
To appear in Proc. 7th Intl. Conf. on Genetic Algorithms (ICGA97), Morgan Kaufmann, San Francisco, CA.

Culling & Teaching -1-

Culling and Teaching in Neuro-evolution

Paul McQuesten and Risto Miikkulainen
Department of Computer Science
The University of Texas at Austin

Austin, TX 78712
{paulmcq, risto}@cs.utexas.edu

Abstract

The evolving population of neural nets contains
information not only in terms of genes, but also in
the collection of behaviors of the population
members. Such information can be thought of as a
kind of “culture” of the population. Two ways of
exploiting that culture are explored in this paper:
(1) Culling overlarge litters: Generate a large
number of offspring with different crossovers,
quickly evaluate them by comparing their
performance to the population, and throw away
those that appear poor. (2) Teaching: Use
backpropagation to train offspring toward the
performance of the population. Both techniques
result in faster, more effective neuro-evolution, and
they can be effectively combined, as is
demonstrated on the inverted pendulum problem.
Additional methods of cultural exploitation are
possible and will be studied in future work. These
results suggest that cultural exploitation is a
powerful idea that allows leveraging several
aspects of the genetic algorithm.

1. Introduction

In natural learning systems not all abilities are congenital.
Instinctual behaviors are insufficient for all but the
simplest natural organisms existing in static environments.
Successful organisms are adaptive: their behaviors are not
completely determined by their genome. In their struggle
for survival they have available not only their genetic
endowment, but also skills learnt since birth. In many
cases successful adults have been taught skills by their
parents. For example, many species of songbirds must
learn their songs from their elders; human language is
culturally transmitted. The reason is that culture can adapt
to environmental change much more rapidly than a
congenital behavior could. Adaptation during life also
influences the course of evolution, via the Baldwin Effect.
Could such effects be utilized in computational evolution?

The population in a genetic algorithm can be viewed as a
repository of imperfect knowledge about the problem.
While a standard GA exploits only fitness scores, evolving
neural nets can also supply an estimate of the correct
response in any situation. Many previous researchers have
studied the combination of learning and evolution, but
usually with either no teacher or an omniscient teacher.
This work constructs a teacher from the common
knowledge contained in the current population.

This work is aimed at sparse reinforcement learning
problems where feedback is expensive or rarely available.
It seeks to reduce the number of full fitness evaluations
required to solve a problem. Like all genetic algorithms,
the only information from the environment comes from
the evaluation function. From a computational viewpoint,
expensive fitness evaluations are just as bad as sparse
reinforcement. Indeed, in a control problem where fitness
can only be determined by a long simulation, sparseness
and expense are identical.

Phenotypes in this paper are feed-forward neural
networks. The output of a neural net anywhere in its input
space can be computed without being charged for a fitness
evaluation. Backpropagation can be used to train nets,
again without being charged.

In this neuro-evolution approach two exploitations of the
cultural knowledge in the population are devised:
(1) Culling: operational similarity to elders is used to cull
oversize litters. (2) Teaching: new organisms are taught to
respond somewhat like an elder before they have to face a
fitness evaluation.

The following two sections motivate and describe the
culling and teaching algorithms. In section 4 the methods
are tested experimentally on the pole-balancing task.
Section 5 analyzes the relationship of learning and
evolution, and outlines directions for further exploitation
of culture.

Culling & Teaching -2-

2. Culling

From observation of nature comes the idea of
overproduction of offspring: producing litters whose size
is beyond the carrying capacity of the environment.
Hundreds of turtles hatch for each one which survives to
reproduce. Culling in nature can be done by the
environment. In neuro-evolution we’ll have to settle for
something less complicated.

The following subsections develop our culling mechanism
by attacking the dismal distribution of relative fitness from
naïve crossover. Section 2.1 examines the distribution
obtained by a standard GA. Section 2.2 shows how it can
be improved by a magic, costless fitness estimator (a
perfect oracle). Section 2.3 shows how to construct a less-
than-perfect but implementable estimator from the
behavior of the current population. (Section 4.2 shows the
method to be practical and effective.)

