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Abstract
No Free Lunch (NFL) theorems have been developed in many settings over the last
two decades. Whereas NFL is known to be possible in any domain based on set-
theoretic concepts, probabilistic versions of NFL are presently believed to be impossi-
ble in continuous domains. This article develops a new formalization of probabilistic
NFL that is sufficiently expressive to prove the existence of NFL in large search do-
mains, such as continuous spaces or function spaces. This formulation is arguably
more complicated than its set-theoretic variants, mostly as a result of the numerous
technical complications within probability theory itself. However, a probabilistic con-
ceptualization of NFL is important because stochastic optimization methods inher-
ently need to be evaluated probabilistically. Thus the present study fills an important
gap in the study of performance of stochastic optimizers.
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1 Introduction

The No Free Lunch (NFL) theorems were originally proposed in a probabilis-
tic form, stating loosely that on average all non-repeating black-box algorithms
perform equally. In recent years, this probabilistic interpretation has come into
question due to the difficulty of expressing probabilistic NFL in infinite search
domains. The issue became acute with the claim of Auger and Teytaud (2007,
2010) that “continuous lunches are free”. They asserted that there is no way
of averaging fitness functions that produces the NFL property for a continuous
search domain. This assertion was described by Rowe et al. (2009) as a “failure
of the probabilistic framework.” Duéñez-Guzmán and Vose (2013) concluded
that “probability is inadequate to affirm unconstrained NFL results in the gen-
eral case”, and even that “probability is an unfortunate historical artifact”.

The goal of this article is to set the record straight with respect to prob-
abilistic NFL. Although we cannot argue with Rowe et al. in their claim that
“probabilistic language . . . complicates both the statement and the proof of NFL
results” (Rowe et al., 2009), we believe that this complication is necessary. In
terms of applications, NFL is a statement about what kinds of performance are
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possible in optimization algorithms. From this point of view, NFL for stochastic
optimization cannot be divorced from the probabilistic context. Though Rowe
et al. (2009) have shown that set-theoretic results can be applied to a probabilis-
tic context, it is not always natural to express general non-NFL performance
evaluation results without reference to probability theory.

Much of the confusion stems from the explicit claim of Auger and Teytaud
(2010) that “there is no random fitness for which all algorithms are equivalent
. . . when [the search space] is a continuous domain.” In fact, this claim is only
possible due to the particularly restrictive conditions that these authors placed
on the definition of a random fitness (see Section 2.2). We will construct a large
family of NFL evaluation scenarios in continuous settings, demonstrating that
the claim of “no continuous NFL” overstates the actual situation unnecessarily.

In sum, this article should dispose of the claim that “probability is inade-
quate to affirm unconstrained NFL results in the general case.” The revised ver-
sion of probabilistic NFL expounded in this paper provides novel insight into
the nature of NFL from a probabilistic and functional analytic point of view.

2 Overview of Results

This section gives an overview of the approach and results of this paper and
provides an intuitive sense for what is proven in technical detail below.

2.1 Search and Optimization

In general terms, an iterative search method picks points from a search domain
in a sequence with the goal of finding a point with a desired value. The search
domain is denoted as a set X , and the set of values is another set Y . The search
domain may consist of real numbers, integers, graphs, or anything else. The
values set can be any distinct objects: real numbers, integers, or farm animals.

A search problem associates values with search points. There are many kinds
of problems. One simple problem chooses values based on a single function
u : X → Y , so that if X is the set of positive integers and Y a set of farm
animals, then for each integer x ∈ X , u(x) is the associated farm animal. Such a
problem might arise in a database recording the animals owned by a farm.

A search goal is needed to complete the setting. If the goal is to find the
unique identifier of a sheep named Dolly, a search method might use a sec-
ondary index based on the name of each animal to locate the correct sheep in
logarithmic time, or to say that no such sheep exists. In this case, this search
problem with this goal has an efficiently computable solution.

In an optimization problem, the value set Y is an ordered set, either totally or
partially. The ordering indicates preference, and the goal to find the search point
with the least or the greatest value. Many if not most evolutionary algorithms
are applied to optimization. Often, the problem is defined by a single fitness (or
cost or objective) function u : X → Y that provides fixed values for each search
point. This setting is called static optimization.
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A search method proposes a sequence of search points, and a search prob-
lem provides the associated values for each point. The method may randomize
its choice of search points, choosing the next point according to a probability
distribution that depends on the set of prior points and their associated values.
Such a method has been called a randomized search heuristic (Vose, 1999). The
search problem may also be randomized, and with a (deterministic) search goal
the search becomes a game-theoretic game, as explored by Lockett (2015).

Typically, randomness within the search problem is substantially con-
strained. Here, the problem is restricted to a fitness measure, defined in Sec-
tion 3.6. A fitness measure is a probability distribution over all possible fitness
functions from the search domain X to the set of fitness values Y . If the same
search point is proposed multiple times, it must still receive the same value each
time. A more general form of randomness not considered in this article turns
up in practice when a fitness function is subject to noise.

2.2 No Free Lunch as Symmetry of Values

NFL looks at the trajectories of search points and fitness values produced by
running a search method on a search problem. NFL is usually expressed in a
way that is dependent on the search problem but not the search goal. To discuss
NFL, one need not make any assumptions about the value set Y other than that
it contains distinct points. In particular, NFL does not care whether the set of
values is ordered; such questions are not relevant without a search goal. The
reason the idea of a search goal was introduced in the last subsection was to
point out that contrary to the folklore surrounding NFL, traditional forms of
NFL have little to do with any notion of progress in optimization.

Rather, NFL is a symmetry property applying to the sequence of observed
values. One might imagine an iterative search method proceeding as follows:

search method x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 . . .
search problem y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 . . .

(1)

A sequence of such (x, y) pairs is called a trace of the search. NFL refers to
various situations in which the sequence of y1, y2, y3, . . . does not depend on
the sequence x1, x2, x3, . . .. Note that such a property does not depend on any
relative preference among the yi’s.

Such situations arise in various contexts. Set-theoretic NFL describes sets of
fitness functions such that composition of any function in the set with any per-
mutation of the search domain yields another function inside the set; that is, the
set is closed under permutation (c.u.p.) (Schumacher, 2000; Rowe et al., 2009).
Closure under permutation is equivalent to NFL (Igel and Toussaint, 2004), since
it guarantees that no matter what sequence of search points is chosen by the
search method, the sequence of values that is obtained cannot say which fitness
values will be observed next. Set-theoretic NFL applies to search domains X
and fitness spaces Y of any cardinality, though proving as much requires index
sets with cardinality potentially greater than that of the integers.

