
To appear inProceedings of the 16th Annual Joint Conference on Artificial Intelligence (IJCAI-99, Stockholm, Sweden), 1999.

SARDSRN: A Neural Network Shift-Reduce Parser

Marshall R. Mayberry, III andRisto Miikkulainen
Department of Computer Sciences

The University of Texas
Austin, TX 78712, U.S.A

(martym,risto@cs.utexas.edu)

Abstract

Simple Recurrent Networks (SRNs) have been
widely used in natural language tasks. SARDSRN
extends the SRN by explicitly representing the in-
put sequence in a SARDNET self-organizing map.
The distributed SRN component leads to good gen-
eralization and robust cognitive properties, whereas
the SARDNET map provides exact representations
of the sentence constituents. This combination al-
lows SARDSRN to learn to parse sentences with
more complicated structure than can the SRN alone,
and suggests that the approach could scale up to re-
alistic natural language.

1 Introduction
The subsymbolic approach (i.e. neural networks with dis-
tributed representations) to processing language is attractive
for several reasons. First, it is inherently robust: the dis-
tributed representations display graceful degradation of per-
formance in the presence of noise, damage, and incomplete or
conflicting input[Miikkulainen, 1993; St. John and McClel-
land, 1990]. Second, because computation in these networks
is constraint-based, the subsymbolic approach naturally com-
bines syntactic, semantic, and thematic constraints on the in-
terpretation of linguistic data[McClelland and Kawamoto,
1986]. Third, subsymbolic systems can be lesioned in var-
ious ways and the resulting behavior is often strikingly
similar to human impairments[Miikkulainen, 1993; 1996;
Plaut, 1991]. These properties of subsymbolic systems have
attracted many researchers in the hope of accounting for in-
teresting cognitive phenomena, such as role-binding and lex-
ical errors resulting from memory interference and overload-
ing, aphasic and dyslexic impairments resulting from phys-
ical damage, and biases, defaults and expectations emerg-
ing from training history[Miikkulainen, 1997; 1996; 1993;
Plaut and Shallice, 1992].

Since its introduction in 1990, the simple recurrent network
(SRN) [Elman, 1990] has become a mainstay in connectionist
natural language processing tasks such as lexical disambigua-
tion, prepositional phrase attachment, active-passive transfor-
mation, anaphora resolution, and translation[Allen, 1987;
Chalmers, 1990; Munroet al., 1991; Touretzky, 1991]. This
paper describes an extension to the standard SRN, which

utilizes SARDNET [James and Miikkulainen, 1995], a self-
organizing map algorithm designed to represent sequences.
SARDNET permits the sequence information to remain ex-
plicit, yet distributed in the sense that similar sequences result
in similar patterns on the map. SARDSRN, the combination
of the SRN and SARDNET, effectively solves the fundamen-
tal memory accuracy limitations of the SRN, and allows the
processing of sentences of realistic length.

This paper shows how SARDSRN improves upon the per-
formance of the SRN in a nontrivial syntactic shift-reduce
parsing task. The results show that SARDSRN outperforms
the SRN in this task by providing an effective solution to the
memory problem. SARDSRN therefore forms a solid founda-
tion for building a subsymbolic parser of realistic language.

2 The Task: Shift-Reduce Parsing
The task taken up in this study, shift-reduce (SR) parsing, is
one of the simplest approaches to sentence processing that
nevertheless has the potential to handle a substantial subset
of English[Tomita, 1986]. Its basic formulation is based on
the pushdown automata for parsing context-free grammars,
but it can be extended to context-sensitive grammars as well.

The parser consists of two data structures: the input buffer
stores the sequence of words remaining to be read, and the
partial parse results are kept on the stack (figure 1). Ini-
tially the stack is empty and the entire sentence is in the in-
put buffer. At each step, the parser has to decide whether to
shift a word from the buffer to the stack, or to reduce one
or more of the top elements of the stack into a new element
representing their combination. For example, if the top two
elements are currentlyNP andVP, the parser reduces them
into S, corresponding to the grammar ruleS! NP VP(step
17 in figure 1). The process stops when the elements in the
stack have been reduced to S, and no more words remain in
the input. The reduce actions performed by the parser in this
process constitute the parse result, such as the syntactic parse
tree (line 18 in figure 1).