2.1 Crossover distribution

Crossover has special hazards for evolving neural
networks. With typical encodings, the same network can
be represented in many ways, since changing the order of
hidden units will not affect the output. That is, there are
many different genotypes that specify indistinguishable
phenotypes. When phenotypically similar individuals are
chosen to mate, but their genotypes use a different
permutation of hidden units, the result of crossover is
most likely to be nonsense. Whitley, Dominic and Das
(1991) describe these “disastrous crossovers” resulting
from the symmetries in neural net representations. They
use very small populations and high mutation rates to
force the population to quickly settle on a single one of
the equivalent permutations. Nolfi, Elman and Parisi
(1994) eliminate crossover entirely, claiming that the
problem must be better understood in order to devise

appropriate encodings.

We believe that learning is unlikely to be competitive in
simpler problem domains where mutation suffices, so
crossover is the primary operator in this work. Pair-wise
mating is the essential feature which distinguishes genetic
algorithms from population-based hillclimbers (Eshelman
and Shaffer 1995). The challenge is to discover how to
properly utilize crossover.

To gain insight into crossover’s operation, let us inspect
the distribution with a standard GA. The task is the well-
known control problem of the inverted pendulum. Fitness
evaluations in this problem are very expensive, requiring
thousands of simulation cycles. The equations for the
simulated system are taken from (Whitley, Dominic and
Das 1991), and are reproduced in Appendix A for
convenience. The fitness function is the total number of
simulator steps until the pole exceeds ±12°, taken over all
eleven initial conditions from (Whitley, Gruau and Pyeatt
1995).

A pole-balance attempt is considered successful if the pole
remains within limits for 1000 time steps, so a run is
successful if a network with a score of 11,000 is found.
Like many researchers, this work uses a stagnation
criteria: A run is terminated as unsuccessful if there has
not been at least 1% improvement since eight generations
ago. (Further detail of the experimental setup is given in
Section 4. The results shown in Figs 1 & 2 appear in this
section in order to motivate and explain the culling
attack.)

Figure 1 shows a histogram of relative fitness from all
crossovers performed during 100 runs of the standard GA
on the pole-balancing problem. The abscissa is the ratio of
offspring fitness to average parental fitness: an individual
crossed with itself would get a ratio of one. The absolute
scale of the ordinate axis is immaterial. The shape is
important: it motivates this attack. The distribution is
multimodal and largely deleterious. The notation
“Avg=0.302” in the figure indicates that the average
offspring is only 30% as fit as its parents. Most crossovers
are indeed awful, as observed by Nordin and Banzhaf
(1995). The distribution is dominated by an enormous
peak near zero fitness, with a lesser lump near the average
of the parents. This distribution is intuitively plausible: in
any interesting domain, there are simply many more ways
to do things wrong than right.

In the 100 runs contained in Figure 1 over 400,000
individuals were generated. 53% of the runs succeeded.
The average successful run required about 4000 fitness
evaluations. Fitness of offspring was below 5% of average
of parental fitness one hundred times as often as it was
greater than 100%.

0

20000

40000

60000

80000

100000

120000

0 0.5 1 1.5 2

F
re

q
u

en
cy

Relative Fitness

Naive Crossover Distribution

7/1000 > 2

Median= 0.105
Avg= 0.302

Figure 1: Fitness distribution of naïve crossover in 100
runs, 53 successful; over 400,000 individuals. The
average offspring is only 30% as fit as its parents.

Culling & Teaching -3-

However, a few crossovers are outstanding. The notation
at the right of Figure 1 shows that roughly seven of each
one thousand offspring had fitness exceeding twice their
parental average. Perhaps genetic algorithms work by
simply waiting for these exceptional events?

This observation suggests a method of making crossover
more productive. The effective crossover distribution can
be improved by suppressing the lower lobe, which should
raise the average, and the increased expectation should
accelerate the GA. This is the main idea of culling.

2.2 A perfect oracle

To determine how effective culling could be in principle, a
perfect oracle is employed. This “estimator” of the fitness
function is a full fitness evaluation which is not charged
for.

The computer implementation is straight-forward: to
produce one new offspring for the population, first
produce a litter of, say, eight. Grade each by consulting
the oracle. Discard all but the one estimated as best, which
will in fact be the best, since this oracle is perfect. The
resulting distribution is shown in Figure 2.

Figure 2 represents 30 runs of culling with a perfect
oracle, where 30,000 individuals were placed in the
population out of 264,000 crossovers performed. All runs
succeeded on the pole-balancing task, on average with
1300 chargeable evaluations. The crossover distribution is
much better than in the standard GA. The average
offspring is now 62% as fit as its parents (up from 30% in
Figure 1). Over 3% are twice as good as the parental
average (up from 0.7% in Figure 1).

