
In Coevolution: Turning Adaptive Algorithms upon Themselves,
Birds-of-a-Feather Workshop, Genetic and Evolutionary Computation Conference
(Gecco-2001, San Francisco), 2001.

Co-Evolving a Go-Playing Neural Network

Alex Lubberts
Department of Computer Science

Twente University
Enschede, The Netherlands

d.a.lubberts@student.utwente.nl

Risto Miikkulainen
Department of Computer Science
The University of Texas at Austin

Austin, TX 78712
risto@cs.utexas.edu

Abstract

When evolving a game-playing neural network,
fitness is usually measured by playing against
existing opponents. In this article that need
is overcome by applying the competitive co-
evolutionary techniques of competitive fitness
sharing, shared sampling and hall of fame to the
SANE neuro-evolution method. This approach is
tested by evolving networks to play go on small
boards. Networks evolved through co-evolution
were compared against those evolved against the
gnugo program. The co-evolutionary techniques
were found to speed up the evolution and to res-
ult in better networks not limited by the quality
of the opponent.

1 INTRODUCTION

When evolving a network to perform a complicated task
such as game playing, one needs to have an opponent to
measure the fitness of a network. For simple tasks this does
not pose a problem, but when the task is more difficult, like
playing the game of go, it does, because there are no go
programs that play at a significant level.

In this article we will discuss the possibility of removing
the need of having a well performing opponent by using
competitive co-evolution. One way to define competit-
ive co-evolution is by evolving two populations: one is
a population of hosts that try to find an optimal solution,
the other is a population of parasites that, instead of try-
ing to find an optimal solution, try to defeat the hosts by
making use of their weaknesses (cf. Rosin, 1997). The
fitness of the hosts is calculated using competitive fitness
sharing. To reduce the number of games that have to be
played, shared sampling is used. To make sure that the
absolute quality of the hosts is increasing, they will not
only be tested against a subset of parasites, but also against

the best hosts of previous generations (i.e. a hall of fame,
Rosin, 1997). As the evolutionary technique we will use
the SANE neuro-evolution method (Moriarty and Miikku-
lainen, 1997), because it has been shown effective in the
go domain (Richards et al., 1998). The results show that
the learning speed is increased by using the co-evolutionary
techniques and the level of play is not limited by existing
opponents.

2 THE GAME OF GO

The game of go is an ancient board game which is believed
to have originated in China. The rules of the game are re-
latively simple, yet there are no go-playing computer pro-
grams that play at a significant level.

Go is played on a board with a grid consisting of 19 hori-
zontal and 19 vertical lines. Two players, black and white,
take turns in placing stones on empty intersections of the
grid, starting with the black player. Instead of placing a
stone, a player is also allowed to pass. When three passes
are executed in a row, the game ends and the score is cal-
culated.

Stones of the same colour that are adjacent to each other
are called a group. If a group is horizontally or vertically
adjacent to an empty intersection, that group is said to have
a ‘liberty’. If a group has no liberties, i.e. it is surrounded
on all sides by enemy stones, the opponent has captured
the group and all stones in the group are removed from the
board. If it is impossible to keep a group of stones from be-
ing captured, it is not necessary for the opponent to capture
it. The group stays on the board until the game is over and
is then removed from the board as if it were captured. Such
a group is said to be ‘dead’, as opposed to a group whose
capture is not unavoidable which is said to be ‘alive’. At
the end of the game, the captured stones will be added to
the opponent’s score.

One is not allowed to reduce the number of liberties of
one’s own group to zero (which is called ‘committing sui-

cide’). Finally, the ‘ko-rule’ states that no board configura-
tion may occur twice in a game.

There are two ways of calculating the score of a player:

Chinese scoring: The score is determined by counting the
captured enemy stones and all empty intersections
that are completely surrounded by only stones of that
player.

Japanese scoring: The number of the player’s own stones
is added to the number of captured enemy stones and
the surrounded empty intersections.

Chinese scoring is the most common; however, we will use
Japanese scoring, because gnugo(the go program we use
for evaluating the performance of the evolved networks)
uses it as well. In order to give the players an equal chance
of winning the game, the weaker player may be given some
points in advance, called ‘komi’. We will utilise komi in
our experiments to make competition more even.

