
population. If the mate selection strategy is a crucial part of a GA, thenCE-MATE is not likely to
be appropriate.CE-TEACH requires that the phenotype have a learning mechanism, which rules out
most popular phenotypes except neural networks.

Finally, a GA which is already very good at some aspect may get only limited profit from
someCENE components. For instance,SANE already preserves such a high level of diversity that it
seems unlikely thatCE-DIVERSE would be useful within it.ESP(Gomez and Miikkulainen 1999)
and other island methods as well as Genitor (Whitley and Kauth 1988) also have explicit diversity
mechanisms, soCE-DIVERSE might not improve those methods either. On the other hand,NEAT

(Stanley and Miikkulainen 2002), where several species of neural networks with gradually more
complex topologies are evolved in parallel should be amenable toCENE methods.

Such applications ofCENE to other neuroevolution algorithms constitute a most interesting
direction for future work.

9.4 Artifacts

One apparent limitation of this work is that the culture explored does not include artifacts. Such
primitive culture does exist in the natural world. For example, some songbirds are known to pass
on their songs without artifacts, for example, Dawkins (1989, Chap. 11) describes non–genetic
transmission of song repertoires among New Zealand saddleback birds. Predatory mammals teach
their cubs to hunt. Primates learn conventions of behavior from their elders.

The omission of artifacts from this study is deliberate and appropriate. At this stage of
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our understanding the interaction of learning and evolution is still nascent. The study of non–
artifactual culture allows focused work aimed at identifying principles without the confounding
effects of some particular representation of artifacts. However, full–blown culture is so complex
that it is extremely likely that it entails phenomena that do not manifest without explicit artifacts.
Thus, while my omission of artifacts is beneficial at this stage, it is a limitation, that should be
addressed in future work. My approach to culture could be extended to include simulated artifacts,
using any of representations reviewed in Section 2.4. Indeed, becauseCENE techniques are based on
behavior and so have no dependence on the genotype, the phenotype nor the task, any representation
whatsoever of artifacts is compatible withCENE.

I hope that this study of a restricted case—culturesansartifacts—will provide a firmer
foundation for a future understanding of how artifacts impact culture.

9.5 Lifelong learning

All learning in CENE takes place before any exposure to the environment—before fitness is eval-
uated. That is, individuals cease learning upon becoming adults. In the natural world, any being
that is sophisticated enough to learn or to be educated during development will also be capable of
learning from the experience of its adult life. The ongoing interaction of learning and evolution
in the natural world is therefore not utilized inCENE. ThusCENE cannot create the full range of
phenomena that occur in nature. However, since the model is strictly less powerful than nature, it
should only be missing advanced interactions, not introducing artificial capabilities.

The interaction of lifelong learning and culture in neuroevolution is unclear at this point, but
is very powerful in nature, and so is likely to be a fruitful area to explore.

9.6 Communicating Cooperative Agents

CE-TEACH resulted in evolving low–performance but trainable networks. The training performed
transferred a behavioral tendency from the teacher to the student. Such a behavioral tendency can
also be viewed as a proxy for a concept of how to cope with the world. Further extending that
viewpoint suggests that sharing concepts in that fashion could be useful for cooperative agents to
communicate concepts not designed beforehand. The possibility that back–propagation could be
used as a communication method is non–traditional, so an elaboration is provided.

Primitive cooperative agents coordinate their actions via pre-specified strategies or by ob-
serving each others’ actions. To achieve more sophisticated cooperation, or when observation is
insufficient, cooperative agents need to communicate. Communication takes place when the mean-
ing of a message is coherent among the sender and receiver(s). Let a signal be some physical
disturbance used to carry a message (sound waves, marks on paper, etc). Groups of signals denote
symbols. A message is then a collection of symbols constituting an intended communication. In
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simple communication systems there is a bi-unique correspondence between the message and the
signal (to within channel noise), so in discussions of cognition the difference between message and
signal is usually insignificant.

Communication involves shared context. Sophisticated communication does not include all
relevant context explicitly in each message. For instance, in the English language the word “dog”
is a referent to a rather large description that the recipient already possesses. The meaning of any
text can only be defined with respect to some agent. Even in the most primitive systems the total
meaning is not absolute. For example, the voltage sent by a thermostat to a furnace seems to have a
completely unambiguous meaning, but actually involves a lot of context.