Table 1 shows that overproduction with elite selection
(“culling with a perfect oracle”) reduces the number of
generations dramatically. Of course such a perfect oracle
is not usable in practice, since each offspring was actually

evaluated by a full fitness test. The important question is
can culling improve efficiency when it is based on a less
than perfect oracle?

2.3 A realizable oracle

As seen above, culling works with perfect information, but
can it work without full fitness evaluations? The low
performance peak is so dominant that all that is needed to
make a significant change is to recognize abysmal
individuals with reasonable probability. For instance,
poor neural nets could be identified as those with no
connections to their outputs or inputs. A more thorough
evaluation can be done with the performance of the
individuals in the population as a guide. The method
chosen is to “quiz” the new offspring, and grade them with
respect to the current population’s knowledge of the
answers. The theory is if one can answer simple questions
as well as an above-average performer, one is probably
better than the vast majority of potential offspring. For
neural networks, administering the quiz is simple: just set
the input vector per the “question,” evaluate the network,
and report the grade as the distance from the benchmark’s
output vector.

Since the benchmark is drawn from the current
population, a true genius will (inadvertently) be penalized.
So, if over-applied this technique would result in continual
mediocrity. The low lobe of the crossover distribution,
however, is so big that this danger does not arise in
practice.

There are several ways of choosing the benchmark
individual (see Discussion.) In the experiments reported in
this paper a parent is the benchmark. Parents are most
often above average due to reproductive selection in the
GA. Further, parents and offspring are more likely to
share similar architecture than unrelated individuals.
Similarity of architecture increases the likelihood that
similar responses are due to competence.

There are also many ways to determine the questions
included in the culling “quiz.” This initial investigation
uses the most elementary method: questions are chosen
randomly. Each element of the input vector is set to a
value chosen uniformly from the interval [0.45, 0.55]. The
notion behind the small interval is that this is only a
qualifying exam. Neither the imperfect elder nor the child
is likely to know how to answer sensibly in extreme
circumstances.

3. Learn from elders

This section shows another way to exploit the improving
behavior of the population. The benchmark and quiz of
culling are metamorphosed into teacher and syllabus.

0

500

1000

1500

2000

2500

3000

0 0.5 1 1.5 2

F
re

q
u

en
cy

Relative Fitness

Perfectly Culled Crossover Distribution

31/1000 > 2

Median= 0.427

Avg= 0.628

Figure 2: Culled crossover distribution: best of 8 by
perfect oracle. Average is double naïve crossover.

Culling & Teaching -4-

3.1 The Baldwin Effect

In 1896 the biologist Baldwin described how acquired
abilities influence the course of biological, Darwinian,
evolution. Hinton and Nolan (1987) first demonstrated the
Baldwin Effect in an abstract genetic algorithm, thus
confirming that the biological Baldwin Effect also occurs
in evolutionary computation. In a more elaborate model,
Nolfi, Elman & Parisi (1994) showed how training neural
nets influenced their evolution.

Further studies of the Baldwin Effect (French &
Messinger 1996; Hightower, et. al. 1995) have confirmed
a U-shaped curve for inherited vs. acquired characteris-
tics: Abilities which are either very simple or very crucial
tend to be inherited while those in the middle remain
plastic. This is true both in natural biology and in
computational evolution. The advantage of plastic abilities
is that they can adapt to environmental change in less than
evolutionary time. Further, and important for learning, the
genome does not have to be long enough to include all the
details of a learned trait.

Many researchers have found learning to combine well
with evolution. For example, (Braun and Zagorski 1994;
Sebag and Schoenauer 1994; Ackley and Littman 1991).
In sparse reinforcement tasks, however, in general, no
targets are available for training.

Nolfi, Elman & Parisi (1994) harnessed the Baldwin
Effect in a sparse reinforcement domain by adding a task
to their neural nets which was related to, but distinct from,
the primary performance task. Their secondary task was
simple, ingenious and general: to predict the inputs that
would occur in the next time step. Clearly, the ability to
predict future inputs should be positively correlated with
performance in almost any task. They found that the
hidden-unit representations that developed to support the
secondary task were being used to advantage by the
primary task. Note that such a secondary task is always
amenable to training: the actual inputs from the next time
step provide the necessary error signal.

3.2 Teaching by elders

Our learning technique differs from all of these by
extracting training targets from previous population
members. The motivation comes from the natural world,
where parental training of offspring is ubiquitous.