3 APPROACH

Richards et al. (1998) evolved a go playing network for a
small board with good results. However, the level of play
was limited by the level of the existing program used as
a ‘sparring partner’. What is the use of evolving further
when you are already able to beat your opponent? This
problem can be addressed by evolving two populations try-
ing to beat each other. This way, theoretically, the net-
work should always try to improve. We adapted the SANE
neuro-evolution method to simultaneously evolve two pop-
ulations that challenge each other.

3.1 CHANGES TO THE RULES OF GO

To make automated play easier, we made changes to two of
the rules of the game of go:

� The ko-rule.

Implementing this rule would require saving every
previous board configuration and comparing those to
the current configuration. Instead, we chose just to
compare the current configuration to the configuration
two moves ago. Such a check is easy to compute and
still catches most of the ko situations.

� It is unnecessary to capture stones that cannot be
saved.

It is a difficult problem to determine which stones are
dead and which stones are alive. Therefore, we as-
sume that all stones that are left on the board are alive.
So, a player has to explicitly capture the stones that
she or he thinks are dead.

In addition to the above changes, we placed an upper bound
on the number of moves. Once the number of moves in the
game reaches that upper bound, a tie is declared. This is
done in case the simple check for ko does not work and the
game gets stuck in an infinite loop.

Evolving networks that play on a
���������

board is not
practical at the moment. First, many generations would be
needed to reach a given level. Second, the networks would
have to be quite big (there have to be a lot of neurons in
the input and output layer and the hidden layer) and there-
fore the populations would have to be large (otherwise, one
would end up with too many similar networks), which also
increases the time needed. For this reason we chose to do
most of the experiments on a � � � board. However, such
a simplification changes the game drastically. When play-
ing on a

���	�
���
board, the consequences of a move may

be noticeable only after several other moves. With a � � �
board all moves made are ‘local’, i.e. the consequences of a
move are immediately noticeable. Still, even with the � � �
board the basic go principles about life and death must be
learned; also, during the end game on a

�����
���
board all

moves are local as well.

There is one complication that comes with the assumption
that all stones on the board are alive in combination with
the Japanese scoring we use: it is possible to reduce the
score of the opponent by letting him fill the empty intersec-
tions by just ‘throwing in’ stones in his territory. However,
on such small boards this will not be a problem.

3.2 SANE

SANE (Symbiotic Adaptive Neuro-Evolution; Moriarty
and Miikkulainen, 1997; Richards et al. 1998) differs from
standard evolutionary algorithms in that instead of evolving
complete neural networks, a population of neurons and
a population of blueprints (that specify which neurons to
combine into a neural network) are evolved. By evolving
neurons instead of complete networks, the search space is
decomposed and groups of neurons are able to specialise on
different parts of the task. This way, diversity is maintained
and the algorithm does not get stuck on a suboptimal solu-
tion as easily as other neuro-evolution methods (Moriarty
and Miikkulainen, 1997). The blueprint population then
searches for effective combinations of neurons.

Each individual in the neuron population specifies a neuron
in the hidden layer of a two-layer neural network as a set
of weighted connections made from the input layer or to
the output layer as shown in figure 1. The first number in
the genome indicates which neuron (in the input or out-
put layer) to connect to and the second number specifies
the weight of the connection. The third number again in-
dicates a neuron, and so on. The number of connections

−0.4
1.2

0.3−1.0

1 2 3

4 5

5 0.3 1 −0.4 2 1.2 4 −1.0

Figure 1: An individual from the neuron population. The
genome (on the left) specifies which connections are to be
made and what weight they have.

1

2

4

3

1 2 3 4

Figure 2: An individual from the blueprint population. The
genome (the bar) points to neurons in the neuron population
of which the hidden layer is made up.

each neuron has is fixed, but they are arbitrarily distributed
among the input and output layer.

A blueprint genome consists of pointers to neurons in the
neuron population to be used in a network (figure 2), so that
efficient combinations of neurons are maintained. Encod-
ing in this way encourages neurons in the neuron popula-
tion to specialise and keeps well-performing neurons from
being discarded just because they were evaluated in an in-
effective combination with other neurons.