Coherence between sender (thermostat) and receiver (furnace) is achieved by constructing
them to share conventions about voltage levels, polarity, and perhaps other channel characteristics.
Further, the designer of the devices had a model of the relevant parts of the real world in her/his
head. Even this trivial communication has different meanings to different agents: The furnace, of
course, has only a mechanistic response. The designer sees a host of physical implications. The
user (in the unlikely event they noticed any communication between their appliances) would frame
the meaning in terms of comfort and budget. Each agent grounds the meaning in its own universe.
But there can be no communication unless those universes cohere.

Many animals that fight conspecifics for resources (food, territory, mates) start out exchang-
ing threats, which is a negotiation. If one convinces the other that there is no doubt of the outcome,
they are both better off to avoid physical altercation and damage. These threats are a communi-
cation of the form, “I’m bigger/stronger/braver/more determined than you.” Honestly advertising
your strength is only optimal for the strongest, so there is opportunity here for deception and bluff.
Such sophisticated communication is only possible because the parties already share an enormous
amount of information, concepts and world-views. In order to even attempt a bluff, you must feel
you can make a very good estimate of the other’s motivation and commitment.

These messages are highly situated. There is more information in the context than in the
signal. The meaning of a message has only an indirect relation to the “text” used to represent it.
Sophisticated cooperative agents also need to share substantial context. They would be handicapped
if each of their messages needed to contain explicit representations of shared concepts.

Shared concepts can be acquired via several routes. For non–adaptive agents the shared
concepts can be built in when they are designed or constructed. Indeed, a large part of the job of
designing communicating cooperative agents today is creating concepts that will permit the desired
solution, and parameterizing them in a way compatible with the signaling system available.

However, I believe that highly sophisticated adaptive agents will invent new concepts as
they learn and evolve. They will need to communicate these emerging concepts. Any language
prespecified by the implementor is unlikely to be optimal. Thus, I expect that agents can be more
effective by letting them create their own language. Communicating cooperative agents will be
handicapped if they can only communicate about concepts the system designer enumerated. They
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will need to invent their own concepts and a vocabulary to discuss them with. In fact, Steels (1996)
found that a cultural mechanism can create a coherent vocabulary. Culture is inevitably involved
when learning and communication unite, because

The fact that human language spreads culturally also leads me to suspect that cultural evo-
lution techniques may work better than genetically specified languages. In support of this view,
Werner and Dyer (1991) held that since cooperation in the natural world depends so totally on com-
munication, that the requirements of effective cooperation place important constraints upon how
communication can evolve.

MacLennan (1991) argued that “cultural phenomena will be central to understanding the in-
teraction of learning and communication.” Culture without artifacts is a good place to begin to study
the communication of cooperating adaptive agents. The closest this dissertation has approached
communication is in teaching one network to respond somewhat like another. The “signal” contain-
ing the message is an input and output vector. The “concept” has only concrete representations: the
arrangement of weights in the networks. Those weights may differ between sender and receiver, but
if they respond similarly to an input, it seems reasonable to say that they share a concept. Coherence
is approached when the backprop error decreases.

The techniques developed in this dissertation may form a basis for tasks where commu-
nication must be evolved. While beyond the scope of this dissertation, my teaching and syllabus
construction techniques may shed light on how to evolve languages for communicating cooperative
agents. For instance, in my teaching method, the information flow is one–directional, from teacher
to student. If the roles are alternately swapped, a series of backprops would resemble a conversation.

9.7 Composing a Teacher

In CE-TEACH the teacher has been a single elder, either a parent or the current population champion.
The quality of teachers is critical to the success of my teaching method. Future work should include
study of additional methods of choosing or composing teachers.

In the tasks addressed in this dissertation, a single teacher has been sufficient. In more
complex domains more variety may be useful. Perhaps a new offspring (student) should be allowed
to try several teachers and continue only with the higher scoring one(s). A student might have
several teachers, each one concentrating on a subset of the input space, that is teaching a separate
subject. Another way to utilize several teachers appears to have no analog in human affairs: The
responses of a committee could be averaged and used as backprop targets. While providing several
teachers should promote a wider viewpoint, averaging output vectors could just as easily result in
nonsense.