To emulate parental training in neuro-evolution is straight-
forward: Train the offspring with backpropagation to
emulate the parents’ output in a set of training examples,
before the offspring is subjected to the complete,
expensive fitness evaluation. The set of training examples
is called the syllabus. As with culling, the teaching
syllabus and the teacher could be chosen in various ways,
and only the most straightforward choices are analyzed in

this paper. (See the Discussion section for alternatives.)
As mentioned in 2.3, parents are a good choice for teacher
because they are relatively highly fit, and usually share
structure with their offspring. The set of training examples
consists of random input vectors (a new random number is
produced each time). The error signal is Euclidean
distance between the offspring and parental output vectors
for a given input vector. In culling, the errors between
several candidate offspring are compared; in teaching, the
error is used to adjust weights of each offspring.

Excessive training could lead to a student becoming a near
copy of the teacher. Clearly, this would stall any hope of
progress via evolution, so the amount of training must be
moderate. Thus the method is restricted to only in-
cremental improvement over an untrained individual. We
apply only a limited amount of backpropagation (amounts
shown in Fig. 4), and do not iterate over the syllabus.
Each training case is presented and backpropagated only
once. (In many neural network studies a reported
backprop epoch often means a presentation of each
training case. In contrast, here there are only a fixed
number of cases, and each is presented only once. There
are no “epochs.”)

As will be seen, learning from elders evolves offspring
that are trainable, that is, when they are trained for a few
steps toward a parent, they will perform well.

4. Empirical Evaluation

The culling and teaching techniques were tested on the
pole-balancing problem. Table 1 reports the number of
fitness evaluations required to find a solution for various
methods. Note that while unsuccessful runs are reported,
they are not used in calculating the mean, so methods with
high success rates are actually better than the reported
average indicates.

4.1 Experimental setup

All populations consist of 200 individuals. The initial 200
individuals are randomly generated. A “steady state” GA
is used: each child is inserted into the population as it is
generated, displacing the least fit individual found in four
random probes (a 4-tournament). The population is not
sorted. Mating parents are chosen by a 2-tournament. For
reporting purposes a new “generation” is declared every
200th individual.

The current implementation does one-point crossover 2/3
of the time, and two-point crossover 1/3 of the time, as
recommended by Masters (1993). This results in a
constant probability of disruption of schemata,
independent of defining length, just like uniform
crossover. A small amount of mutation is included: 0.1%
probability of each bit flipping. The learning rate for

Culling & Teaching -5-

backpropagation is 0.15, with no momentum. Unless
otherwise noted, the length of the syllabus was 10. Each
question is generated by a new random throw.

As a baseline comparison (and sanity check) Random Bit
hill-Climbing, RBC, per Davis (1991) was implemented
and tested. RBC is a form of next-ascent which flips bits
in a random order. RBC does not use the “patience” test; it
stops only at the top of a hill—when no single bit flip will
improve the current score. In this problem RBC beats
standard GA, suggesting that the error surface is quite
smooth. However, RBC only finds a solution 80% as often
as the standard GA does.

Table 1 summarizes the results. The standard GA and
Perfect Oracle were described in Section 2. The following
sections analyze the results for culling, teaching, and their
combination.

4.2 Culling results

The main result is that culling by parental similarity takes
less than 55% of the evaluations needed by the standard
GA, and succeeds 28% more often. Culling with a parent
achieves 85% of the success of perfect culling, but
without the eight-fold increase in actual fitness
evaluations.

Figure 3 shows the performance of culling with various
litter sizes. The leftmost point (+) represents the standard
GA. A litter size of one performs just like the standard
GA, as it should. Larger litter sizes give better
performance, but the improvement is very small after
about 8. This is a nice result because is suggests litter size
does not need to be optimized carefully; anything from 8
up will perform well.

A series of runs not shown investigated the length of the
questionnaire. Over the range of four to sixteen questions
performance was about the same.

4.3 Teaching results

Teaching by parents turned out to be even more effective
than culling (Table 1): now 98% of the runs are

successful, and only 41% of the evaluations used by
standard GA are needed.

These results were obtained with a fixed-sized syllabus of
20 vectors. Since backpropagation has a larger effect with
more training vectors, the size of the syllabus is an
important parameter, similar to litter size for culling.