Evolutionary Computation Volume x, Number x 3



A. J. Lockett and R. Miikkulainen

Probabilistic NFL places a conditional probability distribution over fitness
sequences given search sequences and states that the probability of observing
a particular fitness sequence y1, y2, y3, . . . is independent of the (randomized)
search sequence x1, x2, x3, . . .. Given c.u.p. sets, set-theoretic NFL implies prob-
abilistic NFL when the fitness function is chosen uniformly over the set. How-
ever, probabilistic NFL may include notions of NFL not included by the set-
theoretic version. Within probability theory, it is difficult but not impossible to
express probabilistic NFL for spaces beyond countable cardinality due to the
existence of unmeasurable sets. This subject is taken up in Sections 3 and 4.

In a previous article, Auger and Teytaud (2010) claimed that “continuous
lunches are free”. This claim has been widely cited, but it overstates the results
proven in their article and contradicts Theorems 4.6 and 4.8 below. Suppose
that the search domain is the unit interval X = [0, 1] and the value space is
the real line, Y = R. To demonstrate an NFL fitness measure, suppose that
each fitness value yi above is chosen from a standard normal distribution inde-
pendent of the search sequence x1, x2, x3, . . . and independent also of the prior
values y1, y2, y3, . . . , yi−1. That is, the search method chooses a point, and then
the search problem randomly assigns a fitness value to that point that has no
relationship to its previous choices or to the search point proposed. Thus the
probability of the observing certain fitness values is independent of the search
points proposed, satisfying the intuitive criterion for probabilistic NFL. This
fitness measure has mutually independent and identically distributed coordi-
nates. It is thus path independent by Theorem 4.6 and has the NFL property
by Theorem 4.5. Furthermore, the fitness measure in question does exist as a
consequence of the Kolmogorov Extension Theorem.

This example of continuous NFL is intuitive and can be approximated on
a digital computer. But it does not have a proper median and so does not satisfy
the conditions imposed on NFL by Auger and Teytaud (2010). A proper median
is a real number such that half of the fitness values are strictly above it and
half strictly below. Further, this number must be the same across all fitness
functions. If complete fitness functions could be drawn from this NFL fitness
measure above (which they cannot, since it is a Baire measure), they would be
imbalanced with probability one. The requirement of a proper median is too
strong, but the proof against continuous NFL depends on it. That continuous
NFL must satisfy certain properties does not imply that it cannot exist at all.

The main difference with Auger and Teytaud (2010) regards the optimiza-
tion process itself. The present article treats optimization as a stochastic process
in which only the trace is observed. In probability theory, an event is measurable
if a probability can be assigned to it. A probability distribution says nothing
about events that are not measurable. Such events cannot be observed. Auger
and Teytaud (2010) require that the entire fitness function be observable, that is,
that one can sample entire fitness functions. This Lebesgue process requirement
is critical to their proof. In this paper, the optimization method only observes
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the fitness values as they are assigned. If the method is run for countably many
steps, it observes countably many fitness values in order. The complete fitness
function is unobservable.

This article goes further than just showing that continuous NFL does ex-
ist in a probabilistic setting. After all, that fact is a logical consequence of the
most recent version of set-theoretic NFL (Rowe et al., 2009). Rather, this article
demonstrates equivalence between probabilistic NFL and a new concept of path
independence, a probabilistic analog to c.u.p sets; it states that probabilistic NFL
is invariant with respect to permutations in the search domain.

Path independence is not easy to prove, but it can be easily demonstrated
for fitness measures that have mutually independent and identically distributed
coordinates, such as the one above. Path independent fitness measures always
have identically distributed coordinates (Theorem 4.7), but the converse is not
true (Theorem 4.10). It is tempting to think that combining mutual indepen-
dence and identically distributions would yield path independence and hence
NFL. But this conclusion is incorrect, as proven for a special case in Theo-
rem 4.11. NFL fitness measures can be deficient in a sense that c.u.p. sets cannot
be. They exhibit correlations among search coordinates that do not disturb NFL
by choosing probabilistically between two distinct NFL fitness measures.

Further, weighted combinations of NFL fitness measures are also NFL fit-
ness measures (Theorem 4.9). NFL fitness measures without mutually inde-
pendent coordinates can arise in exactly this way (Theorem 4.11). The follow-
ing question then suggests itself: Are there NFL fitness measures that cannot
be generated from a convex combinations of uniform priors over sets that are
c.u.p.? Or is path independence just the closure under vector operations of mu-
tually independent and identically distributed coordinates? These questions
are not answered in this paper, but tools helpful to answer them are developed.

2.3 Motivation for the Formalism

This article considers optimization and search as processes generating a pair
of randomized trajectories, one through the search domain X and one through
the fitness space Y . The optimization method chooses the search trajectory in
response to the fitness trajectory, whereas the optimization problem chooses the
fitness trajectory in response to the search trajectory. The optimization method
tries to control the fitness trajectory, and NFL describes the situation when this
trajectory is uncontrollable. Such processes are not confined to computations;
they may describe, for example, any input-output sequence mappings. NFL
applies to all such systems irrespective of computational aspects.

The formalism below considers an “optimizer” as a map from fitness trajec-
tories to probability distributions over search trajectories. Intuitively, one can
imagine observing a fitness trajectory and asking which search trajectory pro-
duced it. Usually, one thinks of an optimizer as examining past search points
and fitness values in order to decide the next search point iteratively. Formally,
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however, this iterative point of view can be obtained from the formalism by
extracting conditional probabilities, as briefly discussed in Section 3.5. More
complete discussions can be found elsewhere (Lockett, 2015; Lockett and Mi-
ikkulainen, 2013; Lockett, 2013). In particular, the notation Gi(z, u(z)) in Equa-
tion 4 represents how the optimizer chooses the ith point given a sequence z of
previous search points and values determined by a fitness function u. The trace
or history of an optimization is a sample from the history process from Equa-
tion 7, which takes values determined by the optimizer and fitness measure.
One can examine the history process by sampling its coordinate projections.

