
To appear inProceedings of the 21st Annual Conference of the Cognitive Science Society (COGSCI-99, Vancouver, Canada), 1999.

Using a Sequential SOM to Parse Long-term Dependencies

Marshall R. Mayberry, III (martym@cs.utexas.edu)
Department of Computer Sciences

The University of Texas, Austin, TX 78712

Risto Miikkulainen (r isto@cs.utexas.edu)
Department of Computer Sciences

The University of Texas, Austin, TX 78712

Abstract

Simple Recurrent Networks (SRNs) have been widely used in
natural language processing tasks. However, their ability to
handle long-term dependencies between sentence constituents
is somewhat limited. NARX networks have recently been
shown to outperform SRNs by preserving past information in
explicit delays from the network’s prior output. However, it is
unclear how the number of delays should be determined. In
this study on a shift-reduce parsing task, we demonstrate that
comparable performance can be derived more elegantly by us-
ing a SARDNET self-organizing map. The resulting architec-
ture can represent arbitrarily long sequences and is cognitively
more plausible.

Introduction
The subsymbolic approach (i.e. neural networks with dis-
tributed representations) to processing language is attractive
for several reasons. First, it is inherently robust: the dis-
tributed representations display graceful degradation of per-
formance in the presence of noise, damage, and incomplete or
conflicting input (Miikkulainen, 1993; St. John and McClel-
land, 1990). Second, because computation in these networks
is constraint-based, the subsymbolic approach naturally com-
bines syntactic, semantic, and thematic constraints on the in-
terpretation of linguistic data (McClelland and Kawamoto,
1986). Third, subsymbolic systems can be lesioned in various
ways and the resulting behavior is often strikingly similar to
human impairments (Miikkulainen, 1993, 1996; Plaut, 1991).
These properties of subsymbolic systems have attracted many
researchers in the hope of accounting for interesting cogni-
tive phenomena, such as role-binding and lexical errors re-
sulting from memory interference and overloading, aphasic
and dyslexic impairments resulting from physical damage,
and biases, defaults and expectations emerging from training
history (Miikkulainen, 1997, 1993; Plaut and Shallice, 1992).

Since its introduction in 1990, the simple recurrent network
(SRN) (Elman, 1990) has become a mainstay in connectionist
natural language processing tasks such as lexical disambigua-
tion, prepositional phrase attachment, active-passive trans-
formation, anaphora resolution, and translation (Allen, 1987;
Chalmers, 1990; Munro et al., 1991; Touretzky, 1991). How-
ever, this promising line of research has been hampered by
the SRN’s inability to handle long-term dependencies, which
abound in natural language tasks.

Another class of recurrent neural networks called Nonlin-
ear AutoRegressive models with eXogenous inputs (NARX;
Chen et al., 1990; Lin et al., 1996) have been proposed as an
alternative to SRNs that can better deal with such long-term

dependencies. In NARX networks, previous sequence con-
stituents are explicitly represented in a predetermined number
of output delays, thus reducing the effects of vanishing gradi-
ents, which is the primary source of memory degradation in
recurrent networks (Bengio et al., 1994). The performance of
these networks is strongly dependent on the number of output
delays, and there are no guidelines on how many are needed.

This paper describes a method of extending recurrent net-
works such as the SRN and NARX with SARDNET (James
and Miikkulainen, 1995), a self-organizing map algorithm
designed to represent sequences. SARDNET permits the se-
quence information to remain explicit, yet generalizable in
the sense that similar sequences result in similar patterns on
the map. When SARDNET is coupled with SRN or NARX, the
resulting networks perform better in the shift-reduce parsing
task taken up in this study. Even with no recurrency and no
explicit delays, the performance is almost as good. These
results show that SARDNET can be used as an effective, con-
cise, and elegant sequence memory in natural language pro-
cessing tasks, and the approach should also scale up well to
realistic language.