One iteration in the evolution process is divided into two
steps: an evaluation phase and a reproduction phase. Dur-
ing the evaluation phase, each blueprint is used to build a
network whose performance is evaluated and is assigned
a fitness value. Each neuron receives a fitness value that
is equal to the summed fitness values of the best five net-
works in which it participated. In the reproduction phase,
both populations are ranked based on fitness. For each
elite individual, a mate — which is also an elite individual
— is chosen and a one-point crossover is used to produce
two offspring. The offspring replaces the worst perform-
ing individuals in the population. Finally, mutation, with
a chance of 0.5%, is performed on both the population
of neurons and the population of blueprints. This way,

SANE performs two evolutionary searches simultaneously:
a search for neurons that implement useful sub-tasks, and a
search for effective combinations of these sub-tasks.

SANE has been shown effective in several sequential de-
cision tasks such as playing go (Richards et al., 1998)
and Othello (Moriarty and Miikkulainen, 1995), and con-
trolling a robot arm and a mobile robot (Moriarty and
Miikkulainen, 1996). It was therefore selected as the start-
ing point for the co-evolution experiments reported in this
paper.

3.3 COMPETITIVE CO-EVOLUTION

Co-evolution is the simultaneous evolution of two or more
populations with a common fitness landscape. Competitive
co-evolution can be defined as the evolution of a host popu-
lation from which individuals compete directly against in-
dividuals from a parasite population, which also evolves
(Rosin, 1997; Rosin and Belew, 1995). Rosin (1997)
defined the host population as the population that is cur-
rently being evaluated and the parasite population as the
population the test cases come from. So, each population
takes turn in being either the host or parasite population in
this definition.

Since both populations are evolving simultaneously and a
success in a competition for an individual from one popu-
lation means a failure for an individual from the other pop-
ulation, both populations challenge each other, which can
lead to an ‘arms race’. Hopefully, this results in an ever-
increasing performance, approaching the optimal solution.
However, the cases on which the hosts are tested must
neither be too easy, nor too difficult, otherwise the evol-
ution will stagnate: which individuals should get the op-
portunity to reproduce in the case that all hosts win or all
hosts lose to all parasites?

Rosin and Belew (1995) describe competitive fitness shar-
ing, shared sampling and hall of fame as techniques for
competitive co-evolution. These techniques are used to
implement competitive co-evolution in our experiments as
well.

3.3.1 Competitive Fitness Sharing

Usually, the fitness value of an individual is based on the
score it acquired during its evaluation (e.g. a binary value
indicating the success/failure of the individual). In fitness
sharing (Holland, 1975; Goldberg and Richardson, 1987),
similarity is taken into account in such a way that un-
usual individuals get rewarded. Competitive fitness sharing
(Rosin and Belew, 1995) takes similarity into account by
rewarding individuals that beat opponents few others can,
even though the individual might not beat as many oppon-
ents as others can.

The fitness ��� assigned to an individual � is:

�������	�

�
�
� 	

where � is the set of opponents defeated by � and
� 	 the

number of times an opponent � lost.

The consequence of using competitive fitness sharing is
that an individual that is the only one that can defeat a cer-
tain opponent is saved from extinction since it receives a
large reward for doing so. This way, diversity in the popu-
lation is encouraged. The information this individual con-
tains will be spread throughout the population so that in-
dividuals from later generations all are able to defeat that
opponent.

3.3.2 Shared Sampling

Shared sampling (Rosin and Belew, 1995) provides a
mechanism to reduce the total number of competitions that
have to be played by selecting a sample set from the pop-
ulation. Of course, this could be done by selecting a ran-
dom subset from the population, but when there is more
information about the population available, it might as well
be used to select a more diverse and representative sample.
This way, all, or at least more, types of opponents will be
challenged. The resulting sample set makes a good set of
opponents to the other population.

The way to choose such a teaching set resembles competit-
ive fitness sharing. First, the individual that defeated most
opponents during the previous generation is selected. Then,
the individual that competed well against opponents against
which the first one did not compete well is selected, and so
on, until the set is deemed sufficiently large.

