
Copyright

by

Reza Mahjourian

2018

The Dissertation Committee for Reza Mahjourian
certifies that this is the approved version of the following dissertation:

Hierarchical Policy Design for Sample-Efficient Learning of

Robot Table Tennis Through Self-Play

Committee:

Risto Miikkulainen, Supervisor

Sergey Levine

Aloysius Mok

Scott Niekum

Luis Sentis

Hierarchical Policy Design for Sample-Efficient Learning of

Robot Table Tennis Through Self-Play

by

Reza Mahjourian

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2018

Dedicated to my mother, father, and sister.

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Risto Miikkulainen.

Had it not been for his infinite patience and endless support I could not have completed

this dissertation. His persistently positive, constructive, helpful, and forgiving attitude

toward my work and work from other students in our group has been a tremendous

resource and a source of inspiration. Risto’s incredible writing skills have helped me find

clarity in my work and have guided me to dig deeper into the problems at hand. Thank

you Risto for not giving up on me! I also would like to thank my committee members

Sergey Levine, Luis Sentis, Scott Niekum, and Al Mok, for their insightful comments, for

guiding me toward important problems, and for their support at different stages of my

work on this dissertation.

I would like to thank Martin Wicke, my first internship host at Google Brain, for

his selfless support of my work and for sparking my interest in computer vision. Martin

gave me a well-defined and interesting problem to work on, yet gave me space to develop

my own ideas and approach. Despite his busy schedule, he always made time to meet with

me and helped me with incredibly on-point research suggestions and technical solutions.

His ability to empower and fully support his team to do their best remains a source of

inspiration to me.

I would like to express my gratitude to the Google Brain Robotics team, especially

Navdeep Jaitly, Vincent Vanhoucke, and Anelia Angelova for hosting me for more than

a year during my work on this project. They provided me with a home at Google to do

research and a sound board off of which I could bounce my ideas. I am eternally grateful

for the opportunity to work with them during my stay. I am also grateful to have been

able to work with Sergey Levine, who gave me great feedback and shared his deep insight

on robotics and reinforcement learning with me. I am thankful to Erwin Coumans for

creating the initial prototype for integrating the VR hardware. I would like to specially

thank my co-author Nevena Lazic whose parallel experiments greatly accelerated my work.

Thanks to David D’Ambrosio, Peng Xu, and Laura Graesser for their feedback on this

work, and to other members of the Brain Robotics team for great discussions. Special

thanks to Torsten Kröger for his help with using the Reflexxes library, and to Kurt

v

Konolige for insightful discussions. Lastly, I would like to acknowledge all the wizard

software engineers at Google for the amazing infrastructure and software development

tools which are the foundation for engineering and research projects.

I am deeply grateful to those closest to me who have supported and believed in

me throughout my life. I am indebted to my mother, Farangis, who worked tirelessly to

provide a stable home for the family and whose sacrifices I can never repay. The high

standards she instilled in me have carried me to where I am today. Although she did not

have the opportunity to go to school herself, she always insisted that I work hard and

get the highest marks in my classes. She pushed me to not accept anything less than the

best. This opened up doors for me that had not been open to her. She did everything

within her power to be sure that I had the chance to succeed. I am grateful to my father,

Reza, who showed me the power of intellect and gave me inspiration to look outside and

find purpose in this world. I thank my sister, Nazanin, who has kept me connected to

my roots in Iran, and who understands where I come from like no one else. I would like

to acknowledge my friends for their seeming inexhaustible well of support. In particular,

I would like to express my gratitude to Amin, Amirreza, Karol, Ladan, Mazda, Mehdi,

Mohammad, Nicolas, Parvin, Prajit, Safoora, and Sanam. I am thankful to my oldest

friend, Alireza Basij, with whom I discovered a love for computers. The hours we spent

pair programming in MS-DOS were some of the most fulfilling experiences in my life, both

professionally and personally. His constant friendship has been a source of joy throughout

my life. I am deeply grateful to my long-time friend from the stars, Alison Baker, for her

invaluable guidance and help with the personal aspects of my work life and PhD. Her calm

and grounded personality together with her cheerful and uplifting demeanor has time after

time renewed my motivation. Her endless capacity for showing acceptance towards others

has been an inspiration to me and her wholesomeness has encouraged me to be a better

person. Finally, I would like to thank Frank and Delilah who kept me company through

many nights of working and writing, and who taught me how to open my heart to find

endless joy. Their presence in this dissertation extends beyond this acknowledgments

page.

vi

Hierarchical Policy Design for Sample-Efficient Learning of

Robot Table Tennis Through Self-Play

Publication No.

Reza Mahjourian, Ph.D.

The University of Texas at Austin, 2018

Supervisor: Risto Miikkulainen

Training robots with physical bodies requires developing new methods and action

representations that allow the learning agents to explore the space of policies efficiently.

This work studies sample-efficient learning of complex policies in the context of robot table

tennis. It incorporates learning into a hierarchical control framework using a model-free

strategy layer (which requires complex reasoning about opponents that is difficult to do

in a model-based way), model-based prediction of external objects (which are difficult to

control directly with analytic control methods, but governed by learnable and relatively

simple laws of physics), and analytic controllers for the robot itself. Human demonstra-

tions are used to train dynamics models, which together with the analytic controller allow

any robot that is physically capable to play table tennis without training episodes. Using

only about 7 000 demonstrated trajectories, a striking policy can hit ball targets with

about 20 cm error. Self-play is used to train cooperative and adversarial strategies on

top of model-based striking skills trained from human demonstrations. After only about

24 000 strikes in self-play the agent learns to best exploit the human dynamics models for

longer cooperative games. Further experiments demonstrate that more flexible variants

of the policy can discover new strikes not demonstrated by humans and achieve higher

performance at the expense of lower sample-efficiency. Experiments are carried out in

a virtual reality environment using sensory observations that are obtainable in the real

world. The high sample-efficiency demonstrated in the evaluations show that the proposed

vii

method is suitable for learning directly on physical robots without transfer of models or

policies from simulation.1

1Supplementary material available at https://sites.google.com/view/robottabletennis

viii

https://sites.google.com/view/robottabletennis

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1

1.1 Motivation . 2

1.2 Challenges . 5

1.3 Approach . 6

1.3.1 Virtual Reality Learning Environment 7

1.3.2 Using Low-Dimensional State . 8

1.3.3 Model-Based Learning . 10

1.3.4 Learning from Demonstrations . 10

1.3.5 Rich General High-Level Action Representations 11

1.3.6 Analytic Paddle-Control . 14

1.3.7 Hierarchical Policy . 15

1.3.8 Learning Strategy with Self-Play . 16

1.4 Guide to the Reader . 16

Chapter 2. Simulation and Virtual Reality Environments 18

2.1 The Simulator . 18

2.2 Virtual Reality Setup . 20

2.3 Learning Environment . 20

2.4 Conclusion . 22

ix

Chapter 3. Method Overview 23

3.1 Policy Design . 23

3.2 Environment Design . 26

3.3 Dynamics Models . 26

3.4 Analytic Robot-Control . 27

3.5 Learning Strategy with Self-Play . 28

3.6 Conclusion . 29

Chapter 4. Policy Design 30

4.1 Skill Hierarchy . 30

4.2 Strategy . 31

4.3 Striking Skills . 32

4.3.1 Land-Ball . 33

4.3.2 Hit-Ball . 35

4.4 Positioning . 36

4.5 Paddle-Control . 37

4.6 Joint-Trajectory Planning . 39

4.7 Joint-Control . 41

4.8 Conclusion . 41

Chapter 5. Environment Design 43

5.1 Game Space . 43

5.2 Robot Space . 44

5.3 Separating Physics of the Robot from the Physics of the Game 45

5.4 One Game, Different Robots . 46

5.5 Reduction in Dimensionality . 47

5.6 Interaction with Task Decomposition . 47

5.7 Conclusion . 48

x

Chapter 6. Dynamics Models 49

6.1 Learning Dynamics with Neural Networks 49

6.1.1 Learning Dynamics Instead of Policy 49

6.1.2 Using Physics vs. Neural Networks 50

6.2 Dynamics Models . 50

6.2.1 Ball-Trajectory Prediction Model . 51

6.2.2 Landing-Prediction Model . 51

6.2.3 Inverse Landing-Prediction Model 54

6.3 Domain Invariances and Data Normalization 55

6.3.1 Invariances in Table Tennis . 55

6.3.2 Normalizing Ball Trajectories . 57

6.3.3 Normalizing Landing Trajectories . 59

6.4 Learning Dynamics from Demonstrations 60

6.4.1 Data Collection in VR Environment 60

6.4.2 Data Augmentation . 62

6.4.3 Subsampling . 62

6.5 Evaluation . 63

6.5.1 Ball-Trajectory Prediction . 63

6.5.2 Landing Prediction . 64

6.6 Conclusion . 65

Chapter 7. Paddle-Control Policy 67

7.1 Paddle-Control Problem . 67

7.2 Analytic Paddle-Control . 68

7.2.1 Mapping Paddle’s Normal to Orientation 69

7.2.2 Mapping Paddle’s Pose to Joint Positions 70

7.2.3 Mapping Paddle’s Linear and Angular Velocities to Joint Velocities . 71

7.2.4 Trajectory Planning . 72

7.2.5 Joint-Control . 74

7.3 Paddle-Dynamics Model . 75

7.3.1 Learning Paddle-Dynamics . 77

7.4 Learning Paddle-Control . 78

7.5 Positioning Policy . 80

7.6 Conclusion . 81

xi

Chapter 8. Striking Policies 82

8.1 Model-Based Land-Ball Policy . 82

8.1.1 Policy Implementation . 82

8.1.2 Automatic Forehand/Backhand . 86

8.1.3 Improved Policy with Cross-Entropy Method (CEM) 86

8.1.4 Evaluation . 87

8.2 Model-Based Land-Ball Trained with Robot Data 90

8.2.1 Data Generation . 91

8.2.2 Evaluation . 92

8.3 Model-Free Land-Ball Policy . 94

8.3.1 Training . 94

8.3.2 Evaluation . 95

8.4 Model-Based Hit-Ball Policy . 99

8.4.1 Policy Implementation . 99

8.4.2 Evaluation . 100

8.5 Conclusion . 100

Chapter 9. Learning Strategy with Self-Play 103

9.1 Approach . 103

9.1.1 Reinforcement Learning . 103

9.1.2 Cooperative and Adversarial Rewards 104

9.1.3 Self-Play . 105

9.1.4 Observations and Actions . 106

9.2 Training Setup . 106

9.3 Land-Ball Strategy . 107

9.4 Hit-Ball Strategy . 108

9.5 Paddle-Control Strategy . 112

9.6 Joint-Control Strategy . 116

9.7 Conclusion . 118

xii

Chapter 10. Discussion and Future Work 123

10.1 Development Process . 123

10.2 Driving Different Robot Assemblies . 124

10.3 Observation Uncertainty . 125

10.3.1 Ball-State Estimation Model . 126

10.3.2 Closed-Loop Land-Ball Skill . 128

10.4 Ball Spin and Magnus Forces . 129

10.5 Vision . 129

10.6 Hardware Evaluation . 130

10.7 Mixing Dynamics Models with Model-Free Policies 131

10.8 Conclusion . 132

Chapter 11. Related Work 133

11.1 Robot Table Tennis . 133

11.2 Model-Based and Model-Free Learning . 134

11.3 Hierarchical Reinforcement Learning . 134

11.4 Self-Play Learning . 135

11.5 Underlying Methods . 135

11.5.1 Reflexxes . 136

11.5.2 Proximal Policy Optimization (PPO) 138

11.5.3 Augmented Random Search (ARS) 138

Chapter 12. Conclusion 140

12.1 Contributions . 140

12.2 Conclusion . 141

Bibliography 143

xiii

List of Tables

6.1 Mean Position Error for the Landing-Prediction Model. 66

8.1 Evaluation of Model-Based Land-Ball Policies Trained with Human Demon-
strations Collected in the VR Environment. 89

8.2 Evaluation of Model-Based Land-Ball Policies Trained with Data Gener-
ated on the Robot. 94

8.3 Evaluation of Model-Free Land-Ball Policies. 99

xiv

List of Figures

1.1 Example SIFT Keypoints Detected in an Image. 3

1.2 Convolutional Filters Learned in AlexNet [9] for Image Classification. . . . 4

1.3 Virtual Reality Trackers. 9

1.4 Rich General High-Level Action Representations 13

2.1 Simulation Environment. 19

2.2 Virtual Reality Setup. 21

3.1 The Skill Hierarchy. 25

3.2 Decomposition of the Robot Table-Tennis Environment. 27

5.1 The Game Space of the Environment. 44

5.2 The Robot Space of the Environment. 45

6.1 Ball-Trajectory Prediction Model. 52

6.2 Forward Landing-Prediction Model. 53

6.3 Inverse Landing-Prediction Model. 55

6.4 Data Collection in VR Environment. 61

6.5 Mean Position Error in Ball-Trajectory Predictions. 64

6.6 Mean Velocity Error in Ball-Trajectory Predictions. 65

8.1 Model-Based Land-Ball Policy. 83

8.2 Demonstration of the Land-Ball Policy. 85

8.3 Demonstration of the Land-Ball Policy with CEM Search. 88

8.4 Example Failure Case for Model-Based Land-Ball Policy. 90

8.5 Distribution of Landing Positions in Landing Trajectories Generated on
the Robot. 93

8.6 Training Model-Free Return-Ball Policy with ARS. 96

8.7 Evaluation of Model-Free Return-Ball Policy Trained with ARS. 97

xv

8.8 Training Model-Free Land-Ball Policy Trained with ARS. 98

8.9 Model-Based Hit-Ball Policy. 101

9.1 Self-Play Setup. 105

9.2 Self-Play Learning of Cooperative Land-Ball Strategy. 109

9.3 Average Evaluation Rewards for Cooperative Land-Ball Strategy. 110

9.4 Histogram of Episode Lengths for Cooperative Land-Ball Strategy. 111

9.5 Self-Play Learning of Adversarial Land-Ball Strategy. 112

9.6 Visualization of Adversarial Land-Ball Strategy. 113

9.7 Self-Play Learning of Cooperative Hit-Ball Strategy. 114

9.8 Histogram of Episode Lengths for Cooperative Hit-Ball Strategy. 115

9.9 Self-Play Learning of Adversarial Hit-Ball Strategy. 116

9.10 Average Evaluation Rewards for Adversarial Land-Ball Strategy. 117

9.11 Visualization of Adversarial Hit-Ball Strategy. 118

9.12 Self-Play Learning of Cooperative Paddle-Control Strategy. 119

9.13 Self-Play Learning of Cooperative Paddle-Control Strategy with More Train-
ing Time. 120

9.14 Self-Play Learning of Adversarial Paddle-Control Strategy. 121

9.15 Self-Play Learning of Model-Free Joint-Control Strategy with ARS. 122

10.1 The Game Environment with Observation Noise. 126

10.2 Ball-State Estimation Model. 127

11.1 The Interface to Reflexxes Motion Libraries. 137

xvi

Chapter 1

Introduction

From ancient mythologies depicting artificial people to the modern science fiction

writings of Karel Čapek and Isaac Asimov, there seems to be a clear image of what robots

ought to be able to do. They are expected to operate in the world like human beings, to

understand the world as humans do, and to be able to act in it with comparable dexterity

and agility.1

Just as today most households can have personal computers in the form of desk-

tops, tablets, and phones, one can imagine a future where households can use the as-

sistance of humanoid robots. Rather than being pre-programmed to do specific jobs like

communicating with people, helping with kitchen work, or taking care of pets, these robots

would be able to learn new skills by observing and interacting with humans. They can

collectively share what they learn in different environments and use each other’s knowl-

edge to best approach a new task. They already know their bodies well and are aware of

their physical abilities. They are also aware of how the world and the common objects in

it work. They just need to learn how to adapt to a new environment and a new task. If

they need to learn a new skill by trying it out, they can do so efficiently. They can learn

a lot from a few attempts and use reasoning and generalization to infer the best approach

to complete the task without having to try it for thousands of times.

This dissertation takes a step in that direction by building a robotic table-tennis

agent that learns the dynamics of the game by observing human players, and learns to

improve over the strategy demonstrated by humans using very few training episodes where

the agent plays against itself in a self-play setup.

1The body of all chapters in this dissertation is published in an article under the same title: Reza
Mahjourian, Risto Miikkulainen, Nevena Lazic, Sergey Levine, and Navdeep Jaitly. Hierarchical policy de-
sign for sample-efficient learning of robot table tennis through self-play. arXiv preprint arXiv:1811.12927,
2018. All content except for experiments in Sec. 8.3 and Sec. 9.6 is contributed by the first author.

1

1.1 Motivation

The rate of progress in creation of intelligent robots seems to have been slower

than other areas of artificial intelligence, like machine learning. That is because intel-

ligent robotics requires not only human-like cognition, but also human-like movement

and manipulation in the world. As of now, the most successful applications of robotics

remain in the industrial domains, where the focus is on precision and repeatability. In

those environment, the expected robot motion is known beforehand and there is no need

to deviate from it. However, the general usability of robots depends on their ability to

execute complex actions that require making multiple decisions through time.

Deep learning and reinforcement learning have been successful in solving interest-

ing problems like object detection, playing Atari games, and playing board games like

chess and Go. These advances have made it possible to approach human-level perception

and cognition abilities. While perception problems can be learned in data centers using

millions of data samples and training episodes, learning general robotic skills requires

interacting with physical robot bodies and environments, which cannot be parallelized.

Therefore, learning robotic agents need to be very efficient in how they use training sam-

ples.

This dissertation explores sample-efficient learning of complex robotic skills in the

context of table tennis. Playing robot table-tennis games is a challenging task, as it

requires understanding the physics of the robot and the game objects, planning to make

contact with the ball, and reasoning about the opponent’s behavior.

There have been many examples where application of deep learning to a problem

has resulted in developing a superior approach with improved performance. For example,

object classification and object detection tasks used to rely mainly on engineered SIFT

features [11], an example of which is shown in Fig. 1.1. However, AlexNet [9] demonstrated

end-to-end learning of object classification on ImageNet [7] using convolutional neural

networks. Fig. 1.2 visualizes the convolutional filters learned in AlexNet in the first layer

of the neural network. These filters can be regarded as the learned equivalents to SIFT

image features. In the object classification domain, using neural networks to solve the

task end-to-end allowed it to discover a suitable representation for image features that

outperformed engineered features.

As another example, for the tasks of speech recognition and language translation,

end-to-end learning has replaced the pipelines based on human-designed acoustic mod-

els, language models, and vocabularies with neural networks that outperform the old

2

Figure 1.1: Example SIFT Keypoints Detected in an Image. SIFT keypoints can
be used for object classification. The keypoints are extracted from images and individually
compared to a database of existing keypoints extracted from other images. A matching
algorithm can find candidate matching features based on the distance between feature
vectors. Application of deep learning to object classification has resulted in discovering
convolutional feature maps that are more effective than SIFT features.

approaches. In the classic pipelines, the vocabularies shared between the nodes were

engineered and fixed. The components in the pipeline were restricted in choosing their

outputs from the hand-designed vocabularies. In the end-to-end approach, the network

is free to learn and use an internal embedding for the speech data and the language data.

3

Figure 1.2: Convolutional Filters Learned in AlexNet [9] for Image Classifi-
cation. The image shows 96 convolutional kernels of size 11x11x3 learned by the first
convolutional layer in AlexNet. Deep learning is able to discover suitable features for the
task of image classification. These learned features perform better than the engineered
SIFT features. This example highlights the potential of learning algorithms to discover
novel and effective solutions without a need for engineering.

This added freedom allowed deep learning to discover intermediate representations and

features that are more suitable for solving the task.

Similarly, Mnih et al. [16] applied deep reinforcement learning to playing Atari

games and demonstrated the ability of deep learning to discover a value network that can

map raw pixels in the game to an expectation of future rewards.

These successes suggest that there is similar opportunity for applying deep learning

to discover novel intelligent robotic behaviors. In the domain of table tennis, there is the

potential for learning to discover:

1. Better Strikes: Can the robot swing the paddle in new ways beyond what humans

have tried in table tennis? In sports, one can observe leaps where a player tries a

new technique and then very quickly it is adopted by other players. For example,

in the early nineties handball players started using spinshots that would hit the

floor past the goalkeeper and turn to go inside the goal. Can reinforcement learning

discover new striking motions for hitting the table-tennis ball?

4

2. Better Game Strategy: There are established human strategies for playing ad-

versarial table-tennis games. Can reinforcement learning discover new overall game-

play strategies that are more effective in defeating a human opponent?

Discovering better motions and better strategies to solving tasks are relevant to

household robots as well. This dissertation aims to utilize the ability of learning to discover

such behaviors and demonstrate them in the domain of table tennis, and therefore show

that such learning can be useful for general robotic tasks as well.

1.2 Challenges

General learning algorithms typically require millions of samples or training episodes

to learn a task. Collecting samples for learning robotic tasks is costly, since each sample

can cause wear and tear on the robot. The process is also time-consuming since inter-

actions in the real world need to happen in real time and cannot be sped up by faster

compute. In addition, robotic environments are often fragile and one cannot depend on

agents learning automatically in unsupervised environments. Often, things break or ob-

jects get displaced requiring operator intervention to restore the setup to continue the

training.

Moreover, there is usually an outer loop around the learning algorithms. Apply-

ing reinforcement learning is typically a trial-and-error process. The researchers usually

develop new methods in an iterative manner by trying different approaches and hyperpa-

rameters. For every new instance of the problem, the learning algorithm is typically run

from scratch. Therefore, in order to be feasible, advanced methods for learning general-

purpose robotic tasks have to be able to use samples more efficiently than what is currently

possible with deep learning and RL methods.

The end-to-end learning approach based on producing and consuming more and

more data is not suitable for robotics. It is possible to bring some scale to learning robotic

tasks using parallel hardware setups like arm farms. However, end-to-end learning meth-

ods often need so much data that this amount of parallelism is not enough to overcome

the physical limitations that come with learning in the real world. An increase in the

number of hardware setups also increases the expected frequency of hardware failures,

which increases the need for human supervision.

5

Learning end-to-end policies poses another challenge, which is identifying the

source of bugs or inefficiencies in one component of the implementation. In an end-to-end

setup, the impact of a new change can only be observed by how it affects the overall per-

formance of the system. Often learning algorithms are able to mask bugs by continuing

to operate at a slightly reduced capacity or precision, thereby making it difficult to trace

the root source of a problem after a few stages of development.

Some applications of deep learning to robotics can avoid some of the physical

limitations by focusing on the perception part of the problem and ignoring learning motor

skills. For example, object grasping can be approached as a regression problem, where

the agent maps the input image to a grasp position and angle, which is then executed

using a canned motion. However, when learning robotic skills it is very desirable for the

learning algorithms to also discover novel motor skills. Learning algorithms may be able

to discover new ways of handling objects that are more suitable for robots, and more

effective with fewer degrees of freedom typically present in robot bodies.

A common approach to learning robotic tasks is sim2real: learning in simulation

and then transferring the policy to work in the real world. With this method, learning can

be done in the simulator. However, this approach requires solving a secondary problem,

which is making the learned policy work with the real sensory observations and the control

dynamics of the physical robot. Depending on the task, this transfer might not be any

easier than learning the main problem.

Achieving breakthroughs in robotic learning most likely depends on discovering

new learning approaches and new intermediate state and action representations that allow

learning algorithms to spend a limited experimentation budget more strategically. Such

intermediate state and action representations should be general enough to sufficiently

capture the state of all policies. Yet, at the same time, they should be high-level enough

to allow the learning agent to efficiently explore the space of all policies without having

to try every combination. This dissertation takes a step in that direction by presenting

an approach that achieves high sample-efficiency in learning the complex game of robotic

table-tennis.

1.3 Approach

The approach presented in this dissertation offers a solution to the challenges

discussed in the previous section by developing a learning solution that can discover

6

general robotic behaviors for table tennis, yet is sample-efficient enough that it can be

deployed in the real world without relying on transfer learning from simulators.

The approach incorporates learning into a hierarchical control framework for a

robot playing table tennis by using a model-free strategy layer (which requires complex

reasoning about opponents that is difficult to do in a model-based way), model-based

prediction of external objects (which are difficult to control directly with analytic control

methods, but governed by learnable and relatively simple laws of physics), and analytic

controllers for the robot itself.

The approach can be summarized around eight design decisions reviewed below.

Using a virtual reality environment and collecting human demonstrations in this envi-

ronment make the approach more realistic. Also, working with low-dimensional state

instead of raw vision increases the chances that the sample-efficiency achieved in simu-

lation would be reproducible in the real world. Introducing rich high-level action repre-

sentations based on landing targets for the ball and target motion-states for the paddle,

and learning game-play strategies with self-play enables the approach to discover general

striking motions and versatile strategies for playing table-tennis. The division of tasks

in a hierarchical policy, employing model-based learning for the striking skills, training

the models over low-dimensional state and high-level action representations, and develop-

ing an analytic robot controller for executing high-level paddle-motion targets makes the

method sample-efficient. The following subsections provide an overview of the main

components of the approach.

1.3.1 Virtual Reality Learning Environment

In order to establish whether the approach can handle the complexity of real-world

sensors, the method is developed in a Virtual Reality (VR) environment which allows for

capturing the same sensory observations that would be available in a real-world table-

tennis environment. Using VR instead of using plain simulation helps make sure the

learning environment is realistic enough that the results would transfer to the real-world.

Although the method in this dissertation can be combined with sim2real ap-

proaches by using the models and policies learned in simulation as a starting point for

training real-world models and policies, the emphasis in this dissertation is on develop-

ing an approach that would be sample-efficient enough to be able to learn the task from

scratch in the real world. So, the method is developed in the VR environment, which has

7

more similarities to the real world. The next section describes how using low-dimensional

state can increase the similarities to real-world setups. It also outlines how outlines how

the chosen low-dimensional state can be obtained from physical sensors in the real world.

1.3.2 Using Low-Dimensional State

To make the environment more realistic, and to increase sample-efficiency, the

approach uses low-dimensional state instead of raw vision. The observation and action

spaces in the VR environment are chosen such that they have parallels in the real world.

More specifically, the state space of the learning agents is limited to the low-dimensional

ball-motion state and paddle-motion state. In the real world, ball-motion state can be

obtained from ball-tracking algorithms, and paddle-motion state can be obtained with

identical or similar sensors to what is used in the VR environment. Similarly, the action

space of the striking policies is defined by paddle-motion targets, which can be tracked

and controlled precisely on physical robots.

Ball-motion state includes the position and velocity of the ball. In the VR

environment, ball-motion state is available from the underlying simulator. In the real

world, a ball tracker [26, 4] can provide the position and velocity of the ball. Ball trackers

usually track the ball velocity as well, since estimates on the current velocity of the ball

can speed up the detection algorithm by limiting the search to a small region in the image

and improve its accuracy by ruling out false positives. Detecting and tracking the location

of a ball in a camera image is a relatively simple computer vision task. Ball tracking can

be done with classic computer vision algorithms and does not require learning. The ball

has a fixed geometry and a simple appearance in the camera images. A blob detection

algorithm can identify the ball in the image. Given detections from two or more cameras

and the camera intrinsics, the 3D location of the ball can be estimated. An advantage of

using classic vision algorithms over using deep neural networks is the higher computational

speed, which is critical in a high-speed game like table tennis.

Paddle-motion state includes the paddle’s position, orientation, linear velocity,

and angular velocity. When the paddle is attached to the robot, paddle-motion state can

be obtained using forward kinematics. When learning from human games, paddle-motion

state needs to be obtained from a motion-tracking system. There are a variety of solutions

that allow for tracking the paddle-motion state with high accuracy. On the higher end, it

is possible to use full-blown motion tracking systems to track marked and instrumented

8

paddles. On the lower end, one can use off-the-shelf tracking devices like HTC Vive, which

can provide position information with sub-millimeter accuracy and jitter. Fig. 1.3 shows

two types of VR trackers that work with HTC Vive. In fact, this is the same hardware

that is used for experiments in this dissertation when collecting human demonstrations

in the VR environment. Since such trackers are bulky, the human players would be able

to use only one side of the instrumented paddles. Lastly, a more custom tracking setup

can use small IMU sensors attached to the paddles. Visual markers on the paddles can

be used to correct for the sensory drift that is common with IMUs.