The Task: Shift-Reduce Parsing
Shift-reduce (SR) parsing is one of the simplest approaches to
sentence processing that has the potential to handle a substan-
tial subset of English (Tomita, 1986). Its basic formulation
is based on the pushdown automata for parsing context-free
grammars, but it can be extended to context-sensitive gram-
mars as well.

The parser consists of two data structures: the input buffer
stores the sequence of words remaining to be read, and the
partial parse results are kept on the stack (figure 1). Ini-
tially the stack is empty and the entire sentence is in the in-
put buffer. At each step, the parser has to decide whether to
shift a word from the buffer to the stack, or to reduce one
or more of the top elements of the stack into a new element
representing their combination. For example, if the top two
elements are currentlyNP andVP, the parser reduces them
into S, corresponding to the grammar ruleS! NP VP(step
17 in figure 1). The process stops when the elements in the
stack have been reduced to S, and no more words remain in
the input. The reduce actions performed by the parser in this
process constitute the parse result, such as the syntactic parse
tree (line 18 in figure 1).

The sequential scanning process and incremental forming
of partial representations is a plausible cognitive model for
language understanding. SR parsing is also very efficient,



Stack Input Buffer Action
the boy who liked the girl chased the cat .1 Shift

the boy who liked the girl chased the cat . 2 Shift
the boy who liked the girl chased the cat . 3 Reduce

NP[the,boy] who liked the girl chased the cat . 4 Shift
NP[the,boy] who liked the girl chased the cat . 5 Shift

NP[the,boy] who liked the girl chased the cat . 6 Shift
NP[the,boy] who liked the girl chased the cat . 7 Shift

NP[the,boy] who liked the girl chased the cat . 8 Reduce
NP[the,boy] who liked NP[the,girl] chased the cat . 9 Reduce

NP[the,boy] who VP[liked,NP[the,girl]] chased the cat . 10 Reduce
NP[the,boy] RC[who,VP[liked,NP[the,girl]]] chased the cat . 11 Reduce

NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chased the cat . 12 Shift
NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chasedthe cat . 13 Shift

NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chased thecat . 14 Shift
NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chased the cat. 15 Reduce

NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chased NP[the,cat]. 16 Reduce
NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] VP[chased,NP[the,cat]]. 17 Reduce

S[NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]],VP[chased,NP[the,cat]]] 18 Stop

Figure 1:Shift-Reduce Parsing a Sentence.Each step in the parse is represented by a line from top to bottom. The current stack is at left,
the input buffer in the middle, and the parsing decision in the current situation at right. At each step, the parser either shifts a word onto the
stack, or reduces the top elements of the stack into a higher-level representation, such asthe boy! NP[the,boy] (step 3). (Phrase labels such
as “NP” and “RC” are only used in this figure to make the process clear.)

and lends itself to many extensions. For example, the parse
rules can be made more context sensitive by taking more of
the stack and the input buffer into account. Also, the partial
parse results may consist of syntactic or semantic structures.

The general SR model can be implemented in many ways.
A set of symbolic shift-reduce rules can be written by hand or
learned from input examples (Hermjacob and Mooney, 1997;
Simmons and Yu, 1991; Zelle and Mooney, 1996). It is also
possible to train a neural network to make parsing decisions
based on the current stack and the input buffer. If trained
properly, the neural network can generalize well to new sen-
tences (Simmons and Yu, 1992). Whatever correlations there
exist between the word representations and the appropriate
shift/reduce decisions, the network will learn to utilize them.

Another important extension is to implement the stack as
a neural network. This way the parser can have access to the
entire stack at once, and interesting cognitive phenomena in
processing complex sentences can be modeled. The SPEC
system (Miikkulainen, 1996) was a first step in this direction.
The stack was represented as a compressed distributed rep-
resentation, formed by a RAAM (Recursive Auto-Associative
Memory) auto-encoding network (Pollack, 1990). The SPEC
architecture, however, was not a complete implementation of
SR parsing; it was designed specifically for embedded rela-
tive clauses. For general parsing, the stack needs to be en-
coded with neural networks to make it possible to parse more
varied linguistic structures. We believe that the generaliza-
tion and robustness of subsymbolic neural networks will re-
sult in powerful, cognitively valid performance. However, the
main problem of limited memory accuracy of the subsym-
bolic parsing network must first be solved.