3.3.3 Hall of Fame

To ensure that individuals do not lose the ability to defeat
opponents from previous generations, hall of fame (Rosin,
1997) is introduced. Hall of fame preserves the best oppon-
ent from each previous generation, that is, the individual
that had the most number of successes (instead of the indi-
vidual with the highest fitness). In addition to the oppon-
ents from the current generation, each individual is tested
against a sample from the hall of fame. Rosin (1995) ap-
plied shared sampling to the hall of fame, but found that
selecting a random subset from the hall of fame works just
as well. Therefore, in our experiments a random subset
from the hall of fame is used.

3.4 APPLYING COMPETITIVE CO-EVOLUTION
TO SANE

We use different definitions for hosts and parasites than
Rosin (Rosin, 1997), perhaps closer to the biological terms.

We define a host as an individual that tries to find an op-
timal solution to the problem, whereas a parasite, rather
than finding a general solution, tries to defeat the hosts by
making use of their weaknesses. The parasites can be seen
as a set of test cases for the hosts.

From a biological point of view, a host has to try to of-
fer resistance to as many parasites as it can to increase its
chance of survival. For a parasite to survive, it is sufficient
to just be able to make use of the weakness of one host
only. We have tried to mimic this behaviour by applying
the techniques described above differently to the host and
parasite population. This way, a diverse parasite popula-
tion should result, challenging the hosts to develop a gen-
eral playing style, defeating as many parasites as they can.
In order to encourage the hosts to develop generality, the
parasites have to be diverse. To make sure the difference
in playing level is not too large, komi, with one point at a
time, is granted to the weaker player.

4 EXPERIMENTAL SETUP

4.1 THE NETWORK

In the experiments we used the population and networks
sizes found to be effective by Richards et al. (1998), namely
a neuron population of 2000 neurons, a population of 200
blueprints, and a network size of 100 neurons in the hid-
den layer. The input layer consists of two input units for
each intersection on the board. The first input unit is activ-
ated if a black stone occupies the intersection. The second
input unit is activated if a white stone is present on the in-
tersection. The output layer consists of one output unit per
intersection. The output is a value between � and

�
and

indicates how good it is to play on that intersection: the
higher the value, the better.

First, the board position is fed into the neural network.
Then a move is made on that intersection that received the
highest value among all legal moves. If all values are below��� � , the network passes.

4.2 THE RUNS

For the experiments, a run consists of 250 generations. For
each generation, the number of games won by the hosts and
by the parasites during the evolution will be administered
to see if komi should be granted. The best host and the
best parasite from each generation are saved. When evalu-
ation is over, a tournament will be held; each host (from the
set of saved networks) will play against each parasite. The
number of wins for each host will be counted and should
increase over the generations.

To measure the absolute quality of the evolved networks is

difficult. One possible reference point is gnugo, a publicly-
available rule-based go program. However, all networks
defeated gnugo after very few generations. Gnugo is appar-
ently not designed to play on such small boards. However,
it seems that the networks have learned something about
life and death: because Japanese scoring is used, it does
not hurt to place stones in ones own territory, as long as the
group of stones stay alive; most networks place stones in
their own territory, but most stop just in time to stay alive.
Although it is still relatively easy for a human player to beat
the networks, they generally make reasonable go moves.

This observation was quantified experimentally in three
different ways:

1. The performance of the co-evolved networks were
compared to those evolved against gnugo.

2. The performance of hosts and parasites was analysed
over time.

3. The evolution speed of the system was compared
to ablated versions where fitness sharing, shared
sampling, and hall of fame were each turned of at a
time.

5 RESULTS

5.1 COMPARISON

The most important result is that co-evolution indeed al-
lows better game-playing behaviour than standard evolu-
tion against a fixed opponent. Using SANE, 40 generations
of networks were evolved against gnugo. A tournament
was then run between these networks, gnugo, and the first
40 generations of the co-evolved networks from a typical
run. The number of games each network and gnugo won is
plotted in figure 3.