(a) A Vive tracker. (b) A Vive tracker attached to a paddle.

Figure 1.3: Virtual Reality Trackers. The trackers allow the position and orientation
of objects to be tracked with sub-millimeter accuracy. In the VR environment, these
trackers make it possible to capture the paddle motions generated by human players. The
same trackers, or any other motion tracking technology, can be used to track the motion
of table-tennis paddles in the real world. Photo credits: HTC.

Grounding the models and policies in low-dimensional state reduces the dimen-

sionality of the learning problems and improves sample efficiency. Moreover, employing

a separate component for extracting the low-dimensional ball-motion state from visual

inputs makes it possible to debug and fine-tune that component before integrating it into

the implementation for the learning agent. In contrast, using raw visual input would cre-

ate a large disconnect between the distribution of sensory observations that are typically

available in simulation, and raw visual data available from cameras in the real world,

thereby limiting the extent to which the simulation experiments can predict real-world

9

performance. Another issue with using raw vision is that working with vision in the real

world requires carefully designing the training environment to capture different lighting

conditions, backgrounds, etc. Any mismatches between the training and test environ-

ments would greatly disrupt the performance of policies trained with raw vision. The

next section describes how dynamics models trained on low-dimensional observations can

inform the agents to make better decisions.

1.3.3 Model-Based Learning

Learning policies directly by interacting with the environment may require too

many training samples. Model-free RL agents often need to implicitly learn to predict the

outcome of their actions by predicting how their actions changes the environment. The

approach in this dissertation uses model-based learning to increase sample-efficiency.

The game of table tennis, despite being a complex and fast game requiring great

skill to play, has relatively simple physics compared to other tasks like robot locomotion

or object grasping. In table tennis, most of the time, the ball is travelling in the air

where it is only subject to gravity, drag, and Magnus forces due to its spin. The ball

experiences short contacts with two types of objects: the table, and the player paddles.

If the dynamics of the ball’s motion and contact are understood, it is possible to both

predict the ball’s future states and to control for it by picking the right paddle motion to

execute the desired contact.

The method uses observations in the environment to train dynamics models that

predict the future state of the ball due to its free motion and due to contact with the player

paddle. Such dynamics models can inform the learning agents about the consequences of

the actions they are exploring. In contrast, in end-to-end model-free learning approaches,

the agents are required to implicitly learn how the environment works in order to best

exploit it and increase their reward. By capturing the simple physics of table tennis in

dynamics models the method allows the learning agents to focus on learning high-level

behaviors, thereby improving sample-efficiency. The next section describes how these

dynamics models are trained.

1.3.4 Learning from Demonstrations

Training the dynamics models requires data. However, if there is no policy to

drive the robot to play table-tennis, there is no way to collect the required data. On

10

the other hand, the observations that are needed to learn the ball motion and contact

dynamics are readily available from human games. There is no need to use a robot to

collect samples for training the dynamics models. Similarly, there is no need for kinesthetic

teaching. Moreover, capturing human demonstrations is a lot easier than operating fragile

robot setups to collect data. So, the approach trains dynamics models from human

demonstrations.

The behavior of the ball and the contact forces between the ball and the table or the

paddle are the same whether the paddle is carried by a robot or a human player. Contrast

this with a task like locomotion. As the agent learns new gaits, it starts experiencing

new joint states and new contacts with the ground, requiring any contact models to be

adjusted. In table tennis, one can study the ball’s free motion and contact behavior just

by observing human games in instrumented environments. While collecting robot samples

is costly and time-consuming, human samples can be obtained easily and abundantly.

Intermediate players may come short in their ability to move quickly, or to control

the paddle correctly to execute their desired shot, which would pose a problem if policies

are trained directly from human actions. Such policies would be able to play table-tennis

only as well as the humans providing the demonstrations. So, this method only trains

dynamics models from the human demonstrations and allows the policies to choose more

versatile actions beyond what is demonstrated. The dynamics models are independent of

the learning agent and stay valid as the learner’s policy changes. They dynamics models

can be used predict the future states of the ball when it is moving freely, and when it is

hit by the paddle. The models can also help predict how to hit a ball so that it lands

at a desired target on the opponent’s side of the table. In other words, they can be used

to choose actions. The next section describes how a rich high-level action representation

gives the learning agents the ability to make very high-level yet general decisions for how

to strike the ball with the paddle.

1.3.5 Rich General High-Level Action Representations

Playing table tennis requires moving the paddle around all the time. At any time

during a rally, the agent is either trying to strike the ball towards the opponent, or

trying to place itself optimally so that it can hit the next ball successfully. Learning to

play table tennis by continuously making decisions about how to move on every single

timestep makes for a very difficult problem. The reward for winning a rally may come

11

only at the end of a long sequence of actions. An RL agent would require too many

samples to learn the basic techniques of striking the ball and moving around in the game

just from the reward signal. Therefore, the approach defines two rich high-level actions

that allow the agent to make game-play decisions at a high-level without losing generality

in behavior: ball landing targets, and paddle-motion targets. The actions are illustrated

in Fig. 1.4 and discussed below.

1. Ball landing targets: A landing target for the ball specifies a target motion-state

for the ball at the moment that it lands. In general, the target motion-state can

encode the ball’s position, velocity and spin. In the current implementation, it

encodes the position and speed (magnitude of velocity). Such a high-level action

allow the agent to specify a striking action by its desired outcome. Learning to

return the ball by specifying such targets is clearly easier than learning to return

the ball by controlling the robot joints. At the same time, such actions do not

reduce from the generality of policies. During each exchange between two players,

each player’s game-play can be represented by how the player lands the ball on the

opponent’s side of the table. No matter what movements the player executes, the

effective action from the player is how they hit the ball and how that ball behaves

after contact. In particular, the behavior of the ball at the moment of contact can

fully capture the ball’s behavior, as the ball’s motion-state at that moment fully

specifies its expected motion after contact with the table. So, although ball landing

targets are high-level and easier to learn, they can capture and represent all possible

striking behaviors (provided the implementation includes spin as well.)

2. Paddle-motion targets: A paddle-motion target specifies the target motion-state

for the paddle at the moment that it hits the ball. Paddle-motion targets are an

alternative action representation for parameterizing a strike. It is easier to learn to

strike the ball by deciding a one-time target for the paddle than by deciding targets

for robot joints over multiple timesteps. At the same time, paddle-motion targets

are general action as well. During each strike, the impact of a player’s paddle on the

ball depends only on the motion-state of the paddle during the short period of time

when the paddle and the ball are in contact. All the actions taken by the players up

to the moment of contact are just in service to achieving a paddle-motion state at

the moment of contact with the ball. So, representing a strike by the paddle-motion

target that it achieves at the moment of contact does not reduce from generality

12

Landing
Target

Paddle
Target

Figure 1.4: Rich General High-Level Action Representations Top: A ball landing
target specifies the desired position and speed for the ball as it lands on the opponent’s side
of the table. Bottom: A paddle-motion target specifies the desired position, orientation,
and velocity of the paddle at a desired time. In the illustrated example, the paddle target
is chosen to intersect with the predicted trajectory of the ball over multiple timesteps,
which is shown by the string of green balls. These high-level actions allow the agent
to make high-level decisions about its game-play without losing generality in behavior.
Therefore, they increase sample-efficiency.

13

of behavior. Paddle-motion targets can also be used to position the robot when it

is waiting for the opponent to act. In those situations, the pose of the paddle is

used as a proxy to control the position of the robot. Since the paddle is the main

vehicle for the robot to play the game, this action representation is very suitable for

deciding positioning targets for the robot during the waiting intervals in a rally.

Playing table tennis requires returning the ball to the opponent’s side during each

exchange. However, there are so many choices in returning the ball. The action represen-

tations used in this approach encode different striking behaviors, which permit different

game-play strategies. Moreover, using such abstract action representations simplifies the

action space for the agents. Since the actions capture the agent’s behavior over multi-

ple timesteps, they facilitates learning by eliminating the reward delay problem where

a learning agent needs to figure out the actual action that leads to receiving a reward

multiple timesteps into the future. Therefore the rich high-level actions increase sample-

efficiency while maintaining generality in behavior. The following section describes how

paddle-motion targets can actually be executed on the robot.

1.3.6 Analytic Paddle-Control

The dynamics models can inform the agent how to strike the ball, and the rich ac-

tion representations allow the parameters of the strike to be specified at a high conceptual

level. However, there needs to be a controller that can actually execute such high-level

actions like paddle-motion targets. The method uses an analytic robot controller that

is able to execute paddle-motion targets using information about the kinematics of the

robot.

Executing paddle-motion targets requires precise control of the robot so that the

paddle reaches the target position at the desired time, and that it has the desired velocity

when it is crossing the target position. In addition, reaching the target requires executing

a long sequence of joint-control commands that span over multiple timesteps. Learning to

control the paddle by controlling the robot joints directly is a difficult task, as it requires

learning implicitly how the robot commands affect the motion of the end-effector. So,

using RL to learn to control the execute paddle-motion targets may require too many

samples.

This method develops an analytic paddle controller which uses the Reflexxes

trajectory-planning algorithm to execute any paddle-motion target from any starting

14

state for the robot, provided the target is achievable under the robot’s physical limits

and motion constraints. The Reflexxes library is able to compute optimal trajectories

to reach the target motion-state while satisfying velocity, acceleration, and jerk limits

for each robot joint. Employing this analytic controller removes the need for learning

a paddle-control skill and improves the sample-efficiency of the method. The next sec-

tion describes how the analytic controller together with other skill policies are used in a

hierarchical policy to play the whole game of table tennis.

1.3.7 Hierarchical Policy

Playing table tennis requires technical skills in moving the paddle and striking

the ball, and tactical skills in choosing appropriate targets at different points of a rally.

This complexity is challenging for general-purpose RL algorithms. Therefore, instead of

approaching table tennis as a monolithic task, this approach uses a hierarchical policy that

decomposes table tennis into a hierarchy of subtasks. The hierarchical policy decouples

the high-level skills from low-level skills in the game of table tennis, which makes it

possible to implement each skill using a different method that is more suitable for it.

Moreover, the hierarchy allows each skill to be developed, evaluated, and debugged in

isolation. If necessary, the skills can be given perfect observations and perfect actions to

fully evaluate their individual limits and errors. Such a setup allows for identifying and

addressing inefficiencies in each component of the system before they are integrated and

fine-tuned together as a whole.

In the task hierarchy, low-level skills like how to move the paddle to a target

position are implemented using analytic controllers that do not require learning. Mid-

level striking skills are implemented using dynamics models that are trained from human

demonstrations with supervised learning. Lastly, the top-level strategy skill is trained

with reinforcement learning, allowing the agent to discover novel behaviors.

In contrast, learning a task end-to-end may cause the model to relearn the primitive

skills over and over in various states in presence of changing inputs. In other words, an

end-to-end approach needs to learn to properly generalize its behavior to invariant states.

Doing so requires more training episodes.

As explained in Sec. 1.3.5 the action spaces used in the task hierarchy are such that

they do not reduce from the generality of the policies. In other words, the hierarchical

policy does not restrict the agent’s ability to explore the space of all possible game-

15

play strategies and techniques. As will be explained in Chapter 9, model-based policies

employing human data can be more sample-efficient, while model-free policies that directly

pick paddle-motion targets as actions can exhibit more novel striking motions at the

expense of lower sample-efficiency.

The hierarchical policy permits learning general policies in a sample-efficient man-

ner. The next section describes the hierarchical policy can discover interesting high-level

game-play strategies.

1.3.8 Learning Strategy with Self-Play

The hierarchical policy design permits efficient training of general and parameter-

ized low-level and mid-level skills which can execute different targets. However, driving

these skills requires a game-play strategy. It is not possible to solve the game strategy

analytically, as there are many choices in how to play table tennis and an effective strat-

egy needs to factor in the behavior of the opponent as well. So, the approach trains the

strategy skill at the top of the hierarchical policy using a model-free RL algorithm, that

is free to explore the space of all possible game-play strategies with no requirements other

than maximizing the reward.

Since at the beginning there are no opponents to play against, the approach uses

self-play to train the agent against itself. As more self-play games are played, the strat-

egy policy learns to adapt and respond to its own behavior. The strategy policy picks

stochastic actions that set goals for the mid-level skills in the hierarchy. The strategy

policy is encouraged to explore using an entropy term that rewards policies with more

randomness.

The strategy skill allows the agent to make high-level decisions about its game

plan without being concerned about how they are executed. The strategy skill is the only

skill in the task hierarchy that requires exploration and uses reinforcement learning to

train. By focusing the learning and exploration on this skill only, the method allows the

agent to discover interesting general game-play strategies.

1.4 Guide to the Reader

The remainder of this dissertation is organized as follows. Chapter 2 describes the

simulation and virtual reality environment. Chapter 3 provides a more in-depth overview

16

of the method than what is given in this section. Chapter 4 explains the hierarchical

policy design and the subtasks in the task hierarchy. Chapter 5 describes how the learning

environment is partitioned into a game space and a robot space so that the individual

skills in the hierarchy can be trained with higher sample-efficiency. Chapter 6 explains

the dynamics models that allows the agents to predict the future states of the game,

and evaluates the predictive ability of the trained dynamics models. Chapter 7 describes

the analytic paddle controller that is responsible for executing high-level paddle-motion

action, and describes the implementation of the positioning policy. Chapter 8 describes

the implementation of the different model-based striking policies and evaluates them

against baseline model-free implementations that learn the striking skill from scratch

using RL. Chapter 9 uses self-play to train table-tennis game-play strategies in cooperative

and adversarial games. Chapter 10 provides a discussion on the work presented in this

dissertation and outlines steps for future work, including how the method can handle

vision and observation noise with continuous closed-loop control. Chapter 11 discusses

related work on robotic table-tennis and hierarchical RL and provides a short review of the

underlying learning method used in this work. Finally, Chapter 12 lists the contributions

made in this work and concludes the dissertation.

17

Chapter 2

Simulation and Virtual Reality Environments

This chapter describes the simulation and Virtual Reality (VR) environment that

is used for data collection, training, and evaluation of the table-tennis agent. First, the

simulator and the virtual reality environment are introduced. Then, the reinforcement

learning environment and its state and action spaces are described.

2.1 The Simulator

Fig. 2.1 illustrates the simulator’s setup. The arm is mounted on a linear actuator,

which allows the robot to move sideways. This configuration has a wider reach compared

to a stationary robot. The linear actuator is implemented by one prismatic joint. The

arm and the linear actuator are treated as one robot assembly with six joints. Fusing the

linear actuator and the arm together in a single assembly simplifies inverse and forward

kinematics calculations.

A different version of the simulation environment contains one robot playing against

a table-tennis ball launcher. The ball launcher can shoot table-tennis balls with con-

trolled initial conditions (position and velocity). By varying the initial conditions of

every episode, the ball launcher makes it possible to explore the space of game conditions

for the learning agents. This version of the environment is also used in evaluations.

The simulation environment is implemented on top of the PyBullet [5] physics

engine. Simulation objects are defined by their geometries and their physics parame-

ters including mass, coefficient of restitution (bounciness), friction coefficients, etc. The

physics simulation in PyBullet is deterministic. So, there is no inherent noise in the

simulation.

The physics are simulated at 1 kHz. At each physics timestep, the object states

and forces are recomputed and any collisions are recorded. Simulating physics at a high

18

x

y

z

Figure 2.1: Simulation Environment. Two WidowX arms are mounted on linear
actuators that allow the arms to move sideways. The two robot assemblies are at the
same height as the table. The robot assembly consists of a linear actuator and a robot
arm. The arm shown in the image is a WidowX arm with five joints. The original arm
has a gripper, which has been removed in this setup and replaced with a fixed link holding
a paddle.

frequency increases the fidelity of the simulation and avoids glitches like missed collisions

due to the fast motion of the table-tennis ball.

19

2.2 Virtual Reality Setup

The simulator described in the Sec. 2.1 is connected to a virtual reality setup,

allowing a human player to control a free-moving paddle. Using the VR setup makes it

possible to create an immersive game environment where human demonstrations can be

captured. The VR environment is a good proxy for capturing human demonstrations in

the real world with instrumented paddles. In fact, the same trackers that are used in the

VR setup can be used to instrument real table-tennis paddles and track their motion.

This setup for capturing the human demonstration data makes it more likely that the

methodology and the results would transfer to the real world.

The VR setup uses an HTC Vive headset, a controller (a.k.a. tracker), and two

lighthouses. The components are shown in Fig. 2.2. The lighthouses continuously track

the position and orientation of the player’s headset and the controller in the player’s hand.

The HTC VR hardware uses active lighthouses and passive headset and controllers. The

lighthouses emit vertical and horizontal sweeping laser lights at a fixed frequency. The

headset and the controller have an array of light-detecting sensors that fire whenever they

receive the laser light. Since the configuration of the sensors on the headset and controller

are known, the timing of light-detection events reported by the different sensors contains

enough information to decide the 3D position and orientation of each tracker. As long as a

tracker is exposed to one of the two lighthouses and a sufficient number of its light sensors

are visible to it, the device can be tracked with the same accuracy. So, if the paddle or the

player hide the tracker from one of the lighthouses, it does not pose a problem. Fig. 1.3

shows two types of VR trackers that work with HTC Vive.

2.3 Learning Environment

The learning environment is implemented using the OpenAI Gym [3] API. The

environment encapsulates the simulator and exposes the simulation object states as the

environment state. At every timestep t, the environment exposes the following information

on the objects:

• The ball-motion state bt, which includes its 3D position l(bt), and velocity vector

v(bt);

• The paddle-motion state pt, which includes its 3D position l(pt), orientation r(pt),

linear velocity v(pt), and angular velocity ω(pt);

20

Lighthouse Lighthouse

Headset

Controller
(tracker)

VR
Environment

Figure 2.2: Virtual Reality Setup. A person is using the VR environment to play table
tennis against a ball launcher in simulation. The VR hardware consists of two lighthouses,
a headset, and a controller (tracker). The simulator is connected to the VR setup, such
that moving the VR controller in the real world moves a floating paddle in the simulator.
The paddle is used to hit the ball thrown by the launcher and return it to the other
side of the table. The VR environment permits capturing realistic paddle motions as
demonstrated by humans. The demonstrations are used to train dynamics models, which
are then used by robotic agents playing table tennis against the ball launcher, or against
each other.

• Robot joint positions qt, and velocities q̇t;

• Most recent collision and the ball’s location and velocity at the moment of collision.

Each learning agent defines its own observation space, which is a subset of the

21

environment state. The action space of the environment includes the six robot joints. The

simulator supports position and velocity control modes for actuating the robot assembly.

There are three frequencies operating in the environment. The simulator runs at

1 kHz, allowing for smooth simulation of physics and control of the robot. The learning

environment has a frequency of 50 Hz. Every 20 ms, the environment state is updated

based on the most recent physics state of the objects. Collisions that are detected in

between two environment timesteps are accumulated and reported together. The colli-

sions contain no time information, so they appear to have happened at the end of the

environment timestep. The high-level agents operate at a lower frequency in the environ-

ment. They receive observations and choose actions only once during each ball exchange

between the players. Running at a lower frequency makes learning easier for the agents.

The high control frequency is appropriate for smooth control of the robot, but the agents

do not need to make decisions at every simulation or environment timestep. The lower

frequency shortens the reward delay between the time the agent makes a decision and

when it observes the consequence.

2.4 Conclusion

This chapter described the simulation and virtual reality environments that are

used for simulating table-tennis games. The next chapter provides an overview of the

proposed method for learning to play table tennis with high sample efficiency.

22

Chapter 3

Method Overview

This chapter gives an overview of the approach and its key components. It depicts

a high-level picture of how the different components work together as part of the method.

Sec. 3.1) discusses decomposing the task of playing table tennis into subtasks that can be

learned or solved more efficiently. Sec. 3.2 describes decomposition of the environment to

separate the problem of robot control from the table-tennis game-play. Sec. 3.3 discusses

environment dynamics models that are trained from human demonstrations. Sec. 3.4

describes an analytic robot controller which can execute target paddle-motion states (pose

and velocity). Sec. 3.5 discusses using self-play to learn high-level table-tennis strategies

for cooperative and adversarial games.

3.1 Policy Design

Robot table tennis is a complex task, and therefore it may be difficult for rein-

forcement learning. The method decomposes the task into a hierarchy of skills where

higher-level skills depend on lower-level skills. The low-level skills are easy to learn; in

turn, exposing the functionality of these low-level skills as primitives to higher-level skills

makes those skills less complex and easy to learn as well.

The task hierarchy, which is illustrated in Fig. 3.1, offers a high-level view of the

task to the learning agents. Instead of continuously making decisions at every timestep,

they make one high-level decision during each exchange with the opponent. The high-level

decisions determine how to strike the ball when the agent is returning a shot, and how

to position the robot when the agent is waiting for the opponent. Fig. 3.1 shows three

variants of the policy based on different striking skills. The three striking skills are:

1. Land-Ball: Given the state of the incoming ball, hit it such that the ball lands at

a desired location on the opponent’s side with a desired speed.

23

2. Hit-Ball: Given the state of the incoming ball, hit it with a desired paddle orien-

tation and velocity.

3. Paddle-Control: Given the state of the incoming ball, hit it at a desired position,

with a desired paddle orientation and velocity.

The learning agents decide only targets for the striking skills. Using the striking

skills as the action space for the agents eliminates the reward delay problem, and conse-

quently, the agents require fewer training episodes to learn. At the same time, the striking

skills does not reduce from the generality of policies. Any sequence of low-level actions

can be reduced to, or represented by the state of the paddle and the ball at the moment

of contact.

24

Joint Trajectory Planning

Striking

Positioning

Strategy

Target paddle
pose

If striking If waiting

Paddle Control

Joint Control

Hit BallLand Ball

Target paddle
motion state

Target joint
motion state

Joint targets for
one control cycle

Ball landing
target

Paddle contact
target

Game
State

M
id

-le
ve

l s
ki

lls

(m
od

el
-b

as
ed

)
H

ig
h-

le
ve

l s
tr

at
eg

y
(m

od
el

-f
re

e)
Lo

w
-le

ve
l r

ob
ot

co

nt
ro

l

πs

πp

πt

πr

πl πh

πw

πk

Figure 3.1: The Skill Hierarchy. The hierarchy consists of three levels of control (high-
level, mid-level, and low-level), two modes (striking and waiting), and seven tasks. At any
point in the game, the agent is either in striking mode or waiting mode. When in striking
mode, the agent strikes the ball using one of three different skills: land-ball, hit-ball, or
directly with paddle-control. Each variant of the policy uses only one of the three striking
skills. 25

3.2 Environment Design

To make learning the skills in the hierarchical policy easier, the method decomposes

the table-tennis environment into two spaces: the game space, and the robot space, as

shown in Fig. 3.2. The game space is concerned with the physics of the table-tennis

game involving a table, ball and paddles, independently of how the paddles are actuated.

The robot space is concerned with the control of a robot that has a table-tennis paddle

attached to the end of its arm. The game space includes only the table, the ball, and

the paddle; it deals only with the game of ping pong. The robot spaces includes only the

robot and the paddle; it deals only with the physics of the robot and end-effector control.

The only object shared between the two spaces is the table-tennis paddle.

This separation makes it possible to study and model the physics of table tennis

without any robot controllers or agent policies. In particular, it permits modelling the

dynamics of the game just by observing humans playing table tennis with instrumented

paddles. On the other hand, isolating the robot space makes it possible to focus on the

problem of paddle-control without any complications from the game of table tennis.

Moreover, decomposing the environment makes it easier to replace the robot with

a different model, since there is no need to retrain the game models from scratch.

3.3 Dynamics Models

Learning starts with observing human games with instrumented table-tennis pad-

dles. The human demonstrations are used to train dynamic models for the environment.

These models mainly capture the physics of ball motion and paddle-ball contact dynamics.

Once such dynamics models are trained, they can be used to predict the future trajectory

of the ball. They can also be used to make predictions about where a given ball will end

up if it is hit with a given paddle pose and velocity.

In addition to predicting the outcome of actions, such dynamics models can be

used for picking actions that can lead to desired states. For example, they can be used

to decide how to hit an incoming ball to achieve a desired landing location and speed for

the ball. In other words, they can be used to find the right paddle pose and velocity at

the time of contact to achieve a desired land-ball target. The dynamics models reduce

the land-ball task to a paddle-control task with a particular pose and velocity target for

26

Game SpaceRobot Space

Paddle State Land-Ball TargetRobot Control

Learn from
DemonstrationsAnalytic Control

Shared object
between the two

subspaces

Robot Ping-Pong Environment

Figure 3.2: Decomposition of the Robot Table-Tennis Environment. The envi-
ronment is divided into two spaces: the robot space and the game space. The robot space
deals with the physics and control of the robot. The game space deals with the dynamics
of table tennis. The only shared object between the two spaces is the table-tennis paddle.
The decomposition makes it possible to learn the dynamics of table tennis from human
demonstrations without using a robot. On the other hand it simplifies the robot control
problem to just accurately controlling the paddle.

the paddle. Since the paddle needs to hit the ball, the paddle target also includes a time

component.

3.4 Analytic Robot-Control

The task and environment decomposition simplify the control task in robot table

tennis. Task decomposition reduces the game-play to accurate paddle-control and environ-

ment decomposition allows the robot controller to focus only on accurate paddle-control

and not be concerned with the ball, table, or opponent.

27

Instead of relying on learning, the method relies mainly on analytic control to

execute paddle targets. The target paddle pose is translated to target joint positions using

inverse kinematics. The target paddle velocity is also translated to target joint velocities

using the end-effector Jacobian. The Reflexxes Motion Library is used to computed an

optimal trajectory starting with the current joint positions and velocities and reaching

the desired joint positions and velocities at the desired time for contact. Using an analytic

controller instead of learning increases the sample-efficiency of the method. It also makes

it possible to switch the robot without having to retrain the paddle-control skill.

The method can thus produce table-tennis agents that follow fixed policies with

minimal experimentation on the robot itself. Experiments are needed only to calibrate

the motion constraints of the robot, and to model imperfections in the underlying robot

control stack, e. g. imperfections in the robot’s body and the PID controller.

3.5 Learning Strategy with Self-Play

The method uses a strategy skill whose job is to pick high-level targets for the

striking and positioning skills. In a cooperative game where two agents try to keep a rally

going for as long as possible, a good strategy might pick landing targets near the center

of the opponent side of the table. In an adversarial game where the agents try to defeat

the opponent, a good strategy might pick targets that make it difficult for the opponent

to return the ball.

For tasks like land-ball and paddle-control, it is possible to evaluate any given

action and determine whether it accomplishes the task. However, when looking at the

whole game of table tennis and the space of all possible strategies, it is not immediately

clear what action is more likely to help an agent win a point. It is exactly this part of

the policy that benefits the most from reinforcement learning and evolutionary strategies

and their ability to discover novel solutions.

This skill is trained with a self-play setup involving two robots. Training happens

over a number of self-play levels. In the first self-play level, the agent plays against a fixed

policy. In every subsequent level, the agent plays against a frozen copy of its most recent

policy. Only one of the two robots is learning during self-play.

The strategy skill is the only skill in the hierarchy that requires every component

to be in place. It requires all tasks controllers to be available. It also works across

28

the decomposition in the environment as it engages both the robot and game spaces.

Despite these complex interactions, the strategy skill remains relatively simple, since its

observation and action spaces are low-dimensional. Therefore, training the skill requires

far fewer episodes compared to training an end-to-end agent.

A key challenge in learning with self-play is maintaining efficient exploration. Often

with self-play learning the agent may converge to a narrow policy. Since the method uses

self-play only for training the strategy, the exploration problem remains confined at the

strategy level. A failure to fully explore the space of all strategies does not reduce the

coverage of the dynamics models over the space of game physics, since they are learned

independently. Also, a failure in exploration does not affect the analytic robot controller.