The iterative nature of optimization is encoded in a totally ordered index set
I. If it is finite, optimization proceeds for a fixed number of steps. If it is count-
able, optimization runs in discrete steps forever. In either case, the trace can be
observed with search points and fitness values at each step. Uncountable index
sets were introduced to NFL by Rowe et al. (2009), where they were necessary
for NFL proofs. Here, uncountable cardinality enables a way of thinking about
optimization that transcends computation, though this perspective will not be
fully developed. One can imagine exact gradient descent as an example with
I = [0,∞) in which a system starts at a fixed point and follows derivatives to
the nearest local optimum taking infinitesimal steps. A further possibility, not
explored here, would be to separate the search process from its observation, so
that an uncountably indexed search might be observed at finite intervals. Such
problems occur naturally in robotics, for example.

Probability theory pertains to what can be observed. At the outset, one
specifies the events that can be measured. For probabilistic NFL in this paper,
the only observable aspect of optimization is its trace (i.e., Equation 7). Com-
plete fitness functions can only be observed if all possible values are contained
in the trace. Otherwise, the actual fitness function is a latent, unobservable fac-
tor. Other choices are possible; Auger and Teytaud (2010) required the entire
fitness function to be observable. The existence of NFL proven here follows
from weaker observability requirements, resulting in a technical distinction be-
tween Borel and Baire optimizers. A Baire optimizer can only observe countably
many optimization steps, whereas a Borel one can observe uncountably many.
Thus a Borel optimizer is needed whenever I is uncountable.

If the index set I has countable cardinality, the history process can be ap-
proximately sampled one point at a time to generate an approximate trace. The
word “approximate” is necessary because very often the spaces being searched
consist of real numbers that cannot be represented directly in a digital computer.
Not only that, but the probabilities being sampled are also real numbers with
infinite representations, so that sampling is only approximate. Many methods
claim to optimize real functions though they are computed with a finite sub-
set of the rational numbers. This theory applies to arbitrary spaces. Of course,
when a digital computer is used, finite representations are needed, and there are
at most countably many programs available to approximate sets of optimizers
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that may have uncountable or higher cardinality depending on the space.
In a theoretical setting, it is not always necessary or useful to limit oneself

solely to computable objects. A physical robot is one example of an optimiza-
tion that is only partially digital. For arbitrarily indexed search processes, NFL
is precisely the situation in which fitness trajectories decouple from the search
trajectories supposedly driving them. This generalized concept of NFL may in
fact have repercussions in mathematics well beyond search and optimization.

3 Formal Grounding: Optimization Methods and Problems

As discussed, NFL for optimization can be viewed as a statement about the in-
variance of trajectories observed in fitness space when running a search method
on a search problem. The first step in studying NFL, then, is to formalize what
is meant by the terms search method and search problem. This section develops
an abstraction of optimization methods as functionals from the space of fitness
functions to a space of probability measures. A similar construction, but re-
stricted to observing countably many search points, was developed by Lockett
and Miikkulainen (2013); Lockett (2013).

3.1 Basic Setting

In this study, the domain of optimization (X, τX) is a Hausdorff topological
space (that is, a space in which consistent open sets can be defined and in which
any two distinct points are separated by some open sets). Optimization is per-
formed with respect to a fitness function that maps points inX to some topolog-
ical space (Y, τY ), called the fitness space, the fitness domain, or the co-domain. The
space of all objective functions is Y X , which is also a topological space under
the product topology. As discussed above the space Y need not be ordered and
represents settings including single-objective optimization, multiobjective opti-
mization, and gradient-based methods. The topological setting in this article is
used to induce probability spaces, and thus topological concepts are restricted
to general facts about open, closed, and compact sets (see e.g. Munkres (2000)).

3.2 Index Sets

An iterative optimizer looks at points in the search domain in order. To provide
a notion of order, a totally ordered index set I will be used. I is assumed to
have a least element (here called 1, so that indices begin at 1), so that optimiza-
tion has a starting point. The index set may have any cardinality, whether finite,
countable, continuous, or larger, although the main focus here will be on index
sets with at most countable cardinality. Traditionally, countably many steps are
enough to formalize iterative optimization methods, but it is possible to imag-
ine methods that follow continuous paths as well. Set-theoretic NFL requires
arbitrary cardinality in order to exhaust the search domain in NFL proofs (Rowe
et al., 2009). Cardinality plays a secondary role in this paper.

For i, j ∈ I, the intervals of I are denoted by [i, j] = {k ∈ I | i ≤ k ≤ j} for
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the closed interval, (i, j) = {k ∈ I | i < k < j} for the open interval, and [i, j) =
{k ∈ I | i ≤ k < j} and (i, j] = {k ∈ I | i < k ≤ j} for the half-open intervals.
If j < i these intervals are obviously empty. The notation XJ =

∏
j∈J X for

an index set J indicates the product space formed by taking one copy of X for
each j ∈ J . The index set I may be larger or smaller than X . Sometimes it is
necessary to index only unique elements in X . When this is needed, an index
set IX will be used, defined so that IX = {i ∈ I | |[1, i]| ≤ |X|}.

A sequence is a function from some index set to some domain, denoted by
parentheses, e.g. z = (zj)j∈I . For a subset K ⊆ I, the restriction of z to K
is denoted by zK = (zj)j∈K. Restrictions to intervals are given by e.g., z[1,i]

or z[i,j) for i, j ∈ I. A sequence is finite if its index set has finite cardinality,
countable if its index set has countable cardinality, and so on. For any function
f , f(z) = (f(zj))j∈J indicates pointwise application of the function.

For any set Z , a permutation π : Z → Z is a bijection on the set that re-
arranges its elements. If z = (zj)j∈J is a sequence, a permutation π on J
yields (zπ(j))j∈J as the sequence z with its elements reordered according to π.
The notation π(a) means (aπ(j))j∈J . Similarly, for any set B and any function
f : J → B, the notation f ◦ π is the composition of f and π, f ◦ π(i) = f(π(i)).

For any K ⊆ J and any topological space T , a projection is a function
φK : TJ → TK given by φK(z) = zK. A projection φK is finite, countable, or
uncountable depending on whether K is finite, countable, or uncountable.