Alternatively, teaching specialists could be co–evolved. These specialists would be a sepa-
rate population, evaluated according to the ultimate fitness of their pupils, as is sometimes done in
animal breeding.
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9.8 Non-stationary environments

My methods may have application in non–stationary environments. This section first characterizes
such environments and classifies their characteristic time–scales. Then I argue that machine learning
techniques that can deal directly with non–stationary environments could become more effective
than a “one controller for all seasons” strategy. Finally, I indicate why cultural techniques in general,
andCENE techniques in particular, should be advantageous in non–stationary environments.

The problem domains considered in this work are allstationary. In a stationary domain the
rules remain constant over time. All changes of state are due to actions taken by the individual.
In contrast, a non–stationary environment is one with spontaneous changes. The changes may be
cyclical, as in day and night, or there may be a rough monotonicity, as in a wheel whose tread is
wearing off. There may even be no discernible pattern, as when the changes are due to the presence
of other agents. In fact, Sutton and Barto (1998, Sect. 2.6) notes that many reinforcement learning
problems are effectively non–stationary.

Change in a non–stationary environment may occur on any time–scale. The time–scale
dimension of environmental change is crucial in determining possible coping mechanisms. The
extreme frequencies of change have clear requirements. When change occurs on short time–scales,
shorter than an individual life–span, then each individual must be capable of coping with the change.
In contrast, when the change is slower than many individual life–spans, the reservoir of genetic
material in the population can evolve adapted solutions. Cultural mechanisms are uniquely well–
suited to change on intermediate time–scales, as noted by, for example, Belew (1990); Belew and
Mitchell (1996); Nolfi and Parisi (1995b).

For natural organisms the time–scales are fixed, but in machine learning applications the
effective life–span of a controller can be deliberately controlled. Consider, for instance, a wheeled
robot whose mission is to explore Mars for several seasons. The environmental cycles important
to the robot might include photo–sensor and battery effectiveness as light and temperature change
diurnally and annually. The current approach is to account for the predicted environmental changes
when designing the initial control program. For instance, to program the controller with appropriate
strategies for both high and low states of light and temperature. This one controller for all seasons
approach is actually a redefinition of the task to make it a stationary task with parameters. How-
ever, viewing the task as stationary can result in combinatorial explosion of controller complexity
as additional environmental changes, for example, tread wear and sensor aging, are added to the
mix. Thus, it may become advantageous to deal directly with the non–stationary nature of the task.
For instance, a background process in the deployed system could continually evolve new control
programs scored on actual experience, and let one of them take over when performance warrants.

With the current state of the art in machine learning, such self–adaptive systems are not
appropriate for something as dangerous as a nuclear reactor controller, but a multi–year deep–space
probe might become an appropriate application.

There are two aspects of this dissertation that are good matches for long term on–line learn-
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ing in non–stationary environments:

• Diversity preservation: Due to the perpetual novelty of the environment, the population can-
not be allowed to converge, even in an indefinite number of generations, and yet introducing
random genetic material (mutations) must stay limited enough to keep good performance.
CE-DIVERSE (Chapter 6) is a good step in this direction.

• Flexible time-scale: Culture operates on a timescale intermediate between individual learn-
ing and multi–generational evolution. A neuroevolution system designed to cope with non–
stationarity should include culture to ensure that unexpected frequencies can be covered.

9.9 Conclusion

This dissertation has developed novel methods of manipulating the behavior of population members
to improve neuroevolution. TheCENE methods are practical and effective, but they suggest several
interesting extensions. The interaction of culture, learning and evolution inCE-TEACH affirms that
learning is more important than doing. In all, the work described in this dissertation is an important
step toward incorporating additional aspects of learning into neuroevolution research.
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Chapter 10

Conclusion

The goal of this dissertation was to show that cultural mechanisms could be harnessed to enhance
the power of neuroevolution in sequential decision tasks. I developed four techniques that take
advantage of the information contained in the current state of the population. Analysis of each
showed it to be effective at its facet of the genetic algorithm, even thoughCE-CULL is too greedy for
some applications. Because the four component techniques address different aspects of the genetic
algorithm they work together well when combined inCENE. Because none of the techniques use
additional fitness evaluations they are also efficient. The combined method has a good balance
between diversity and selection pressure.

This chapter first summarizes the contributions of each component and their combination,
and then concludes with a perspective on what has been learned.