In contrast, in an end-to-end setup a failure in exploration at the highest level may restrict

the predictive ability of the underlying components as well.

The strategy skill also accounts for the imperfections in the underlying skills. The

land-ball skill is not perfect. It misses the target by some error distance based on predic-

tive accuracy of the dynamics models and the precision of the robot controller. During

training, the strategy skill implicitly observes the accuracy of the underlying skills through

its reward signal and learns to choose better targets for them. One common problem with

task decomposition is that errors can accumulate through the task hierarchy. However,

since the strategy skill does not have an externally-specified target in the method, it leaves

room for the learning agent to compensate for the imperfections in the underlying skills.

3.6 Conclusion

To increase sample-efficiency in learning, the method decomposes both the task

space and the environment space. Decomposition the task makes it possible to learn the

skills one at a time. Decomposing the environment allows most skills to focus either on

the dynamics of the game, or the dynamics of the robot. Therefore, task and environment

decomposition increases sample-efficiency. At the same time, the decomposition is done

in a manner not to reduce from the generality of the solutions. The following chapters

describe each component of the method in detail.

29

Chapter 4

Policy Design

This chapter explains the different tasks that make up the control hierarchy in the

method. The chapter starts with an overview of the task hierarchy. It then lists example

inputs/outputs for some of the skills. Then, it discusses each task/skill in more detail.

A high-level overview of the skill implementations are also provided. The terms task,

subtask, and skill are used interchangeably. Often, skill is used when learning is required

and task is used when an algorithmic controller is used.

The main advantage to task decomposition is to create subtasks that be imple-

mented with different mechanisms. For subtasks that use some form of learning, decom-

position improves sample-efficiency. Also, the training and debugging process is more

manageable when focusing on one skill at a time. Decomposing the task makes it easier

to develop and evaluate each component before it is integrated into the whole system.

4.1 Skill Hierarchy

The skill hierarchy is shown in Fig. 3.1. The hierarchy consists of three levels

of control (high-level, mid-level, and low-level), two modes (striking and waiting), and

seven tasks. At the top, there is the strategy skill, which just picks targets for the skills

in the middle layer. Each skill in the hierarchy depends on skills below it and used the

lower-level skills to accomplish its task. Except for the strategy skill, all other skills have

parameterized targets. The striking and positioning skills provide an abstraction over

the agent’s plan for a single exchange with the opponent. The strategy skill, on the

other hand, provides an abstraction over the agent’s entire game plan by picking different

striking and positioning targets over the course of multiple exchanges as the game goes

on.

Decomposing the robot table-tennis task into smaller tasks makes learning easier

and more sample-efficient. The green strategy node is learned with reinforcement learning.

30

The purple nodes have algorithmic policy implementations using dynamics models trained

from human demonstrations. The blue nodes are implemented by an analytic robot

controller.

At any point during the game, the agent is either in striking mode or waiting model.

In striking mode, the agent uses a striking skill to hit the ball toward the opponent. The

agent can strike the ball using land-ball, hit-ball, or directly using the paddle-control

skill. Fig. 3.1 shows the three variants of the policy with alternative striking skills in the

same image. In waiting mode, the agent picks a position for itself in anticipation of the

opponent’s next shot. This position is specified by a target paddle pose and executed

using the positioning skill. The agent’s mode changes automatically based on the current

state of the game. As soon as the opponent hits the ball, the agent enters the striking

mode. The agent stays in the striking mode until it hits the ball back. At that moment,

it enters the waiting mode.

As discussed in subsequent chapters, the strategy skill is implemented by a PPO

policy trained through self-play (Chapter 9). The striking skills land-ball and hit-ball are

implemented by algorithmic policies (Chapter 8) which employ game dynamics models

trained from human demonstrations (Chapter 6). The other four skills in the hierarchy

are implemented using analytic control (Chapter 7). The remainder of this chapter defines

each skill in detail.

4.2 Strategy

The strategy skill allows the agent to make high-level decisions about its game

plan without being concerned about how they are executed. Depending on the state of

the game, the strategy skill either picks a land-ball target or a positioning target and

passes that target to one of its underlying skills. More specifically, the strategy skill is

described by the policy

πs(bs) =

{
πk(bs), if returning the ball

πw(l(p), sgnNx(p)), if waiting for opponent to return the ball,
(4.1)

31

where πs denotes the strategy policy, bs denotes the current ball-motion state1, πk denotes

one of the three striking policies (defined later in this chapter), πw denotes the position-

ing policy (defined later), l(p) denotes a target position for the paddle, and sgnNx(p)

denotes the sign of the x component of the paddle normal vector, specifying a forehand

or backhand pose.

The strategy skill separates the tactical dimension of game-play from the technique

needed to execute desired movements on the robot. By providing an abstraction over the

game plan, it allows the agent to explore the space of game-play strategies while reusing

the technical know-how captured in the underlying skills. The actions selected by the

strategy skill stay active during one ball exchange, which lasts for a relatively long time

interval (about 70-100 environment timesteps). So, it shortens the reward delay between

the time the agent makes a decision and when it observes the consequence.

4.3 Striking Skills

During an exchange, when the agent is expected to return the ball coming from

the opponent, it should execute some action to make contact with the ball and have it

land on the opponent’s side successfully. The method offers three variants of the striking

policy which achieve this goal with different approaches. Each learning agent uses only

one variant of the hierarchical policy, so for any given agent only one of the three striking

policies is available. The three variants differ in the number of dynamics models they

use in their implementation (ranging from three to zero) and are used in experiments to

evaluate the impact of dynamics models on learning sample efficiency. The striking skill

πk is specified by one of the three policies

πk(bs) =

πl(g | bs) land-ball variant

πh(lx(pt), N(pt), v(pt), ω(pt) | bs) hit-ball variant

πp(t, pt | bs) direct paddle-control variant,

(4.2)

1In the current implementation, the strategy and striking skills receive only the current ball-motion
state as the observation. Experiments have shown that adding other observations like the agent’s paddle
position l(pt) or the opponent’s paddle position do not improve performance in this implementation. It
is likely that in a setup where the agent can make more than one decision per exchange including such
additional observations would be useful.

32

where πl denotes the land-ball policy (defined later), πh denotes the hit-ball policy (defined

later), πp denotes the paddle-control policy (defined later), bs denotes the current ball-

motion state, g denotes a ball landing target, lx(pt) denotes the x coordinate of the paddle

at time of contact (which maps to the desired distance from the net), N(pt), v(pt), ω(pt)

denote the normal, linear velocity and angular velocities for the paddle, t denotes the

time of contact between the paddle and ball, and pt denotes the full paddle-motion state.

Each of the three striking skills has a different approach to returning the ball.

The land-ball skill parameterizes the strike by a desired landing target for the ball on

the opponent’s side of the table. Hit-ball parameterizes the strike by a desired paddle

orientation and velocity at the time of contact with the ball. The hit-ball skill helps

the agent make contact by automatically computing the required paddle position based

on the predicted ball trajectory. Striking directly using the paddle-control skill requires

fully specifying a target paddle-motion state at the time of contact. As described in

Chapter 8, land-ball requires three dynamics models to work, while hit-ball requires only

one dynamics model. The paddle-control skill does not use any trainable dynamics models.

So the three alternative striking skills are used to evaluate the impact of using dynamics

models on sample-efficiency of learning the different skills.

Sec. 4.3.1 and Sec. 4.3.2 describe the land-ball and hit-ball striking skills. Striking

with direct paddle-control is covered in Sec. 4.5.

4.3.1 Land-Ball

The objective of the land-ball skill is to execute the necessary actions to hit back

the opponent ball bs in a way that it eventually lands at the desired target g. The target

g specifies a target location l(g), and a target landing speed |v(g)| over the opponent’s

side of the table:

g = l(g), |v(g)| (4.3)

The target landing location l(g) specifies the desired position of the ball at the moment

of landing:

l(g) = l(bg) (4.4)

33

where l(bg) denotes ball position at the moment of landing. Note that there is no constraint

on the landing time. The subscript g here denotes some unspecified landing time. The

target landing speed |v(g)| specifies the desired magnitude of the ball’s velocity vector at

the moment of landing.

In the current implementation the landing target does not specify a desired landing

angle for the ball. Since the trajectory of the landing ball is constrained at two points

(by bt and g), the landing speed specifies the landing angle to some extent, as faster

balls tend to have lower landing angles. However, the implementation can be extended

to also include a target landing angle. In environments where the ball spin affects it

motion, topspin would increase the landing angle while backspin would decrease it. In

such environments a desired landing angle can further constrain the desired ball motion.

An example land-ball target can be:

l(g) = (0.9, 0.2) m,

|v(g)| = 6 m/s.

In a coordinate system where the center of the table’s surface is at (0, 0, 0.76) m, the

two-dimensional target (0.9, 0.2) specifies a point 0.9 m behind the net and 0.2 m to the

left of the center divider (from the agent’s perspective) on the opponent’s side. The z

coordinate of the target is always equal to 0.78 m, which is the height of a standard table,

0.76 m, plus the radius of a table-tennis ball, 0.02 m.

The land-ball skill is described by the policy

πl(g | bs) = πp(t, pt | ps), (4.5)

where πp denotes the paddle-control policy (defined later), t denotes the planned paddle-

ball contact time picked by the land-ball skill, and pt denotes the target paddle-motion

state at time t, also picked by the land-ball skill.

The implementation for the land-ball policy is described in detail in Chapter 8.

Given the incoming ball’s motion state ps, the land-ball policy predicts the ball’s future

34

trajectory and plans to make contact with it at some time t. The land-ball policy chooses

a target motion state pt for the paddle at the time of contact. To ensure contact with the

ball, the target position for the paddle l(pt) is always chosen to be equal to the predicted

position of the ball bt at that time. The land-ball policy also chooses the paddle’s target

orientation, linear velocity, and angular velocity at the time of contact. To accomplish

its requested goal, the land-ball policy should pick the paddle orientation and velocity

such that hitting the ball with that paddle-motion state sends the ball to the landing

target g. The target contact time t and the target paddle-motion state pt computed by

the land-ball skill are passed as a high-level action to the paddle-control skill.

The land-ball skill provides a high-level abstraction over the agent’s game-play

during a single exchange with the opponent. This high-level abstraction does not cause

a reduction in generality of behavior. Barring deceptive movements to hide the agent’s

intention from the opponent, any sequence of paddle actions can be reduced to the re-

sulting landing state for the ball.2 In other words, the specification of the land-ball skill

makes it possible to specify the agent’s behavior by its desired outcome. Learning to use

the land-ball skill is easier for the agents as its action space has fewer dimensions than

a fully-specified paddle-motion state, yet its action space can specify complex behaviors.

Furthermore, land-ball’s action space maps to the geometry of the world and allows for

exploiting the symmetries and invariances that exist in the domain (Sec. 6.3).

4.3.2 Hit-Ball

The hit-ball skill is an alternative striking skill. Rather than specifying the strike

by how the ball should make contact with the table, the hit-ball skill specifies the strike

by how the paddle should make contact with the ball. Unlike land-ball which aims for a

particular point on the opponent’s side, hit-ball has not specific target for when the ball

lands. The hit-ball skill is described by the policy

πh(lx(pt), N(pt), v(pt), ω(pt) | bs) = πp(t, pt | ps). (4.6)

2A fully-specified landing state should capture the ball’s 3D velocity and spin at the moment of
landing. Since the simulator used in this dissertation does not model spin, the implementation uses a
simplified representation for the landing state. However, the land-ball skill can be extended to accept
more expressive landing targets.

35

The hit-ball skill helps the agent make contact with the ball by computing the time

of contact t and the target paddle position l(pt) based on its inputs and the predicted

ball trajectory. It expects that the agent provide the other contact parameters like the

orientation of the paddle encoded by the paddle normal N(pt) and its linear and angular

velocities v(pt), ω(pt). An example hit-ball target can be:

lx(pt) = −1.7 m,

N(pt) = (0.97,−0.02, 0.22),

v(pt) = (1.23, 1.19, 0.06) m/s,

ω(pt) = (−0.2,−0.05, 2.85) rad/s.

In this example, the skill is requested to make contact with the ball when it is 1.7 m away

from the net (10 cm in front of the robot).

The implementation for the hit-ball policy is described in detail in Chapter 8. It

uses a model to predict the ball’s future trajectory. It then considers the intersection of

the predicted ball trajectory with the target contact plane x = lx(pt) which is an input

parameter to the hit-ball skill. The point in the predicted trajectory that is closest to this

plane is picked as the target contact point. This point determines the contact time t and

the full position of the paddle l(pt) at the time of contact. The other attributes of the

paddle’s motion state N(pt), v(pt), ω(pt) are given as inputs to the hit-ball skill. Together

with the computed paddle position, they fully specify the paddle’s motion state pt, which

is passed as a high-level action to the paddle-control skill.

Unlike the land-ball skill which can only execute strikes demonstrated by humans,

the hit-ball skill can be used to execute arbitrary paddle strikes. So a strategy trained

over the hit-ball skill can better explore the space of paddle strikes. At the same time, as

the experiments show learning with the hit-ball skill is less sample-efficient and requires

more training time.

4.4 Positioning

The positioning skill is in effect in waiting mode – when the ball is moving toward

the opponent and the agent is preparing to respond to the next ball from the opponent.

36

The objective of this skill is to move the robot to the requested positioning as as quickly

as possible. Instead of specifying the requested position with the full robot pose, the

skill accepts a target paddle position. This formulation makes the action space of the

positioning skill independent of the robot and more likely to transfer to new configurations

and new robots. The positioning skill is described by the policy

πw(l(p), sgnNx(p)) = πp(p | ps), (4.7)

where p denotes some paddle state that satisfies the requested paddle position l(p) and

normal direction indicated by sgnNx(p). Unlike the land-ball skill which requests a specific

time target for its desired paddle-motion state, the positioning skill does not specify a

time. In this case, the paddle skill is expected to achieve the desired paddle state as fast

as possible. In other words, it is expected to find some minimum time m and achieve the

target paddle pm = p at that time. An example positioning target can be:

l(p) = (−2.13, 0.07, 1.02) m,

sgnNx(p) = +1 (forehand).

The positioning skill maps the requested paddle position and paddle normal direc-

tion to some robot pose that satisfies them. The positioning policy is discussed in detail

in Sec. 4.4. In the current implementation, this skill requests a target velocity of zero for

the joints at their target positions. However, a more complex implementation can arrange

to have non-zero joint velocities at target to reduce the expected reaction time to the next

ball coming from the opponent.

4.5 Paddle-Control

The objective of the paddle-control skill is to bring the paddle from its current

state ps to a desired target state pt at time t. This skill is invoked both by the land-ball

skill and the positioning skill. The paddle-control skill is described by the policy

πp(t, pt | ps) = πt(t, qt, q̇t | qs, q̇s), (4.8)

37

where πt denotes the trajectory planning skill (defined later), qt denotes the target joint

positions, q̇t denotes the target joint velocities, qs denotes the current joint positions, q̇s
denotes the current joint velocities. An example paddle target can be:

t = 0.72 s,

l(pt) = (−1.79, 0.22, 1.05) m,

N(pt) = (0.97,−0.02, 0.22),

v(pt) = (1.23, 1.19, 0.06) m/s,

ω(pt) = (−0.2,−0.05, 2.85) rad/s,

where l(pt) denotes the target paddle position, N(pt) denotes the target paddle surface

normal, v(pt) denotes the target paddle linear velocity, and ω(pt) denotes the target

paddle angular velocity. The paddle’s angular velocity at the time of contact can be used

to better control the spin on the ball. Although the PyBullet simulator does not support

ball spin, controlling the angular velocity is useful in real environments.

The paddle-control skill chooses some paddle orientation to satisfy the requested

surface normal. An example paddle orientation can be:

r(pt) = 0.42i + 0.45j + 0.51k + 0.58,

where r(pt) is a four-dimensional quaternion representing the paddle orientation and i, j,k

are unit vectors representing the three Cartesian axes.

As discussed in Chapter 7, the policy for the paddle-control skill can be imple-

mented analytically, thereby reducing the need for training and increasing the sample-

efficiency of the method. The analytic controller uses inverse kinematics and the robot

Jacobian to translates the target paddle-motion state into a set of joint positions and

velocities qt, q̇t such that achieving those joint states brings the paddle to the state pt. It

38

then passes the target joint positions and velocities to the trajectory planning skill. An

example target joint state for a 6-DOF robot assembly can be:

t = 0.72 s,

qt = 0.71 m, (−1.31, 0.50,−0.35,−0.31,−0.17) rad,

q̇t = 1.06 m/s, (2.23,−0.02, 0.19, 0.61,−0.09) rad/s.

where the first DOF corresponds to the prismatic joint at the base of the robot assembly,

and the next five DOFs correspond to the revolute joints in the arm.

The paddle-control skill provides a high-level abstraction over robot-control for

table tennis. It allows higher-level policies to specify their desired robot actions by just

specifying the impact of those actions on the paddle at a particular point in time. At

the same time, this high-level abstraction does not cause a reduction in generality of

behavior. Barring deceptive movements, any sequence of joint commands can be reduced

to and represented by the final paddle-motion state at the time of contact. It is only

during the short contact time that the state of the robot affects its impact on the ball.

Lastly, since the paddle-control skill works with long-term actions lasting throughout one

ball exchange, it allows the agent to observe the reward for its actions with little delay

and learn more easily.

4.6 Joint-Trajectory Planning

The trajectory planning skill is responsible for bringing the joints from their current

positions and velocities qs and q̇s to their target positions and velocities qt and q̇t at the

requested time t, while observing the motion constraints on each joint. By doing so, it

brings the paddle from its current state ps to the target state pt. The trajectory planning

skill is used only by the paddle-control skill and is described by the policy

39

πt(t, qt, q̇t | qs, q̇s) =πr({(qj, q̇j, q̈j) | s ≤ j ≤ t}),
subject to:

qmin ≤ qj ≤ qmax,

q̇min ≤ q̇j ≤ q̇max,

q̈min ≤ q̈j ≤ q̈max,
...
qmin ≤

...
qj ≤

...
qmax,

(4.9)

where πr denotes the joint-control skill (defined later), qj, q̇j, q̈j,
...
qj denote the planned

joint positions, velocities, accelerations, and jerks at times s ≤ j ≤ t, the motion con-

straints qmin, q̇min, q̈min,
...
qmin specify the minimum joint positions, velocities, accelerations,

and jerks, and qmax, q̇max, q̈max,
...
qmax specify the maximum joint positions, velocities, accel-

erations, and jerks.

The trajectory planning task receives long-term targets in the future. In turn,

it generates a series of step-by-step setpoints for the robot to follow on every timestep

starting with the current time s and leading to the target time t. Each trajectory setpoint

specifies target joint positions and velocities qj, q̇j. In the implementation, setpoints are

computed at 1 kHz. So, for the example given in Sec. 4.5 the computed trajectory would

contain 720 points over 0.72 s.

The motion constraints depend on the robot’s physical properties, mass, maximum

motor torques, etc, and would be different for each robot. The position limits depend

on the configuration of the robot joints and links. The velocity and acceleration limits

depend on the motors and their loads. Jerk limits are usually imposed to limit the wear

and tear on the robot. The velocity and acceleration limits can be determined from

the robot data sheets, or measured empirically. As explained in Chapter 7, trajectory

planning is implemented using the Reflexxes Motion Library [10], which can evaluate the

feasibility of trajectories and return the next step in under 1 ms. Reflexxes assumes the

motion constraints to be constant and independent of the current joint velocities. In

reality, motors have limit profiles that vary based on their current load. Still, the limits

can be averaged and tuned for the duration of typical motions in table tennis, which last

about 0.5 s.

Once the trajectory is computed, it is sent to the robot controller to execute.

40

4.7 Joint-Control

The objective of the joint-control task is to execute the necessary control actions

on the robot to follow the next setpoint in the trajectory. Typically this skill is already

realized by an existing PID controller or an inverse dynamics controller. Then, the joint-

control task simply represents the low-level controller on the robot. The task is described

by the policy

πr({(qj, q̇j, q̈j) | s ≤ j ≤ t}) = {uj | s ≤ j ≤ t− 1} (4.10)

where uj denotes the control action at time j.

At each point in time, the controller observes the current joint states (qj, q̇j, q̈j),

and decides the joint actions or torques uj to best satisfy the requested next joint states

at the next timestep j + 1.

4.8 Conclusion

The skill hierarchy breaks down the task of playing table tennis into a hierarchy of

simpler subtasks that depend on each other. This breakdown makes it possible to focus

on each skill individually and develop and evaluate them separately. It helps isolate the

source of problems and reduces the effort needed for debugging. Also, learning subtasks

can be done with fewer training samples than learning the whole task at once.

The skill definitions do not impose any restriction on how they should be im-

plemented. In order to achieve higher sample-efficiency, the approach uses reinforcement

learning and supervised learning strategically. The robot-control skills and the positioning

skill are implemented using an analytic robot controller that does not require learning.

The striking skills are implemented by algorithmic policies that use dynamics models

trained from human demonstrations using supervised learning. Human games provide

observations on the physics of how the ball moves, and how it is affected by contact with

the table or player paddles. Using the demonstrations to train dynamics models instead of

policies has the advantage that it allows the agent to exhibit different game-play strategies

beyond what is demonstrated by humans. Since the strategy requires complex reasoning

41

about opponents and is difficult to learn in a model-based way, model-free reinforcement

learning is used to learn the strategy skill.

The next chapter discusses how decomposing the environment simplifies the im-

plementation of skills and improves the method’s sample efficiency. The skill implemen-

tations are discussed in future chapters. Chapter 7 discusses an analytic controller that

implements paddle-control, joint-trajectory planning, and joint-control skills, plus the

positioning skill. The striking skills land-ball and hit-ball are discussed in Chapter 8.

Finally, Chapter 9 discusses how model-free reinforcement learning is employed to dis-

cover creative table-tennis strategies in cooperative and adversarial games using the skills

described in this chapter.

42

Chapter 5

Environment Design

The skill hierarchy offers a decomposition of the problem on the behavioral axis.

The method also decomposes the robot table-tennis environment into two spaces: the

game space, and the robot space. The decomposition of the environment is shown in

Fig. 3.2. The game space is concerned with the physics of the table-tennis game involving

a table, ball and paddles, independently of how the paddles are actuated. The robot

space is concerned with the control of a robot that has a table-tennis paddle attached

to the end of its arm. The robot space does not deal with the table-tennis ball or the

table. The paddle is the only shared object between the robot space and the table-tennis

space. Also, note that the game space and its constituent objects are exactly the same

in robot games and human games, which makes it possible to learn the game dynamics

from human demonstrations and use them for robot games.

5.1 Game Space

Fig. 5.1 illustrates the game space and visualizes some of the variables which are

used in the definition of the skills in Chapter 4. The game space contains only the

table, paddle, and ball. Separating the game objects from the robot makes it possible

to learn the dynamics and physical behavior of the objects in the game of table tennis

independently of any particular robot. The data that is relevant to the game space and

the dynamics models that are trained in this space can be used by agents driving different

robots. Separating the game physics from robot control increases the sample-efficiency of

training skills and policies that depend on them.

43

bs

bs + 1

bs + 2 bt

pt

ps

g

ps + 1

Figure 5.1: The Game Space of the Environment. The game space includes only
the table, paddle, and ball. The variables bs and bt denote the ball motion-state at times
s and t. Likewise, ps and pt denote the paddle motion-state at times s and t. The game
space does not include any robot. Separating the game objects from the robot permits
training dynamics models that predict the dynamics of the game itself independently of
how the game is to be played by the robot. In particular, the game dynamics models can
be trained from human demonstrations without using any robot.

5.2 Robot Space

The robot space deals with the control of the paddle attached to the robot’s arm.

Fig. 5.2 illustrates the robot space. The only entities that exist in this space are the links

and the joints of the robot assembly and the paddle. The robot space is not concerned

with any of the game objects, including the ball, the table, or any opponent. The main

task in the robot space is paddle-control, which requires taking the paddle from its current

motion-state ps to a target motion-state pt at time t. Separating the robot from the game

objects simplifies the robot-control problem in the hierarchical policy, and reduces it to

precise control of the end-effector to achieve target motion-states for the paddle.

44

pt

ps

ps + 1
qs,qs

.

qt,qt
.

Figure 5.2: The Robot Space of the Environment. The robot spaces includes only
the robot and the paddle attached to it. The main task in the robot space is paddle-
control, which is defined by executing a paddle-motion target pt starting from the current
paddle-motion state ps. The analytic controller maps the paddle-motion target to joint
position and velocity target qt, q̇t and executes them using a trajectory-planning algorithm.
The robot space does not include any of the game objects including the ball and table.
Separating the robot from the game objects simplifies the implementation of the paddle-
control skill. In particular, it permits solving the paddle-control problem with an analytic
robot controller that does not need training.

5.3 Separating Physics of the Robot from the Physics of the
Game

The key advantage of decomposing the environment is that it allows for separating

the physics of the game objects from the physics of robot control. This decomposition

makes it possible to create models of the interactions between the paddle, the ball, and

the table independently of how the robot agent acts in and manipulates the environment.

45

Since the game space does not include the robot, it is possible to train dynamics

models for it just by observing human games or human practice sessions against a ball

launcher. Such models capture the physics of table tennis and can be used to predict the

future states of the game given past observations. As shown later in Chapter 8, these

models are used to create a functioning table-tennis agent without using any training

episodes.

Furthermore, this decomposition simplifies the problem of robot control, as the

robot space does not contain any elements of the game besides the paddle that is at-

tached to the robot. When attached to the end of the robot arm, the paddle becomes the

robot end-effector. Control of an arm end-effector is a well-studied problem in robotics,

so the method uses classic control methods to develop an analytic controller for moving

the paddle. In contrast, when the robot is part of the table-tennis environment, robot

control becomes embedded in the agent’s behavior. In such a monolithic environment,

the table-tennis agent would need solve the robot control problems as well. For exam-

ple, if the agent controls the robot in joint space, it would need to implicitly solve the

inverse kinematics problem to be able to interact with objects in the environment. How-

ever, inverse kinematics has an analytic solution and does not require training samples.

Using an analytic controller where possible decreases the complexity of the agent and in-

creases sample-efficiency as no training samples are used by the agent to learn the internal

dynamics of the robot.

5.4 One Game, Different Robots

An advantage of decomposing the environment into the game and robot spaces is

that the robot can be replaced with a completely different type of robot without affecting

the dynamics models that are trained on the game space. All that is needed to get the

new robot to play table tennis is to supply a new robot controller that knows how to drive

the new robot’s end-effector properly. As long as the new controller can move the paddle

attached to the robot as demanded, the new agent can continue to use the existing game

dynamics models from the previous setup. The game strategy learned on an old robot

might transfer to some extent to a new robot as well. However, since different robots

have different reaches and different motion constraints, the strategy skill would need to

be retrained for best exploit the physics of the new robot.

46

5.5 Reduction in Dimensionality

Another benefit to decomposing the environment is that it lowers the dimension-

ality of the inputs to the models and policies. In a monolithic environment, a typical

choice for the observation space is to include the joint states in addition to the state of

the world objects. Consider the problem of predicting the trajectory of the incoming

ball. The future states of the ball only depend on the state of the ball and its impact

with the table. Yet, in a monolithic environment, the joint states are always part of the

observations. Similarly, the state of the robot paddle depends only on the joint actions,

and is independent of the ball’s position. On the other hand, when learning to land the

ball on the opponent’s table, the agent needs to line up the paddle with the ball. For this

task, the agent needs to take into account both the state of the paddle and the state of

the ball.

In a monolithic environment, more samples or more training episodes are required

for the agent to learn when the dimensions are independent and when they interact with

each other.

5.6 Interaction with Task Decomposition

In the method, environment decomposition is used in combination with the task

decomposition in the skill hierarchy. In the skill hierarchy in Fig. 3.1, the strategy and

land-ball skills interact mainly with the game space of the environment. The positioning

skill, the paddle-control skill and the skills below it interact only with the robot space

of the environment. However, the usefulness of decomposing the environment does not

depend on using task decomposition as well. Even with an end-to-end policy which treats

robot table tennis as one monolithic task, decomposition of the environment into game

and robot spaces can facilitate learning.