Figure 4 shows how the average evaluations per solution
varies with the length of the syllabus. Each data point is
the average of 20–50 runs. Success rates were 98% or
better when the syllabus contained 20 or more questions.
This graph indicates that the size of the syllabus does not
have to be very carefully set, as long as it is large enough
(around 20).

The state of the network after teaching corresponds to the
phenotype in biology: phenotypic fitness determines
reproductive success, and is what the GA responds to.
However the distribution of pre-training, “natal,” fitness is
interesting. It turns out that almost everyone is born with

Method Mean S.D. runs Suc
Standard GA 4026 1430 100 53%
RBC 1523 1624 24 42%
Perfect Culling 1300 451 30 100
Culling 2105 722 20 85%
Teaching 1653 643 50 98%
Teach + cull 960 316 50 100

Table 1: Pole balancing performance. Mean is the
average number of evaluations for successful runs, SD
stands for rounded standard deviation, and Success
indicates the percentage of runs which were successful.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 2 4 6 8 10 12 14 16

E
va

lu
at

io
n

s
p

er
 S

o
lu

ti
o

n

Litter Size

Culling Performance by Litter Size

GA

Figure 3: Effect of litter size on culling. Mean evaluations
per solution, 20-50 runs per data point. Culling from a
litter of 8 or more works well.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80

E
va

lu
at

io
n

s
p

er
 S

o
lu

ti
o

n

Backprop Iterations

Teaching Performance by Syllabus Size

GA

Figure 4: Effect of training time on performance. Most of
the benefit is achieved with 20 questions.

Culling & Teaching -6-

poor fitness. Even the winners (those that achieve a score
of 11,000) behave poorly before training, almost as poorly
as random nets. The teaching GA does not evolve
solutions directly, but rather evolves networks that will
respond to the training regimen. Consider networks to be a
point in weight space, and call the “solution region” any
point representing a successful network. The genomes that
win with teaching are not located in the solution region,
but rather at some point which will be pulled to a solution
region by an imperfect teacher. The performance increase
of teaching over the standard GA (Table 1) indicates that
the area of the set of points representing winning genomes
is larger than the solution region.

These results could be seen as a mere affirmation that
backpropagation is sensitive to initial conditions.
Contrariwise, perhaps it succeeds by evolving extremely
good teachers, that is, nets which can teach an arbitrary
net to succeed. This possibility is tested by subjecting
10,000 randomly-generated (non-evolved) networks to
teaching by selected winners, and by the teachers of those
winners. No successes were found, indicating that
“teachability” requires some specific attributes of the
initial weights. The GA can find those combinations:
evolution and learning are truly working in harmony.

4.4 Combining culling and teaching

Despite motivating both these techniques as “cultural,”
they are based on different mechanisms. Culling improves
the distribution from which crossovers are selected.
Teaching modifies the feedback provided to the genetic
algorithm via the Baldwin Effect. Therefore it might be
possible to combine them into an even stronger learning
algorithm.

In the combination test, for each new offspring desired,
eight are generated and trained with backprop on 20 test
cases. The one with the lowest training error is chosen to
enter the population. These training time and litter size
parameters were found to be good in the previous
sections.

As can be seen from Table 1, culling and teaching work
well together. The combined technique achieves a 100%
success rate with 25% of the evaluations used by the
standard GA, and also has the smallest variance.

This work is aimed at problem domains where the
evaluation function is expensive, therefore the primary
criteria is number of evaluations, but it is still important to
check how much overhead the culling and teaching
methods impose. For the set of results in Table 1,
including the time in unsuccessful runs, the standard GA
took an average of 380 CPU seconds to produce each
solution (200MHz Pentium-Pro), and the Perfect Oracle
was roughly the same, when the CPU time for all the

uncharged evaluations is included. RBC was slower than
the standard GA, but only by a factor of 1.9, again
indicating that the pole balancing problem is not very
difficult. Culling by itself took 2.1 times as long per
solution as the standard GA, so it would not be
competitive unless the fitness function was more
expensive. Teaching was the fastest at only one-tenth the
time of the standard GA. Teaching and culling combined
took one-sixth the time. These ratios would improve with
a more expensive fitness function, thus these new methods
are efficient and practical.

These results show that information stored implicitly in
the behaviors of the population can be used effectively to
enhance several different aspects of neuro-evolution.