The sequential scanning process and incremental forming
of partial representations is a plausible cognitive model for
language understanding. SR parsing is also very efficient,
and lends itself to many extensions. For example, the parse
rules can be made more context sensitive by taking more of
the stack and the input buffer into account. Also, the partial
parse results may consist of syntactic or semantic structures.



Stack Input Buffer Action
the boy who liked the girl chased the cat .1 Shift

the boy who liked the girl chased the cat . 2 Shift
the boy who liked the girl chased the cat . 3 Reduce

NP[the,boy] who liked the girl chased the cat . 4 Shift
NP[the,boy] who liked the girl chased the cat . 5 Shift

NP[the,boy] who liked the girl chased the cat . 6 Shift
NP[the,boy] who liked the girl chased the cat . 7 Shift

NP[the,boy] who liked the girl chased the cat . 8 Reduce
NP[the,boy] who liked NP[the,girl] chased the cat . 9 Reduce

NP[the,boy] who VP[liked,NP[the,girl]] chased the cat . 10 Reduce
NP[the,boy] RC[who,VP[liked,NP[the,girl]]] chased the cat . 11 Reduce

NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chased the cat . 12 Shift
NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chasedthe cat . 13 Shift

NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chased thecat . 14 Shift
NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chased the cat. 15 Reduce

NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chased NP[the,cat]. 16 Reduce
NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] VP[chased,NP[the,cat]]. 17 Reduce

S[NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]],VP[chased,NP[the,cat]]] 18 Stop

Figure 1:Shift-Reduce Parsing a Sentence.Each step in the parse is represented by a line from top to bottom. The current stack is at left,
the input buffer in the middle, and the parsing decision in the current situation at right. At each step, the parser either shifts a word onto the
stack, or reduces the top elements of the stack into a higher-level representation, such asthe boy! NP[the,boy] (step 3). (Phrase labels such
as “NP” and “RC” are only used in this figure to make the process clear.)

The general SR model can be implemented in many ways.
A set of symbolic shift-reduce rules can be written by hand or
learned from input examples[Hermjacob and Mooney, 1997;
Simmons and Yu, 1991; Zelle and Mooney, 1996]. It is also
possible to train a neural network to make parsing decisions
based on the current stack and the input buffer. If trained
properly, the neural network can generalize well to new sen-
tences[Simmons and Yu, 1992]. Whatever correlations there
exist between the word representations and the appropriate
shift/reduce decisions, the network will learn to utilize them.

Another important extension is to implement the stack as
a neural network. This way the parser can have access to the
entire stack at once, and interesting cognitive phenomena in
processing complex sentences can be modeled. The SPEC
system[Miikkulainen, 1996] was a first step in this direction.
The stack was represented as a compressed distributed rep-
resentation, formed by a RAAM (Recursive Auto-Associative
Memory) auto-encoding network[Pollack, 1990]. The result-
ing system was able to parse complex relative clause struc-
tures. When the stack representation was artificially lesioned
by adding noise, the parser exhibited very plausible cogni-
tive performance. Shallow center embeddings were easier to
process, as were sentences with strong semantic constraints
in the role bindings. When the parser made errors, it usu-
ally switched the roles of two words in the sentence, which
is what people also do in similar situations. A symbolic rep-
resentation of the stack would make modeling such behavior
very difficult.

The SPEC architecture, however, was not a complete im-
plementation of SR parsing; it was designed specifically for
embedded relative clauses. For general parsing, the stack
needs to be encoded with neural networks to make it possi-
ble to parse more varied linguistic structures. We believe that
the generalization and robustness of subsymbolic neural net-
works will result in powerful, cognitively valid performance.
However, the main problem of limited memory accuracy of
the SRN parsing network must first be solved. An architec-
ture that will do that, SARDSRN, will be described next.

Previous Hidden Layer

Compressed RAAM

Input Word

SARDNET

chased

[[the,boy],[who,[liked,[the,girl]]]]

the boy who liked the girl chased chased chased

Figure 2:The SARDSRN Network. This snapshot shows the net-
work during step 11 of figure 1. The representation for the current
input word,chased, is shown at top left. Each word is input to the
SARDNET map, which builds a representation for the sequence word
by word. At each step, the previous activation of the hidden layer is
copied (as indicated by the dotted line) to the Previous Hidden Layer
assembly. This activation, together with the current input word and
the current SARDNET pattern, is propagated to the hidden layer of
the SRN network. As output, the network generates the compressed
RAAM representation of the top element in the shift-reduce stack
at this state of the parse (in this case, line 12 in figure 1). SARD-
NET is a map of word representations, and is trained through the
Self-Organizing Map (SOM) algorithm[Kohonen, 1995; 1990]. All
other connections are trained through backpropagation.