3.3 Probability Spaces

In the NFL theorems below, potential optima are sampled from Kolmogorov
probability measures. A probability space is a triple (Ω,Σ,P) where P is a proba-
bility measure over the σ-algebra Σ. A σ-algebra on a space Ω is a set of subsets
of Ω for which probabilities can be meaningfully defined; it contains the empty
set and Ω and is closed under complements, countable unions, and finite inter-
sections. Sets in a σ-algebra are called events, measurable events, or measurable
sets. A probability measure P is a nonnegative set function defined on all sets of
a σ-algebra subject to the requirement that P(Ω) = 1 and P(

⋃
nEn) ≤

∑
n P(En)

for any countable sequence of events (En)n∈N. The technical motivation for
these definitions is given by e.g. Billingsley (1986). The set of all probability
measures over a σ-algebra Σ will be written as P(Σ).

A function f defined from a probability space (Ω,Σ,P) to a measurable
space (S,S) is called measurable if for every E ∈ S the inverse projection
f−1(E) = {ω ∈ Ω | f(ω) ∈ E} is contained in Σ.

On any topological space T , the Borel σ-algebra BT is the smallest σ-algebra
containing the open and closed sets; probability measures defined on this σ-
algebra are called Borel measures. A function is Borel measurable if it is measurable
from the Borel σ-algebra on its input space to a σ-algebra on its output space.

This article studies probability measures on product spaces used to sample
countable projections of optimization histories. For an index setJ (usually with
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J ⊆ I), the Baire σ-algebra on TJ , denoted BaTJ , is the smallest σ-algebra that
makes all countable projections into Borel measurable functions. Probability
measures on the Baire σ-algebra are called Baire measures. A function is called
Baire measurable if it is measurable from the Baire σ-algebra on its input space to
a given σ-algebra on its output space.

If J is at most countable, then the Baire and Borel σ-algebras are equiva-
lent, i.e., BTJ = BaTJ . Otherwise, BaTJ ⊆ BTJ . In particular, the singletons
are always contained in the Borel σ-algebra (that is, the singletons are Borel mea-
surable), but the Baire σ-algebra may not contain the singletons (that is, the sin-
gletons are not Baire measurable). On the space Y X , one cannot sample entire
functions from a Baire measure, one can only observe a countable projection of
fitness values. Borel measures, however, can be sampled directly.

For this reason, it is worthwhile to mention some facts relating Baire and
Borel measures. In many spaces, every Baire measure can be extended to a
unique regular Borel measure that agrees with it on all Baire measurable sets.
Such spaces are called Mařı́k spaces or simply Mařı́k. It has long been known that
every normal and countably paracompact space is Mařı́k (1957). The following
remark gives more familiar examples, considered particularly when TJ = Y X .
Remark 1. A product space TJ is Mařı́k in any of the following cases:

1. T is finite.

2. J is finite and T is at most countable.

3. J is finite and T is locally compact and σ-compact, e.g. T = Rn or T = Nn.

4. T is a compact space, e.g. T = R ∪ {±∞} or T = [−M,M ] for M <∞.

5. TJ is a metric space, e.g. T is metric and J is countable.

If J has uncountable cardinality, then TJ is not normal unless T is compact. Thus,
for instance, if J = R and T = R, then TJ = RR is not normal and thus not Mařı́k.

When Y X is a Mařı́k space, it is possible to speak of sampling individual
fitness functions. It is important to notice that although RR is not Mařı́k, the
extended space (R ∪ {±∞})R is Mařı́k because R ∪ {±∞} is compact.

There is a well-defined notion of integration in any probability space based
on the Lebesgue integral. This integral is written as

∫
A f(ω) dP(ω) or just

∫
A f dP

for any setA ∈ Σ and any Borel measurable real-valued function f . In probabil-
ity theory, this integral is called the expectation of f over P, and the function f is
called a random variable. A stochastic process is a collection of random variables,
here indexed by I, which represents time. For further discussion, see Billingsley
(1986); Halmos (1974); Chung and Williams (1990); Karatzas and Shreve (1991).

3.4 Kolmogorov Extensions

The Kolmogorov Extension Theorem (Kolmogorov, 1933) is a key tool for build-
ing Baire measures on product spaces. This version comes from Aliprantis and
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Border (2006) and uses tightness.

Definition 1 (Tightness). A probability measure P on a Borel measurable space
(Ω,BΩ) is tight if for all E ∈ BΩ,

P(E) = sup {P(K) | K is compact in Ω} . (2)

That is, P(E) is the upper bound on the probability mass of all compact subsets.

Tightness and compactness are only required here in order to apply the
Kolmogorov Extension Theorem. Every measure is tight in complete separable
metric spaces such as N, Rn, L2(Rn), and other common spaces.

The next definition regards the consistency of a family of probability mea-
sures. Let J be any set. Although J will be used as an index set, it need
not be ordered. Suppose we have a collection of Borel probability spaces
{(Xj ,BXj ) | j ∈ J }. A subset K of J can be used to define subsets. A fam-
ily of finite dimensional distributions over J is a collection of probability measures
indexed by all finite subsets of J , e.g., {PK | K ⊆ J , K finite}. Each PK must be
defined on the Borel product σ-algebra BXK . Consistency requires overlapping
subsequences to agree on probabilities. 1

Definition 2 (Kolmogorov Consistency). Suppose {PK | K ⊆ J , K finite} is a
family of finite-dimensional distributions for a set J . This family is consistent if for
any other finite subsetH of J and any A ∈ BXK ,

PK∪H({a ∈ XK∪H | aK ∈ A}) = PK(A), (3)

which essentially says that members of the family defined on smaller index sets can be
obtained by integrating out all extra indices from members defined on larger index sets.

Theorem 3.1 (Kolmogorov Extension Theorem). Let {Xj | j ∈ J } be a family of
Hausdorff topological spaces over a set J , each equipped with their Borel σ-algebras.
Let {PK | K ⊆ J , K finite} be a consistent family of finite-dimensional distributions
for J . Assume that each PK is tight. Then there is a unique Baire probability measure
P on XJ that extends each PK.

As mentioned above, in the case of a Mařı́k space (Remark 1), this probabil-
ity measure can be extended further to a regular Borel probability measure. The
Kolmogorov Extension Theorem is used primarily in Section 4 to construct NFL
optimization settings. The only requirements are consistency and tightness.