In a model-based setup, decomposing the environment allows the agent to learn

something about the robot and something about the game from each training episode.

Regardless of how good the current policy is, each training episode provides the agent with

a sample from which it can learn how the robot’s body responds to the chosen actions.

At the same time, the episode provides the agent with observations showing the dynamics

of interactions between objects in the table-tennis environment.

As an example, consider the task of producing striking motions with the goal of

47

making contact with the ball. In a monolithic environment, as the policy improves and

the agent learns to hit the ball, the distribution of the inputs to the dynamics models may

change considerably. In a decomposed environment, the models that predict the impact

of joint commands on the motion of the robot paddle will observe the same outcome

regardless of whether the strike is successful at making contact with the ball or not.

Suppose at some point the agent learns to make contact. The experience from before the

agent’s policy works well transfers fully to after when it learns to make contact.

5.7 Conclusion

Separating the environment and robot models creates a setup where the table-

tennis dynamics models can be trained independently from the robot’s control mechanism.

This separation helps increase sample efficiency during training, as any shortcomings in

the robot control stack would not limit the space of observations for the game dynamics

models. Similarly, in the other direction, any shortcomings in the agent’s table-tennis

strategy would not hinder an exploration in the space of the robot’s end-effector behavior.

The next chapter describes the dynamics models that make predictions over the game

space of the environment.

48

Chapter 6

Dynamics Models

This chapter describes the dynamics models that can make predictions over fu-

ture states in the game space in the table-tennis environment. Sec. 6.1 describes some

of the design choices behind implementing dynamics models as neural networks. Sec. 6.2

describes the ball-trajectory and landing prediction models. Sec. 6.3 describes the nor-

malization process for reducing the number of dimensions for the dynamics models and

thereby reducing the number of samples needed for training them. Sec. 6.4 describes the

process for collecting training samples in the VR environment. Sec. 6.5 evaluates the

trained dynamics models.

6.1 Learning Dynamics with Neural Networks

This section discusses why the human demonstrations are used in this work to train

dynamics models rather than policies, and why the dynamics models are implemented as

neural networks rather than physics models or a combination of the two.

6.1.1 Learning Dynamics Instead of Policy

Human demonstrations can be used to teach a learning agent about optimal actions

to choose. In other words, the demonstrations can be used to directly train a policy. In

this dissertation, the human demonstrations are used only to train dynamics models of the

game space of the environment. It has the advantage that the dynamics models transfer

to different policies. Also, not using the human policies allows the strategy agent to come

up with novel approaches to playing table tennis different from what was tried by the

humans.

49

6.1.2 Using Physics vs. Neural Networks

A good approach to implementing the dynamics models is to use a combination

of physics models and neural networks. The physics models would include parameters

for gravity, coefficients of friction, restitution, the drag and Magnus forces acting on the

ball, etc. The values for these parameters can be obtained by computing a best fit over

observations from the training data. Such physics models can produce an approximation

over the future states of the objects. Then, neural networks can be trained to predict

only a residual over the predictions from the physics models. The targets for the neural

networks can be obtained by running more accurate offline state estimation models that

take complete trajectories into account, including data points that are to be observed in

future timesteps. Using neural networks in combination with physics models is expected

to increase the sample efficiency.

However, since the method is evaluated only in simulation, all dynamics models

are implemented using neural networks. The reason is that the physics simulations in

Bullet are deterministic. If the right parameters were included in the physics models,

their values could be discovered rather easily, without relying on the predictive ability

of the neural networks. By relying only on neural networks, the experiments evaluate

whether the dynamics models are able to model physical interactions. If they do so in the

simulator, they are likely to do so in the real world as well.

6.2 Dynamics Models

The models are used to make two types of predictions:

1. Future trajectory of the current ball: Once the opponent hits the ball, the learning

agent predicts the future trajectory of the incoming ball and picks a desired point

and time of contact for hitting the ball back.

2. Landing location and speed resulting from a paddle action: The learning agent

uses landing predictions to choose among potential paddle actions to best satisfy

the requested landing target. The landing model predicts the eventual landing

location/speed of the ball on the opponent side given the pre-contact ball-motion

and paddle-motion states.

The following sections go over each dynamics model in detail.

50

6.2.1 Ball-Trajectory Prediction Model

The ball trajectory prediction model receives the estimate on the current state of

the ball and predicts a sequence of ball positions and velocities at future timesteps. The

model produces a full trajectory to give the agent multiple options for picking a contact

point for hitting the ball with the paddle. The model is described by the function

bs+1, bs+2, . . . , bs+n = B(bs), (6.1)

where B denotes the ball trajectory prediction model, bs denotes the estimate on the

current ball-motion state, and bs+1..bs+n denote predictions on the future ball-motion

state over the next n timesteps.

The model’s network architecture is shown in Fig. 6.1. It is a recurrent model,

however, it receives the same input at every timestep. The model outputs form a complete

trajectory for the ball’s future position and velocity over multiple timesteps.

Given the training data, the model learns to predict the physical forces that operate

on the ball. In the simulator, the free motion of the ball in the air is affected by its velocity,

gravity, and a drag force that is proportional to the velocity of the ball. The Bullet

simulator does not simulate ball spin and the Magnus forces causing the ball’s trajectory

to curve. The motion of the ball after contact with the table is affected by the friction

coefficients (lateral, rolling, spinning) between the ball and table, and the restitution

coefficients of the ball and table. In order to predict the future states of the ball, the

neural network learn to implicitly model these physical forces. The ball trajectory may

include arcs after its contact with the table. The training data allows the model to learn

about the location and geometry of the table and predict whether the ball will collide

with the table and how its trajectory is affected after contact.

6.2.2 Landing-Prediction Model

The landing-prediction model allows the agent to make predictions about the even-

tual landing location and speed of the ball given pre-contact ball and paddle-motion states.

Suppose the land-ball agent has predicted a trajectory for the incoming ball and has picked

a particular point bt as a desired contact point for hitting the ball with the paddle. Given

51

LSTM LSTM LSTM

LSTM LSTM LSTM

Dense Dense Dense

bs bs bs

bs + 1 bs + 2 bs + n

...

...

...

Input Sequence:
Current Ball
Position/Velocity

Output Sequence:
Future Ball
Position/Velocity

Unrolled RNN

Figure 6.1: Ball-Trajectory Prediction Model. Given an estimate on the current
position and velocity of the ball, predicts the future position and velocity of the ball
over multiple timesteps. The recurrent model has two LSTM layers followed by a fully-
connected layer. The figure shows the model unrolled through time for better visualiza-
tion. At all timesteps, the model receives the same input bs, which represents the current
ball position and velocity.

a candidate paddle-motion state at time of contact pt, the landing-prediction model pre-

dicts where and with what speed the ball will land on the table if the paddle-motion state

is achieved.

The landing-prediction model is described by the function

ĝ = L(pt, bt), (6.2)

52

where L denotes the landing model, and ĝ denotes the ball’s predicted position and speed

at landing time.

D
ense

D
ense

bt

pt

g

Pre-contact
ball state

^

Pre-contact
paddle state

Landing
location, speed

Figure 6.2: Forward Landing-Prediction Model. It is a feed-forward network with
two fully-connected hidden layers. Given pre-contact ball-motion and paddle-motion
states, the model predicts the eventual landing location and speed of the ball when it
hits the opponent side. Such a prediction can inform the agent about the outcome of
available actions.

The model’s architecture is shown in Fig. 6.2. It is a feed-forward network, which

produces its output in one step. Since the land-ball policy is only concerned with the

eventual landing location and speed of the ball, a feed-forward is preferred since it is

faster at inference time and easier to train.

The training data for this model can be limited to the ball trajectories that actually

hit the table after contact with the paddle. Alternatively, the notion of landing location

can be extended to include positions off the table. In that case, the landing location is

picked to be the last location for the ball before it falls below the plane of the table’s

surface.

The landing-prediction model is used by the land-ball skill to search in the space of

candidate paddle actions and select one that is more likely to achieve the desired landing

target. In other words, given a set of potential paddle actions pk, the land-ball policy

53

selects the action whose predicted landing location and speed is closest to the requested

target g.

6.2.3 Inverse Landing-Prediction Model

The search process for selecting paddle actions is computationally expensive. The

inverse landing-prediction model addresses this issue by directly predicting the paddle

action given a desired landing target.

The landing-prediction model is a forward model, as it predicts the future state of

the environment given observations from the current state and an action. It is possible

to train an inverse landing model from the same data that is used to train the forward

landing-prediction model. The inverse landing model is described by the function

pt = L−1(bt, g) (6.3)

where L−1 denotes the inverse landing model.

The model’s architecture is shown in Fig. 6.3. Given a pre-contact ball-motion

state and a desired landing location and speed, the inverse landing model predicts the pre-

contact paddle-motion state that would achieve the desired landing location and speed.

The predicted paddle-motion state can be used as an action for the paddle-control skill.

Ignoring the noise in the environment and imperfections in paddle-control, the

forward landing-prediction model should have a single answer. That is, if the pre-contact

ball and paddle-motion states are accurately known, there is only one possible outcome

for the landing location and speed of the ball. The same statement does not hold for

the inverse landing model. In general, there might be more than one way to hit a given

ball back toward a given target. However, it is still useful to build an inverse landing

model by training a neural network on all observed trajectories from human data. Such

a model would predict the mean of all observed paddle actions taken by humans. Due to

the nonlinearities in the action dimensions, it is possible that the mean action would not

be a good solution to the inverse landing problem. However, it can serve as a starting

point for a search using the forward landing model.

The inverse landing model is more complex than the forward landing model, since

the paddle-motion state pt has more dimensions than the landing target g. In the current

54

D
ense

D
ense

bt

g

pt

Pre-contact
ball state

Pre-contact
paddle state

Landing
location, speed

Figure 6.3: Inverse Landing-Prediction Model. It is a feed-forward network with two
fully-connected hidden layers. Given pre-contact ball-motion state and a desired landing
target, the model predicts the paddle-motion state right before contact. The predicted
paddle-motion can be used as an action for the paddle-control skill.

implementation, pt is 12-dimensional, while g has up to four dimensions. Note that some

dimensions do not need to predicted. For example, the paddle position can be decided

directly based on the predicted position of the ball at the moment of contact, and the

height of the landing target is equal to the height of the table plus the radius of the ball.

6.3 Domain Invariances and Data Normalization

This section describes the normalizing transformations that are applied to the

collected training data when training the dynamics models discussed in Sec. 6.2.

6.3.1 Invariances in Table Tennis

Normalizing the data reduces the dimensionality of the inputs and outputs to the

models and improves sample efficiency. Consider a trajectory containing a number of

observations on the position and velocities of the ball and the paddle. In the table-tennis

domain, the following invariances hold:

55

• Translation invariance across x, y: Shifting the x, y coordinates of the ball and

paddle positions by a constant amount for all the points in the trajectory produces

a valid trajectory. This transformation does not affect the object orientations or

velocities.

• Rotation invariance around z: Rotating all object poses and velocity vectors

around any line orthogonal to the x− y plane produces a valid trajectory.

• Rotation invariance around paddle normal N : Rotating the paddle poses

around the surface normals produces a valid trajectory. The force exerted by the

paddle on the ball depends on the contact angle between the ball and their velocities

before contact, but it is not affected by the placement of the paddle handle. Rotating

the paddle handle around the paddle surface normal does not change the contact

dynamics.

• Inversion invariance for paddle normal N : Inverting all three elements of the

paddle normals produces a valid trajectory. Flipping the paddle normal amounts

to changing a forehand to a backhand. As long as the paddle position and velocity

stay the same, a forehand and backhand contact have the same impact on the ball.

These variances can be exploited when training the dynamics models from obser-

vation trajectories in two ways:

1. Data Augmentation: For any collected trajectory, random perturbations based on

the explained invariances can be applied to all points consistently to generate aug-

mented training trajectories.

2. Data Normalization: The collected trajectories can be normalized to remove the

redundant dimensions.

Data augmentation has the advantage that it has has a simple implementation;

it just results in generating more data. The clients that query the dynamics models do

not need to be modified. Another advantage to data augmentation is that it can factor

in the position of the table and its impact on the trajectory. For example, a ball that

bounces once on the table may not hit the table at all if its x and y coordinates are

shifted too much. Similarly, if an augmented trajectory hits the net, it can be removed.

56

A disadvantage of data augmentation is that it introduces additional hyperparameters.

What translation and rotation values are likely to generate trajectories that are valid and

likely to occur during the game? How many augmented trajectories should be generated

from each recorded trajectory to capture different types of transformations over object

states sufficiently? Lastly, the expected accuracy of the data augmentation approach is

upper bounded by the data normalization approach.

The data normalization approach does not add any new trajectories. Instead, it

just modifies the collected trajectories to remove the redundant dimensions. For example,

all ball trajectories can be shifted so that the initial x, y coordinates of the ball are at (0, 0).

It has the advantage that it does not introduce any hyperparameters and does not increase

the size of the training dataset. Also, reducing the number of dimensions simplifies the

problem for the neural network, whereas with data augmentation the neural network

needs to capture the invariances in its hidden layers. The disadvantage of normalization

is that it cannot model the table. For example, normalizing the trajectory of a bounced

ball assumes implicitly that the ball will bounce in any direction and will never hit the

net. Lastly, querying a model trained on normalized data requires normalizing the inputs

and un-normalizing the outputs. Therefore, it complicates the implementation.

The method implemented in this dissertation uses data normalization. Since the

models are not aware of the location of the table and the net, it is up to the higher-level

skills like strategy to pick targets that are feasible and increase the agent’s reward. In the

case of the ball-trajectory prediction model, it is harmless to assume that the opponent’s

ball will always bounce on the player’s table. The agent can plan to respond to a bouncing

ball. If that does not happen, the agent simply wins a the point. For the landing model,

the strategy skill is expected to pick targets such that the actions recommended by the

models are effective. For example, if the strategy skill picks a landing target close to

the net, it should pick a lower landing velocity to avoid hitting the net. Therefore, the

dynamics models do not need to be aware of the location of the table and the net.

The following section explains the normalizing transformations that are applied to

the data used for training each dynamics model.

6.3.2 Normalizing Ball Trajectories

Ball trajectories are normalized as follows:

57

1. All ball-motion states {b0, . . . , bn} are shifted such that the x, y coordinates of the

first ball-motion state b0 become zero. Suppose the position of the first ball b0 in

the original trajectory is

l(b0) = lx(b0), ly(b0), lz(b0), (6.4)

where lx, ly, lz denote the x, y, z coordinates of the ball’s position. Then all points bi
in the original trajectory are transformed to points b′i in the normalized trajectory

as

l(b′i)← l(bi)− (lx(b0), ly(b0), 0). (6.5)

In particular, the first point is transformed to b′0 such that

l(b′0) = 0, 0, lz(b0). (6.6)

This transformation does not affect the ball velocity vectors.

2. All ball positions and velocity vectors are rotated such that the y component of the

velocity vector of the first ball b0 becomes zero. More specifically, the objects and

their velocity vectors are rotated around the vertical line

x = lx(b0), y = ly(b0) (6.7)

by an an angle ψ equal to

ψ = ∠(projz=lz(b0)v(b0), (1, 0, 0)), (6.8)

where ∠ denotes the angle between the two enclosed vectors, projz=lz(b0) denotes

the projection of the velocity vector v(b0) onto the horizontal plane specified by

z = lz(b0), and (1, 0, 0) is the unit vector parallel to the x axis.

58

These transformations remove three of the six dimensions in the input to the ball-

trajectory prediction model. Therefore, they simplify the job of the neural network that

is modeling ball trajectories.

6.3.3 Normalizing Landing Trajectories

Landing trajectories are normalized as follows:

1. All ball-motion states {b0, . . . , bn} and paddle-motion states {p0, . . . , pn} are shifted

such that the x, y coordinates of the pre-contact ball pt become zero. Suppose the

position of the pre-contact ball bt in the original trajectory is

l(bt) = lx(bt), ly(bt), lz(bt). (6.9)

Then all ball-motion states bi and paddle-motion states pi in the original trajectory

are transformed in the normalized trajectory as

l(b′i)← l(bi)− (lx(b0), ly(b0), 0), (6.10)

l(p′i)← l(pi)− (lx(b0), ly(b0), 0). (6.11)

This transformation does not affect any velocity vectors or paddle orientations.

2. All ball and paddle poses and velocity vectors are rotated such that the y component

of the velocity vector of the pre-contact ball bt becomes zero. More specifically, the

objects and their velocity vectors are rotated around the vertical line

x = lx(bt), y = ly(bt) (6.12)

by an angle ψ equal to

ψ = ∠(projz=lz(bt)v(bt), (1, 0, 0)). (6.13)

59

3. All paddle orientations are replaced by paddle normals.

4. All paddle normals with negative x components are inverted. In other words, all

backhand paddles are replaced with forehand paddles.

The first two transformations above remove three of the six dimensions from the

ball-motion state input to the landing-prediction model. The third transformation re-

moves one of the 13 dimensions from the paddle-motion state input to the model. The

last transformation cuts the space of three of the paddle-motion state dimensions in half.

Therefore, normalizing the landing trajectories makes it easier for the neural network to

predict landing targets.

It is useful to note that the trajectories are not invariant to translation across z.

Changing the height of the ball and paddle invalidates the trajectory if the ball contacts

the table at any point. On the other hand, for the landing-prediction model, data augmen-

tation is used to generate augmented trajectories with reduced ball and paddle heights.

The landing model is not concerned with the motion of the ball after its contact with

the table. Given a ball trajectory that collides with the table at the end, it is possible to

compute where the collision point would be if the ball was shot from a lower height. The

same does not hold for increasing the height of the ball. This property is used to generate

multiple landing trajectories with lower heights from each original landing trajectory.

6.4 Learning Dynamics from Demonstrations

The data for training the dynamics models is collected in a VR environment that

is integrated with the simulation environment. The VR environment is specially-designed

for the purpose of data collection only. The paddle-strike trajectories and ball-motion

data collected from human demonstrations

6.4.1 Data Collection in VR Environment

Fig. 6.4 shows the data collection process in the VR environment. A player is

controlling the simulated paddle by moving the real VR controller in their hand. The

player returns the balls coming from a ball launcher on the other side of the table. The

paddle and ball trajectories are recorded and used in training the dynamics models.

60

Figure 6.4: Data Collection in VR Environment. The VR environment allows a
human player to control a simulated paddle by moving the VR controller in the real
world. The simulated paddle follows the VR controller (visualized as the black object
holding the paddle). The player returns the balls coming from a ball launcher on the
other side of the table. The paddle and ball trajectories are recorded and used in training
the dynamics models.

Since the VR hardware has only one headset and does not support two players,

the data collection environment emulates a two-player game by having the ball launcher

match the direction and velocity of the balls that are successfully returned by the player.

If the player lands the ball on the other side, the simulator sends the next ball to the

corresponding location on the player’s side of the table, making the player respond to

their own shot. This setup allows the distribution of ball trajectories to be closer to what

might be observed in a real two-player game. If the player sends the ball out, the next

ball is shot from the ball launcher.

Once the data is collected, it is used to extract ball-motion trajectories and landing

trajectories. Ball motion trajectories start at the moment when the ball launcher throws

the ball and include the motion state of the ball in every subsequent timestep. Landing

trajectories start a few timesteps before contact between the ball and paddle happens

61

and continue until the ball lands on the opponent side, or crosses the plane at the surface

of the table. The ball-trajectory prediction model is trained on the ball trajectories

and the landing-prediction model is trained on the landing trajectories. For training the

landing-prediction model, only two timesteps of the trajectory are used: a timestep before

contact happens, and the final timestep when the ball has landed or has gone out. Since

the dynamics models are normalized, a ball that goes out contains useful information as

well, since the same paddle motion can be useful for landing a similar ball from a different

region of the table.

6.4.2 Data Augmentation

The data collected from human demonstrations contained about 300 successful

paddle strikes where the human player was able to make contact with the ball. Strikes

where the ball hit the edge of the paddle were removed from the dataset, since that type

of contact is not a behavior from which the agent is expected to learn. To speed up

data collection, a data augmentation process was used to generate more samples from the

300 human demonstrations. During data augmentation, the paddle and ball trajectories

observed during demonstrations were replayed in the simulator with small amounts of

noise to produce additional samples. Each additional sample created this way is counted

as an extra sample.

6.4.3 Subsampling

A subsampling process is used to extract multiple training samples from each tra-

jectory. Since the sensors have a frequency higher than the environment, each trajectory

can be subsampled with multiple offsets. For example, in a landing trajectory, there are

multiple sensory observations of the ball and paddle in the 20 milliseconds (one environ-

ment timestep) leading up to contact between the ball and paddle. Any one of those

observations can be used for training the forward and inverse landing-prediction models.

So, with the subsampling process, every landing trajectory can be used to produce 20

samples.

In addition, the ball trajectories are replicated by considering any of the observa-

tions in the first ten timesteps as the starting point for the remainder of the trajectory.

The training samples extracted with subsampling were not counted as additional samples.

62

Although not attempted in the current implementation, there is also an oppor-

tunity to extract additional landing trajectories by considering a height reduction and

computing where the landing location would have been if the height of the paddle and the

ball at the moment of contact were reduced. The new landing location can be computed

as the intersection of the observed trajectory and an imaginary plane of where the table

would be given the height adjustment. This same process can not be used for augmenting

free-moving ball trajectories, as the ball-trajectory prediction model is expected to predict

the behavior of the ball after it bounces off the table as well, and that behavior can not

be computed since reducing the initial height of the ball changes the contact parameters

for when it hits the table. The height reduction technique was not used in the current

implementation.

6.5 Evaluation

To better evaluate the impact of the number of samples on the accuracy of the

dynamics models, they are trained with two dataset sizes. The smaller dataset contains

about 7 000 successful paddle strikes where the human player was able to make contact

with the ball. The larger dataset contains 140 000 strikes. Once trained, the dynamics

models are evaluated on 1000 strikes generated against a ball launcher. These strikes are

not part of the training or evaluation datasets. The observed ball and paddle trajectories

resulting from the 1000 strikes are recorded and compared against the predictions from

the dynamics models. The following sections report the mean errors for the ball-trajectory

and landing-prediction models.

6.5.1 Ball-Trajectory Prediction

Fig. 6.5 and Fig. 6.6 show the average position and velocity errors in predicted

ball trajectories. Each evaluated ball trajectory contains 30 timesteps of observations

corresponding to 0.6 seconds of data. This amount of time is usually enough for the ball

to cross the table and reach the striking player. As the plots show, the average position

error stays less than 1 cm after 25 timesteps, and the average velocity error stays less

than 0.1 m/s after 25 timesteps.

There is little difference between the accuracy of the model trained on the large

dataset and the model trained on the small dataset. With data normalization, the number

63

of inputs to the ball-trajectory prediction model is reduced to three. Moreover, the

subsampling process generates many more samples from each recorded ball trajectory. In

addition, the physical laws governing the behavior of a bouncing ball are relatively simple

to learn. Therefore, it seems this model does not need many samples to learn to predict

the behavior of the ball.

Figure 6.5: Mean Position Error in Ball-Trajectory Predictions. The plot shows
the mean position error over 1000 ball trajectories containing 30 timesteps of observations
each. The error reported is the Euclidean distance between the predicted position and
the observed position of the ball. The average position error stays less than 1 cm after 25
timesteps, which suggests that the approach is effective.

6.5.2 Landing Prediction

Table 6.1 shows the mean position error over 1000 landing predictions from models

trained on the small and large datasets. The error is about 0.19 m when the model is

trained on 7 000 samples and about 0.114 m when the model is trained on 140 000 samples.

The landing-prediction model is more complex than the ball-trajectory prediction models,

64

Figure 6.6: Mean Velocity Error in Ball-Trajectory Predictions. The plot shows
the mean velocity error over 1000 ball trajectories containing 30 timesteps of observations
each. The error reported is the Euclidean distance between the predicted 3D velocity
and observed 3D velocity vectors for the ball. The average velocity error stays around
0.02 m/s for the first 20 timesteps and starts climbing from there. The 20th timestep is
around the time when the ball hits the table. It is likely that predicting the behavior of
the ball after contact is more challenging than predicting its free motion for the model.
At any rate, the prediction error on velocity remains low compared to the magnitude of
observations (around 6 m/s), which suggests that the approach is effective.

since its inputs include both the ball and paddle states. Moreover, the model is expected

to predict the eventual position of the ball after it has travelled for 1-2 meters. These

reasons might be why the landing-prediction model benefits from more training data.

6.6 Conclusion

The dynamics models discussed in this chapter are only concerned with the physics

of the table-tennis environment. They do not deal with the physics of the robot. There-

65

Samples Mean Position Error

7 000 0.190 m
140 000 0.114 m

Table 6.1: Mean Position Error for the Landing-Prediction Model. Mean position
error for models trained from 7 000 trajectories and 140 000 trajectories.

fore, the models can be trained from data collected from human games or practice sessions

against a ball launcher. The evaluations show that models are able to predict the motion

of the ball over multiple timesteps in the future. There is no noise in the simulation, which

makes the simulation outcomes deterministic and easier to predict. Yet, the experiment

results show that the models have the ability to capture the physics of interactions be-

tween the objects in the environment. Chapter 10 describes an extension to the method

that can handle observation noise as well. The next chapter describes the analytic paddle

controller that can be used to execute target paddle-motion states to land a given ball at

a desired target.

66

Chapter 7

Paddle-Control Policy

This chapter discusses the implementation of the paddle-control skill. Sec. 7.1 re-

visits the definition of the paddle-control task and defines some variables used in the rest of

the chapter. Sec. 7.2 describes an analytic paddle controller, which is derived mathemat-

ically based on the kinematics of the robot links and the motion constraints on the robot

motors. Sec. 7.3 describes an analytic paddle-dynamics model that allows higher-level

skills to make predictions about expected paddle-motion states resulting from execut-

ing the high-level paddle-motion targets with the paddle-control skill. Lastly, Sec. 7.4

discusses an alternative implementation for the paddle-control skill that uses learning.

To increase sample-efficiency, the method in this dissertation uses the analytic

paddle controller and does not rely on training to learn the internal dynamics of the

robot. The alternative controller that uses learning is studied in an ablation experiment

in Chapter 8.

7.1 Paddle-Control Problem

As described in Sec. 4.5, the objective of paddle-control skill is bring the paddle

from its current motion-state ps at time s to the desired paddle-motion target pt at time

t. The target requested from the paddle skill includes the paddle pose x(pt) and its time

derivative ẋ(pt):

pt = x(pt), ẋ(pt). (7.1)

The paddle pose in turn includes the paddle position l(pt) and surface normal

N(pt):

67

x(pt) = l(pt), N(pt). (7.2)

Note that in this formulation, pt does not fully specify the paddle pose, as there

are generally many possible paddle orientations that satisfy the specified paddle normal

N(pt). Specifying the paddle pose with its surface normal instead of a fully-specified

orientation has the advantage that it gives the paddle skill the freedom to choose any

orientation that satisfies the normal. Also, it is easier to replicate paddle normals from

human demonstrations than paddle orientations. The forces exerted from the paddle

on the ball at the moment of contact depend on the paddle’s normal and stay fixed if

the paddle is rotated around its surface normal vector. So any possible orientation that

satisfies the given normal will have the same impact on the ball.

The time derivative of the paddle pose ẋ(pt) includes the paddle’s linear velocity

v(pt) and angular velocity ω(pt):

ẋ(pt) = v(pt), ω(pt). (7.3)

The paddle’s linear and angular velocity at the time of contact affect the forces

exerted on the robot and affects the ball’s trajectory after contact.

7.2 Analytic Paddle-Control

The analytic paddle controller uses 3D geometry, inverse kinematics, the robot

Jacobian, and Reflexxes trajectory planning to achieve the paddle-motion target pt. It

works through the following steps to move the paddle from its current state ps at time s

to a desired state pt at time t:

1. Find a paddle orientation r(pt) that satisfies the desired paddle normal in N(pt).

2. Map the target paddle pose x(pt) to target joint positions qt.

3. Map the target paddle velocity ẋ(pt) to target joint velocities q̇t.

68

4. Compute a joint-trajectory starting with current positions and velocities qs, q̇s and

reaching the target joint states exactly at time t.