5. Discussion and future work

Nolfi and Parisi (1994, 1995) studied neuro-evolution in
rapidly changing environments. Networks that learn adapt
to the current environment and therefore score higher. The
teaching inputs are computed by the network itself. The
teaching part of the network is evolved normally and does
not change its weights during life. Nolfi and Parisi found
that the targets that the teaching part evolves to generate
do not specify the optimal output. Instead, they cause the
network to learn more efficiently. We believe that this
result translates directly into the importance of a good
syllabus in our methods.

There is an interesting similarity between our teaching
results and those of Nolfi and Parisi. Our networks do not
evolve genes that are good for the task: before training the
networks perform very poorly. A performance histogram
of winners looks just like one of random networks. Unlike
random nets, however, winning nets are trainable in
context. This resembles the Nolfi and Parisi result that the
nets do not evolve optimal weights, but weights that teach
well. This principle appears fundamental to successful
combination of learning and evolution, whether based on
self-teaching or learning from a teacher.

How should Teachers be chosen or composed? The
reported method is based on functional similarity to a
single elder. The benchmark/teacher individual could be
chosen in other ways For instance, as the current
population champion, or even by averaging the responses
of a committee. In preliminary experiments teaching by
parent was found more effective than teaching by the
current best individual in the population, and so therefore
was reported in this paper. It appears that an unrelated
teacher has a higher chance of having an architecture that
is too different to give reliable estimates. A committee of
the several most fit might be less parochial. Perhaps a new
offspring (student) should be allowed to try several
teachers and continue only with the higher scoring one(s).

Culling & Teaching -7-

Alternatively, perhaps a separate population of teaching
specialists could be co-evolved. These would be evaluated
according to the fitnesses of their pupils.

It is well known in both symbolic and connectionist
machine learning that results depend crucially on the
quality of the training corpus (syllabus, in our terms). An
active area of our current research is how to build a better
syllabus. For example, by adding memory to the
phenotype, a teacher could remember some characteristics
of actual problem instances encountered during its own
evaluation. A teacher could remember “significant
problems,” or remember the range of most frequent input
parameters. Perhaps the capability for such significance
analysis could be evolvable, along the lines of an
Adaptive Critic (Barto, Sutton and Anderson 1983).

Several researchers have found it useful to change the
syllabus over time, as in the Incremental Learning of
Elman (1991) and (Gomez and Miikkulainen 1997), but
that requires modifying the evaluation function. A similar
effect should be possible in these “cultural” methods by
varying the length and/or content of the syllabus, without
any access to the insides of the evaluation function.

In addition to culling and teaching, population culture
could perhaps be utilized in other ways. For example,
when a fitness function has severable components, each
evaluation can be reported as a vector, giving fitness for
each component separately. In the pole-balancing problem
the time-to-fall on each of the eleven initial conditions can
be returned. Each element is then considered to be a sub-
goal, and the vectors are used to control mating. The first
parent is selected by overall performance, as usual. For
the second parent, however, an individual is found that
solves most of the cases that the first one misses. This idea
can be dubbed the Jack Sprat method of spousal selection.
In preliminary experiments it leads to more efficient
evolution, apparently by enhancing the odds of combining
solved sub-problems.

There may be other forms of utilizing “culture” in the
population as well. The results reported in this paper form
a promising starting point.

6. Conclusion

This paper demonstrates that the current state of the
population contains useful information (beyond its fitness
scores) that can be tapped in a manner reminiscent of
cultural transmission of skills. Two such novel methods
were evaluated in this paper, and good values were found
for the main parameters. Culling of oversize litters used
only 55% of the evaluations required by a standard GA
and succeeds 28% more often. Learning to respond
somewhat like an elder used only 41% and succeeds 98%

of the time. Since these techniques are operating on
disjoint aspects of the GA, they can be combined. The
combination achieves a 100% success rate with only 25%
of the evaluations as the standard, and produces solutions
six times as fast.

Other aspects of neuro-evolution could be handled by
such methods as well, as will be explored in future work.

Acknowledgments

This research was supported in part by NSF under grant
#IRI-9504317. Our thanks to the anonymous reviewers,
whose comments improved the presentation.

References

Ackley, David, and Michael Littman (1991). Interactions
between Learning and Evolution. In Langton, C.G., C.
Taylor, J.D.Farmer and S. Rasmussen, eds., Artificial
Life II. Addison-Wesley, Redwood City, CA.

Barto, A.G., Richard S. Sutton, and Charles W. Anderson
(1983). Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE Transactions
on Systems, Man, and Cybernetics, SMC-13.