10.1 Contributions

Each of the contributions reviewed below illuminates a different aspect of the genetic algorithm.
They are all based on samples of input–output behavior and need no knowledge of how the genome
is represented. Therefore they should all work with other neuroevolution systems as well, in addition
to the state of the art GA (SOTA) used as a basis for the developments in this dissertation. Analysis
of CENE shows how their exploration versus. exploitation trade–offs combine effectively.

CE-CULL

CE-CULL shows how culling over–large litters can be utilized to reduce the tendency of crossover
to produce ineffective individuals. A perfect oracle would provide a large improvement in offspring
fitness, but would cost too much. Instead,CE-CULL uses behaviors in the population to inexpen-
sively select those offspring that are most likely to be competent. To be effective, the culling test
only needs to discriminate enough to reduce the huge lower lobe of incompetence. Culling leads
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to significant improvement in learning speed in some domains, whereas in others it is too greedy
to be used by itself. It also contributes positively toCENE in combination with other less greedy
techniques.

CE-MATE

CE-MATE improves the chances of combining partially solved subproblems in crossover by choosing
mates with complementary traits. TheCE-MATE method selects mates of complementary behavior,
so they are necessarily of lower fitness than the mates chosen by a standard GA. Such a selection
reduces greediness and fosters diversity, and therefore combines well with culling. The complemen-
tary behaviors of the mates more than compensates for their lower fitness and as a result,CE-MATE

allows evolving solutions faster.

CE-DIVERSE

Whereas merely selecting very weak decedents would accelerate premature convergence,CE-DIVERSE

enhances diversity by discarding the most typical of a sample of weak individuals, As a result,CE-
DIVERSE is able to preserve diversity while still discarding weaker individuals thanSOTA. Pheno-
typic diversity proved to be an adequate proxy for genotypic diversity, allowingCE-DIVERSE to be
efficiently implemented as well.

CE-TEACH

CE-TEACH takes advantage of supervised learning in an unsupervised context by constructing teach-
ing targets from the behavior of the prior population. Such targets are imperfect, but improve over
the course of evolution.CE-TEACH widens the effective basins of attraction seen by the underlying
GA by teaching new individuals to respond somewhat like a partially competent elder. The natal
fitness of new individuals is low, but they train well, suggesting that learning and evolution are
working in harmony.CE-TEACH shows how teaching can be utilized to improve neuroevolution.

CENE

The cultural methods above combine to form an effective, novel neuroevolution procedure,CENE.
The combination is effective because the components leverage different aspects of the genetic al-
gorithm. The fact that the combined method worked so well on the Khepera task (Chapter 8) after
the component methods had been tested only on simpler tasks (chapters 4–7) suggests thatCENEis
general and would be effective in various applications.

CENE betteredSANE’s performance even thoughSANE populations are more diverse. This
result affirms that diversity is not the only success criterion for neuroevolution. The performance of
Perfect Culling shows that selection pressure in a good direction is more important than the absolute
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best diversity. Diversity prevents stagnation, so that high selection pressure can accelerate progress
toward the goal.SANE combines very high diversity with very high selection pressure (Moriarty
1997).CENE is lower thanSANE in both diversity and selection pressure, but sinceCENE has better
performance thanSANE, I contend thatCENE has a better balance between diversity and selection
pressure.

Interestingly, while the high selection pressure ofCE-CULL is detrimental to diversity, the
method still makes an important contribution to the combined method. Diversity enhancement
by the other components allows the exploitive tendency ofCE-CULL to flourish safely. Thus, the
components are leveraging each other.

While CENE significantly exceeds other advanced methods on all metrics, the difference is
most pronounced in terms of evolution speed. In problems where it is impractical to continue evo-
lution until the learning curve levels out, speed of evolution is the most important criterion. Indeed,
CE-CULL andCE-TEACH work directly to speed up evolution by avoiding fitness evaluations.CE-
CULL substitutes behavior comparison for decisions about offspring that would otherwise require
such evaluation.CE-TEACH uses behavior modification to improve the fitness of otherwise unfit
offspring, which increases the number of target genotypes, widening the basins of attraction, and
thus requiring fewer evaluations.