5. Use robot’s controller (e. g. a PID controller) to execute joint commands between

times s and t to follow the computed trajectory.

The following sections describe each step in detail.

7.2.1 Mapping Paddle’s Normal to Orientation

The analytic controller computes a paddle orientation r(pt) based on the requested

paddle position l(pt) and surface normal N(pt). First, it uses inverse kinematics to find

an intermediate pose that satisfies only the requested position l(pt):

qlt ← IKc(l(pt)), (7.4)

where IKc denotes the inverse kinematics function starting with canonical robot rest poses,

and qlt denotes the joint positions corresponding to an intermediate pose that satisfies l(pt).

In the coordinate system introduced in Sec. 2.1 and shown in Fig. 2.1, the x

coordinate of the paddle normal points toward the opponent. A normal with a positive

x coordinate specifies a forehand paddle, while a normal with a negative x coordinate

specifies a backhand paddle. The IKc function in Eq. 7.4 runs the IK optimization starting

with either a canonical forehand or backhand rest pose for the robot depending the x

coordinate of the requested paddle. Inverse kinematics is typically implemented as a

local optimization process that iteratively uses the robot Jacobian to reduce the distance

between the current pose and the requested pose. So, the solution found by inverse

kinematics depends on the initial pose of the robot. Starting the search with a rest pose

leads to an answer that is closer to that initial pose, and therefore likely to be well within

the robot’s reachable space.

Once the intermediate solution qlt is found, forward kinematics is used to compute

the corresponding paddle pose for this solution:

x(plt)← FK(qlt), (7.5)

69

where FK denotes the forward kinematics function. Assuming that the requested target

paddle position l(pt) is reachable by the robot, plt should satisfy that position, i. e. , one

should have:

l(plt) = l(pt). (7.6)

Next, the corresponding paddle normal N(plt) at the intermediate solution is com-

puted. Then a minimum rotation between N(plt) and the target paddle normal is com-

puted as:

φ← ∠(N(plt), N(pt)), (7.7)

where φ denotes a 3D rotation that can move N(plt) to N(pt). Applying the rotation φ to

the intermediate paddle orientation produces the desired paddle orientation:

r(pt)← φ(r(plt)), (7.8)

where r(pt) denotes the desired paddle orientation and r(plt) denotes the paddle orientation

corresponding to the intermediate paddle pose.

Due to its construction, r(pt) is guaranteed to have the desired paddle normal

N(pt). Also, because it is constructed with a minimum rotation from a feasible pose plt,

it is likely that r(pt) is feasible by the robot as well.

7.2.2 Mapping Paddle’s Pose to Joint Positions

Inverse kinematics can be be used to find some joint positions qt to satisfy the

paddle pose x(pt) subject to the physical limits of the robot and the limits on the range

of positions for its joints:

70

qt ← IK(x(pt)), (7.9)

where IK denotes the inverse kinematics function. In other words, IK maps the desired

paddle pose x(pt) to a robot pose qt.

In general, there are multiple solutions to the IK problem. The method in this

dissertation uses null-space control to prefer robot poses that are closer to some canonical

forehand and backhand poses.

7.2.3 Mapping Paddle’s Linear and Angular Velocities to Joint Velocities

To map the desired linear and angular velocities for the paddle ẋ(pt) to some joint

velocities, the end-effector Jacobian is computed at pose qt:

Jt ←
∂x(pt)

∂qt
, (7.10)

where Jt denotes the Jacobian at qt. Eq. 7.10 can be rewritten as:

∂x(pt)

∂qt
= Jt (7.11)

∂x(pt)

∂t

∂t

∂qt
= Jt (7.12)

∂x(pt)

∂t
= Jt

∂qt
∂t

(7.13)

ẋ(pt) = Jtq̇t, (7.14)

where ẋ(pt) and q̇t denote the time derivatives of x(pt) and qt. In other words, the Jacobian

establishes a relationship between the paddle’s linear and angular velocity and the robot’s

joint velocities.

In order to solve for q̇t given ẋ(pt), the Jacobian needs to be inverted. To handle

non-square Jacobians when the robot assembly has more than six joints, and also to avoid

failing on singular matrices, the pseudo-inverse method is employed to invert the matrix:

71

J†t ← pseudo-inverse(Jt). (7.15)

Then, the required joint velocities at target can be obtained as:

q̇t ← J†t ẋ(pt). (7.16)

The current joint positions and velocities qs, q̇s can be obtained directly by reading

them from the robot’s controller. Therefore, the paddle-control policy can analytically

obtain the inputs it needs to pass to the trajectory planning skill as described in Eq. 4.8:

πp(t, pt | ps) = πt(t, qt, q̇t | qs, q̇s) (7.17)

7.2.4 Trajectory Planning

At this point the problem of executing the paddle-motion target pt is reduced to

executing target joint states qt, q̇t given the initial joint states qs, q̇s, as described in the

trajectory planning skill in Eq. 4.9. This task is accomplished by employing Reflexxes to

compute a joint state trajectory between times s and t. Reflexxes is an analytic algorithm

which computes the intermediate joints states between times s and t solely based on a set

of motion constraints defined on individual joints:

{(qj, q̇j, q̈j) | s ≤ j ≤ t− 1} ← Reflexxes(qs, q̇s, t, qt, q̇t)

subject to:

qmin ≤ qj ≤ qmax,

q̇min ≤ q̇j ≤ q̇max,

q̈min ≤ q̈j ≤ q̈max,
...
qmin ≤

...
qj ≤

...
qmax.

(7.18)

72

Reflexxes is able to produce trajectories at the desired control frequency, which

is 1 kHz in this implementation. It is a fast library and can plan for the trajectory and

return the next step typically within 1 ms.

Reflexxes can compute trajectories that take the minimum time, or trajectories

that complete precisely at some specified time t. The method in this dissertation uses

both modes for different skills:

1. The positioning skill is active when the agent is awaiting the opponent’s action. Its

objective is to put the robot in some pose that is suitable for responding to the next

incoming ball. So, for this skill, it is desirable to reach the target position as soon as

possible. When the positioning skill is active, the paddle skill requests a trajectory

that reaches the target in minimum time.

2. The objective of the land-ball skill is to hit the ball back at a planned contact time t.

When producing trajectories for this skill, the paddle skill is always given a desired

target time t. In such cases, usually the robot starts moving slowly and builds up

speed toward the target just at the right time to allow it to achieve the desired joint

velocities q̇t exactly when it is reaches the pose specified by the joint positions qt.

It is possible that before the robot reaches the target of the positioning skill, the

opponent hits the ball back and the land-ball skill becomes active again. In that case, the

trajectory planned for the positioning skill is not completed, and the trajectory for the

land-ball skill starts with the current joint states as its initial condition.

There are situations where no feasible trajectories exist that satisfy the constraints.

For one, the initial joint states at time s or the final joint states at time t might violate the

position and velocity constraints of the robot. In the hierarchical setup, this may happen

due to the higher-level skills requesting a paddle-motion target that requires executing

joint velocities beyond the limits of the robot. In such cases, q̇t already violates the

constraints in Eq. 7.18. Even with conservative limits on the paddle’s velocity ẋ(pt), the

joint velocities q̇t may end up being high when the paddle is close to the singularity points

of the robot. In such regions, the inverse Jacobian matrix computed in Eq. 7.15 contains

elements with large magnitudes. In situations where the requested final joint positions

and velocities qt, q̇t are invalid, the analytic controller does not send any commands to

the robot.

73

Another class of infeasible trajectories are those with insufficient time. For exam-

ple, if a higher-level skill demands that the paddle moves from one side of the table to

the other side in 0.1 seconds, the trajectory would violate the acceleration and jerk limits

of a typical robot. In such cases, Reflexxes can still compute a minimum-time trajectory

towards qt, q̇t. However, due to having insufficient time, at time t the robot will be at some

state q̂t, ˆ̇qt somewhere in between the starting state and the target state. This state can

be queried and used to evaluate the expected outcome of the action under consideration:

{..., (q̂t, ˆ̇qt, ˆ̈qt)} ← Reflexxes(qs, q̇s, t, qt, q̇t). (7.19)

7.2.5 Joint-Control

Once a trajectory is computed, it needs to be executed on the robot. The joint-

trajectory includes joint positions, velocities and accelerations for each timestep. When

the control frequency is high enough, the points on the trajectory are so close to each

other that just sending the joint positions qi, ..., qt to a PID controller can control the

robot smoothly. Some robots have PID controllers that also handle velocity targets. For

such controllers, the joint velocities q̇i, ..., q̇t from the trajectory can also be fed to the

robot’s controller. Another option for joint-control is inverse dynamics control, where

the kinematics and inertial properties of the robot links are used to directly compute the

forces or torques for joints. In either case, the underlying controller that is available for

the robot implements the policy

πr(uj | qj, q̇j, q̈j, qj+1, q̇j+1, q̈j+1),

s ≤ j ≤ t− 1,
(7.20)

where qj, q̇j, q̈j denote the current joint positions, velocities, and accelerations, qj+1, q̇j+1, q̈j+1

denote the desired joint positions, velocities and accelerations at the next timestep, and

uj denotes the joint-control command to execute in order to achieve the desired joint

states at the very next timestep.

74

7.3 Paddle-Dynamics Model

The objective of the paddle-control skill is to control the robot in a way to achieve

the requested paddle-motion target pt at time t. As outlined in Sec. 7.2, this skill is

implemented with an analytic controller. However, the solution found by the analytic

controller may not always achieve the desired paddle-motion target pt due to the following

reasons:

1. Failure in inverse kinematics: The desired paddle-motion target pt may not be

physically feasible for the robot. The target paddle position may be out of reach for

the robot, or it may have an orientation that is not possible for the robot’s anatomy.

2. Failure in trajectory planning: The desired target time t may be too close. In

that case, the trajectory planning skill cannot move the robot to the target in time

without violating the specified motion constraints.

The analytic controller can predict the error in achieving the paddle-motion target

due to either of the above two causes. If there is enough time for the trajectory to reach

the target while satisfying the motion constraints, then the trajectory would be feasible.

As shown in Eq. 7.19, the final point on the trajectory computed by Reflexxes contains

information about where the robot will be at target time t. When the trajectory is feasible

by the given time t, the final joint positions and velocities ˆ̇qt, ˆ̇qt will be equal to the planned

target qt, q̇t. In other words, the following holds:

q̂t =qt, (7.21)

ˆ̇qt =q̇t. (7.22)

When the time given is not enough to complete the trajectory, q̂t, ˆ̇qt can be used

to predict the final paddle-motion state at time t. First, forward kinematics is used to

predict the paddle pose from executing q̂t:

x(p̂t)← FK(q̂t) (7.23)

75

where x(p̂t) denotes the predicted resulting paddle pose.

Then, the end-effector Jacobian is used to produce a prediction for the paddle’s

final linear and angular velocities given the predicted final joint velocities ˆ̇qt:

ẋ(p̂t)← J(q̂t)ˆ̇qt. (7.24)

Equations 7.23, 7.24 combined specify a prediction for the full paddle-motion state

at time t:

p̂t = x(p̂t), ẋ(p̂t). (7.25)

In Sec. 7.2, inverse kinematics (Eq. 7.9), the robot Jacobian (Eq. 7.16), and Re-

flexxes (Eq. 7.19) were used to map the paddle-motion target pt to joint positions and

velocities q̂t, ˆ̇qt. In this section, forward kinematics (Eq. 7.23) and the robot Jacobian

(Eq. 7.24) are used to map q̂t, ˆ̇qt to a predicted paddle-motion state p̂t resulting from

running the analytic controller. Combining the above equations permits defining a for-

ward paddle-control model, which given the current paddle-motion state ps and a paddle-

motion target pt produces a prediction for the paddle-motion state resulting from running

the analytic controller:

p̂t ← P (pt, ps) (7.26)

where P is the forward paddle-control model under the motion constraints specified in

Eq. 7.18.

The prediction p̂t shows the expected state of the paddle at the planned contact

time with the ball. This prediction can be used in conjunction with the forward landing

model from Sec. 6.2.2 to inform the agent about the expected landing location and velocity

resulting from executing the paddle action pt.

76

The controller discussed in Sec. 7.2 and the paddle-control model discussed in this

section are entirely analytic. They are derived mathematically based on the kinemat-

ics of the robot links and the motion constraints on the robot motors. This approach

increases sample efficiency since no training episodes are being spent on learning robot-

control. Moreover, the abstract control space exposed by the analytic controller makes

the remaining parts of the problem easier to learn with reinforcement learning.

7.3.1 Learning Paddle-Dynamics

One of the advantages of using a trajectory planning module like Reflexxes is that

it generates smooth targets which already account for the physical motion limits of the

robot. This smoothness and continuity in the targets can hide away some imperfections

in the underlying robot controller. For example, if the PID gains are not tuned very well,

they would cause smaller errors or oscillations when the targets are closer to each other.

However, robot controllers and robots are ultimately imperfect and imprecise.

There are various causes for deviations to exist between the expected behavior and ob-

served behavior of a robot. Such deviations exist due to:

• Imperfections in the controller’s implementation, gains, and other parameters.

• Round-trip delay of executing commands on the robot.

• Malfunctioning or worn out robot parts.

• Mechanical backlash caused by gaps between components.

• Misspecified motion constraints. If the velocity, acceleration, and jerk limits given

to Reflexxes are higher than the actual limits of the robot, Reflexxes would compute

trajectories that are beyond the physical limits of the robot.

It is possible to extend the notion of the robot’s model to also capture such impre-

cisions in control of the robot. Unlike the analytic paddle-control model in Sec. 7.3, which

was derived mathematically, it is best to learn a dynamics model over robot’s behavior

by experimenting and observing outcomes. A neural network can be trained to predict

inaccuracies in robot-control regardless of the underlying cause. As the robot is executing

the target joint-motion states specified by qt, q̇t, the resulting joint positions and velocities

77

at time t can be recorded and used as labels for training a model. The trained model can

then make predictions of the form:

ˆ̂qt, ˆ̇̂qt ← R(qs, q̇s, qt, q̇t) (7.27)

where R denotes the forward robot-control model, and ˆ̂qt, ˆ̇̂qt denote the expected joint

position and velocity observations at time t.

This constitutes a forward prediction, which when combined with Eq. 7.26 can

produce a more accurate prediction about the future state of the paddle. Such a forward

prediction can be used to produce a more accurate estimate on the landing location of a

particular strike specified by pt.

In the other direction, the same training data can be used to learn a corrective

robot-control model as in:

qt
′, q̇t
′ ← R−1(qs, q̇s, qt, q̇t), (7.28)

where R−1 denotes the inverse robot-control model, and qt
′, q̇t
′ are alternative targets such

that if they are requested from the robot, it is expected that the observed joint states at

time t would be close to the actual targets qt, q̇t. In other words, it is expected that:

qt, q̇t ≈ R(qs, q̇s, qt
′, q̇t
′). (7.29)

The inverse robot-control model can be used to adjust the joint position and targets

before they are passed to the trajectory planning skill to increase the likelihood that the

requested paddle-motion target pt is going to be achieved.

7.4 Learning Paddle-Control

The primary approach in this dissertation uses the analytic paddle controller dis-

cussed in Sec. 7.2. This section discusses an alternative implementation for the paddle-

78

control skill using learning. The learning approach is undesirable when an analytic so-

lution exists. The learning approach discussed here is implemented and evaluated in an

ablation experiment in Chapter 8.

As shown in the task hierarchy from Chapter 4, the paddle-control skill depends on

the trajectory planning skill, which in turn depends on the joint-control skill. However, it

is possible to treat paddle-control as a single problem. Combining the task specifications

for these three skills from Eq. 4.8, Eq. 4.9, and Eq. 4.10 produces a contracted definition

for the paddle-control skill as:

πp(t, pt | ps) ={uj | s ≤ j ≤ t− 1} (7.30)

subject to motion constraints in Eq. 4.9.

Eq. 7.30 relates the high-level paddle-control policy with pt as target to the low-level

joint-control actions uj over multiple timesteps from s to t− 1.

Given this formulation, the paddle-control task can be treated as a learning prob-

lem where the objective is to find the right joint commands to bring the paddle to the de-

sired state at the desired time. A basic approach to learning paddle-control with standard

reinforcement learning may use random actions on joints with the intention of gradually

discovering the right actions that move the paddle toward the requested targets. This

approach is not desirable, since it is very inefficient and random joint actions can break

the robot.

An alternative approach may consider action spaces that span over time intervals

longer than one timestep. Effective strikes generally have some continuity in joint motions.

An effective strike usually maintains the direction of motion for most joints. So, one can

sample a set of fixed velocity/acceleration profiles for each joint and use those to create

paddle strikes. However, it is hard to determine whether such motion profiles would cover

the space of all useful strikes. Another problem is the issue of the initial pose of the robot

at the start of the strike. If the paddle is already in front of the robot, a successful strike

may need to bring the paddle back first, before it can be moved forward again to hit

the ball with enough force. Moreover, the robot may be in the middle of some motion

and have non-zero velocities on some joints when a new strike is to be executed. These

requirements greatly increases the space of possible motions that need to be tried in order

to develop a high-level paddle controller via training.

79

7.5 Positioning Policy

The positioning skill is active when the agent is awaiting the opponent’s action,

i. e. , when the opponent is striking the ball. This skill is invoked either if the episode

starts with the launcher sending the ball toward the opponent, or right after the agent

hits the ball back toward the opponent. The skill stays active until the opponent makes

contact with the ball, at which point the striking skill becomes active.

The positioning skill receives a paddle position target l(p) from the strategy skill.

The objective of the skill is to move the paddle to the requested position as quickly as

possible. Note that the requested paddle target p has no specified time.

The paddle position is a proxy to the robot’s pose. Specifying the paddle pose

instead of the robot pose has the advantage that it makes the policy less dependent on

the specific robot that is in use. Moreover, a paddle position can be specified with three

values, while the full robot pose typically requires specifying six or more joint positions.

As discussed in Sec. 4.4, the positioning skill πw is defined by the policy:

πw(l(p), sgnNx(p)) = πp(p | ps), (7.31)

where πp denotes the paddle-control policy, p denotes some paddle-motion target that

satisfies the requested paddle position l(p) and normal direction indicated by sgnNx(p).

The paddle skill is expected to achieve paddle-motion target p as fast as possible.

The positioning skill is implemented analytically. It simply computes a fully-

specified paddle-motion target p which satisfies the paddle position l(p) and forehand/backhand

pose indicated by sgnNx(p) and requests p from the paddle-control skill, which in turn

executes it using the trajectory planning skill. To compute p, the positioning skill first

uses inverse kinematics to compute a robot pose as in:

qw ← IKc(l(p)), (7.32)

where IKc denotes the inverse kinematics function starting with some canonical robot rest

pose, and qw denotes the joint positions that satisfy the requested paddle position l(p).

80

Satisfying sgnNx(p) is achieved by starting the IK search with a canonical pose which has

the same forehand or backhand direction as specified by sgnNx(p). Since IK algorithms

perform a local search, a carefully-chosen canonical forehand and backhand pose allow

the positioning policy to satisfy l(p) without flipping the forehand/backhand orientation.

Once target joint positions qw are computed, forward kinematics is used to compute a

paddle pose from them:

x(p)← FK(qw). (7.33)

Assuming that the requested target paddle position l(p) is reachable by the robot,

the paddle pose x(p) should satisfy that position. Otherwise, x(p) will get as close as

possible to l(p). The fully-specified paddle-motion target should also include the paddle’s

linear and angular velocities. In the current implementation, the positioning skill requests

a stationary target by setting the target velocities to zero:

p← x(p), 0. (7.34)

However, a more complex implementation could request to have non-zero joint

velocities at target to reduce the expected reaction time to the next ball coming from the

opponent. The full paddle-motion target p is then sent to the paddle-control policy to

execute.

7.6 Conclusion

This chapter discussed the analytic controller setup that handles paddle-control,

trajectory planning, and joint-control tasks. It also discussed the analytic paddle-dynamics

model P which predicts the expected paddle-motion state p̂t resulting from executing a

desired paddle-motion target pt. The next chapter explains how the analytic paddle con-

troller and model can be used in conjunction with the dynamics models trained from

human data over the environment’s game space to implement the land-ball policy.

81

Chapter 8

Striking Policies

The dynamics models trained from human demonstrations allow the agent to pre-

dict the trajectory of an incoming ball, and predict the landing locations resulting from

hitting the incoming ball with given paddle strikes. This chapter describes how the

model-based land-ball policy uses these dynamics models and the paddle-control policy

described in the previous chapter to execute arbitrary landing targets. The land-ball

policy is evaluated on a target practice task with random landing targets. In order to de-

termine whether using arbitrary strikes from human demonstrations imposes a restriction

on the land-ball policy, the policy is also evaluated on dynamics models trained from data

generated directly on the robot. To evaluate the sample-efficiency of the model-based

land-ball policy, the land-ball task is also learned directly using a model-free reinforce-

ment algorithm. Lastly, the alternative hit-ball striking policy is described. The hit-ball

policy does not use the strikes demonstrated by the humans and is suitable for learning

new striking motions.

8.1 Model-Based Land-Ball Policy

The objective of the land-ball skill is to execute a paddle strike to send an incoming

ball with motion state ps to a landing target g consisting of a target position and speed

at the moment the ball lands on the opponent’s side of the table. This section describes

two implementations for the land-ball policy and evaluates both.

8.1.1 Policy Implementation

Fig. 8.1 illustrates the implementation of the model-based land-ball policy us-

ing four dynamics models: ball-trajectory prediction, forward landing-prediction, inverse

landing-prediction, and the analytic paddle-control model. Algorithm 1 outlines the policy

steps in detail.

82

Forward Landing Model

gk = L(pk, bk)

Inverse Landing Model

k, pk = L-1(bk, g)
Analytic Paddle Controller

us .. k-1= πp(k, pk | ps)

Forward Paddle Model

pk = P(pk, ps)

12

3 4^ ^ ^

pk g

gk
^bk

Figure 8.1: Model-Based Land-Ball Policy. The land-ball policy uses three dynamics
models learned in the game space and an analytic paddle model derived in the robot space
to execute land-ball targets specifying a desired position and speed for the ball at the
moment of landing. The policy uses the ball-trajectory prediction model (not visualized)
to predict the ball’s trajectory. For any candidate pre-contact point in the trajectory and
the corresponding ball-motion state bk, it uses the inverse landing model to compute a
pre-contact paddle-motion target pk. For each pk, the analytic paddle controller computes
a joint-trajectory and joint actions to achieve the target pk, as well as a prediction p̂k on
the expected paddle-motion state resulting from executing the target pk. Given p̂k and
bk, the forward landing model can predict ĝk, the landing position and speed resulting
from executing pk. The dynamics models permit implementing the land-ball policy with
dynamics models trained from human demonstrations. This policy can be deployed on
any robot assembly to hit land-ball targets without prior training.

Fig. 8.2 demonstrates the different stages of the land-ball policy’s algorithm. Given

the incoming ball’s motion state ps, the policy predicts the ball’s future trajectory T . The

predicted ball trajectory contains future ball position and velocity observations at the res-

83

input : Current ball-motion state bs
input : Desired landing target g
T = bs+1, bs+2, . . . , bn ← B(bs)
foreach bk ∈ T such that bk is reachable do

pk ← L−1(bk, g)
p̂k ← P (pk, ps)
ĝk ← L(p̂k, bk)

end
t← arg mink ||ĝk − g||
i← s
repeat

emit next action ui from πp(t, pt | ps)
i← i+ 1

until robot paddle hits the ball or episode ends
Algorithm 1: Model-Based Land-Ball Policy Algorithm

olution of the environment timestep (20 ms). There are multiple options for selecting a

subset of the predicted trajectory T as potential striking targets. In the current implemen-

tation, a heuristic is used to select all points that lie between the two planes x = −1.8 m,

x = −1.6 m, corresponding to a 20 cm band in front of the robot assembly. This band typ-

ically contains 2-3 predicted observations in the predicted ball trajectory. These points are

highlighted as light-green balls in Fig. 8.2. Considering multiple potential striking points

allows the land-ball policy to come up with multiple striking solutions and pick one that

is most likely to satisfy the requested landing target g. Another potential solution for

selecting striking targets from the trajectory is to use a heuristic to prefer balls that are

closer to a certain preferred height for the robot. It is also possible to leave this decision

entirely up to a higher-level skill like the strategy skill. In other words, the strategy skill

could additionally specify the striking target by requesting a desired height or distance

from the net for the point of strike.

For each potential striking point bk corresponding to time k, the policy uses the

inverse landing-prediction model to compute a target paddle-motion pk to land the ball

at target g. To ensure contact with the ball, l(pk) is always set to l(bk). Since the

landing-prediction models are trained from human demonstrations, querying the inverse

landing-prediction model amounts to computing the expected mean striking motion as

demonstrated by humans when aiming for a target g. For each pk, the forward paddle

84

Initial ball
state bs

Target g

Predicted ball
trajectory

Precontact ball
state bt

Predicted
landing ĝ

Precontact
paddle state pt

Landed
ball

a b

c d

Launched
ball

Figure 8.2: Demonstration of the Land-Ball Policy. a) A target g is passed as input
to the land-ball skill. Given the estimate on the current ball-motion state bs (visualized
by the orange ball), the future ball trajectory (visualized as a sequence of green balls)
is predicted. b) Two points in the predicted ball trajectory are selected as pre-contact
points (visualized by light-green balls). For each such point, a pre-contact paddle-motion
target is computed. Only one of the paddle-motion targets is visualized by a transparent
paddle. Given each paddle-motion target and its corresponding ball-motion state, the
forward landing model is used to predict the landing position and speed of the ball. The
paddle solution pt whose predicted landing ĝ is closer to the requested target g is selected.
c) The paddle-motion target is sent to the analytic paddle controller, which executes it.
d) The ball lands on the table. Since neither the inverse landing nor the forward landing
models are completely accurate, the ball may land at a location that is close to, but not
exactly on either the requested target g, or the predicted landing target ĝ.

model is used to compute a prediction for the expected paddle-motion state p̂k that would

result from executing pk with the analytic paddle controller. If the pose specified by pk is

not feasible for the robot, or if the target motion state is not reachable in time given the

kinematic motion constraints, p̂k informs the agent about how close the paddle can come

85

to the requested state pk. In addition, p̂k captures any imprecisions resulting from the

iterative IK search process. Given each predicted p̂k, the policy uses the forward landing-

prediction model to compute ĝk, the expected landing position and velocity resulting from

hitting the ball bk with the paddle strike specified by p̂k. The policy then picks the strike

pk such that it has the smallest predicted landing error and executes it using the analytic

paddle-control policy as πp(t, pt | ps).

8.1.2 Automatic Forehand/Backhand

Any given strike can be executed with forehand or backhand paddle motions.

As described in Sec. 6.3, inverting the paddle normal (from forehand to backhand or

vice versa) does not change its impact on the ball. The normalization process used in

training the dynamics models replaces all backhand strikes from human demonstrations

with forehand strikes. So, the inverse landing-prediction model always suggests forehand

paddle strikes. However, for some targets backhand strikes might be better choices. For

example, if the predicted striking point bk is close to the left side (from the robot’s

perspective) of the robot’s reachable space, pk may only be feasible with a backhand

orientation. Also, if the current paddle state ps at the beginning of the strike is a backhand

pose, the target pk may only be reachable in time with a backhand target; switching from

backhand to forehand may require more time. For these reasons, the land-ball policy

considers both forehand and backhand executions for each pk and picks the one whose p̂k
is closer to pk.

8.1.3 Improved Policy with Cross-Entropy Method (CEM)

The landing target resulting from a given pre-contact paddle-motion and ball-

motion states has a unimodal distribution, i. e. there is only one possible expected out-

come. The inverse landing problem, however, may have multiple solutions. The inverse

landing-prediction model captures the mean of all paddle-motion states that can send the

ball to the target g. However, the mean action may be skewed and it may not do well.