3 The SARDSRN parser architecture
3.1 Simple Recurrent Network
The starting point for SARDSRN (figure 2) is the simple re-
current network. The network reads a sequence of input word
representations into output patterns representing the parse
results, such as syntactic or case-role assignments for the
words. At each time step, a copy of the hidden layer is saved
and used as input during the next step, together with the next
word. In this way each new word is interpreted in the context
of the entire sequence so far, and the parse result is gradually
formed at the output.



The SRN architecture can be used to implement a shift-
reduce parser in the following way: the network is trained
to step through the parse (such as that in figure 1), generat-
ing a compressed distributed representation of the top element
of the stack at each step (formed by a RAAM network: sec-
tion 4.1). The network reads the sequence of words one word
at a time, and each time either shifts the word onto the stack
(by passing it through the network, e.g. step 1), or performs
one or more reduce operations (by generating a sequence of
compressed representations corresponding to the top element
of the stack: e.g. steps 8-11). After the whole sequence is
input, the final stack representation is decoded into a parse
result such as a parse tree. Such an architecture is powerful
for two reasons: (1) During the parse, the network does not
have to guess what is coming up later in the sentence, as it
would if it always had to shoot for the final parse result; its
only task is to build a representation of the current stack in its
hidden layer and the top element in its output. (2) Instead of
having to generate a large number of different stack states at
the output, it only needs to output representations for a rela-
tively small number of common substructures. Both of these
features make learning and generalization easier.

A well-known problem with the SRN model is its low
memory accuracy. It is difficult for it to remember items
that occurred several steps earlier in the input sequence, es-
pecially if the network is not required to produce them in
the output layer during the intervening steps[Stolcke, 1990;
Miikkulainen, 1996]. The intervening items are superim-
posed in the hidden layer, obscuring the traces of earlier
items. Nor has simply increasing the size of the hidden layer
or lowering the learning rate been found to offer much ad-
vantage. As a result, parsing with an SRN has been limited to
relatively simple sentences with shallow structure.

3.2 SARDNET

The solution described in this paper is to use an explicit rep-
resentation of the input sequence as additional input to the
hidden layer. This representation provides more accurate in-
formation about the sequence, such as the relative ordering
of the incoming words, and it can be combined with the hid-
den layer representation to generate accurate output that re-
tains all the advantages of distributed representations. The se-
quence representation must be explicit enough to allow such
cleanup, but it must also be compact and generalize well to
new sequences.

The SARDNET (Sequential Activation Retention and
Decay Network) [James and Miikkulainen, 1995] self-
organizing map for sequences has exactly these properties.
SARDNET is based on the Self-Organizing Map neural net-
work [Kohonen, 1990; 1995], and organized to represent the
space of all possible word representations. As in a con-
ventional self-organizing map network, each input word is
mapped onto a particular map node called the maximally-
responding unit, or winner. The weights of the winning unit
and all the nodes in its neighborhood are updated according to
the standard adaptation rule to better approximate the current
input. The size of the neighborhood is set at the beginning of
the training and reduced as the map becomes more organized.

In SARDNET, the sentence is represented as a distributed

Figure 3:Grammar. This phrase structure grammar generates sen-
tences with subject- and object-extracted relative clauses. The rule
schemata with noun and verb restrictions ensure agreement between
subject and object depending on the verb in the clause. Lexicon
items are given in bold face.

activation pattern on the map (figure 2). For each word,
the maximally responding unit is activated to a maximum
value of 1.0, and the activations of units representing previous
words are decayed according to a specified decay rate (e.g.
0.9). Once a unit is activated, it is removed from competition
and cannot represent later words in the sequence. Each unit
may then represent different words depending on the context,
which allows for an efficient representation of sequences, and
also generalizes well to new sequences.