Parser architectures
A subsymbolic parser is a recurrent network such as SRN or
NARX. The network reads a sequence of input word repre-
sentations into output patterns representing the parse results,
such as syntactic or case-role assignments for the words. At
each time step, a copy of the hidden layer (SRN) or prior out-
puts (NARX) is saved and used as input during the next step,
together with the next word. In this way each new word is
interpreted in the context of the entire sequence so far, and
the parse result is gradually formed at the output.

Recurrent neural networks can be used to implement a
shift-reduce parser in the following way (figure 2: the net-
work is trained to step through the parse (such as that in fig-
ure 1), generating a compressed distributed representation of
the top element of the stack at each step (formed by a RAAM
network). The network reads the sequence of words one word
at a time, and each time either shifts the word onto the stack
(by passing it through the network, e.g. step 1), or performs
one or more reduce operations (by generating a sequence of
compressed representations corresponding to the top element
of the stack: e.g. steps 8-11). After the whole sequence is
input, the final stack representation is decoded into a parse
result such as a parse tree. Such an architecture is powerful
for two reasons: (1) During the parse, the network does not
have to guess what is coming up later in the sentence, as it
would if it always had to shoot for the final parse result; its
only task is to build a representation of the current stack in its
hidden layer and the top element in its output. (2) Instead of
having to generate a large number of different stack states at
the output, it only needs to output representations for a rela-
tively small number of common substructures. Both of these
features make learning and generalization easier. The parser
can be implemented with various network architectures; the
SRN and NARX networks are compared in this study.

SRN

In the simple recurrent network, the hidden layer is saved and
fed back into the network at each step during sentence pro-
cessing. The network is typically trained using the standard
backpropagation algorithm (Rumelhart et al., 1986). A well-
known problem with the SRN model is its low memory ac-
curacy. It is difficult for it to remember items that occurred
several steps earlier in the input sequence, especially if the
network is not required to produce them in the output layer
during the intervening steps (Stolcke, 1990; Miikkulainen,
1996). The intervening items are superimposed in the hid-
den layer, obscuring the traces of earlier items. As a result,
parsing with an SRN has been limited to relatively simple sen-
tences with shallow structure.



NARX

SRN

Compressed RAAM

Input Word

SARDNET

chased

[[the,boy],[who,[liked,[the,girl]]]]

the boy who liked the girl chased chased chased

Context Layer

Figure 2:The Parser Network. This snapshot shows the network
during step 11 of figure 1. The representation for the current input
word,chased, is shown at top left. Each word is input to the SARD-
NET map, which builds a representation for the sequence word by
word. In the SRN implementation of the parser, the previous acti-
vation of the hidden layer is copied (as indicated by the dotted line
labelled SRN) to the Context assembly at each step. In the NARX
implementation, a predetermined number of previous output repre-
sentation compose the Context (indicated by the dotted line labelled
NARX). The Context, together with the current input word and the
current SARDNET pattern, is propagated to the hidden layer of the
network. As output, the network generates the compressed RAAM
representation of the top element in the shift-reduce stack at this state
of the parse (in this case, line 12 in figure 1). SARDNET is a map
of word representations, and is trained through the Self-Organizing
Map (SOM) algorithm (Kohonen, 1997, 1990). All other connec-
tions are trained through backpropagation (for SRN) or BPTT (for
NARX) (Rumelhart et al., 1986; Werbos, 1974).