Gnugo won 23 games in this tournament: it took the co-
evolved networks 5 generations to beat gnugo while the
networks evolved against gnugo took 18 generations. The
big leap in number of games won by the co-evolved net-
works between the 5th and 7th generation indicate the point
from where the co-evolved networks were able to beat all
the networks evolved against gnugo. The almost flat line
after generation 18 of the networks evolved against gnugo
shows that evolution stops after reaching the goal of beat-
ing gnugo as opposed to the increasing number of games
won by the co-evolved networks. This indicates that the
networks evolved against gnugo are limited by the level
of play of existing opponents, whereas the co-evolved net-
works keep improving.

gnugo
SANE

co-evolved networks

generation

ga
m

es
w

on

4035302520151050

80

70

60

50

40

30

20

10

0

Figure 3: The outcome of the tournament between gnugo,
the co-evolved networks and the networks evolved against
gnugo. Plotted is the number of games each network won.
Co-evolution achieves higher levels of play than standard
evolution, which stagnates just slightly above the level of
the opponent.

5.2 A TYPICAL RUN

Figure 4 illustrates the progress of a typical co-evolution
run. A dot indicates that the best host network of the
generation corresponding to that horizontal coordinate beat
the best parasite network corresponding to that vertical co-
ordinate (no dot indicates a loss or a tie). Ideally, the lower
right half of the plot would be filled with dots, which would
indicate that the hosts (only) win from parasites of previ-
ous generations. As can be seen, there are more dots in
the lower right part. The number of dots in each column
increases over time, which indicates that something is be-
ing learned. This particular run was able to defeat gnugo
after just 5 generations, so there appears to be considerable
progress even after that reference point.

5.3 ABLATION STUDIES

To verify that each co-evolutionary technique does indeed
contribute to the performance, each of them were removed
from the system in turn and a new set of simulations were
run. The average number of generations it took each test
to defeat gnugo was then measured (table 1). All abla-
tions were able to defeat gnugo. However, the full system
reached this level several times faster than the ablated ver-
sions. All techniques therefore contribute to the perform-
ance of co-evolution.

host generation

pa
ra

si
te

ge
ne

ra
tio

n

250200150100500

250

200

150

100

50

0

Figure 4: A typical co-evolution run. A dot indicates that
the best host network of the generation corresponding to
that horizontal coordinate beat the best parasite network
corresponding to that vertical coordinate. There are more
dots in the lower right, indicating that the level of play is
improving.

technique average number
switched off of generations
fitness sharing 29
shared sampling 20
hall of fame 12
none 7

Table 1: The average number of generations needed to de-
feat gnugo.

6 CONCLUSION

The results show that co-evolutionary techniques speed up
SANE and develop a level of play not limited by available
opponents. This result is a good start; however, whether
such techniques will eventually allow playing on full size
boards is an open question at this point. We believe that
other advances will be necessary, such as more structured
representations of the game states, but co-evolutionary
techniques are likely to be part of the solution.

References

Goldberg, D. and Richardson, J. (1987). Genetic al-
gorithms with sharing for multimodal function optim-
ization. In Proceedings of the Second International
Conference on Genetic Algorithms, pages 148–154,
San Francisco, CA. Kaufmann.

Holland, J. (1975). Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications
to Biology, Control and Artificial Intelligence. Uni-
versity of Michigan Press, Ann Arbor, MI.

Iwamoto, K. (1977). Go for Beginners. Random House.

Moriarty, D. and Miikkulainen, R. (1995). Discover-
ing complex othello strategies through evolutionary
neural networks. Connection Science, 7:195–209.

Moriarty, D. and Miikkulainen, R. (1996). Evolving
obstacle avoidance behavior in a robot arm. In Maes,
P., Mataric, M., Meyer, J.-A., and Pollack, J., edit-
ors, From Animals to Animats: Proceedings of the
Fourth International Conference on Simulation of Ad-
aptive Behavior, pages 468–475, Cambridge, MA.
MIT Press.

Moriarty, D. and Miikkulainen, R. (1997). Forming neural
networks through efficient and adaptive coevolution.
Evolutionary Computation, 5:373–399.

Richards, N., Moriarty, D., and Miikkulainen, R. (1998).
Evolving neural networks to play go. Applied Intelli-
gence, 8:85–96.

Rosin, C. (1997). Coevolutionary search among adversar-
ies. Master’s thesis, University of California, San
Diego.

Rosin, C. and Belew, R. (1995). Methods for competitive
co-evolution: Finding opponents worth beating. In
Proceedings of the Sixth International Conference on
Genetic Algorithms.