Braun, Heinrich and Peter Zagorski (1994). ENZO-M - A
Hybrid Approach for Optimizing Neural Networks by
Evolution and Learning. In Y. Davidor, H-P.Schwefel,
and R.Manner, eds. Parallel Problem Solving from
Nature: PPSN-III. Springer-Verlag, Berlin.

Davis, L.D. (1991). Bit-climbing, representational bias,
and test suite design. In Belew, R.K. and L.B. Booker,
eds, Proceedings of the Fourth International
Conference on Genetic Algorithms. Morgan Kaufman,
San Francisco.

Elman, Jeffrey L. (1991). Incremental Learning, or The
Importance of Starting Small. In Proceedings of the
13th Annual Conference of the Cognitive Science
Society. Erlbaum, Hillsdale, NJ.

French, Robert M., and Adam Messinger (1995). Genes,
Phenes and the Baldwin Effect: Learning and
Evolution in a Simulated Population. In Brooks, R.A.
and P. Maes, eds., Proceedings of the Fourth
International Workshop on the Synthesis and
Simulation of Living Systems. MIT Press, 1994
(Second Printing 1995).

Gomez, Faustino and Risto Miikkulainen (in press).
Incremental Evolution of Complex General Behavior.
Adaptive Behavior, MIT Press, Cambridge, MA.

Culling & Teaching -8-

Hightower, Ron R., Stephanie Forrest, and Alan S.
Perelson (1995). The Evolution of Emergent
Organization in Immune System Gene Libraries. In
L.J.Eshelman, ed., Sixth International Conference on
Genetic Algorithms. Morgan Kaufmann, San
Francisco.

Hinton, Geoffrey E., and Steven J. Nowlan (1987). How
Learning Can Guide Evolution. Complex Systems 1,
495-502.

Masters, Timothy (1993). Practical Neural Network
Recipes in C++. Academic Press, San Diego.

Nolfi, Stefano, Jeffrey L. Elman, and Domenico Parisi
(1994). Learning and evolution in neural networks.
Adaptive Behavior 2 (1994): 5-28

Nolfi, Stefano, and Domenico Parisi (1994). Good
teaching inputs do not correspond to desired responses
in ecological neural networks. Neural Processing
Letters 1 no. 2 (11/94) pp. 1-4.

Nolfi, Stefano, and Domenico Parisi (1995). Learning to
adapt to changing environments in evolving neural
networks. C.N.R.-Rome Technical Report 95-15.

Nordin, Peter and Wolfgang Banzhaf (1995). Complexity
Compression and Evolution. In In L.J.Eshelman, ed.,
Sixth International Conference on Genetic Algorithms.
Morgan Kaufmann, San Francisco.

Sebag, Michèle, and Marc Schoenauer (1994).
Controlling Crossover through Inductive Learning. In
Y.Davidor, H-P.Schwefel, and R.Manner, eds. Parallel
Problem Solving from Nature: PPSN-III. Springer-
Verlag, Berlin.

Whitley, Darrell, Stephen Dominic and Rajarshi Das
(1991). Genetic Reinforcement Learning with
Multilayer Neural Networks. In Belew, R.K. and L.B.
Booker, eds., Proceedings of the Fourth International
Conference on Genetic Algorithms. Morgan Kaufman,
San Francisco.

Whitley, Darrell, Frederic Gruau and Larry Pyeatt (1995).
Cellular Encoding Applied to Neurocontrol. In
L.J.Eshelman, ed., Sixth International Conference on
Genetic Algorithms. Morgan Kaufmann, San
Francisco.

Appendix - System Equations.

The simulation follows the same definitions as those of
Whitley, Dominic and Das (1991).

[]
()

[]

&&
sin cos & sin

cos

&&
& sin && cos

θ
θ θ θ θ

θ

θ θ θ θ

t

t t t p t t

p t

t
t p t t t t

mg F m l

ml m l

x
F m l

m

=
− +

−

=
+ −

2

2

2

4 3

where:
x meters

x m/sec

m kg

m kg

l meter

F Newtons

g m/sec

p

 is the cart position, range

 is the cart velocity, range 1.5

 is the pole angle

is the angular velocity of the pole

 is the mass of the pole = 0.1

 is the total mass of the system = 1.1

 is the le e pole = 0.5

 is the control force = 10

 is the acceleration due to gravity = 9.8

±
±

±

2 4

2

.

&

&

θ
θ

ngth of th