NARX

Nonlinear AutoRegressive models with eXogenous in-
puts (NARX; Chen et al., 1990; Lin et al., 1996) have been
proposed as an alternative to SRNs. They are good at dealing
with long-term dependencies that typically arise in nonlinear
systems such as system identification (Chen et al., 1990), time
series prediction (Connor et al., 1992), and grammatical in-
ference (Horne and Giles, 1995). NARX is a feedforward net-
work with copies of previous outputs called delays fed back
into the network during sequence processing. The network is
trained via BackPropagation through Time (Rumelhart et al.,
1986; Werbos, 1974), which allows “vanishing gradient” in-
formation to influence later outputs by unfolding the network
in time. The performance of the network improves in an ex-
ponentially decreasing manner with the number of output de-
lays provided.

SARDNET

The solution described in this paper is to use an explicit rep-
resentation of the input sequence on a self-organizing map
as additional input to the hidden layer. This representation
provides more accurate information about the sequence, such
as the relative ordering of the incoming words, and it can be
combined with the weak hidden layer representation to gen-
erate accurate output that retains all the advantages of dis-
tributed representations. The sequence representation is also
not limited by length.

The SARDNET (Sequential Activation Retention and De-
cay Network; James and Miikkulainen, 1995) used for this
purpose is based on the Self-Organizing Map neural net-
work (Kohonen, 1990, 1997), and organized to represent the
space of all possible word representations. As in a con-

ventional self-organizing map network, each input word is
mapped onto a particular map node called the maximally-
responding unit, or winner. The weights of the winning unit
and all the nodes in its neighborhood are updated according to
the standard adaptation rule to better approximate the current
input. The size of the neighborhood is set at the beginning of
the training and reduced as the map becomes more organized.

In SARDNET, the sentence is represented as a distributed
activation pattern on the map (figure 2). For each word,
the maximally responding unit is activated to a maximum
value of 1.0, and the activations of units representing previous
words are decayed according to a specified decay rate (e.g.
0.9). Once a unit is activated, it is removed from competition
and cannot represent later words in the sequence. Each unit
may then represent different words depending on the context,
which allows for an efficient representation of sequences, and
also generalizes well to new sequences.

In this parsing task, a SARDNET representation of the in-
put sentence is formed at the same time as the network hidden
layer representation, and used together with the previous hid-
den layer (in the SRN) or output (in NARX) representations
and the next word as input to the hidden layer (figure 2). This
architecture allows these networks to perform their task with
significantly less memory degradation. The sequence infor-
mation remains accessible in SARDNET, and the network is
able to focus on capturing correlations relating to sentence
constituent structure during parsing.

Experiments
Input Data
The data used to train and test the SRN and SARDSRN net-
works was generated from the phrase structure grammar in
figure 3, adapted from a grammar that has become common
in the literature (Elman, 1991; Miikkulainen, 1996), but lim-
ited to a maximum of one relative clause per sentence. From
this grammar training targets corresponding to each step in
the parsing process were obtained. For shifts, the target
is simply the current input. In these cases, the network is
trained to auto-associate, which these networks are good at.
For reductions, the targets consist of representations of the
partial parse trees that result from applying a grammatical
rule. For example, the reduction of the sentence fragment
who liked the girl would produce the partial parse result
[who,[liked,[the,girl]]] . Two issues arise: how should the
parse trees be represented, and how should reductions be pro-
cessed during sentence parsing?

The approach taken in this paper is the same as in SPEC, as
well as in other connectionist parsing systems (Miikkulainen,
1996; Berg, 1992; Sharkey and Sharkey, 1992). Compressed
representations of the syntactic parse trees using RAAM are
built up through auto-association of the constituents. This
training is performed beforehand separately from the parsing
task. Once formed, the compressed representations can be
decoded into their constituents using just the decoder portion
of the RAAM architecture.

Word representations were hand-coded to provide basic
part-of-speech information together with a unique ID tag that
identified the word within the syntactic category (figure 4).
The basic encoding of eight units was repeated eight times to
make a redundant 64-unit representation.