In the SARDSRN architecture, SARDNET is used to di-
rectly handle the memory limitation of the SRN. A SARD-
NET representation of the input sentence is formed at the
same time as the SRN hidden layer representation, and used
together with the previous hidden layer representation and the
next word as input to the hidden layer (figure 2). This archi-
tecture allows the SRN to perform its task with significantly
less memory degradation. The sequence information remains
accessible in SARDNET, and the SRN is able to focus on cap-
turing correlations relating to sentence constituent structure
during parsing.

4 Experiments
4.1 Input Data, Training, and System Parameters
The data used to train and test the SRN and SARDSRN net-
works were generated from the phrase structure grammar in
figure 3, adapted from a grammar that has become common
in the literature[Elman, 1991; Miikkulainen, 1996]. Since
our focus was on shift-reduce parsing, and not processing rel-
ative clauses per se, sentence structure was limited to one rel-
ative clause per sentence. From this grammar training targets
corresponding to each step in the parsing process were ob-
tained. For shifts, the target is simply the current input. In
these cases, the network is trained to auto-associate, which
these networks are good at. For reductions, however, the tar-
gets consist of representations of the partial parse trees that
result from applying a grammatical rule. For example, the
reduction of the sentence fragmentwho liked the girl would
produce the partial parse result[who,[liked,[the,girl]]] . Two
issues arise: how should the parse trees be represented, and
how should reductions be processed during sentence parsing?



the 10000000 who 01010000
whom 01100000 . 11111111
boy 00101000 dog 00100010
girl 00100100 cat 00100001
chased 00011000 saw 00010010
liked 00010100 bit 00010001

Figure 4:Lexicon. Each word representation is put together from
a part-of-speech identifier (first four components) and a unique ID
tag (last four). This encoding is then repeated eight times to form
a 64-unit word representation. Such redundancy makes it easier to
identify the word.

The approach taken in this paper is the same as in SPEC
(section 2), as well as in other connectionist parsing sys-
tems[Miikkulainen, 1996; Berg, 1992; Sharkey and Sharkey,
1992]. Compressed representations of all the partial syntactic
parse trees using RAAM are built up through auto-association
of the constituents. This training is performed beforehand
separately from the parsing task. Once formed, the com-
pressed representations can be decoded into their constituents
using just the decoder portion of the RAAM architecture.

In shift-reduce parsing, the input buffer after each “Re-
duce” action is unchanged; rather, the reduction occurs on
the stack. Therefore, if we want to perform the reductions
one step at a time, the current word must be maintained in the
input buffer until the next “Shift” action. Accordingly, the
input to the network consists of the sequence of words that
make up the sentence with the input word repeated for each
reduce action, and the target consists of representations of the
top element of the stack (as shown in figure 1).

Word representations were hand-coded to provide basic
part-of-speech information together with a unique ID tag that
identified the word within the syntactic category (figure 4).
The basic encoding of eight units was repeated eight times to
fill out a 64-unit representation. The 64-unit representation
length was needed to encode all of the partial parse results
formed by RAAM , and redundancy in the lexical items facili-
tate learning.

Four data sets of 20%, 40%, 60%, and 80% of the 436 sen-
tences generated by the grammar were randomly selected to
train both parsers, and each parser was trained on each dataset
four times. Training on all thirty-two runs was stopped when
the error on a 22-sentence (5%) validation set began to level
off. The same validation set was used for all the simulations
and was randomly drawn from a pool of sentences that did
not appear in any of the training sets. Testing was then per-
formed on the remaining sentences that were neither in the
training set nor in the validation set.

The SRN network architecture consisted of a 64-unit input
layer, 200-unit hidden and context layers, and 64-unit output
and target layers. SARDSRN added a 144-unit feature map
(SARDNET) to the SRN setup. A learning rate of 0.2 was used
to train both networks, while the learning and decay rates for
the SARDNET feature map input in SARDSRN were set to 0.5
and 0.9, respectively. The neighborhood was set at 6 initially
and gradually reduced to 0. These parameters were found
experimentally to result in the best general performance for
both parsers.

Figure 5: Results. Averages over four simulation runs using the
stricteraverage mismatchesper sentence measure on the test data.
The SRN’s performance in all 16 runs bottomed out at a much higher
error than SARDSRN, while still unable to parse all of the train-
ing sentences. SARDSRN, on the other hand, did learn to parse
the training sentences, and showed very good generalization to the
test sentences. These differences are statistically significant with
p < 0:0005.