Resampling

Finally, without the resampling methods utilized in this work, measures of statistical significance
would not have been reliable. A worthwhile side–contribution of this dissertation is the demonstra-
tion that the resampling methods of Section 3.3 are able to produce reliable measures of statistical
significance even for multi–modal distributions with long tails, where the assumptions of the stan-
dard techniques, such as Student’st-test, are not met.

10.2 Conclusion

This dissertation has presented a number of techniques and analyses, all of which follow the same
unifying theme: engaging the power of culture through analysis of behavior.

Behavior is the non–artifactual expression of culture. Transmission of behavioral traits from
one generation to the next by non–genetic means is a cultural mechanism. Behavior of the neural
network phenotypes in this work was consistently represented as sampled input–output mappings,
and those representations were found to be sufficient to shape the behavior of offspring in four
disparate ways. The resultingCENE methods reduce CPU time even for relatively modest fitness
functions. Because the figure of merit measured in this work was the number of fitness evaluations
it is clear that CPU efficiency will be even better for the more expensive fitness functions expected
from more complex problem domains.
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Culture in vivo is a complicated and powerful phenomenon. This dissertation has shown
that the power of cultural transmission of traits can be harnessed in evolutionary computation, and
works well with evolution. This work is a significant step toward incorporating new facets of culture
into neuroevolution research. I view these methods as steps on the road to understanding culturein
silico.
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Appendix A

Acrobot Task Detail

The Acrobot is a 2–joint robot described in Section 3.1.2 This appendix provides the details of the
Acrobot implementation, for the convenience of implementors.

The Acrobot is described by Sutton and Barto (1998, Sect. 11.3). The equations of motion
and enegery are derived in Spong and Vidyasagar (1989, example 6.4.2). DeJong and Spong (1994)
develop swing–up strategies in a symbolic form. Friction terms are given in Spong, Lewis, and
Abdallah (1993, Introduction, eq. 4 and 5), which is comparable with Slotine and Li (1993, App. I).

The equations of motion of this system are given in a form useful for implementation:

∀i ∈ 1..2, let

vi ≡ θ̇i angular velocity

ai ≡ θ̈i angular acceleration

Si ≡ coefficient of static friction

Ti ≡ coefficient of viscous friction

k = m2r
2
2 + I2 constant

calculate

wi = viTi + sgn(vi)Si

c = l1r2 cos θ2

d1 = m1r
2
1 + m2(l21 + r2

2 + 2c) + I1 + I2

d2 = m2(r2
2 + c) + I2

e2 = gm2r2 cos(θ2 + θ1 − π/2)

e1 = g(m1r1 + m2l1) cos(θ1 − π/2) + e2

h = m2l1r2 sin θ2

j1 = e1 + w1 − h(v2
2 + 2v2v1)

j2 = e2 + w2 + hv2
1
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so the current accelerations are:

a2 =
d1(τ − j2) + d2j1

d1k − d2
2

a1 = −(d2a2 + j1)/d1

apply the standard Eulerian update rule:

vi + = δai

θi + = δvi

where:

τ ∈ {+1,−1, 0} ≡ torque applied at the second joint

δ = 0.05 seconds ≡ time increment

mi = 1 mass of link

li = 1 length of link

ri = 0.5 length to center of mass of link

Ii = 1 moment of inertia of link

g = 9.8 acceleration of gravity
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Appendix B

Inverted Pendulum Task Detail

The Inverted Pendulum is descibed in Section 3.1.1. This appendix provides implementation details.
The equations for the simulated system are taken from Whitley, Dominic, and Das (1991):

θ̈t =
mg sin θt − cos θt[Ft + mplθ̇

2
t sin θt]

(4/3)ml −mpl cos2 θt

ẍt =
Ft + mpl[θ̇2

t sin θt − θ̈t cos θt]
m

where:

x ≡ the cart position; range± 2.4meters

ẋ ≡ the cart velocity: range± 1.5meters/second

θ ≡ the pole angle

θ̇ ≡ the angular velocity of the pole

mp ≡ the mass of the pole= 0.1 kg

mc ≡ the mass of the cart= 1.0 kg

m ≡ the total mass of the system= 1.1 kg

l ≡ half the length length of the pole= 0.5meter

F ≡ the control force= ±10Newtons

g ≡ the acceleration due to gravity= 9.8m/sec2

See Ronco (1998, Section 3.4) for a noise spectrum, and Ronco, Arsan, Gawthrop, and Hill
(1998) for friction terms.
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