Rule S! NP(n) VP(n,m) VP(n,m)! Verb(n,m)NP(m) NP(n)! the Noun(n)
Schemata RC(n)! who VP(n,m) NP(n)! the Noun(n) RC(n) RC(n)! whom NP(m) Verb(m,n)
Nouns Noun(0)! boy Noun(1)! girl Noun(2)! dog Noun(3)! cat

Verb(0,0)! liked, saw Verb(0,1)! liked, saw Verb(0,2)! liked
Verb(0,3)! chased Verb(1,0)! liked, saw Verb(1,1)! liked, saw

Verbs Verb(1,2)! liked Verb(1,3)! chased Verb(2,0)! bit
Verb(2,1)! bit Verb(2,2)! bit Verb(2,3)! bit , chased
Verb(3,0)! saw Verb(3,1)! saw Verb(3,3)! chased

Figure 3: Grammar. This phrase structure grammar generates sentences with subject- and object-extracted relative clauses. The rule
schemata with noun and verb restrictions ensure semantic agreement between subject and object depending on the verb in the clause. Lexicon
items are given in bold face.

the 10000000 who 01010000
whom 01100000 . 11111111
boy 00101000 dog 00100010
girl 00100100 cat 00100001
chased 00011000 saw 00010010
liked 00010100 bit 00010001

Figure 4:Lexicon. Each word representation is put together from
a part-of-speech identifier (first four components) and a unique ID
tag (last four). This encoding is then repeated eight times to form
a 64-unit word representation. Such redundancy makes it easier to
identify the word.

System Parameters and Training
SARDNET maps were added to the SRN and NARX networks
to yield SARDSRN and SARDNARX parsing architectures.
Additionally, a SARDNET map was added to a simple feed-
forward network (FFN). This (SARDFFN) network provides
a baseline for evaluating the map itself in the parsing task.
The performances of all the architectures was compared in
the shift-reduce parsing task. Additionally, for the NARX and
SARDNARX networks, delays of 0, 3, 6, 9, 12, and 15 prior
inputs (covering almost the entire sentence) were constructed.
The size of the hidden layer for each network was determined
so that the total number of weights was as close to 64,000 as
the topology would permit (figure 6).

Four data sets of 20%, 40%, 60%, and 80% of the 436 sen-
tences generated by the grammar were randomly selected and
each parser was trained on each dataset four times. Training
on all 256 runs was stopped when the error on a 22-sentence
(5%) validation set began to level off. The same validation
set was used for all the simulations and was randomly drawn
from a pool of sentences that did not appear in any of the
training sets. Testing was then performed on the remaining
sentences that were neither in the training set nor in the val-
idation set. All networks were trained with a learning rate
of 0.1, and the maps had a decay rate of 0.9. A map of 100
units was pretrained with a learning rate of 0.6, and then used
for all of the SARDNARX networks. A slightly larger map
with 144 units was used for the SARDFFN and SARDSRN
networks since these networks had otherwise much fewer
weights. Training took about one day on a 400 MHz Pen-
tium Pro workstation for each network.

Results
Epoch error, the average error per output unit during each
epoch, is usually used to gauge the networks’ performance in
experimental studies like this. It tells us how closely the out-
put representations matched the target representations during
parsing. Presumably, if the epoch error is low, the output

Figure 5:Summary of Parsing Performance.Averages over four
simulations each for the fifty two networks tested using the stricter
average mismatchesper sentence measure on the test data. Most of
the differences among the SARD networks and NARX networks with
nine or more delays were statistically insignificant. SRN, NARX-
3, SARDNARX-0, and NARX-6 differ in some of the data points
as can be seen is this plot. The FFN and NARX-0 networks pro-
vide baselines of how simple feedforward networks would perform
on this task (with regular BP and with BPTT), and the SRN shows
how much simple recurrency helps. By comparison, the SARDFFN,
SARDNARX-0, and SARDSRN graphs demonstrate that storing se-
quence information on SARDNET can significantly improve per-
formance, while adding delays will improve that performance only
minimally.

representations still permit accurate decoding into the correct
parse tree. However, because this measure only reports the
average performance over an entire epoch, it gives us no sense
of the network’s performance at each step in the parsing pro-
cess. For example, there remains the danger that a low epoch
error could also be achieved by learning the shift operations
very accurately, with lower accuracy on the reductions, result-
ing in incorrect decoding of the compressed representations
of the parse tree.