4.2 Results

Theaverage mismatchesperformance measure reports the av-
erage number of leaf representations per sentence that are
not correctly identified from the lexicon by nearest match
in Euclidean distance. As an example, if the target is
[who,[liked,[the,girl]]]] , (step 11 of figure 1), but the out-
put is [who,[saw,[the,girl]]]] , then a mismatch would occur
at the leaf labelledsaw once the RAAM representation was
decoded. Average mismatches provide a measure of the cor-
rectness of the information in the RAAM representation. It is
a much stricter measure of the utility of the network than the
standard mean squared error and was, therefore, used in our
experiments.

Training took about four days on a 200 MHz Pentium Pro
workstation, with SARDSRN taking about 1.5 times as long
per epoch as the SRN alone. The validation error in the SRN
runs quickly leveled off, and continued training did nothing
to improve it. On the other hand, the SARDSRN simulation
runs were still showing slight improvements when they were
cut off. Figure 5 plots these performance measures averaged
over the four simulation runs against the test sentences.

By all measures, SARDSRN performed significantly–even
qualitatively–better than the standard SRN. On the training
datasets, there was roughly an order of magnitude difference
in both the epoch errors and the average number of mis-
matches per sentence between SARDSRN and SRN. These
results suggest that the SRN could not even learn the training
data to any useful extent, whereas SARDSRN does not ap-
pear to be nearing its limit. On the test sets, the epoch error
for the SRN never fell below 0.05, and there were nearly 7
mismatches per sentence on average. Even in the most diffi-
cult case for the SARDSRN (on the 20% test dataset, in which
the networks were trained on just 89 sentences, and tested
on 325), these errors never reached half that level. These re-
sults show that SARDSRN forms a promising starting point
for parsing sentences of realistic length and complexity.



4.3 Example Parse
Adding SARDNET to the SRN architecture made it possible
for the network to learn the parsing task. This can be shown
clearly by contrasting the performances of SARDSRN and the
SRN on a typical sentence, such as the one in figure 1. Nei-
ther SARDSRN nor SRN had any trouble with the shift targets.
Not surprisingly, early in training the networks would master
all the shift targets in the sentence before they would get any
of the reductions correct. The first reduction ([the,boy] in our
example) also poses no problem for either network. Nor, in
general, does the second,[the,girl] , because the constituent
information is still fresh in memory. However, the ability of
the SRN to generate the later reductions accurately degrades
rapidly because the information about earlier constituents is
smothered by the later steps of the parse. Interestingly, the
structural information survives much longer. For example,
instead of[who,[liked,[the,girl]]]] , the SRN might produce
[who,[bit,[the,dog]]]] . The structure of this representation
is correct; what is lost are the particular instantiations of the
parse tree. This is where SARDNET makes a difference. The
lost constituent information remains accessible in the feature
map. As a result, SARDSRN is able to capture each con-
stituent even through the final reductions.

5 Discussion
These results demonstrate a practicable solution to the mem-
ory degradation problem of simple recurrent networks. The
SRN does not have to maintain specific information about the
sequence constituents, and can instead focus on what it is best
at: capturing structure. The explicit and concise representa-
tion of the entire sequence on SARDNET also enables SARD-
SRN to handle long-term dependencies better than a moving-
window architecture such as NARX [Mayberry and Miikku-
lainen, in press]. Although the sentences used in these ex-
periments are still relatively uncomplicated, they do exhibit
enough structure to suggest that much more complex sen-
tences could be tackled with SARDSRN.

The operation of SARDSRN on the shift-reduce parsing
task is a nice demonstration of holistic computation. The
network is able to learn how to generate each RAAM parse
representation during the course of sentence processing with-
out ever having to decompose and recompose the constituent
representations. Partial parse results can be built up incre-
mentally into increasingly complicated structures, which sug-
gests that training could be performed incrementally. Such a
training scheme is especially attractive given that training in
general is still relatively costly.

An extension of the SARDSRN idea, currently being in-
vestigated by our group, is an architecture where SARDNET
is combined with a RAAM network. RAAM , although hav-
ing many desirable properties for a purely connectionist ap-
proach to parsing, has long been a bottleneck during training.
Its operation is very similar to the SRN, and it suffers from
the same memory accuracy problem: with deep structures
the superimposition of higher-level representations gradually
obscure the traces of low-level items, and the decoding be-
comes inaccurate. This degradation makes it difficult to use
RAAM to encode/decode parse results of realistic language.