A variant of the model-based land-ball policy uses an iterative refinement process

based on CEM [24] to improve the final solution pk returned from Algorithm 1. The

refinement process performs a search in the space of paddle-motion states around pk.

Fig. 8.3 demonstrates the different stages of the land-ball policy with a forward CEM

search. A population of solutions is created with the mean of pk and an initial standard

86

deviation for each dimension in pk. During each iteration of the algorithm, each individual

in the population is evaluated using the forward landing-prediction model and its predicted

target error is recorded. The predicted errors are used by the CEM algorithm to compute

an updated mean and standard deviation for the next iteration. The process continues

until either the maximum number of iterations is reached, or the predicted error falls

below a fixed threshold. At that point the final mean value is returned as the target

paddle-motion specifying the strike.

8.1.4 Evaluation

The land-ball policy is evaluated by launching random balls from the ball launcher

and requesting the policy to land the ball at random targets. To allow for a fair compari-

son of the alternative striking policies discussed later in this chapter, in these experiments

the forward and inverse landing-prediction models were trained only with position targets

(without velocity). The dynamics models were trained both from a small dataset con-

taining 7 000 trajectories, and a large dataset containing 140 000 trajectories to evaluate

the impact of the number of samples on the accuracy of policies.

The robot always starts at a fixed stationary forehand pose with zero joint veloc-

ities. The ball is launched towards the robot from a random position and with random

velocity. If the launched ball goes out or hits the net, the launch is repeated. In the

simulation environment, the table is at the center of the coordinate system with its center

point at (0, 0, 0.76) m. The x coordinates increase away from the robot and towards the

opponent, the y coordinates increase to the left side of the net, and the z-axis points up.

The robot’s base is at (−1.8, 0, 0.76) m, i. e. 1.8 m away from the net. The initial ball po-

sition is chosen uniformly at random from a cube defined by llow(bs) = (1.4,−0.3, 0.86) m,

lhigh(bs) = (2.0, 0.3, 1.26) m. The initial ball velocity is chosen uniformly at random be-

tween vlow(bs) = (−6,−0.5, 1.5) m/s and lhigh(bs) = (−5, 0.5, 2.5) m/s. The landing target

for the ball is chosen uniformly at random from a box 0.4 m away from the net and 0.1 m

away from the table edges.

Table 8.1 shows the evaluation results for the two model-based land-ball policy

variants with and without CEM search. A successful ball return requires that the robot

strikes the ball over the net and onto the opponent’s side of the table. The mean target

errors are computed only over the balls that are successfully returned.

Visualizing the policy reveals that a high percentage of the failure cases happen

87

Initial ball
state bs

Target g

Predicted ball
trajectory Precontact ball

state bt

Predicted
landing ĝ

Refined paddle
solution pt

Landed ball

Predicted landing g
for refined solution

^

Initial CEM
population

Converging CEM
population

a

Target g

Struck ball

b

c d

e f

Figure 8.3: Demonstration of the Land-Ball Policy with CEM Search. a) See
Fig. 8.2.a. b) See Fig. 8.2.b. c) Given the best candidate paddle-motion target pt com-
puted by the inverse landing model, a population of paddle-motion targets is created
randomly around pt. The translucent yellow balls visualize the predicted landing targets
for each paddle-motion target in the CEM population. d) During each iteration of CEM,
the population may get closer to the target g. e) Once the CEM population has con-
verged, the final mean of the population of paddle-motion targets is passed as an action
to the paddle-control skill. f) The ball lands on the table.

88

Method Search Data Samples Return Rate Target Err

Model-Based - VR 7 000 88.0% 0.216 m
Model-Based CEM VR 7 000 86.7% 0.191 m
Model-Based - VR 140 000 89.6% 0.182 m
Model-Based CEM VR 140 000 90.8% 0.119 m

Table 8.1: Evaluation of Model-Based Land-Ball Policies Trained with Human
Demonstrations Collected in the VR Environment. Mean ball return rate and
mean landing target error computed over 1200 attempts with random targets. The policy
uses dynamics models trained from data collected in the VR environment. The two
variants of the policy (with and without CEM search) have similar return rates. When
trained on the large dataset, the CEM variant has a higher target accuracy with an average
error of about 12 cm, while the variant without CEM has an average error above 18 cm.
The policy is sample-efficient, since even when trained on the small dataset it achieves an
average target position error of about 20 cm.

because the ball hits the net. The data normalization process described in Sec. 6.3 nor-

malizes all landing trajectories such that the x, y coordinates of the pre-contact ball state

are set to zero. In doing so, the normalization process hides the position of the net from

the model. The forward and inverse landing-prediction models operate as if the net did

not exist. It is possible to add extra inputs to the landing models to specify a distance to

the net. However, doing so would increase the number of dimensions, which might cancel

some of the benefits of the data normalization process. This approach was not tested in

experiments. In the hierarchical policy design, it is expected that the high-level strategy

skill will account for the inefficiencies in the striking skills and will pick high-level actions

that work around them.

Another failure happens when the launched ball goes straight to the table under

the robot. An example of this failure case is shown in Fig. 8.4. In these cases, the robot

is not able to execute its desired paddle strike because the paddle would collide with the

table.

The land-ball skill provides a high-level abstraction over the agent’s game-play

during a single exchange with the opponent. This high-level abstraction does not reduce

generality of behavior. Barring deceptive movements to hide the agent’s intention from

the opponent, any sequence of paddle actions can be reduced to the resulting landing state

for the ball. In other words, the land-ball skill makes it possible to specify the agent’s

89

Figure 8.4: Example Failure Case for Model-Based Land-Ball Policy. At times,
the trajectory of the launcher ball collides with the table under the robot assembly. The
translucent paddle visualizes the requested paddle-motion target. Such balls are more
difficult to return, as the planned paddle trajectory may collide with the table.

behavior by its desired outcome. Learning to use the land-ball skill is easier for the agents

as its action space has fewer dimensions than a fully-specified target paddle-motion, yet

its action space can specify complex behaviors.

8.2 Model-Based Land-Ball Trained with Robot Data

The analytic paddle controller executes strikes by executing paddle-motion targets

at the moment of contact with the ball. These paddle-motion targets are learned from

humans who can freely move the paddle around using the high degrees of freedom in their

shoulder and wrist joints. In contrast, robots have few degrees of freedom. In particular,

90

the main robot used in these evaluations has only six. This observation raises the question

whether requiring the robot to imitate human strikes imposes a restriction on the policy,

as either the anatomy of the robot or the analytic paddle controller may not permit

replicating the paddle motions demonstrated by humans. To answer this question, the

model-based land-ball policies were also trained from strikes generated directly on the

robot itself.

8.2.1 Data Generation

Generating successful strikes with the robot requires a functioning striking policy.

However, such a policy does not exist at the beginning and it is not straight-forward

to implement a hand-coded policy that can land the ball well, and at the same time

demonstrate versatile strikes. As discussed in Sec. 7.4, generating random yet successful

strikes is a hard problem. In this experiment, random strikes are generated by sampling

fixed target velocities for each of six joints on the robot and passing them to the PID

controller. The robot is always initialized to a fixed forehand pose at the beginning of the

strike. The velocity targets are kept fixed during each strike. The range of velocity values

is determined using a trial-and-error process to increase the likelihood of useful strikes.

A successful strike requires that striking paddle makes contact with the ball. Since

the paddle strike is random, a cooperative ball launcher is used to launch the ball with

the right velocity to meet a swinging paddle at a desired time. The position of the ball

launcher is fixed, but the velocity of the launched balls is variable. Such a ball launcher

has a real-world counterpart as well. Most commercial ball launchers have a user interface

allowing the player to specify the desired velocity and spin of the ball. Implementing a

cooperative launcher requires interfacing with the device and programmatically setting

the desired launch attributes for the ball. To achieve contact between the ball and the

paddle, this experiment trains and uses two additional dynamics models:

1. Forward low-level paddle-control model: Similar to what is described in Sec. 7.4,

a model is learned to predict the trajectory of the paddle-motion states resulting

from executing a set of fixed joint velocities. The model is implemented as a recur-

rent neural network, which given the velocity targets, predicts the full paddle-motion

state over subsequent timesteps assuming that the robot always starts from a fixed

pose.

91

2. Inverse ball-launcher model: The cooperative launcher uses the inverse ball-

launcher model. The inputs to this model are a desired ball position observation in

the future and a corresponding time. The outputs are the 3D launch velocity vector,

such that launching the ball from the fixed launcher position with that velocity

will result in a ball that bounces on the table and reaches the desired position at

the desired time. The inverse ball-launcher model is trained from trajectories of

randomly-launched ball.

8.2.2 Evaluation

Once the two above dynamics models are trained, they are used to generate random

strikes and collect landing trajectories. For each sample, a set of fixed velocities are

sampled for the robot joints. The forward low-level paddle-control model is used to

predict the trajectory of the paddle. A random paddle position that lies within the

same 20 cm band described in Sec. 8.1 is picked from the trajectory. Then, the inverse

ball-launcher model is used to compute a velocity for the launcher ball such that the

launched ball reaches that paddle position at the same time as the paddle. This process is

likely to create contact between the ball and the paddle. Moreover, the range of random

joint velocity targets are hand-tuned in a way that some of the returned balls reach the

opponent’s side of the table.

Fig. 8.5 shows the distribution of landing positions resulting from a sample set of

landing trajectories generated with the above setup. Since many of the returned balls

do not land successfully, a total of 900 000 landing trajectories are generated to have

plenty of landed balls to learn from. The landing trajectories collected in this process are

used to train the forward and inverse landing-prediction models described in Chapter 6.

A land-ball policy using these dynamics models is evaluated using the same evaluation

setup outlined in Sec. 8.1.4. Table 8.2 shows the evaluation results.

Comparing the mean target errors with the policy from Sec. 8.1 shows that this

policy achieves a lower accuracy for the land-ball task. The training data for this policy

uses only strikes that are guaranteed to be feasible on the robot since they were generated

by the robot in the first place. However, the higher accuracy of the policies trained

with the VR data suggest that the analytic controller is able to execute arbitrary strikes

demonstrated by the humans as well. The most likely reason behind the lower accuracy

in this policy is that the random strikes generated using fixed joint velocity targets are

not general enough to capture all possible useful motions.

92

Figure 8.5: Distribution of Landing Positions in Landing Trajectories Generated
on the Robot. The blue dots show the eventual landing location of the trajectories
in the training dataset. For balls that do not hit the table, the dot shows the point
where the ball trajectory intersects with the surface plane of the table. The visualized
distribution shows that a good percentage of the returned balls do land on the opponent’s
side of the table. The visualization also shows that hitting target right behind the net
is difficult for the robot, which is why the random landing targets are chosen to be at
least 40 cm behind the net. The landing trajectories which are generated by the robot are
used to train alternative dynamics models. These models are used to evaluate whether
training the models only on strikes that are known to be feasible on the robot improve
performance. Experiments show that this is not the case, thereby showing that requiring
the analytic controller to reproduce striking motions demonstrated by humans does not
limit the striking skill’s performance.

93

Method Search Data Return Rate Target Error

Model-Based - Robot 92% 0.191 m
Model-Based CEM Robot 94% 0.203 m

Table 8.2: Evaluation of Model-Based Land-Ball Policies Trained with Data
Generated on the Robot. Mean ball return rate and mean landing target error com-
puted over 600 attempts with random targets. The policy uses dynamics models trained
from 900 000 landing trajectories collected on the robot itself. Comparing the results with
Table 8.1 shows that these policies have lower target accuracies than policies trained from
the human demonstrations collected in the VR environment.

8.3 Model-Free Land-Ball Policy

The model-based land-ball policies employ the dynamics models that are trained

either from human demonstrations or random strikes generated on the robot. In order

to assess the impact of dynamics models on sample-efficiency and accuracy of the land-

ball policies, this section describes and evaluates an alternative implementation of the

policy which uses model-free reinforcement learning to train the policy from scratch. The

experiments help put the sample-efficiency and accuracy of the model-based land-ball

policies into perspective.

8.3.1 Training

Unlike the hierarchical controller used in model-based land-ball policies, the model-

free land-ball policies are expected to control the robot at the joint level and choose actions

at every timestep. Since the land-ball task is more difficult to learn under these conditions,

the model-free agents are also trained and evaluated on a simpler task whose goal is to

just successfully return the ball to the opponent’s side. The reward functions used for

training the model-free policies are:

1. Return-Ball: The agent is expected to return the ball over the net successfully so

that it bounces on the opponent side of the table. This task has a binary binary

reward δreturn indicating success or failure.

2. Land-Ball: The agent is expected to land the ball at a randomly-picked target

position (with no specified target velocity). The reward for this task is specified

94

by δreturn(3 − ‖l(bg) − l(g)‖2), where l(bg) denotes the observed landing position

of the ball at the moment of contact with the table and l(g) denotes the target

landing position. So, if agent the cannot return the ball, it receives a reward of

zero. Otherwise, it receives a positive reward depending on how close it gets to the

target.

8.3.2 Evaluation

This section describes the evaluation results obtained from learning model-free

policies using Proximal Policy Optimization (PPO) [25] and Augmented Random Search

(ARS) [14] algorithms.

The model-free policies use feed-forward neural networks with a single hidden layer

of 20 units. The input observation vector includes the position and velocity of the ball and

robot joints. When trying to send the ball to a particular target location, the observation

also includes the coordinates of the target position. The output of the policy is the

six-dimensional vector containing target robot joint velocities.

Learning the task with PPO was not very successful. When trained on the sim-

pler return-ball task, the PPO agent could achieve a successful ball return rate of 40%.

Training the PPO agent on the more difficult land-ball task did not produce effective

policies.

The ARS agent uses Algorithm 2 by Mania et al. [14], with normalized observa-

tions, step-size 0.05 scaled by reward standard deviation, perturbation standard deviation

0.05, and updates limited to the five top-performing perturbations out of the 30 evalu-

ated. The ARS algorithm applies perturbations to the policy weights and evaluates each

perturbation using a rollout. For the return-ball and land-ball tasks, each rollout cor-

responds to evaluating the policy on a new random target and a new random launcher

ball in the environment. Since the parameters of the launcher ball and landing target

are different from episode to episode, the tasks are highly stochastic. So, the algorithm

is modified to evaluate each perturbation using up to 15 rollouts rather than a single

rollout. This increase in the number of evaluations led to faster training progress and

better performance, possibly due to choosing policy update directions that perform well

over the randomness in the environment.

Fig. 8.6 shows the training rewards received by the ARS agent on the return-ball

task under different number of evaluations k per policy perturbation. The figure shows

95

four runs of the algorithm for each value of k. Even though higher values for k increase

the number of evaluations needed, they improve the learning performance. When each

policy perturbation is evaluated multiple times, the stochasticity in the environment does

not influence the direction of policy weight updates as much.

0.0 0.2 0.4 0.6 0.8 1.0

total rollouts (M)

0.0

0.2

0.4

0.6

0.8

1.0

sc
o
re

k=1

k=5

k=10

k=15

Figure 8.6: Training Model-Free Return-Ball Policy with ARS. The figure shows
training score vs. total number of rollouts on the binary-reward task of successfully
returning the ball, for ARS runs with a different number of evaluations k per perturbation
(indicated by colors). Evaluating each perturbation using multiple rollouts improves the
training score, as the algorithm chooses update directions that perform well over the
randomness in the environment.

Fig. 8.7 shows the evaluation rewards received by four different runs of the ARS

training with k = 15. ARS stopped making progress after ∼2M rollouts, and the best

policy (out of four runs) succeeded 88.6% of the time. This experiment shows that ARS

is able to discover a better model-free return-ball policy compared to PPO.

Fig. 8.8 shows the training rewards received by the ARS agent on the land-ball

task. The agent converges after ∼3M rollouts. Evaluating the best policy at the end of

training shows a ball return rate of 88% and an average landing distance of 0.4 m from the

96

0 1 2 3 4 5 6

total rollouts (M)

0.0

0.2

0.4

0.6

0.8

1.0

A
R

S
 s

co
re

Ball return

0 1 2 3 4 5 6

total rollouts (M)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ball return to target

0 1 2 3 4 5 6

total rollouts (M)

0.0

0.5

1.0

1.5

2.0
Cooperative ball return

Figure 8.7: Evaluation of Model-Free Return-Ball Policy Trained with ARS.
The four lines show the evaluation scores received from four different runs of ARS on the
return-ball task. All runs use k = 15. Learning the policy with model-free RL requires ∼1-
2M episodes. Such a high number of samples prevents using such algorithms on physical
robots in the real world.

target. While this policy is fairly inaccurate, it is better than random. In comparison, the

best policy trained on the return-ball task achieves a distance of 0.52 m from the target

on average.

Table 8.3 summarizes the evaluation scores achieved by the model-free agents.

Overall, ARS produced substantially better results than PPO; policies trained using ARS

97

0 1 2 3 4 5 6

total rollouts (M)

0.0

0.2

0.4

0.6

0.8

1.0

A
R

S
 s

co
re

Ball return

0 1 2 3 4 5 6

total rollouts (M)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ball return to target

0 1 2 3 4 5 6

total rollouts (M)

0.0

0.5

1.0

1.5

2.0
Cooperative ball return

Figure 8.8: Training Model-Free Land-Ball Policy Trained with ARS. The four
lines show the ARS training score vs. total number of rollouts on the task of returning
the ball to a particular target location. All runs use k = 15. Two out of the four runs
perform better and achieve a mean reward of between 2.0 and 2.5, which as the evaluation
show, corresponds to a landing accuracy of about 40 cm. Moreover, the model-free RL
algorithm requires ∼3M episodes, which makes it impractical for the real world.

were able to return the ball successfully ∼88% of the time, while those trained using

PPO only succeeded ∼40% of the time. However, the ARS agent used ∼3M training

episodes to learn the land-ball task. It is not feasible to run such a large number of

98

training episodes on physical robots in the real world. Comparing the performance of

the model-free policies to the model-based hierarchical policies in Table 8.1 shows that

the model-based approach produces policies with much lower error (12 cm vs. 40 cm) and

using far fewer samples (140 000 vs 3M). Moreover, the samples used for model-based

policies come from human demonstrations, which are far easier to obtain than samples

collected with the robot itself.

Method Algorithm Samples Return Rate Target Error

Model-Free PPO 0.1 M 40% -
Model-Free ARS 3 M 88.6% 0.4 m

Table 8.3: Evaluation of Model-Free Land-Ball Policies. Mean ball return rate and
mean landing target errors for random targets. Comparing the results with Table 8.1
shows that this policy has a lower target accuracy.

8.4 Model-Based Hit-Ball Policy

The model-based land-ball policies require three trained dynamics models to op-

erate. Using the dynamics models make the policy implementations sample-efficient. On

the other hand, if the models are not updated with additional trajectories collected us-

ing other policies, the policies that depend on those models would stay limited in their

behavior.

8.4.1 Policy Implementation

The hit-ball policy is an alternative striking policy that can execute more versatile

striking motions. It uses only one dynamics model (the ball-trajectory prediction model).

Using the ball-trajectory model makes it easy for the policy to ensure contact with the

ball. The position of the paddle is simply set to the prediction position of the ball at

the desired time of contact. The other parameters of the paddle-motion target (paddle

orientation, linear and angular velocity) are given as inputs to the hit-ball policy. So,

a higher-level skill like the strategy skill can use the hit-ball policy to execute arbitrary

strikes without consulting any additional models to decide a target paddle-motion state.

As described in Sec. 4.3.2, the hit-ball task is specified as:

99

πh(lx(pt), N(pt), v(pt), ω(pt) | bs) = πp(t, pt | ps). (8.1)

where lx(pt) denotes the desired contact plane. The policy is instructed to hit the incoming

ball when it reaches the plane x = lx(pt).

Fig. 8.9 illustrates the implementation of the hit-ball policy. The ball-trajectory

prediction model is used to predict the incoming ball’s trajectory based on the ball’s initial

motion state bs. The policy then intersect the ball trajectory with the the desired contact

plane x = lx(pt) and picks the point bt that in the ball trajectory that is closest to this

plane. This point determines the contact time t and the full position of the paddle l(pt) at

the time of contact. The other attributes of the paddle’s motion state N(pt), v(pt), ω(pt)

are given as inputs to the hit-ball policy. Together with the computed paddle position,

they fully specify the paddle-motion target pt, which is passed as a high-level action to

the paddle-control skill.

8.4.2 Evaluation

The hit-ball policy can not be easily evaluated in isolation since it depends on a

higher-level policy to specify the orientation and velocity of the paddle at the time of

contact. This policy is used in the next chapter by a strategy agent to play whole table-

tennis games. The hit-ball policy allows the strategy agent to discover strikes that are

particularly useful for cooperative or adversarial games, beyond what the model-based

land-ball policy produces.

8.5 Conclusion

This chapter described multiple implementations for the land-ball policy. Experi-

ments showed that:

• The model-based land-ball policy trained from VR data is very sample-efficient and

can hit ball targets with a mean position error of only 12 cm.

• Training the model-based land-ball policy with data collected directly on the robot

does not improve its performance. So the analytic paddle controller is able to execute

arbitrary strikes demonstrated by humans.

100

Predicted ball
trajectory

Desired contact plane:
e.g. x = -1.7

y

z

x

Ball bt closest to
contact plane

bs

Figure 8.9: Model-Based Hit-Ball Policy. The action space of the hit-ball skill includes
a desired contact plane, which indirectly specifies a target point for striking the ball. Given
the current ball-motion state bs, the hit-ball policy predicts the future ball trajectory. The
point bt in the predicted trajectory that is closest to the requested contact plane is picked
as the striking target. This point, which is visualized as the light-green ball, specifies both
the target position for the paddle l(pt), and the target time t. The other components of
the paddle-motion target, including its normal vector, and linear and angular velocities
are given as inputs to the hit-ball policy. Using the simple ball-trajectory model helps
the hit-ball policy make contact with the ball easily. On the other hand, accepting any
orientation or velocity for the paddle allows the hit-ball skill to execute arbitrary paddle
strikes. Thereby, the hit-ball skill is more flexible than the land-ball skill.

• It is difficult to learn the land-ball skill with model-free learning methods that

101

control the robot at joint level. Such model-free policies require about 3M training

samples and achieve a target landing accuracy of about 40 cm.

Although the land-ball skill itself can capture any game-play behavior, the canon-

ical land-ball policy implemented in this dissertation uses dynamics models trained only

from human demonstrations. So, the implemented land-ball policy only executes paddle

strikes that were used by humans. The trained models might generalize to use blended

strikes within the space of demonstrations, but the models cannot output strikes that lie

completely outside the space of demonstrations. For example, if the humans have never

hit the ball from below so it goes high up, the trained models cannot produce or evaluate

such strikes. On the other hand, this choice of implementation is not a limitation on the

approach. It is possible to fine-tune the landing models trained from human demonstra-

tions with data collected from other striking policies, as done in the dagger method [23].

Such an approach can combine the benefit This approach is left as part of future work.

The next chapter describes how the striking policies can be used by the top-level

strategy skill in the task hierarchy to play cooperative and adversarial table-tennis games.

102

Chapter 9

Learning Strategy with Self-Play

This section describes how the strategy skill is trained. It then evaluates different

variants of the strategy skill that use different striking skills.

9.1 Approach

The striking skills discussed in chapter Chapter 8 make it possible to execute

high-level paddle actions that either send the ball to a desired target location (land-ball

skill), or make contact with the ball with a desired paddle orientation and velocity (hit-

ball skill). Similarly, the positioning skill described in Sec. 7.5 can be used to move the

robot from any motion state to a desired pose in minimum time so that they robot can

be ready for responding to the next shot from the opponent. However, the striking and

positioning skills are parameterized skills. They should be given goals to execute. Playing

successful table-tennis games using the striking and positioning skills requires deciding

appropriate targets for them during each exchange of the ball with the opponent. It is

possible to operate the underlying skills using hand-coded targets. However, such a hand-

coded implementation would be very limiting in exploiting the diverse behaviors that are

possible in the striking and positioning policies. So, this method uses a model-free RL

algorithm to learn diverse game-play strategies.

9.1.1 Reinforcement Learning

The task hierarchy discussed in Chapter 4 addresses this problem by including a

top-level strategy skill whose only job is to pick targets for the striking and positioning

skills. An effective strategy policy requires complex reasoning about the opponents, which

is difficult to do in a model-based way. So, the strategy skill is learned with model-free

reinforcement learning. The decomposition of the tasks and the abstractions offered in

103

the skill hierarchy makes it possible to combine this model-free strategy layer with model-

based striking skills and the analytic robot controller in a single agent.

In the method implemented in this disseration, the strategy skill is the only skill

that needs to be trained on the robot. Although model-free reinforcement learning is

not sample-efficient, the design of the hierarchical policy simplifies learning the strategy

layer, thereby making model-free learning applicable to the problem. Since the strategy

skill does not need to be aware of the internal implementation of the underlying skills,

its inputs and outputs can stay low-dimensional. Also, since the striking and positioning

skills have long time horizons spanning over an entire ball exchange with the opponent, the

strategy skill gets to observe the game at a high-level. Therefore, it can focus on the high-

level game-play. If the strategy skill picks a bad landing target or a bad waiting position

in a game, it receives the negative reward immediately in the next step. The long time

horizon helps eliminate the reward delay, which can make learning this skill more efficient.

Since the skill can be trained after the striking and position policies are developed, all

the training episodes used when learning the strategy can focus on exploring the space of

strategies, rather than also being concerned with learning striking and positioning policies.

9.1.2 Cooperative and Adversarial Rewards

This dissertation considers two types of table-tennis games: cooperative and ad-

versarial. In a cooperative game, the objective of the two players is to keep the game

going as long as possible. In this mode, the players receive one point each time they land

the ball anywhere on the other player’s side. The cooperative reward function also gives

the players one point each time they hit the ball with the paddle. Since the land-ball and

hit-ball policies automatically make contact with the ball, they do not benefit that much

from this reward shaping mechanism. However, this chapter also includes experiments

with learning a strategy directly over the paddle-control skill. Reward shaping is useful for

learning such a low-level strategy. So, it is included for all agents to make comparison of

rewards easier. With reward shaping, a cooperative agent can receive a maximum reward

of +4 per step.

In adversarial games, the objective is to win the rally. Each player tries to land

the ball over the opponent’s side in a way that the opponent cannot successfully return

the ball. In this mode, the player who wins the rally receives one point. Players also

receive a reward of 0.1 for making contact with the ball or successfully landing the ball

anywhere on the opponent’s side.

104

9.1.3 Self-Play

Since the strategy skill does not have a specific target, it is best to learn the skill

using self-play. The only objective for the strategy skill is to maximize the reward. Since

the reward received depends also on the behavior of the opponent, the skill needs to adapt

to the behavior of the opponent. This goal is achieved in a self-play setup, which is shown

in Fig. 9.1. Two identical robot assemblies are mounted on the two sides of the table.

Since the agent policies do not support serving the ball, the rally is always started with a

ball launcher. There is a launcher behind each robot and the rally starts randomly from

one of the two ball launchers. When the ball goes out of play, the next ball is launched

and a new rally starts.

Learning
Robot

Frozen
Policy

Figure 9.1: Self-Play Setup. Two robots play cooperative or adversarial games with
each other. The rallies are started randomly by one of the two ball launchers behind the
robots. Only one of the two robots is learning the strategy policy. During each self-play
level the learning robot plays against a its own frozen policy from the end of the previous
level. As more self-play games are played, the strategy policy learns to adapt and respond
to its own behavior.

Of the two robots playing against each other, only one is actively training. The

105

other robot is playing using a frozen policy. Self-play learning is done over a number

of levels. During the first level, the learning agent plays against an initial fixed policy.

After the end of the first level, the learner’s policy is frozen and transferred over to the

opponent. So, during level i, the learner plays against its own frozen policy at the end of

level i− 1.