A more informative measure,average mismatches, there-
fore, was used in the comparisons. This measure reports
the average number of leaf representations per sentence that
could not be correctly identified by nearest match in Eu-
clidean distance from the lexicon. As an example, if the target
is [who,[liked,[the,girl]]]] (step 11 of figure 1), but the out-
put is [who,[saw,[the,girl]]]] , then a mismatch would occur
at the leaf labelledsaw once the RAAM representation was
decoded. Average mismatches provides a measure of the cor-
rectness of the information in the RAAM representation, and
is a true measure of the utility of the network.

Most of the sentences in the training and test datasets were



network delays hidden layer weights network delays hidden layer map size weights
FFN 500 64000 SARDFFN 201 144 63888
SRN 197 64025 SARDSRN 134 144 64016
NARX 0 500 64000 SARDNARX 0 252 100 63856
NARX 3 200 64000 SARDNARX 3 137 100 63940
NARX 6 125 64000 SARDNARX 6 94 100 63928
NARX 9 91 64064 SARDNARX 9 71 100 63484
NARX 12 72 64512 SARDNARX 12 58 100 64168
NARX 15 59 64192 SARDNARX 15 48 100 63424

Figure 6:Network Parameters. In order to keep the network size as consistent as possible, the number of units in the hidden layers size was
varied according to the size of the inputs. Because the SARD networks included a 100-unit map (144 units in the SARDFFN and SARDSRN)
that was connected to both the input and hidden layers, the size of the hidden layer was proportionally made smaller.

seventeen words long. The longest long-term dependency the
networks had to overcome was at step three in the parsing
process where the first reduction occurred, which was part
of the final compressed RAAM parse representation for the
complete sentence. It was in decoding this final parse repre-
sentation that even the best networks made errors. The results
are summarized in figure 5. The main result is that the perfor-
mance of all the SARD networks is comparable to NARX with
nine or more delays, and clearly superior to SRN and NARX
with zero to six delays. These results demonstrate that adding
SARDNET to a recurrent network results in very robust per-
formance without the expense of restricting the network to
a prespecified number of delays. However, if the domain
is well-behaved enough that this number can be determined,
adding such delays will improve performance somewhat.

The SARDFFN and SARDNARX results are slightly weaker
with the 20% dataset. On closer inspection it turned out that
the map was not smooth enough to allow as good generaliza-
tion as in the larger datasets, where there was sufficient data
to overcome the map irregularities. It is also interesting to
note that adding even a single delay completely eliminated
this problem, bringing the performance in line with the oth-
ers. We plan to improve generalization on the map further in
future work.

Discussion
These results demonstrate a practicable solution to the mem-
ory degradation problem of recurrent networks. When prior
constituents are explicitly represented at the input, the recur-
rent network does not have to maintain specific information
about the sequence, and can instead focus on what it is best at:
capturing structure. Although the sentences used in these ex-
periments are still relatively uncomplicated, they do exhibit
enough structure to suggest that much more complex sen-
tences could be tackled with recurrent networks augmented
with SARDNET or with delays.

These results also show that networks with SARDNET can
perform as well as NARX networks with many delays. Why is
this a useful result? The point is that it will always be unclear
how many delays are needed in a NARX network, whereas
SARDNET can accommodate sequences of indefinite length
(limited only by the number of nodes in the network). This
relieves the designer from having to specify, by trial and er-
ror, the appropriate number of delays. It should also lead to
more graceful degradation with unexpectedly long sequences,
and therefore would allow the system to scale up better and
exhibit more plausible cognitive behavior.

The operation of the recurrent networks on the shift-reduce
parsing task is a nice demonstration of holistic computation.
The network is able to learn how to generate each RAAM
parse representation during the course of sentence process-
ing without ever having to decompose and recompose the
constituent representations. Partial parse results can be built
up incrementally into increasingly complicated structures,
which suggests that training could be performed incremen-
tally. Such a training scheme is especially attractive given
that training in general is still relatively costly.