3.5 Optimization Methods

A Baire optimizer is a setwise Baire-measurable function A : Y X → P (BaXI )
that takes a fitness function and maps it to a Baire probability measure on the
product spaceXI . “Setwise Baire-measurable” means that for all Baire eventsE

1Many texts give a definition of consistency that uses permutations of multi-indices. Permutations are not
needed in Definition 2 because it is based on ordered sets of subindices. A complete discussion of the proof
and technical details of Kolmogorov extensions using similar notation can be found online in an unpublished
manuscript of K. Border at http://www.hss.caltech.edu/∼kcb/Notes/Kolmogorov.pdf.
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in XI , the map u 7→ A(u)(E) is Baire-measurable from Y X to R. Intuitively, the
optimizer observes a fitness function u ∈ Y X and matches it with a sequence
of search points z ∈ XI chosen stochastically. Similarly, a Borel optimizer is a
setwise Borel-measurable function A : Y X → P (BXI ) that yields Borel proba-
bility measures, where “setwise Borel-measurable” means that u 7→ A(u)(E) is
Borel-measurable for every Borel event E. Every Borel optimizer is also a Baire
optimizer. The two are equivalent when X and I are both at most countable.

Most if not all practical optimization methods can be placed inside this for-
malism by decomposing these formal optimizers into their step-by-step behav-
ior. The process amounts to breaking up the probability measure A(u) into
smaller parts representing small time scales such that the whole optimizer may
be specified from its parts. A complete construction of Borel and Baire optimiz-
ers is avoided to save space. The construction requires a well-ordered subset
of the index set I. If the total order on I is already a well-ordering (as when
I = N), then this subset may be all of I. In more general settings, the following
definition applies.

Definition 3 (Sieve). A subset S of I ∪ {>} is a sieve if S is well-ordered in I ∪ {>}
and contains the least element 1, the maximal element >, and all limit points of I. For
i ∈ S, succ(i) denotes the next element of S.

The element > is added as a greatest element to I (independent of I) so
that the interval [1,>) = I. Each index i in the sieve has a next element, written
succ(i). A particularly interesting case when I ⊆ N is the sieve {1 + Ki | i ∈
N ∪ {0}}, which represents a population-based algorithm with population size
K. For I = [1,∞), an example sieve might be {1 + kε | k ∈ N ∪ {0}}, which
examines the fitness at intervals of size ε > 0. One could consider what happens
as ε vanishes, making the sieve arbitrarily fine.

Breaking up the index set, one can define objects that transition the state of
an optimizer just before time i ∈ I to its state just before succ(i). From these, an
optimizer is constructed from a sieve S and a collection of measurable and tight
generators on that sieve, defined below. These properties produce a measure
A(u) for each u ∈ Y X . The function u 7→ A(u) is then a Baire optimizer and can
be uniquely extended to a Borel optimizer when XI is Mařı́k.

Definition 4. A generator set for a sieve S is a collection G = {Gi | i ∈ S} with
Gi : X [1,i)× Y [1,i)→ P(BX[i,succ(i))), where X [1,1) × Y [1,1) is the one element set {∅}.
Definition 5. A generator set for a sieve S is measurable if for all i ∈ S and F ∈
BX[i,succ(i)) the map (z, v) 7→ Gi(z, v)(F ) is Borel measurable from X [1,i)×Y [1,i) to R.
Definition 6. A generator set for a sieve S is tight if for all i ∈ S, z ∈ X [1,i) and
v ∈ Y [1,i)], the measure Gi(z, v) is tight.
Theorem 3.2. Every measurable and tight generator set corresponds to a unique Baire
optimizer that has the black-box property. If XI is a Mařı́k space (see Remark 1), then
this Baire optimizer extends to a unique Borel optimizer as well.

Theorem 3.2 can be used to convert the familiar one-step behavior of black-
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box optimization methods into their infinite-time behavior. In the case where
I = N and Y = R, several examples of such constructions were developed
by Lockett and Miikkulainen (2013); Lockett (2013, 2014). Since it is tangential
to the NFL theorems below, a complete proof of Theorem 3.2 will not be offered,
except to say that it involves a transfinite induction on integrals of the form

A[1,succ(i))
u (E × F ) =

∫
E
Gi(z, u(z))(F ) dA[1,i)

u (z), (4)

for i ∈ I, u ∈ Y X , and E,F Borel events in X [1,i) and X [i,succ(i)), respectively.
Such integrals are uniquely defined because the generator set is measurable,
and they preserve tightness. With careful handling of the limit points of I, a
tight and consistent family of finite-dimensional distributions can be defined,
to which the Kolmogorov Extension Theorem may be applied.

Given a Borel or Baire optimizer, it is also possible to construct genera-
tor sets using Radon-Nikodym derivatives. These generator sets take the form
above only when the optimizer obeys a black-box property.

3.6 Optimization Problems

In this paper, an optimization problem is a probability measure used to select
fitness functions. The space of fitness functions is Y X , and either Borel or Baire
probability measures on this space may be used. A Baire fitness measure is de-
fined as a probability measure on (Y X ,BaY X ) and a Borel fitness measure is a
probability measure on (Y X ,BY X ). It is always possible to define Baire fitness
measures, and if Y X is a Mařı́k space (see Remark 1), then every Baire fitness
measure extends uniquely to a Borel fitness measure. Fitness measures (Baire
or Borel) will generally be denoted by F below.

Baire fitness measures must be treated with caution, since only countable
projections are Baire measurable, as discussed in Section 3.3. That is, one can
only ever observe the behavior of a Baire fitness measure at a countable num-
ber of search points. Thus one cannot always determine the true minimum or
maximum of “sample” from a Baire fitness measure, nor is it always possible to
assess properties such as continuity, differentiability, or integrability. One can-
not simply assume that a Baire fitness measure exists that places probability one
on continuous functions; the existence of such a measure needs to be proven.

It is much easier to work with Borel fitness measures, since one can directly
measure individual functions (these are the singletons in Y X ). However, Baire
fitness measures are easier to construct using the Kolmogorov extension theo-
rem. In general, the Borel fitness measures encountered below are obtained by
unique extension from a Baire fitness measure in a Mařı́k space.