Preliminary results indicate that the explicit representation of
a compressed structure formed on a SARDNET feature map,
coupled with the distributed representations of the RAAM ,
yields an architecture able to encode richer linguistic struc-
ture.. This approach should readily lend itself to encoding the
feature-value matrices used in the lexicalist, constraint-based
grammar formalisms of contemporary linguistics theory, such
as HPSG[Pollard and Sag, 1994], needed to handle realistic
natural language.

The SARDSRN idea is not just a way to improve the per-
formance of subsymbolic networks; it is an explicit imple-
mentation of the idea that humans can keep track of identities
of elements, not just their statistical properties[Miikkulai-
nen, 1993]. The subsymbolic networks are very good with
statistical associations, but cannot distinguish between repre-
sentations that have similar statistical properties. People can;
whether they use a map-like representation is an open ques-
tion, but we believe the SARDNET representation suggests a
way to capture a lot of the resulting behavior. It is useful for
building powerful subsymbolic language understanding sys-
tems, but it is also a plausible cognitive approach.

6 Conclusion
We have described an extension of the SRN called SARD-
SRN that combines the subsymbolic distributed properties of
the SRN with the localist properties of SARDNET. The dis-
tributed component leads to good generalization and robust
cognitive properties, whereas the map provides exact repre-
sentations of the sentence constituents. The results in this pa-
per demonstrate a practicable solution to the memory degra-
dation problem of SRNs. With SARDNET keeping track of
the sequence constituents, the SRN is able to learn the struc-
ture representation necessary to perform shift-reduce pars-
ing. This combination allows SARDSRN to learn to parse
longer and more complex sentences than the SRN alone. The
representative properties of SARDNET also promise to allow
RAAM to encode the more complicated structures used in lin-
guistics theory.

Acknowledgments
This research was supported in part by the Texas Higher Ed-
ucation Coordinating Board under grant ARP-444.
SARDSRN demo:http://www.cs.utexas.edu/users/nn/pages/-
research/nlp.html.

References
[Allen, 1987] Robert B. Allen. Several studies on natural

language and back-propagation. InProceedings of the
IEEE First International Conference on Neural Networks
(San Diego, CA), volume II, pages 335–341, Piscataway,
NJ, 1987. IEEE.

[Berg, 1992] George Berg. A connectionist parser with re-
cursive sentence structure and lexical disambiguation. In
Proceedings of the Tenth National Conference on Artificial
Intelligence, pages 32–37, Cambridge, MA, 1992. MIT
Press.



[Chalmers, 1990] David J. Chalmers. Syntactic transforma-
tions on distributed representations.Connection Science,
2:53–62, 1990.

[Elman, 1990] Jeffrey L. Elman. Finding structure in time.
Cognitive Science, 14:179–211, 1990.

[Elman, 1991] Jeffrey L. Elman. Distributed representa-
tions, simple recurrent networks, and grammatical struc-
ture. Machine Learning, 7:195–225, 1991.

[Hermjacob and Mooney, 1997] Ulf Hermjacob and Ray-
mond J. Mooney. Learning parse and translation decisions
from examples with rich context. InProceedings of the
35th Annual Meeting of the ACL, 1997.

[James and Miikkulainen, 1995] Daniel L. James and Risto
Miikkulainen. SARDNET: A self-organizing feature map
for sequences. In G. Tesauro, D. S. Touretzky, and T. K.
Leen, editors,Advances in Neural Information Processing
Systems 7, pages 577–584, Cambridge, MA, 1995. MIT
Press.

[Kohonen, 1990] Teuvo Kohonen. The self-organizing map.
Proceedings of the IEEE, 78:1464–1480, 1990.

[Kohonen, 1995] Teuvo Kohonen. Self-Organizing Maps.
Springer, Berlin; New York, 1995.

[Mayberry and Miikkulainen, in press] Marshall R. May-
berry, III and Risto Miikkulainen. Combining maps and
distributed representations for shift-reduce parsing. In Ste-
fan Wermter and Ron Sun, editors,Hybrid Neural Sym-
bolic Integration. Springer, Berlin; New York, in press.