The SARDNET idea is not just a way to improve the per-
formance of subsymbolic networks; it is an explicit imple-
mentation of the idea that humans can keep track of identities
of elements, not just their statistical properties (Miikkulai-
nen, 1993). The subsymbolic networks are very good with
statistical associations, but cannot distinguish between rep-
resentations that have similar statistical properties. People
can; whether they use a map-like representation or explicit
delays (and how many) is an open question, but we believe
the SARDNET representation suggests an elegant way to cap-
ture a lot of the resulting behavior. SARDNET is a plausible
cognitive approach, and useful for building powerful subsym-
bolic language understanding systems. SARDNET is also in
line with the general neurological evidence for topographical
maps in the brain.

Conclusion
We have shown how explicit representation of constituents on
a self-organizing map allows recurrent networks to process
sequences more effectively. We demonstrated that neural net-
works equipped with SARDNET sequence memory achieve
comparable performance as NARX networks with many de-
lays in a nontrivial shift-reduce parsing task. SARDNET,
however, is more elegant and cognitively plausible in that it
does not impose limits on the length of the sequences it can
process. In future work, we will examine how exactly the net-
works are using the map information to improve the general-
ization ability of SARDNET, as well as extending the method
to other recurrent neural network architectures.

Acknowledgments
This research was supported in part by the Texas Higher Ed-
ucation Coordinating Board under grant ARP-444.

References
Allen, R. B. (1987). Several studies on natural language and

back-propagation. InProceedings of the IEEE First In-



ternational Conference on Neural Networks(San Diego,
CA), volume II, pages 335–341, Piscataway, NJ. IEEE.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning
long-term dependencies with gradient is difficult.IEEE
Transactions on Neural Networks, 5(2):157–166.

Berg, G. (1992). A connectionist parser with recursive sen-
tence structure and lexical disambiguation. InProceed-
ings of the Tenth National Conference on Artificial Intel-
ligence, pages 32–37, Cambridge, MA. MIT Press.

Chalmers, D. J. (1990). Syntactic transformations on dis-
tributed representations.Connection Science, 2:53–62.

Chen, S., Billings, S., and Grant, P. (1990). Non-linear sys-
tem identification using neural networks. InInterna-
tional Journal of Control, pages 1191–1214.

Connor, J., Atlas, L., and Martin, D. (1992). Recurrent net-
works and narma modeling.Advances in Neural Infor-
mation Processing Systems, 4:301–308.

Elman, J. L. (1990). Finding structure in time.Cognitive
Science, 14:179–211.

Elman, J. L. (1991). Distributed representations, simple re-
current networks, and grammatical structure.Machine
Learning, 7:195–225.

Hermjacob, U. and Mooney, R. J. (1997). Learning parse and
translation decisions from examples with rich context.
In Proceedings of the 35th Annual Meeting of the ACL.

Horne, B. and Giles, C. (1995). An experimental compari-
son of recurrent neural networks.Advances in Neural
Information Processing Systems, 7:697–704.

James, D. L. and Miikkulainen, R. (1995). SARDNET: A
self-organizing feature map for sequences. In Tesauro,
G., Touretzky, D. S., and Leen, T. K., editors,Advances
in Neural Information Processing Systems 7, pages 577–
584, Cambridge, MA. MIT Press.

Kohonen, T. (1990). The self-organizing map.Proceedings
of the IEEE, 78:1464–1480.

Kohonen, T. (1997).Self-Organizing Maps. Springer, Berlin;
New York, second edition.

Lin, T., Horne, B. G., and Giles, C. L. (1996). Learning long-
term dependencies in narx recurrent neural networks.
IEEE Transactions on Neural Networks, 7(6):1329–
1338.