The remainder of this paper considers the interaction of an optimizer and
a fitness measure. The following text pairs Borel optimizers with Borel fitness
measures and Baire optimizers with Baire fitness measures. In each case, differ-
ent assumptions can be supported about the index set I.
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Definition 7 (Borel Setting). A triple (A,F, I) consisting of an optimizer, a fitness
measure, and an index set is called a Borel setting if A is a Borel optimizer, F is a
Borel fitness measure, and I has the property that for any interval (i, j) ⊆ I there is a
countable increasing sequence (kn)n∈N contained in (i, j) such that limn kn = j (that
is, I is first-countable).
Definition 8 (Baire Setting). If A is a Baire optimizer, F is a Baire fitness measure,
and I is a countable index set, then (A,F, I) is a Baire setting.

In the Borel setting, a Borel product measure A× F is defined on XI × Y X .
For any E ∈ BXI and G ∈ BY X , this measure must satisfy

A× F(E ×G) =

∫
G
A(u)(E) dF(u). (5)

There is one unique probability measure that satisfies this equation, a con-
sequence that follows from Carathéodory’s extension theorem by forming an
algebra from the complements, finite unions, and intersections of all possible
E ×G and requiring A× F to satisfy the probability axioms on this algebra.

In the Baire setting, A× F may be defined similarly, but resulting in a Baire
product measure rather than a Borel one. The measureA×F is now used to de-
rive a stochastic process for the fitness values observed at unique search points.

3.7 The Fitness Process

In order to discuss NFL, a stochastic process called the fitness process will be de-
rived corresponding to the sequence of fitness values observed at unique search
points. NFL implies that the fitness process is independent of the search points.

Suppose that z ∈ XI is a sequence of search points. For each i ∈ I, define
W z
i : Y X → Y so thatW z

i (u) = u(zi) is the projection of u onto the ith coordinate
in z. The function W z

i is Borel and Baire measurable for all i ∈ I. A stochastic
process W z can now be defined for each z ∈ XI by

W z = {W z
i | i ∈ I}, (6)

where each element of the process is a random variable from (Y X ,BaY X ) to
(Y,BY ). Recall that a stochastic process is just a collection of indexed random
variables (i.e., measurable functions).

When z is generated by some optimizer A, there are two sources of ran-
domness, an optimizer A and a fitness measure F. Thus we consider Baire
probability measures on the space XI × Y X . With this setting, for all i ∈ I,
define Wi : XI × Y X → Y so that Wi(z, u) = u(zi) as before. Once again, Wi is
both Borel and Baire measurable. To see why, note that Wi is a composition of
three maps (z, u) 7→ (zi, u) 7→ (zi, u(zi)) 7→ u(zi), each of which is a finite pro-
jection and thus Baire-to-Baire or Borel-to-Borel measurable. Their composition
is therefore both Borel and Baire measurable. Then there is a collection of Baire
measurable random variables W given by

W = {Wi | i ∈ I}, (7)
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and W is a stochastic process with values in Y . It will be called the history
process since it contains the fitness history of an optimization run. Notice that
the definition of W does not depend on an optimizer or a fitness measure.

Given a Baire (or Borel) optimizer A and a Baire (or Borel) fitness measure
F, each random variableWi in the history process induces a Borel measure on Y .
This measure determines the fitness value of the ith search point stochastically.
This process needs to be filtered for unique search points.

Filtering is accomplished using stopping times, which are defined with re-
spect to filtrations. The natural filtration of a process (Wi)i∈I is an increasing
sequence of σ-algebras (Wi)i∈I such that eachWi is the smallest σ-algebra that
makes Wj a measurable function for each j ≤ i. Intuitively, Wi represents the
information that can be observed from the history process up to time i.

A stopping time of the history process is a function T : XI×Y X → I∪{>}
such that for all i ∈ I, the set {(z, u) ∈ XI × Y X | T (z, u) ≤ i} is a measurable
event in the σ-algebraWi. That is, it may not be possible to identify in advance
when a stopping time will stop, but it is always possible to determine whether
it has already stopped. The element > is a special element disjoint from I and
greater than any element in I included to account for events that never happen.

Next, the unique coordinates are identified by a sequence of stopping times.
Let # : XI × I → IX be a function mapping a history z and an index j to the
number of unique elements ofX in z[1,j]. The set IX is used because the number
of unique elements is limited by the size of X . If #(z, j) = i, then there are i
unique elements in z in the first j indices of z (including index j). Define a se-
quence of stopping times (Ti)i∈IX such that Ti(z, u) = inf {j ∈ I | #(z, j) = i}.
If the set under the infimum is empty, then Ti(z, u) = > by convention. In ei-
ther the Borel or the Baire setting, each Ti is a stopping time since #(z, j) = i
can be determined by examining the first j coordinates of z (Theorem 3.3). Fur-
thermore, the unique stopping times are ordered. If i < j, then Ti < Tj . Every
stopping time induces a σ-algebra that includes events prior to the stopping
time. For a stopping time T , let SjT = {(z, u) ∈ XI × Y X | T (z, u) ≤ j} be the
set on which T stops by time j. The stopped σ-algebra is given by

WT =
{
A ∈ BaXI ⊗ BaY X

∣∣∣A ∩ SjT ∈Wj for all j ∈ I
}

(8)

for the Baire setting. In a Borel setting BaXI ⊗BaY X is replaced by BXI ⊗BY X .
Next, it needs to be shown when there is also a random variable

WTi : XI × Y X → Y (9)

that maps the history process W to the first coordinate Wj(z, u) such that
# (z, j) = i. The variable WTi represents the ith unique search point in the
search history. Its existence indicates that the trajectory of unique fitness values
can be measured, which is required to define NFL. If WTi exists, it would be
WTi-measurable. However, there are two potential problems. First, the set SjTi
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must be proven to beWj-measurable (that is, Ti must be Borel or Baire measur-
able). Secondly, WTi must be proven to be measurable. Finally, the event that
Ti = > needs to be considered. Each of these issues is dealt with in turn.

Theorem 3.3. For all i ∈ IX , the stopping time Ti is Borel measurable in the Borel
setting and Baire measurable in the Baire setting with Wi as the target σ-algebra for
measurability in either case.

Proof. To prove that Ti is Borel (or Baire) measurable, it suffices to show that for
all j the sets {(z, u) | Ti(z, u) < j} and {(z, u) | Ti(z, u) = j} are Borel (or Baire)
measurable, since these sets generate the Borel σ-algebra for the order topology
on IX . The set {(z, u) | T (z, u) = >} is another special case, but since this set is
the complement of T−1(IX), its measurability follows automatically when the
above sets are proven measurable.