[McClelland and Kawamoto, 1986] James L. McClelland
and Alan H. Kawamoto. Mechanisms of sentence process-
ing: Assigning roles to constituents. In James L. McClel-
land and David E. Rumelhart, editors,Parallel Distributed
Processing: Explorations in the Microstructure of Cog-
nition, Volume 2: Psychological and Biological Models,
pages 272–325. MIT Press, Cambridge, MA, 1986.

[Miikkulainen, 1993] Risto Miikkulainen.Subsymbolic Nat-
ural Language Processing: An Integrated Model of
Scripts, Lexicon, and Memory. MIT Press, Cambridge,
MA, 1993.

[Miikkulainen, 1996] Risto Miikkulainen. Subsymbolic
case-role analysis of sentences with embedded clauses.
Cognitive Science, 20:47–73, 1996.

[Miikkulainen, 1997] Risto Miikkulainen. Dyslexic and
category-specific impairments in a self-organizing feature
map model of the lexicon.Brain and Language, 59:334–
366, 1997.

[Munroet al., 1991] Paul Munro, Cynthia Cosic, and Mary
Tabasko. A network for encoding, decoding and translat-
ing locative prepositions.Connection Science, 3:225–240,
1991.

[Plaut and Shallice, 1992] David C. Plaut and Tim Shal-
lice. Perseverative and semantic influences on visual ob-
ject naming errors in optic aphasia: A connectionist ac-
count. Technical Report PDP.CNS.92.1, Parallel Dis-
tributed Processing and Cognitive Neuroscience, Depart-

ment of Psychology, Carnegie Mellon University, Pitts-
burgh, PA, 1992.

[Plaut, 1991] David C. Plaut. Connectionist Neuropsychol-
ogy: The Breakdown and Recovery of Behavior in Le-
sioned Attractor Networks. PhD thesis, Computer Science
Department, Carnegie Mellon University, Pittsburgh, PA,
1991. Technical Report CMU-CS-91-185.

[Pollack, 1990] Jordan B. Pollack. Recursive distributed rep-
resentations.Artificial Intelligence, 46:77–105, 1990.

[Pollard and Sag, 1994] Carl Pollard and Ivan A. Sag.Head-
Driven Phrase Structure Grammar. University of Chicago
Press, Chicago, IL, 1994.

[Sharkey and Sharkey, 1992] Noel E. Sharkey and Amanda
J. C. Sharkey. A modular design for connectionist pars-
ing. In Marc F. J. Drossaers and Anton Nijholt, editors,
Twente Workshop on Language Technology 3: Connec-
tionism and Natural Language Processing, pages 87–96,
Enschede, the Netherlands, 1992. Department of Com-
puter Science, University of Twente.

[Simmons and Yu, 1991] Robert F. Simmons and Yeong-Ho
Yu. The acquisition and application of context sensitive
grammar for English. InProceedings of the 29th Annual
Meeting of the ACL, Morristown, NJ, 1991. Association
for Computational Linguistics.

[Simmons and Yu, 1992] Robert F. Simmons and Yeong-Ho
Yu. The acquisition and use of context dependent gram-
mars for English.Computational Linguistics, 18:391–418,
1992.

[St. John and McClelland, 1990] Mark F. St. John and
James L. McClelland. Learning and applying contextual
constraints in sentence comprehension.Artificial Intelli-
gence, 46:217–258, 1990.

[Stolcke, 1990] Andreas Stolcke. Learning feature-based se-
mantics with simple recurrent networks. Technical Re-
port TR-90-015, International Computer Science Institute,
Berkeley, CA, 1990.

[Tomita, 1986] M. Tomita. Efficient Parsing for Natural
Language. Kluwer, Dordrecht; Boston, 1986.

[Touretzky, 1991] David S. Touretzky. Connectionism and
compositional semantics. In John A. Barnden and Jor-
dan B. Pollack, editors,High-Level Connectionist Mod-
els, volume 1 ofAdvances in Connectionist and Neural
Computation Theory,Barnden, J. A., series editor, pages
17–31. Ablex, Norwood, NJ, 1991.

[Zelle and Mooney, 1996] John M. Zelle and Raymond J.
Mooney. Comparative results on using inductive logic
programming for corpus-based parser construction. In
Stefan Wermter, Ellen Riloff, and Gabriela Scheler, edi-
tors,Connectionist, Statistical, and Symbolic Approaches
to Learning for Natural Language Processing, pages 355–
369. Springer, Berlin; New York, 1996.