9.1.4 Observations and Actions

Each step in the environment lasts over an entire ball exchange. Each ball exchange

can include two strikes, one by the learner and another by the opponent. In the current

implementation, the strategy skill receives only the current ball-motion state bs as the

observation. Preliminary experiments showed that adding other observations like the

agent’s paddle position l(pt) or the opponent’s paddle position do not improve performance

in the current implementation. It is likely that in a setup where the agent can make more

than one decision per exchange including such additional observations would be useful.

As actions, the strategy skill produces targets for the striking skill and the positioning

skill.

In the current implementation, the strategy skill specifies a waiting position for

the robot only once per exchange. This choice is made because the agent does not receive

observations from the opponent’s movements as the opponent approaches the ball to hit

it back. Therefore, the strategy agent does not observe opponent’s position when deciding

on a target for the positioning skill. However, the behavior of the opponent and how it

approaches to return the ball may contain clues for the other agent as to how to best

position itself to be prepared for the return shot. In an alternative implementation where

the positioning skill is invoked in a continuous manner, it would make sense to also include

the opponent’s position in the observations.

9.2 Training Setup

All strategy policies except for the joint-level strategy policy are implemented using

the TensorFlow implementation of batched PPO [8]. The PPO agents use feed-forward

policy and value networks. Both the policy and value networks have two hidden layers of

size 10 each. The policy network produces a mean and a standard deviation value for each

action dimension. Therefore, the learned policies are stochastic. The stochastic actions

106

are active for the frozen opponent policy and for evaluation of the learner’s policy as well.

In addition to the environment rewards, the algorithm also uses an entropy reward with

a coefficient of 0.1 to encourage more randomness in actions. This stochasticity is useful

for preventing the self-play agents from converging to very narrow policies. The learning

rate for the policy network is 10−4 while the learning rate for the value network is 10−3.

Each self-play level consists of 2400 training steps, which can span over any number

of episodes. The method uses PPO with a batch size of 24, where each worker trains for

a 100 steps. Each training and evaluation episode runs for a maximum of 10 steps. So,

if a cooperative game reaches 10 steps, it is terminated even if the rally is still going on.

Terminating the episodes early allow the agent to get more training time over difficult

initial conditions where the first launcher ball is more difficult to return.

9.3 Land-Ball Strategy

The canonical model-based land-ball policy in this dissertation is trained solely

from human demonstrations and does not use any training episodes on the robot. Given

a landing target g, the land-ball policy consults the dynamics models to find a paddle

strike that can land the ball at g. Even though the land-ball policy is limited to using

human paddle strikes, it can still execute landing targets that were never tried in hu-

man demonstrations. The normalization process used in training the dynamics models

makes them capable of executing any targets resulting from translation and rotation of ob-

served landing trajectories. Training a strategy policy over the model-based land-ball skill

amounts to learning a better approach to playing the game using the same ball-handling

technique demonstrated by human players.

When playing adversarial games, a common strategy is to aim for targets near

the right or left edges of the table. However, in the action space of the land-ball policy,

these areas lie on different regions of the action space. So, even with the entropy terms,

a strategy is likely to aim only for the right or the left side of the table. To address

this problem, when deciding land-ball targets, the land-ball strategy produces a target

position l(g), a target speed |v(g)|, and a probability pflip for flipping the target across the

y dimension (left-right) over the table. The flip probability allows the strategy to specify

targets near the right and left edges of the table without having to generate landing

coordinates explicitly for both right and left sides.

107

Fig. 9.2 shows the training progress for the land-ball strategy for cooperative

games. The plot spans over 35 self-play levels and shows the average length of a co-

operative episode in evaluation. The cooperative agent converges to an episode length

of eight after about 10 self-play levels (24000 training steps.) The policy is initialized to

have a mean action corresponding to a target near the center of the opponent’s side. As

shown in the plot, the strategy skill can sustain a mean episode length of four right at the

start of training. This high performance shows that the model-based land-ball policy is

effective. Since the analytic paddle controller and the model-based land-ball policy do not

use the robot for training, this experiment demonstrates zero-shot learning in cooperative

table tennis. Fig. 9.3 shows the average evaluation reward for the cooperative land-ball

strategy. The average reward equals the episode length multiplied by 4.0.

After about 10 self-play levels, the evaluation reward does not improve much more.

The agent trained at the end of the 35th level is evaluated against itself in 240 cooperative

episodes. In these episodes, the length cap is raised to 1000, so the agents are allowed

to continue the rally for up to 1000 exchanges. Fig. 9.4 shows the histogram of episode

lengths observed in these evaluation games. The mean episode length is 17 steps, with

the maximum length reaching 124.

The land-ball striking skill can also be used to learn adversarial strategies. Fig. 9.5

shows the training progress for an adversarial land-ball strategy. After 77 levels, the mean

episode length reaches about 2.5, meaning that on overage the episode ends after five

strikes from the two robots. Visualizing the trained strategy shows that the agents try to

hit the ball with high velocity or aim closer to the edges of the table. Fig. 9.6 visualizes

an example.

Although the land-ball strategies can discover game-plays that are different from

the game-plays employed by humans, the agents are limited to the striking techniques

that are present in human demonstrations. The next section describes how a hit-ball

strategy can learn new striking techniques as well.

9.4 Hit-Ball Strategy

The hit-ball skill helps the agent make contact with the ball by setting the target

position of the paddle to be equal to the predicted position of the ball when it crosses

a desired contact plane. The land-ball skill just expects its user to specify the paddle

orientation (normal) and linear and angular velocities at the moment of contact. Learning

108

0 5 10 15 20 25 30 35
Self-Play Level

3

4

5

6

7

8

9

10

Ev
al

ua
tio

n
Ep

iso
de

 L
en

gt
h

Figure 9.2: Self-Play Learning of Cooperative Land-Ball Strategy. Mean evalu-
ation episode length over 35 self-play levels. Each colored line segment corresponds to
a different level. The vertical axis shows the average length of a cooperative episode in
evaluation. Each point is an average over 240 evaluation episodes. The maximum episode
length is 10. The cooperative agent converges to an episode length of about eight after
about 10 self-play levels (24 000 training strikes.)

a hit-ball strategy is more difficult, since hit-ball’s action space has more dimensions than

that of land-ball. On the other hand, a hit-ball strategy is free to use arbitrary paddle

strikes.

Fig. 9.7 shows the training progress for a cooperative hit-ball strategy. The plot

spans over 233 self-play levels. The hit-ball strategy starts with a mean episode length of

one. After about 75 self-play levels, the mean episode length reaches four, which is the

value achieved at the start for the land-ball strategy. After about 125 levels, the hit-ball

strategy achieves a mean episode length of eight, and then it surpasses it to get close to

nine on average. At times, the agent can achieve a the maximum episode length of 10

109

0 5 10 15 20 25 30 35
Self-Play Level

10

15

20

25

30

35

Ev
al

ua
tio

n
Ep

iso
de

 R
ew

ar
d

Figure 9.3: Average Evaluation Rewards for Cooperative Land-Ball Strategy.
Mean evaluation reward over 35 self-play levels. The average reward equals the episode
length multiplied by 4.0.

over 240 evaluation episodes.

Learning a cooperative hit-ball strategy is quite slower than learning a land-ball

strategy, so it is less sample-efficient. On the other hand, it can achieve higher rewards.

Fig. 9.8 shows the histogram of episode lengths observed in 240 evaluation games run with

the final cooperative hit-ball policy. The agent achieves a mean episode length of 111.9

with the maximum reaching 600. Visualization of the policies leads to an interesting

observation. The agents have learned to hit the ball rather slowly and with a paddle

motion that causes it to land at about a 45 degree angle on the other player’s side. Such

high balls are less likely to hit the net or go out. Moreover, after bouncing on the table,

the ball usually reaches the top of its arc in front of the other robot, making it easier for

the other player to return it.

In contrast, Fig. 9.9 shows the training progress for an adversarial hit-ball strategy.

110

Episode Length

Fr
eq

ue
nc

y

0

10

20

30

0.
00

4.
00

8.
00

12
.0

0
16

.0
0

20
.0

0
24

.0
0

28
.0

0
32

.0
0

36
.0

0
40

.0
0

44
.0

0
48

.0
0

52
.0

0
56

.0
0

60
.0

0
64

.0
0

68
.0

0
72

.0
0

76
.0

0
80

.0
0

84
.0

0
88

.0
0

92
.0

0
96

.0
0

10
0.

00
10

4.
00

10
8.

00
11

2.
00

11
6.

00
12

0.
00

12
4.

00

Figure 9.4: Histogram of Episode Lengths for Cooperative Land-Ball Strategy.
Distribution of episode length over 240 test episodes with an episode length cap of 1000.
The land-ball strategy achieves a mean episode length of 17.4 with a standard deviation
of 17.1.

Very quickly, the mean episode length drops to one, signifying that the adversarial games

do not last long. Fig. 9.9 shows the mean evaluation rewards received by the learning

agent during adversarial training. The mean episode reward reaches close to one at the

beginning, which means the learning agent can easily exploit the opponent with the frozen

policy. With more training, the reward becomes more balanced. Visualizing the trained

strategy shows that the agents have discovered a way to send the ball over the head of

the opponent. In most episodes, the agent who gets to act first, hits the ball with enough

vertical force that after bouncing on the table it cross above the reachable space of the

other robot. Fig. 9.11 visualizes and example of this behavior.

The experiments show that a hit-ball strategy can discover more effective coopera-

tive and adversarial strategies at the expense of lower sample-efficiency. The hit-ball skill

supports executing arbitrary strikes and is as general as a striking policy can be. It uses

only a ball-trajectory prediction model that is easy to train. The experiment in the next

111

0 10 20 30 40 50 60 70 80
Self-Play Level

2

3

4

5

6

Ev
al

ua
tio

n
Ep

iso
de

 L
en

gt
h

Figure 9.5: Self-Play Learning of Adversarial Land-Ball Strategy. Mean evaluation
episode length over 77 self-play levels. Each colored line segment corresponds to a different
level. The vertical axis shows the average length of an adversarial episode in evaluation.
Each point is an average over 240 evaluation episodes. The maximum episode length is
10. As the training process continues, the agent learns to win the point more quickly.
The mean episode length reaches four at the start of the training process, and then goes
down to about 2.5 after 77 levels.

section evaluates the impact of using the ball-trajectory prediction model by training a

strategy over a striking policy that does not use any models.

9.5 Paddle-Control Strategy

As described in Chapter 4, there are three variants of the policy hierarchy with

three different striking skills. The previous two sections covered the land-ball and hit-ball

striking skills. The third is to use the paddle-control skill directly. The difference be-

112

Figure 9.6: Visualization of Adversarial Land-Ball Strategy. The agent learns to
use fast balls or aim for targets near the edges of the table. In the example shown both
robots have aimed for such targets. Landing targets are indicated by white marker balls.

tween this striking policy and the hit-ball policy is that the agent is expected to specify

all attributes of the paddle-motion state, including its target position l(pt) and the corre-

sponding time t. In other words, without access to the ball-trajectory prediction model

in the hit-ball skill, this variant is expected to predict a position and time for incoming

ball implicitly and aim for that spot with the paddle.

Fig. 9.12 shows the training progress for a cooperative paddle-control strategy.

After about 250 self-play levels, the mean episode length hardly reaches two. The hit-

ball strategy maxes out the episode length after this number of self-play levels. This

experiment was terminated early, but an earlier experiment that ran for many more self-

113

0 50 100 150 200
Self-Play Level

2

4

6

8

10

Ev
al

ua
tio

n
Ep

iso
de

 L
en

gt
h

Figure 9.7: Self-Play Learning of Cooperative Hit-Ball Strategy. Mean evaluation
episode length over 233 self-play levels. Each colored line segment corresponds to a
different level. The vertical axis shows the average length of a cooperative episode in
evaluation. Each point is an average over 240 evaluation episodes. The maximum episode
length is 10. The training progress for the hit-ball strategy is much slower than the
land-ball strategy, however, given enough training the hit-ball strategy can discover novel
strikes that allow it to score better than the land-ball strategy.

play levels shows that given more time the model-free PPO algorithm is able to find better

paddle-control strategies. Fig. 9.13 shows the training progress for an experiment with

lasted about 700 self-play levels, corresponding to about 1.7 M training exchanges. In this

experiment, the episode cap was set to 100, instead of 10. The strategy agent was able to

achieve a mean episode length of about 40 and the performance continues to climb.

Fig. 9.12 shows the training progress for an adversarial paddle-control strategy.

The mean episode length hardly rises above one, as was the case with the adversarial

hit-ball policy as well. However, with the hit-ball policy, the episodes ended quickly

114

Episode Length

Fr
eq

ue
nc

y

0

10

20

30

0.
00

20
.0

0
40

.0
0

60
.0

0
80

.0
0

10
0.

00
12

0.
00

14
0.

00
16

0.
00

18
0.

00
20

0.
00

22
0.

00
24

0.
00

26
0.

00
28

0.
00

30
0.

00
32

0.
00

34
0.

00
36

0.
00

38
0.

00
40

0.
00

42
0.

00
44

0.
00

46
0.

00
48

0.
00

50
0.

00
52

0.
00

54
0.

00
56

0.
00

58
0.

00
60

0.
00

Figure 9.8: Histogram of Episode Lengths for Cooperative Hit-Ball Strategy.
Distribution of episode length over 240 test episodes with an episode length cap of 1000.
The hit-ball strategy achieves a mean episode length of 111.9 with a standard deviation of
105.9. It significantly outperforms the land-ball strategy. However, training the hit-ball
strategy requires far more samples than the land-ball strategy.

because after some amount of training either robot could win the rally in one shot. The

paddle-control strategy has a hard time learning to make contact with the ball, so, the

side that has to act first has a high chance of losing the rally by failing the return the ball.

Although it is possible that with more training the adversarial paddle-control strategy

could improve, there is no advantage to using the paddle-control strategy over the hit-ball

strategy, as they both have the same action space.

The experiments in this section show that the simple dynamics model that pre-

dicts the ball’s future trajectory can improve the effectiveness and sample-efficiency of

cooperative and adversarial strategies dramatically.

115

0 50 100 150 200 250
Self-Play Level

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Ev
al

ua
tio

n
Ep

iso
de

 L
en

gt
h

Figure 9.9: Self-Play Learning of Adversarial Hit-Ball Strategy. Mean evaluation
episode length over 237 self-play levels. Each colored line segment corresponds to a
different level. The vertical axis shows the average length of an adversarial episode in
evaluation. Each point is an average over 240 evaluation episodes. The maximum episode
length is 10. The mean episode length very quickly approaches slightly above one, which
signifies that the episodes end very quickly. While at the beginning the episodes end
because the robots cannot successfully return the ball, at some point they learn to quickly
win the point on the first strike.

9.6 Joint-Control Strategy

Learning a strategy over the joint-control skill requires the agent to specify joint

velocity targets on every timestep of the environment. A typical ball exchange lasts 70-

100 timesteps. A joint-control strategy needs to execute successful strikes just in time as

the ball is reaching the robot, and then properly position the robot to be ready for the

next strike. So, in effect, it needs to execute two complementary skills.

Fig. 9.15 shows the results for training an ARS agent to play cooperative games

116

0 50 100 150 200 250
Self-Play Level

0.5

0.6

0.7

0.8

0.9

1.0

Ev
al

ua
tio

n
Ep

iso
de

 R
ew

ar
d

Figure 9.10: Average Evaluation Rewards for Adversarial Land-Ball Strategy.
Mean evaluation reward over 237 self-play levels. The mean episode reward reaches close
to one at the beginning, which means the learning agent can easily exploit the opponent
with the frozen policy. With more training, the reward becomes more balanced.

against itself. The ARS policies converge after about 2M episodes. The best policy

achieved a score of 2.0 (both arms return the ball) 87.1% of the time, and a score of 1.0

about 0.1% of the time. While the learned strategy was cooperative in the sense that the

second robot almost always succeeded in returning the ball, this behavior did not extend

to longer plays, i. e. the first robot could not return the ball after the second robot hit it.

Longer cooperative play could possibly be achieved by allowing longer rollouts at training

time, as well as increasing the randomness in the environment initial state (position and

velocity of the ball and robots).

Training the model-free joint-control strategy is more difficult than training the

model-free paddle-control strategy discussed in Sec. 9.5. While the paddle-control strategy

needed many training episodes, it could gradually improve the cooperative rewards and

117

Figure 9.11: Visualization of Adversarial Hit-Ball Strategy. The strategy agent
learns to win the rally by sending the ball over the opponent.

achieve cooperative episode lengths equal to 40% of the maximum possible after less than

2M training episodes. The rewards achieved by the model-free joint-control policy are

lower by comparison. This difference can be attributed to the high-level paddle actions

that allow the paddle-control strategy to execute effective paddle strikes just by specifying

a target motion state and time for the paddle. The long time horizon of these high-level

actions make learning easier by reducing the delay in receiving the reward for the chosen

action.

9.7 Conclusion

This chapter discussed training and evaluation of different variants of the strategy

skill operating over various striking policies including land-ball, hit-ball, paddle-control,

and joint-control. The hierarchical policy design used in this dissertation allows the table-

118

0 50 100 150 200 250
Self-Play Level

1.0

1.2

1.4

1.6

1.8

2.0

Ev
al

ua
tio

n
Ep

iso
de

 L
en

gt
h

Figure 9.12: Self-Play Learning of Cooperative Paddle-Control Strategy. Mean
evaluation episode length over 274 self-play levels. Each colored line segment corresponds
to a different level. The vertical axis shows the average length of a cooperative episode in
evaluation. Each point is an average over 240 evaluation episodes. The maximum episode
length is 10. The training process for the paddle-control strategy is much slower than the
land-ball and hit-ball strategies, since the agent needs to figure out how to make contact
with the ball in the first place.

tennis agent to combine model-based, model-free, and analytic skills in a single policy that

can effectively learn cooperative and adversarial games with good sample-efficiency.

Using model-based striking policies greatly increases the sample-efficiency of self-

play learning. On the other hand, allowing the strategy skill to execute arbitrary strikes

with the hit-ball skill results in discovering novel strikes suitable for cooperative and

adversarial games. Self-play strategies over completely model-free skills like paddle-control

and joint-control require more more training episode and are less effective at the task.

The experiment results suggest that model-based learning is a good way to in-

119

0 100 200 300 400 500 600 700
Self-Play Level

0

10

20

30

40

50

60

Ev
al

ua
tio

n
Ep

iso
de

 L
en

gt
h

Figure 9.13: Self-Play Learning of Cooperative Paddle-Control Strategy with
More Training Time. Mean evaluation episode length over 698 self-play levels. The
vertical axis shows the average length of a cooperative episode in evaluation. Each colored
dot corresponds to a different self-play level and represents the mean over 2400 episodes.
Note that unlike the previous cooperative plots, here the maximum episode length is 100.
The training process for the paddle-control strategy is much slower than the land-ball and
hit-ball strategies, since the agent needs to figure out how to make contact with the ball
in the first place.

crease sample-efficiency of learning robotic tasks, especially when the aim is to learn

tasks directly in the real world. It is possible to fine-tune the landing models trained from

human demonstrations with data collected from other striking policies, as done in the

dagger method [23]. Such an approach can combine the sample-efficiency of model-based

learning with flexibility of model-free policies.

120

0 20 40 60 80 100
Self-Play Level

1.000

1.005

1.010

1.015

1.020

1.025

1.030

Ev
al

ua
tio

n
Ep

iso
de

 L
en

gt
h

Figure 9.14: Self-Play Learning of Adversarial Paddle-Control Strategy. Mean
evaluation episode length over 96 self-play levels. The vertical axis shows the average
length of a cooperative episode in evaluation. Each colored dot corresponds to a different
self-play level and represents the mean over 2400 episodes. The mean episode length
hardly goes above one, since neither the learning agent nor the opponent with the frozen
policy can learn to make contact with the ball and return it successfully with this much
training. In these games, the first robot which gets to act usually loses the point.

121

0 1 2 3 4 5 6

total rollouts (M)

0.0

0.2

0.4

0.6

0.8

1.0

A
R

S
 s

co
re

Ball return

0 1 2 3 4 5 6

total rollouts (M)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ball return to target

0 1 2 3 4 5 6

total rollouts (M)

0.0

0.5

1.0

1.5

2.0
Cooperative ball return

Figure 9.15: Self-Play Learning of Model-Free Joint-Control Strategy with ARS.
Cooperative scores for four randomly-initialized runs. The vertical axis shows the number
of successfully-returned balls per rally. In all four runs the number of evaluations k per
policy perturbation was set to 15. Training the model-free joint-control strategy is less
effective and less sample-efficient than other strategy skills.

122

Chapter 10

Discussion and Future Work

This dissertation presents a method for learning the technical and tactical dimen-

sions of robotic table tennis in a virtual reality environment. The technical aspects of

the game are learned from realistic human demonstrations, and are executed using a

robot-agnostic analytic controller that can execute timed motion targets for the paddle

including its pose and linear and angular velocities. The tactical aspect of the game is

captured in the strategy skill and trained using model-free RL efficiently. This chapter

evaluates the results presented in this dissertation and outlines steps for future work.

10.1 Development Process

The work reported in the literature often focuses on results from the most successful

experiments and the best-performing agents. However, it is not always clear how much

effort goes into training those agents. In some cases, extensive hyperparameter tuning

and experiments with multiple random seeds are needed to train high-performing agents.

Such a development process is not feasible in robotic domains, where each training episode

carries a significant cost in terms of development time and wear and tear on the hardware.

In an end-to-end setup, the impact of a change in the implementation can be

evaluated only by its impact on the overall performance of the agent. Often, learning

algorithms are able to function moderately well even with bugs, making it difficult to

observe the negative impact of a new bug immediately after it has been introduced. The

hierarchical policy used in this dissertation makes the development and debugging of

individual skills easier. Since the skills can be evaluated separately, the failure cases and

the root causes for performance issues can be identified and studied. Moreover, it is

possible to give the policies perfect observations and actions to accurately measure their

intrinsic errors.

The high-level skills like striking and positioning in the hierarchical policy give the

123

top-level strategy skill access to neutral high-level behaviors that it can exploit in different

ways to discover new ways of playing table tennis. With this design, the application of

model-free RL can be localized to the strategy skill. Since the high-level skills are robust

and effective, a greater percentage of the action space of the strategy skill consists of

useful actions. So, during exploration, the RL algorithm is less likely to waste its effort

on trying actions that are not useful.

Since the underlying skills are robust and action space for the strategy skill is

effective, general-purpose RL algorithms like PPO can discover effective policies using only

about 24 000 training episodes. All hierarchical reinforcement learning experiments in this

dissertation were carried out on one or two local workstations, without hyperparameter

tuning. This is a huge improvement over standard practice in model-free RL.

10.2 Driving Different Robot Assemblies

Decomposing the environment into a game space and a robot space makes it pos-

sible to learn the game dynamics independently of how robot table tennis is to be played.

If the robot assembly is replaced, the game dynamics models can be used with the new

robot without retraining.

The analytic paddle controller is also agnostic to the robot setup. Given the motion

constraints for the robot, it can optimally drive any robot assembly to execute motion

targets for the paddle using the Reflexxes library. The analytic controller treats a multi-

robot setup (for example, a linear actuator plus an arm) as a single assembly, which allows

it to control complex robot setups.

The action spaces for the striking and positioning skills work with paddle positions.

This choice allows the same implementation for these skills to work with different robot

assemblies. However, the strategy policies learned on a particular robot assembly would

not transfer to a different robot assembly.

Replacing the robot assembly requires updating the action spaces to reflect the area

of the space that is reachable by the robot. Also, the canonical forehand and backhand

poses that are used to initialize the IK search need to be updated (see Sec. 7.5).

Thus the approach is quite general and independent of the robot, which makes it

possible to transfer it to the hardware without much further work on the controller.

124

10.3 Observation Uncertainty

The simulator used in this dissertation (PyBullet) has no built-in observation and

action noise. As discussed in Sec. 10.1 it was beneficial to train the agents with no

observation uncertainty to study the best possible performance of the dynamics models

and the training policies and gain better insight into any factors that contribute to errors

in prediction or behavior. However, deploying this method in the real-world requires

working with observation uncertainty.

Even though the underlying simulation environment does not have any observation

noise, the method is designed with observation noise in mind. The Reflexxes library was

chosen in part because of its ability to react to sensory noise. Reflexxes can plan to reach

a target motion state given any current motion state. So, if the paddle target is changed

due to updated observations on the trajectory of the ball, Reflexxes can recompute a

trajectory to reach a new target from the current motion state.

The land-ball algorithm discussed in Sec. 8.1 is an open-loop algorithm. Working

with noisy observations requires implementing closed-loop control policies. Experiments

are needed to evaluate and measure any loss of performance due to observation uncer-

tainty. Noisy observations would make the task more difficult. On the other hand, a

closed-loop controller can improve performance by continuously updating the predicted

trajectory of the incoming ball. In the current implementation, this trajectory is predicted

as soon as the ball starts traveling in the direction of the robot. In other words, the strik-

ing policy computes – and never updates – a prediction for the position and velocity of

the ball when it reaches the robot. This prediction is computed when the ball is on the

other side of the table. Closed-loop policies may obtain more accurate predictions when

the ball gets closer to the robot. This increase in prediction accuracy can improve the

landing accuracy.

Fig. 10.1 shows the environment with observation noise included. At each timestep

i, the environment exposes some observations obsi of the ball. The observations could

be the position and velocity estimates from a ball-tracking algorithm, or the raw blob

locations for the ball from multiple cameras. The policy needs to estimate the true motion

state of the ball from these observations. Such an estimate can be obtained from a model

described in Sec. 10.3.1. Since the ball state estimate keeps changing after receiving new

observations, Sec. 10.3.2 describes how the striking policies like land-ball can be adjusted

to update their predictions and targets during the course of a paddle swing.

125

obsi - 1

obsi

bi

bi + 1

bi + 2 bt

pt

pi

g

pi + 1

Figure 10.1: The Game Environment with Observation Noise. At every timestep
i, the environment exposes an observation obsi of the state of the ball. The observations
could be the ball position and velocity estimates coming from a ball tracker, or a set of
two-dimensional coordinates for the ball blob from multiple cameras. The current and
past observations can be used to estimate the true state of the ball bi. This setup makes
it possible to use the developed approach in environments with observation noise.

10.3.1 Ball-State Estimation Model

The ball-state estimation model receives a sequence of noisy observations of the

ball and estimates the ball’s current position and velocity. It is described by the function

b0, b1, . . . , bs = S(obs0, obs1, . . . , obss), (10.1)

where S denotes the ball-state estimation model, obss denotes a noisy position observation

on the ball obtained at timestep s, and bs denotes the estimate on the ball’s motion state

at time s.

Fig. 10.2 shows the network architecture for this model. It is a recurrent model

with two LSTM layers followed by a fully-connected layer. At each timestep, the model is

126

LSTM LSTM LSTM

LSTM LSTM LSTM

Dense Dense Dense

obs0 obs1 obss

b0 b1 bs

...

...

...

Input Sequence:
Past Ball
Position Observations

Output Sequence:
Current Ball
Position/Velocity

Unrolled RNN

Figure 10.2: Ball-State Estimation Model. The current ball-motion state is estimated
using a sequence model with LSTM layers followed by a fully-connected layer. The figure
shows the model unrolled through time for better visualization. This model makes it
possible to estimate the current position and velocity of the ball given a sequence of noisy
position observations.

given a new noisy position observation and it produces an updated estimate on the ball’s

current position and velocity. Over time, with more observations, this model can produce

estimates that get closer to the true state of the ball.

The agent maintains one instance of the model. As the episode progresses, on each

new timestep, the model is updated with a new observation from the current timestep and

produces an updated estimate on the current ball-motion state. The estimate obtained

from this model can be used to generate predictions about the future states of the ball

using the ball trajectory prediction model as explained in the next section.