For the first type of set, note that {(z, u) | Ti(z, u) ≤ 1} is either the entire
space (if i = 1) or the empty set (if i > 1) and is therefore Baire and Borel
measurable. Assume for (transfinite) induction that {(z, u) | Tk(z, u) ≤ j} is
Borel (or Baire) measurable for all k < i. Note the identities

{(z, u) | Ti(z, u) < j} =
⋃
k<i

{(z, u) | Tk(z, u) ≤ j} =
⋃
kn↑i
{(z, u) | Tkn(z, u) ≤ j} .

(10)
In the Borel setting the existence of a countable increasing sequence kn → i was
used to reduce a potentially uncountable union to a countable one on the far
right in Equation 10. In the Baire setting (kn)n∈N simply enumerates the interval
[1, j). Because this union is a countable union of measurable sets, the set on the
far left of Equation 10 is Borel (or Baire) measurable. To complete the induction,
it remains to show that T−1({j}) = {(z, u) | Ti(z, u) = j} is measurable.

Define gj and #j so that XI × Y X gj−→ X [1,j] #j−→ [1, j] where gj(z, u) =
z[1,j] and #j(z) counts unique elements for z ∈ X [1,j]. Applying these maps
in sequence yields T−1

i ({j}) = (gj ◦#j)
−1 ({i}) since both indicate the set of

sequences indexed by [1, j] that contain i unique elements. The measurability
of T−1

i ({j}) will follow if for all j ≤ i the gj are Borel (or Baire) measurable and
the set (gj◦#j)

−1({i}) is Borel measurable. The functions gj are projections with
the same cardinality as [1, j]. In the Baire setting, [1, j] is at most countable, and
so the gj are Baire measurable. In the Borel setting, all projections are Borel
measurable. Finally, #j is a continuous function from X [1,j] to I with the order
topology. It is therefore Borel measurable, and since {i} is a closed (and thus
Borel) set, so is #−1

j ({i}).

Once Ti is measurable, Proposition 3.4 will demonstrate the measurability
of WTi whenever all Ti take on values inside IX with probability one.

Definition 9 (Non-Repeating Optimizer). A Borel or Baire setting (A,F, I) is non-
repeating if Ti = i with A× F-probability one for all i ∈ IX . The setting is eventually
non-repeating if Ti < > with A× F-probability one for all i ∈ IX .
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Proposition 3.4. If a Borel or Baire setting (A,F, I) is eventually non-repeating, each
element of the collection U = {WTi | i ∈ IX} is a Y -valued random variable, and U is
a stochastic process with natural filtration (WTi)i∈IX .

Proof. The claim is that WTi is WTi-measurable for all i with |[1, i]| ≤ |X|. For
every E ∈ BY and every k ∈ IX , define sets

Z(E) =
{

(z, u) ∈ XI× Y X
∣∣ u(zTi(z,u)) ∈ E

}
Z(k) =

{
(z, u) ∈ XI ×Y X | Ti(z, u) ≤ k} .

(11)

From Equation 8, the claim will hold if Z(E)∩Z(k) is inWk. Define the capped
stopping time Ski (z, u) = min{Ti(z, u), k}, which is a stopping time and is mea-
surable because Ti is measurable by Theorem 3.3. But whereas Ti is measurable
with respect to the whole process W , Ski isWk measurable because it only de-
pends on the first k indices of W .

Because Ti lies in IX with probability one for all i ∈ IX , it suffices to show
that the stopped projection (z, u) 7→ u(zSk

i (z,u)) is Borel or Baire measurable
(depending on the setting) as a map to Wk for any k ∈ IX . First, the map
(i, z, u) 7→ u(zi) is a composition of measurable projections and is therefore
measurable to Wk for every k ∈ I (where the first argument has i ≤ k and
measurability in the first argument is Borel with respect to the order topology).
Second, the map (z, u) 7→ (Ski (z, u), z, u) is measurable due to the measurability
of Ski . The composition of these two maps is (z, u) 7→ u(zSk

i (z,u)), which must be
measurable as the composition of measurable maps.

The index i ∈ I was arbitrary, so the collection U = {WTi | i ∈ IX} is a
collection of random variables, as desired.

The stochastic process U is called the fitness process of an optimizer A on
a fitness measure F. Let Ui = WTi . The fitness process induces a measure YAF
on Y IX derived from A × F. This measure is Baire or Borel depending on the
setting. First define ΦU : XI × Y X → Y IX so that (ΦU (z, u)) (i) = Ui(z, u), and
then for each measurable set E

YAF (E) = A× F
(
Φ−1
U (E)

)
. (12)

This construction is a standard way of obtaining a measure on a product space
from a stochastic process. The function ΦU is measurable whenever U is; such
constructions will be used again below. NFL is formulated in the next section
as a statement about the fitness process and its induced measure.

4 No Free Lunch Theorems

NFL has been widely studied by many authors (Radcliffe and Surry, 1995;
Wolpert and Macready, 1997; Droste et al., 1997; Culberson, 1998; Schumacher
et al., 2001; Igel and Toussaint, 2004; Auger and Teytaud, 2007, 2010; Rowe et al.,
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2009). For a recent full review, see Igel (2014). In this section, a new version of
probabilistic NFL is formulated that exists in continuous and function spaces,
and conditions are given that are both necessary and sufficient for this version
of NFL. Specifically, a fitness measure with the NFL property must yield prob-
abilities that are independent of search paths.

4.1 NFL Basics

Wolpert and Macready (1995) introduced the concept of NFL as a property of
search algorithms, and Wolpert and Macready (1997) extended the concept to
optimization algorithms. Radcliffe and Surry (1995) had previously introduced
an NFL-type theorem as well.

Several versions of NFL have been studied. The prior sections have laid
the groundwork for probabilistic NFL, in which NFL is treated as a statement
about the probability governing the fitness values observed. The original state-
ments of NFL were probabilistic, but applied only to finite search domains and
fitness spaces. Auger and Teytaud (2007, 2010) extended probabilistic NFL to
continuous spaces. The following definition is introduced in this paper.