McClelland, J. L. and Kawamoto, A. H. (1986). Mecha-
nisms of sentence processing: Assigning roles to con-
stituents. In McClelland, J. L. and Rumelhart, D. E.,
editors,Parallel Distributed Processing, Volume 2: Psy-
chological and Biological Models, pages 272–325. MIT
Press, Cambridge, MA.

Miikkulainen, R. (1993). Subsymbolic Natural Language
Processing: An Integrated Model of Scripts, Lexicon,
and Memory. MIT Press, Cambridge, MA.

Miikkulainen, R. (1996). Subsymbolic case-role analysis of
sentences with embedded clauses.Cognitive Science,
20:47–73.

Miikkulainen, R. (1997). Dyslexic and category-specific im-
pairments in a self-organizing feature map model of the
lexicon. Brain and Language, 59:334–366.

Munro, P., Cosic, C., and Tabasko, M. (1991). A network
for encoding, decoding and translating locative preposi-
tions. Connection Science, 3:225–240.

Plaut, D. C. (1991). Connectionist Neuropsychology: The
Breakdown and Recovery of Behavior in Lesioned At-
tractor Networks. PhD thesis, Computer Science De-
partment, Carnegie Mellon University, Pittsburgh, PA.
Technical Report CMU-CS-91-185.

Plaut, D. C. and Shallice, T. (1992). Perseverative and
semantic influences on visual object naming errors in
optic aphasia: A connectionist account. Technical
Report PDP.CNS.92.1, Parallel Distributed Processing
and Cognitive Neuroscience, Department of Psychol-
ogy, Carnegie Mellon University, Pittsburgh, PA.

Pollack, J. B. (1990). Recursive distributed representations.
Artificial Intelligence, 46:77–105.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
Learning internal representations by error propagation.
In Rumelhart, D. E. and McClelland, J. L., editors,Par-
allel Distributed Processing, Volume 1: Foundations,
pages 318–362. MIT Press, Cambridge, MA.

Sharkey, N. E. and Sharkey, A. J. C. (1992). A modular de-
sign for connectionist parsing. In Drossaers, M. F. J.
and Nijholt, A., editors,Twente Workshop on Language
Technology 3: Connectionism and Natural Language
Processing, pages 87–96, Enschede, the Netherlands.
Department of Computer Science, University of Twente.

Simmons, R. F. and Yu, Y.-H. (1991). The acquisition and
application of context sensitive grammar for English. In
Proceedings of the 29th Annual Meeting of the ACL,
Morristown, NJ. Association for Computational Lin-
guistics.

Simmons, R. F. and Yu, Y.-H. (1992). The acquisition and
use of context dependent grammars for English.Com-
putational Linguistics, 18:391–418.

St. John, M. F. and McClelland, J. L. (1990). Learning and
applying contextual constraints in sentence comprehen-
sion. Artificial Intelligence, 46:217–258.

Stolcke, A. (1990). Learning feature-based semantics with
simple recurrent networks. Technical Report TR-90-
015, ICSI, Berkeley, CA.

Tomita, M. (1986).Efficient Parsing for Natural Language.
Kluwer, Dordrecht; Boston.

Touretzky, D. S. (1991). Connectionism and compositional
semantics. In Barnden, J. A. and Pollack, J. B., edi-
tors,High-Level Connectionist Models, volume 1 ofAd-
vances in Connectionist and Neural Computation The-
ory, Barnden, J. A., series editor, pages 17–31. Ablex,
Norwood, NJ.

Werbos, P. J. (1974).Beyond Regression: New Tools for Pre-
diction and Analysis in the Behavioral Sciences. PhD
thesis, Department of Applied Mathematics, Harvard
University, Cambridge, MA.

Zelle, J. M. and Mooney, R. J. (1996). Comparative re-
sults on using inductive logic programming for corpus-
based parser construction. In Wermter, S., Riloff, E.,
and Scheler, G., editors,Connectionist, Statistical, and
Symbolic Approaches to Learning for Natural Language
Processing, pages 355–369. Springer, Berlin; New York.