127

10.3.2 Closed-Loop Land-Ball Skill

Algorithm 2 shows the updated land-ball algorithm that works in an environment

with noisy observations. Instead of computing a target paddle-motion state pt only once,

this algorithm recomputes the paddle target on every timestep. The algorithm starts by

using the ball observations to update its current estimate of the ball-motion state bs. It

then predicts the ball trajectory T , and computes a paddle-motion state pt to hit the

ball toward target g. However, instead of following pt using an open-loop controller, the

algorithm follows pt just for one timestep. On the next timestep, pt is updated based on a

new ball observation, and the paddle-control skill is requested to adjust its target to the

updated pt. Since Reflexxes is able to adapt to moving targets, the land-ball algorithm

works with observation noise as well.

inputs : Sequence of noisy ball observations {obs0, obs1, . . . }
inputs : Current timestep s
inputs : Desired landing target g
i← s
repeat

read latest ball observation obsi
bi ← S({{obs0, obs1, . . . , obsi}})
T = bi+1, bi+2, . . . , bn ← B(bi)
foreach bk ∈ T such that bk is reachable do

pk ← L−1(bk, g)
p̂k ← P (pk, ps)
ĝk ← L(p̂k, bk)

end
t← arg mink ||ĝk − g||
emit first action ui from πp(t, pt | ps)
i← i+ 1

until robot paddle hits the ball or episode ends
Algorithm 2: Closed-Loop Land-Ball Skill Algorithm

Some heuristics are needed to avoid potential failure cases. For example, when the

paddle is close to the target, if Reflexxes is moving the paddle with maximum velocity

or acceleration, a small update to the target make render it infeasible. In such cases, the

update should be ignored, opting for a small error, rather than a failure.

128

This extension takes a major step towards taking this system to real hardware.

Modeling ball spin and using vision to estimate it are other such extensions, which are

discussed in subsequent sections.

10.4 Ball Spin and Magnus Forces

The PyBullet simulator does not simulate Magnus forces that cause a spinning

object to curve its trajectory in the air. In the current implementation, the ball’s spin

only affects its motion after contact due to the friction forces acting on the ball.

The method can be extended to factor in the ball’s spin. The ball-trajectory

prediction model can be extended to receive an estimate on the ball’s spin as input. As

experiments in Sec. 6.5 show, ball-trajectory prediction is a simple problem and the model

is expected to have the capacity to handle ball spin as well. To make it easier to predict

the future states of a spinning ball, the dynamics models discussed in Chapter 6 can be

augmented with physics models that capture Newtonian motion, air friction, and Magnus

forces. The parameters in the physics models can be fitted to observed trajectories. Once

fitted, the physics models can be used to establish initial estimates of the future states of

the ball. Then the neural network can predict only a residual over the estimates from the

physics models, which is a simpler prediction problem. The next section discusses how

the ball’s spin can be estimated in real-world environments.

10.5 Vision

The method advocates working with low-dimensional state over raw visual input.

The primary element in the environment that needs to be observed with vision is the ball.

A variety of ball tracking algorithms exist that can compute estimates on the position

and velocity of a moving ball. Detecting the ball in a camera image is a relatively simple

computer vision task which does not require expensive computations. On the other hand,

using neural networks to track the ball using raw visual input requires carefully varying

the lighting conditions and backgrounds to avoid overfitting the model to the training

environment.

The only situation that requires handling raw visual input is estimating the impact

of a human opponent’s paddle motion on the ball. Since the opponent paddle is not

129

instrumented, it would be useful to establish an estimate on its motion at the moment of

contact with the ball. Such an estimate can be used to help the ball tracking algorithm

predict an expected trajectory for the ball. It can also be used as an input to the ball-state

estimation model shown in Fig. 10.2.

Establishing a prior on the motion of the ball as a result of contact with the oppo-

nent paddle is specially useful for estimating the ball’s spin. While the ball position and

velocity can be estimated using a few observations, the ball’s spin is harder to estimate.

However, during the game the ball always starts with no spin in the player’s hand. Physics

models can be used to establish an estimate on the ball spin as a result of contact with

the human or robot paddles. With these extensions, the method can be deployed in the

real world.

10.6 Hardware Evaluation

Experiments in Chapter 8 show that only about 7 000 human demonstrations can

be used to train a land-ball policy that can hit ball targets with about 20 cm error.

Similarly, experiments in Chapter 9 show that only about 24 000 self-play exchanges on

the robot can be used to learn a strategy that can sustain rallies lasting 14-16 hits. So,

these experiment suggest that the method may work in the real world as well.

The virtual reality environment developed in this dissertation has many similarities

with a real-world table-tennis environment. Most notably, the same motion sensors used

for tracking the paddle in the VR environment can be used to track human paddles in

the real world. The sensory readings from VR trackers are similar to readings from any

other motion tracking system. The data collection setup used in this dissertation already

deals with many problems arising from working with physical sensors. For example, there

is often jitter present in location readings coming from the VR tracker, which makes

estimating the true position of the VR paddle difficult. Also, the VR trackers do not

provide any velocity information. The data collection program estimates the linear and

angular velocity from the position readings. Lastly, HTC VR trackers work at 90 Hz,

while the simulator works at 1000 Hz. The difference in frequency requires producing

intermediate estimates for the state of the tracker.

The VR environment can be regarded as an implementation between a simulation

and the real world. Although the sensory readings coming from VR trackers are similar

to sensory readings that would be available in the real world from a motion tracking

130

system, deploying the method in the real world requires obtaining the ball state from

vision using a ball-tracking algorithm. As outlined in Sec. 10.3, the striking policies need

to be updated to work in a closed-loop manner and update their targets based on new

ball observations. Additionally, deploying the method in the real world requires training

a residual dynamics model for the paddle-control policy to capture control inaccuracies

due to imperfect robot hardware and robot controllers.

The experiments carried out in this dissertation show that a robotic table-tennis

agent can be trained using only a few thousand human demonstrations and about 20

thousand exchanges in robot games. This high sample-efficiency suggests that the method

can work in the real world as well. It is likely that training the models and policies in

the real world requires dealing with additional challenges that would reduce the sample-

efficiency or performance of the method. However, there are also opportunities for increas-

ing the sample-efficiency or performance, e. g. by augmenting demonstrated trajectories

using height reduction (Chapter 6), augmenting dynamics models with physics models

(Sec. 6.1.2), using closed-loop controllers (Sec. 10.3.2), and mixing dynamics models with

model-free policies as discussed in the next section.

10.7 Mixing Dynamics Models with Model-Free Policies

Dynamics models greatly improve the sample-efficiency of the agent. Only about

7 000 demonstrated strikes were enough to train a striking policy with a mean target

error of about 20 cm. Similarly, only about 24 000 self-play exchanges were enough to

train a cooperative land-ball strategy sustaining rallies lasting about eight exchanges on

average. These results show that model-based learning requires much fewer samples. On

the other hand, the dynamics models that were trained from human demonstrations were

never updated during robot experiments. Therefore, the land-ball striking policy that

uses these dynamics models stays limited to strikes that were demonstrated by humans.

The hit-ball strategy experiments in Sec. 9.4 show that more flexible striking skills

can discover striking motions beyond what is observed in demonstrations. On the other

hand, since the hit-ball policy uses only one dynamics model for ball-trajectory prediction,

and its action space has more dimensions compared to the entirely model-based land-ball

skill, training a strategy over hit-ball is less sample-efficient.

The method can be extended to allow updating the dynamics models with data

collected from more flexible policies that are either model-free or use fewer dynamics

131

models. Doing so would increases the predictive ability of the dynamics models to cover

a wider range of behaviors in the environment.

On the other hand, rather than learning the skills from scratch, the model-free

policies can be modified to use the predictions from the models as a starting point for

their decisions. Doing so allows the model-free policies to expand the boundary of ex-

plored behaviors gradually by trying out variations slightly outside the space of behaviors

captured in the models. Such guided exploration would make of the model-free policies

more sample-efficient.

10.8 Conclusion

This dissertation demonstrated sample-efficient learning of technical and tactical

aspects of robotic table tennis. Since the experiments were carried out in a VR environ-

ment with real-world motion sensors, the results suggest that the method can be used

to learn the task in the real world without relying on transfer of models or policies from

simulation. The ability of Reflexxes to adjust the trajectory target would dynamically

allow the method to work with noisy ball position and velocity estimates coming from a

ball-tracker in the real world.

132

Chapter 11

Related Work

11.1 Robot Table Tennis

There has been a broad body of work on robot table tennis [1, 2, 15]. More recent

approaches by Muelling et al. [20, 17, 19, 18, 32] are similar to the approach in this

dissertation in that they use human demonstrations to seed the robot’s behavior and they

decompose the task into high-level and low-level skills.

Inspired by studies of humans playing table tennis, Muelling et al. [20] break up

the game into four different stages – awaiting, preparation, hitting, and finishing. In the

hitting stage, they use an inverse dynamics model to compute the parameters of the robot

at time of contact to achieve a desired target location, similar to the land-ball skill pre-

sented in this dissertation. Muelling et al. also decompose the task of playing table tennis

into subtasks, which is similar to this work. They implement the low-level control of the

robot by learning a set of hitting movements from human-guided kinesthetic demonstra-

tions on the robot [19]. These movements are compiled into a library of motor primitives,

which are then expanded by mixing existing movements to create new motor primitives.

They then employ inverse reinforcement learning (IRL) over human demonstrations to

learn a high-level strategy for the full game [18].

Rather than using kinesthetic teaching, the approach in this dissertation captures

human strikes using instrumented paddles in free-form human games. This choice avoids

limiting the human’s movements to what is possible with kinesthetic teaching. Instead of

representing hitting movements at the joint level, the method in this dissertation abstracts

strikes by the paddle-motion state that is in effect at the time of contact. This high-level

representation makes it possible to solve the motor control problem using the general-

purpose Reflexxes [10] trajectory planning algorithm. Since the paddle-motion state is

not coupled to any specific robot, this approach can execute the learned strikes on any

robot without a need for new demonstrations.

133

Muelling et al. [18] use human demonstrations to learn a reward function for the

game, which represents a high-level game-play strategy. The method in this dissertation

uses human demonstrations only to learn the game dynamics, which gives the policy the

freedom to discover more diverse game-playing strategies beyond what is demonstrated by

humans. Using self-play in robot vs. robot games makes it possible to to freely explore and

refine game-play strategies. Also, the method proposed in this work is hierarchical and

assembles both high-level and low-level skills into one overall system, which can be refined

end-to-end if needed. This is while Muelling et al. [17] train the different components of

the hierarchy as separate models.

11.2 Model-Based and Model-Free Learning

The approach in this dissertation decomposes the problem into parts that are

model-based, such as dynamics models of the ball motion, and of contact, and parts that

are model-free, such as learning a high-level strategy. This decomposition breaks down the

problem in a way that is consistent with the strengths of these different approaches. The

model-based parts are trained with supervised models and it is easy to generate data for

them. Meanwhile, using model-free techniques for training the strategy allows much better

exploration without being very expensive, since only a few dimensions are optimized in the

strategy. The work by Muelling et al. [17, 20] follows a similar decomposition overall, but

high-level strategies are not trained with model-free approaches. Instead, the strategy is

either hard-coded [17] or learned from demonstrations using inverse reinforcement learning

techniques [20]. In this dissertation, the high sample-efficiency makes it possible to employ

model-free techniques for higher-level skills, which in turn leads to discovering novel strikes

and game-play strategies.

11.3 Hierarchical Reinforcement Learning

Hierarchical reinforcement learning is a long-established discipline. From the

original options framework [28, 22] to the more recent approaches, like FeuDAL net-

works [6, 30, 21], there is a broad body of work on training layered policies where each

skill sets goals for other skills below it. These approaches share the same underlying goal

– namely, to learn policies with a reduced number of timesteps by using models that oper-

ate at different rates. In FeuDAL networks the policy consists of two task levels that are

134

trained together, such that the higher-level task receives rewards over the actual objective

in the environment, while the lower-level task receives rewards for achieving targets set

by the higher-level task. A common motivation for hierarchical reinforcement learning

methods is automated discovery of useful subtasks. However, in this dissertation the

main motivation is developing a specific task hierarchy that is most suitable for learning

robotic tasks with extremely high sample-efficiency. In this work, the targets set by the

higher-level skills for the lower-level skills have specific semantics; they either signify a

desired outcome in the environment, such as a ball target location, or indicate a desired

state for the robot, such as a target paddle-motion state at the time of contact. Such

intermediate targets are effective at reducing the dimensionality of the control problem

while allowing for incorporating human demonstrations in a robot-agnostic controller.

11.4 Self-Play Learning

Self-play strategies have been applied extensively in fully-observable games such

as Go and chess [27]. Lately, these have also been applied to partially-observed games

such as StarCraft [31]. Self-play has not previously been applied to continuous-control

tasks such as robotic table tennis, mainly because existing self-play techniques require a

prohibitive number of training episodes, which is not feasible for robotic domains. The

hierarchical policy and the action representations developed in this work greatly reduce

the dimensionality of the higher-level skills like the strategy skill, thereby reducing the

number of self-play episodes needed. Effective application of self-play learning makes it

possible to learn more diverse striking motions and cooperative and adversarial table-

tennis strategies than would be possible through learning from demonstrations or inverse

reinforcement learning.

11.5 Underlying Methods

The following libraries and algorithms are used in developing the method in this

work.

135

11.5.1 Reflexxes

Reflexxes [10] is an online trajectory planning algorithm that is originally designed

to allow robots to react to unforeseen events. It is capable of computing robot motion

trajectories from arbitrary initial states of motion to reach a target state of motion while

satisfying given motion constraints. Fig. 11.1 by Kröger [10] illustrates the interface to

Reflexxes. Reflexxes is able to produce time-optimal trajectories that take the robot from

a given current state of motion to a desired target state of motion without violating the

set of given motion constraints.

136

Figure 11.1: The Interface to Reflexxes Motion Libraries. At each control cycle,
Reflexxes receives the current state of motion (including position, velocity, and accelera-
tion), the target state of motion (including position and velocity), and kinematic motions
constraints (including velocity, acceleration, and jerk). Given these inputs, Reflexxes pro-
duces the new state of motion (including position, velocity, and acceleration) for the next
control cycle. The new state of motion is computed using a fast deterministic algorithm,
and is guaranteed to be on a time-optimal trajectory toward the target state of motion.
Image source: Kröger[10].

Reflexxes has been used [12] to smooth out the end-effector targets continuously

produced by a neural network so that robot movements do not violate velocity, accel-

eration, and jerk limits. In this work, the motion targets for Reflexxes also act as a

137

temporally-abstract action representation, which helps reduce the dimensionality of the

control problem.

11.5.2 Proximal Policy Optimization (PPO)

Proximal policy optimization [25] is a policy gradient method for model-free re-

inforcement learning which optimizes a surrogate objective function with respect to the

parameters θ of a policy πθ(a|s) using stochastic gradient ascent. The objective optimized

by PPO is

L(θ) = Ê
[
πθ(at|st)
πθold(at|st)

− βKL(πθold(·|st), πθ(·|st)
]

(11.1)

where Ât is an estimator of the advantage function at time t, and Ê indicates the empirical

average over a batch of samples. The simplest version of PPO optimizes 11.1 with β = 0

and clips the policy ratio πθ(at|st)
πθold (at|st) so as to prevent numerical issues. A different version

of PPO adaptively updates β.

In comparison to related policy gradient methods, the objective optimized by PPO

is similar to that of trust region policy optimization (TRPO). The main difference is

TRPO imposes a hard constraint on the KL divergence between successive policies and

finds solutions using the conjugate gradient method. Empirically, both TRPO and PPO

have been found to lead to more stable policy updates than the standard policy gradient

methods.

11.5.3 Augmented Random Search (ARS)

Random search methods for model-free RL directly optimize the policy by search-

ing over its parameters. The simplest version of random search computes a finite-difference

approximation of the gradient along a direction chosen uniformly at random on a sphere

centered around the current parameters. Let rθ be a sample return corresponding to

rolling out a trajectory with policy parameters θ, and let δk be a random perturbation.

Basic random search approximates the gradient as

ĝ =
1

N

N∑
k=1

(rθ+δk − rθ−δk)δk (11.2)

138

The Augmented Random Search algorithm proposed by [14] incorporates several

heuristics into the basic search: (1) state vectors are whitened based on an online estimate

of state mean and covariance, (2) gradient is estimated based on top b directions with

highest return rather than all directions, and (3) the learning rate in each update is scaled

by the standard deviation of the obtained rewards. In addition to being simple to describe

and implement, ARS has been shown to have competitive performance with other popular

model-free algorithms on MuJoCo [29] benchmark environments.

139

Chapter 12

Conclusion

This chapter enumerates the contributions in this work and concludes the disser-

tation.

12.1 Contributions

The list below enumerates the contributions in this work.

• Integrating the simulator with a virtual reality environment permits capturing real-

istic paddle strikes demonstrated by human players. Such strikes contain versatile

paddle motions that are not comparable to simple trajectories constructed from

smooth splines.

• The hierarchical policy permits mixing model-free, model-based, and analytic poli-

cies in a single agent. Decomposing the task into subtasks reduces the number of

inputs and outputs for individual subtasks, which makes learning them easier.

• Decomposing the environment into a game space and a robot space permits learning

the game dynamics independently of how robot table tennis is to be played. The

environment decomposition also permits transferring the game dynamics models to

new robots without a need for retraining them.

• Using timed motion targets (including pose and velocity) as high-level actions per-

mits encoding complex robot motions with a simple action representation that is

suitable for learning algorithms.

• The robot-agnostic analytic paddle controller can drive any robot assembly to exe-

cute paddle strikes specified by timed motion targets for the paddle.

140

• Normalizing and subsampling trajectories recorded from human demonstrations per-

mits training dynamics models with few samples. Using only about 7000 trajecto-

ries, a land-ball policy is trained, which can hit targets with about 20 cm error on

average.

• The analytic controller and the model-based land-ball policy can drive a robot as-

sembly to play table-tennis rallies lasting 6-8 strikes on average, without any training

on the robot.

• Localizing the application of model-free RL to the strategy skill simplifies the re-

inforcement learning and exploration problems. Most RL experiments for learning

the strategy policies were carried out on two local workstations and without any

hyperparameter tuning.

• Learning the strategy skill with self-play permits discovering novel cooperative and

adversarial game-plays using the same paddle strikes demonstrated by humans. Af-

ter only about 24000 ball exchanges in self-play, a game-play strategy is learned

that can sustain rallies lasting 14-16 hits on average.

• Applying self-play to more flexible skills like hit-ball results in discovery of novel

strikes beyond what was used by humans. These strikes are customized for cooper-

ative or adversarial games.

• Successfully training a functioning table-tennis agent using in the order of tens

of thousands human and robot samples demonstrates that the method is sample-

efficient enough that it may be deployed in the real world to learn table tennis on

physical robots without relying on transfer of models and policies from simulation.

12.2 Conclusion

The intelligent household robots of the coming decades need to be able to learn by

observing humans. They also need to be able to figure out how to complete a task using

their knowledge of how the world and its objects work. If they have to experiment with

a task, they should be able to learn a lot from a few tries.

This dissertation takes a step in that direction by demonstrating the possibility

of learning a complex robotic task in a sample-efficient way. The hierarchical policy

141

design allows for incorporating knowledge of the world by observing humans completing

the same task, without restricting the agent to the behavior demonstrated by humans.

Employing simple yet highly-expressive action representations and analytic controllers

in the underlying skills gives the higher-level skills the freedom to explore the space of

high-level behaviors efficiently, leading to accelerated discovery of novel behaviors that

are perceived as intelligent by human observers.

142

Bibliography

[1] Russell L Andersson. A Robot Ping-pong Player: Experiment in Real-time. MIT

Press, 1988.

[2] L Ángel, JM Sebastián, R Saltarén, R Aracil, and R Gutiérrez. Robotenis: design,

dynamic modeling and preliminary control. In Advanced Intelligent Mechatronics.

Proceedings, 2005 IEEE/ASME International Conference on, pages 747–752. IEEE,

2005.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,

Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540,

2016.

[4] Hua-Tsung Chen, Wen-Jiin Tsai, Suh-Yin Lee, and Jen-Yu Yu. Ball tracking and

3d trajectory approximation with applications to tactics analysis from single-camera

volleyball sequences. Multimedia Tools and Applications, 60(3):641–667, 2012.

[5] Erwin Coumans. Bullet physics engine. Open Source Software: http://bulletphysics.org,

2010.

[6] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In Advances in

neural information processing systems, pages 271–278, 1993.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A

large-scale hierarchical image database. In Computer Vision and Pattern Recogni-

tion, 2009. CVPR 2009. IEEE Conference on, pages 248–255. Ieee, 2009.

[8] Danijar Hafner, James Davidson, and Vincent Vanhoucke. Tensorflow agents: Effi-

cient batched reinforcement learning in tensorflow. arXiv preprint arXiv:1709.02878,

2017.

[9] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

143

[10] Torsten Kröger. Opening the door to new sensor-based robot applications—the

reflexxes motion libraries. In Robotics and Automation (ICRA), 2011 IEEE Inter-

national Conference on, pages 1–4. IEEE, 2011.

[11] David G Lowe. Object recognition from local scale-invariant features. In Com-

puter vision, 1999. The proceedings of the seventh IEEE international conference

on, volume 2, pages 1150–1157. Ieee, 1999.

[12] Reza Mahjourian. Neuroevolutionary Planning for Robotic Control. University of

Texas at Austin, 2016.

[13] Reza Mahjourian, Risto Miikkulainen, Nevena Lazic, Sergey Levine, and Navdeep

Jaitly. Hierarchical policy design for sample-efficient learning of robot table tennis

through self-play. arXiv preprint arXiv:1811.12927, 2018.

[14] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search provides a

competitive approach to reinforcement learning. arXiv preprint arXiv:1803.07055,

2018.

[15] Fumio Miyazaki, Michiya Matsushima, and Masahiro Takeuchi. Learning to dy-

namically manipulate: A table tennis robot controls a ball and rallies with a human

being. In Advances in Robot Control, pages 317–341. Springer, 2006.

[16] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,

Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learn-

ing. arXiv preprint arXiv:1312.5602, 2013.

[17] Katharina Muelling. Modeling and learning of complex motor tasks: A case study

with robot table tennis. PhD thesis, Technische Universität, 2013.

[18] Katharina Muelling, Abdeslam Boularias, Betty Mohler, Bernhard Schölkopf, and

Jan Peters. Learning strategies in table tennis using inverse reinforcement learning.

Biological cybernetics, 108(5):603–619, 2014.

[19] Katharina Mülling, Jens Kober, Oliver Kroemer, and Jan Peters. Learning to select

and generalize striking movements in robot table tennis. The International Journal

of Robotics Research, 32(3):263–279, 2013.

144

[20] Katharina Mülling, Jens Kober, and Jan Peters. A biomimetic approach to robot

table tennis. Adaptive Behavior, 19(5):359–376, 2011.

[21] Ofir Nachum, Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical

reinforcement learning. arXiv preprint arXiv:1805.08296, 2018.

[22] Doina Precup. Temporal abstraction in reinforcement learning. University of Mas-

sachusetts Amherst, 2000.

[23] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learn-

ing and structured prediction to no-regret online learning. In Proceedings of the four-

teenth international conference on artificial intelligence and statistics, pages 627–635,

2011.

[24] Reuven Rubinstein. The cross-entropy method for combinatorial and continuous

optimization. Methodology and computing in applied probability, 1(2):127–190, 1999.

[25] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[26] Yongduek Seo, Sunghoon Choi, Hyunwoo Kim, and Ki-Sang Hong. Where are

the ball and players? soccer game analysis with color-based tracking and image

mosaick. In International Conference on Image Analysis and Processing, pages 196–

203. Springer, 1997.

[27] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,

Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.

Mastering the game of go without human knowledge. Nature, 550(7676):354, 2017.

[28] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-

mdps: A framework for temporal abstraction in reinforcement learning. Artificial

intelligence, 112(1-2):181–211, 1999.

[29] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for

model-based control. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ

International Conference on, pages 5026–5033. IEEE, 2012.

145

[30] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max

Jaderberg, David Silver, and Koray Kavukcuoglu. Feudal networks for hierarchi-

cal reinforcement learning. arXiv preprint arXiv:1703.01161, 2017.

[31] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha

Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian

Schrittwieser, et al. Starcraft ii: A new challenge for reinforcement learning. arXiv

preprint arXiv:1708.04782, 2017.

[32] Zhikun Wang, Abdeslam Boularias, Katharina Mülling, Bernhard Schölkopf, and

Jan Peters. Anticipatory action selection for human–robot table tennis. Artificial

Intelligence, 247:399–414, 2017.

146

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Motivation
	Challenges
	Approach
	Virtual Reality Learning Environment
	Using Low-Dimensional State
	Model-Based Learning
	Learning from Demonstrations
	Rich General High-Level Action Representations
	Analytic Paddle-Control
	Hierarchical Policy
	Learning Strategy with Self-Play

	Guide to the Reader

	Chapter 2. Simulation and Virtual Reality Environments
	The Simulator
	Virtual Reality Setup
	Learning Environment
	Conclusion

	Chapter 3. Method Overview
	Policy Design
	Environment Design
	Dynamics Models
	Analytic Robot-Control
	Learning Strategy with Self-Play
	Conclusion

	Chapter 4. Policy Design
	Skill Hierarchy
	Strategy
	Striking Skills
	Land-Ball
	Hit-Ball

	Positioning
	Paddle-Control
	Joint-Trajectory Planning
	Joint-Control
	Conclusion

	Chapter 5. Environment Design
	Game Space
	Robot Space
	Separating Physics of the Robot from the Physics of the Game
	One Game, Different Robots
	Reduction in Dimensionality
	Interaction with Task Decomposition
	Conclusion

	Chapter 6. Dynamics Models
	Learning Dynamics with Neural Networks
	Learning Dynamics Instead of Policy
	Using Physics vs. Neural Networks

	Dynamics Models
	Ball-Trajectory Prediction Model
	Landing-Prediction Model
	Inverse Landing-Prediction Model

	Domain Invariances and Data Normalization
	Invariances in Table Tennis
	Normalizing Ball Trajectories
	Normalizing Landing Trajectories

	Learning Dynamics from Demonstrations
	Data Collection in VR Environment
	Data Augmentation
	Subsampling

	Evaluation
	Ball-Trajectory Prediction
	Landing Prediction

	Conclusion

	Chapter 7. Paddle-Control Policy
	Paddle-Control Problem
	Analytic Paddle-Control
	Mapping Paddle's Normal to Orientation
	Mapping Paddle's Pose to Joint Positions
	Mapping Paddle's Linear and Angular Velocities to Joint Velocities
	Trajectory Planning
	Joint-Control

	Paddle-Dynamics Model
	Learning Paddle-Dynamics

	Learning Paddle-Control
	Positioning Policy
	Conclusion

	Chapter 8. Striking Policies
	Model-Based Land-Ball Policy
	Policy Implementation
	Automatic Forehand/Backhand
	Improved Policy with Cross-Entropy Method (CEM)
	Evaluation

	Model-Based Land-Ball Trained with Robot Data
	Data Generation
	Evaluation

	Model-Free Land-Ball Policy
	Training
	Evaluation

	Model-Based Hit-Ball Policy
	Policy Implementation
	Evaluation

	Conclusion

	Chapter 9. Learning Strategy with Self-Play
	Approach
	Reinforcement Learning
	Cooperative and Adversarial Rewards
	Self-Play
	Observations and Actions

	Training Setup
	Land-Ball Strategy
	Hit-Ball Strategy
	Paddle-Control Strategy
	Joint-Control Strategy
	Conclusion

	Chapter 10. Discussion and Future Work
	Development Process
	Driving Different Robot Assemblies
	Observation Uncertainty
	Ball-State Estimation Model
	Closed-Loop Land-Ball Skill

	Ball Spin and Magnus Forces
	Vision
	Hardware Evaluation
	Mixing Dynamics Models with Model-Free Policies
	Conclusion

	Chapter 11. Related Work
	Robot Table Tennis
	Model-Based and Model-Free Learning
	Hierarchical Reinforcement Learning
	Self-Play Learning
	Underlying Methods
	Reflexxes
	Proximal Policy Optimization (PPO)
	Augmented Random Search (ARS)

	Chapter 12. Conclusion
	Contributions
	Conclusion

	Bibliography