Definition 10 (Probabilistic NFL). A Borel (or Baire) fitness measure F is of class
P-NFL on an index set I if the mapA → YAF is constant for all optimizersA such that
the setting (A,F, I) is an eventually non-repeating Borel (or Baire) setting.

That is, a Borel (or Baire) fitness measure F is of class P-NFL if its fitness
process is identically distributed for every eventually non-repeating Borel (or
Baire) optimizer, with limitations on the index set determined by the choice of
Borel or Baire measures. As will be demonstrated, a fitness measure is of class
P-NFL if the probability over fitness trajectories is constant across search paths.

4.2 Path Independence

NFL implies that information extracted from any series of fitness evaluations is
insufficient to suggest search points where more desirable fitness values may
be found. This section provides rigor to this intuition.

Definition 11 (Non-Repeating Sequence). A sequence z ∈ IX is non-repeating if
the set E(z) = {x ∈ X | ∃i ∈ IX s.t. zi = x} has cardinality |E(z)| = |IX |.

That is, a sequence is non-repeating if it does not repeat elements of X until
all elements of X have been exhausted. Recall that IX limits I to the size of X .

In Section 3.7, the stochastic process W z of projections W z
i (u) = u(zi) was

defined. As in Equation 12, for each z and each Borel (or Baire) fitness mea-
sure, this process induces a Borel (or Baire) measure Wz

F on Y IX . To obtain this
measure, define ΦW z : Y X → Y IX so that (ΦW z(u))(i) = W z

i (u). Then let

Wz
F(E) = F

(
Φ−1
W z(E)

)
(13)

for each event E of Y IX . A fitness measure is of class P-NFL if and only if this
measure is independent of non-repeating z, called path independence.
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Definition 12 (Path Independence). A Borel (or Baire) fitness measure F is path
independent over an index set I if the map z 7→Wz

F is constant for all non-repeating z.
If F is not path independent, then it is path dependent.

The term “path independence” captures the intuition that there are no paths
through the search space that provide more information about the fitness value
of the next unique point. Only the number of fitness values requested matters.

Path independence is obviously related to class P-NFL, since it implies that
whatever points an optimizer chooses to evaluate, the distribution over fitness
values is the same. In fact, the two are equivalent. This claim is the central
result of this article. To prove the claim, path independence is first shown to
be necessary for class P-NFL, then sufficient. These results are combined in the
NFL Identification Theorem below.

To demonstrate necessity, deterministic optimizers are used, especially de-
terministic optimizers that are fitness agnostic, that is, independent of the fitness
values. These concepts are defined using the indicator function. For a set E, the
indicator χE has χE(x) = 1 if x ∈ E, and χE(x) = 0 otherwise. An indicator
function is measurable whenever E is measurable.

Definition 13 (Deterministic Optimizer). A Borel (or Baire) optimizer A is deter-
ministic if there exists a function d : Y X → XI such that A(u)(E) = χE(d(u)) for
each Borel (or Baire) event in XI . The function d is called the deterministic core of A.

Definition 14 (Fitness Agnostic Optimizer). A Borel (or Baire) optimizer A is fit-
ness agnostic if the map u 7→ A(u) is constant.

Definition 15 (Invariant Trajectory). If a Borel (or Baire) optimizer A is determin-
istic and fitness agnostic, then its deterministic core d is constant and equal to some
sequence z ∈ XI , called the invariant trajectory of A.

Proposition 4.1. If the index set I satisfies the conditions for a Borel (or Baire) setting,
then for any z ∈ XI there is a Borel (or Baire) optimizer Az that is deterministic and
fitness agnostic and has z as its invariant trajectory. Furthermore, for any Borel (or
Baire) fitness measure F, the triple (Az,F, I) is a Borel (or Baire) setting.

Proposition 4.2. Suppose (A,F, I) is a Borel (or Baire) setting, and that A is de-
terministic and fitness agnostic with non-repeating invariant trajectory z0. Then the
fitness process has YAF = Wz0

F .

Proof. The definitions imply that (A,F, I) is a non-repeating setting so that the
fitness process U and the history process W coincide. For every Borel (or Baire)
event E ⊆ Y IX , the following equalities hold with A× F-probability one:

Φ−1
U (E)

A×F−a.s.
= {(z0, u) | ∃v ∈ E s.t. ∀i ∈ IX vi = Ui(z0, u)}

A×F−a.s.
= {(z0, u) | ∃v ∈ E s.t. ∀i ∈ IX vi = Wi(z0, u)}
= {z0} × {u | ∃v ∈ E s.t. ∀i ∈ IX vi = W z0

i (u)} , (14)

where two sets are equal “A× F-a.s.” if they have equal measure under A× F.
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The last equality makes it possible to apply Equation 5 to {z0} ×Φ−1
W z0 (E) since

Φ−1
W z0 (E) = {u | ∃v ∈ E s.t. ∀i ∈ IX vi = W z0

i (u)} . (15)

This equation implies

YAF (E) = A× F
(
Φ−1
U (E)

)
=

∫
Φ−1

Wz0
(E)
A(u)({z0}) dF(u) = F

(
Φ−1
W z0 (E)

)
= Wz0

F (E).

(16)
That is, YAF = Wz0

F .

Lemma 4.3. If a Borel (or Baire) fitness measure F is of class P-NFL on an index set I,
it is path independent over I.

Proof. Assume F is of class P-NFL on I and path dependent. Take z1, z2 ∈ XI
to be distinct non-repeating search histories such Wz1

F 6= Wz2
F . Such trajectories

must exist since F is path dependent. LetA1 andA2 be fitness agnostic optimiz-
ers with invariant trajectory z1 and z2 respectively. Then Proposition 4.2 implies
that YA1

F 6= YA2
F , which contradicts the claim that F is of class P-NFL.

Lemma 4.4. If a Borel (or Baire) fitness measure F is path independent over an index
set I, then it is of class P-NFL.

Proof. Suppose E is any Borel (or Baire) event of Y IX . From Equation 12,

YAF (E) = A× F
(
Φ−1
V (E)

)
. (17)

The proof centers on obtaining a Borel (or Baire) event EY ⊆ Y X such that
Φ−1
V (E) = XI × EY , for which A may be averaged out of Equation 17 using

Equation 5. To this end, note that

Φ−1
V (E) = {(z, u) | ∃v ∈ E s.t. ∀i ∈ IX vi = Vi(z, u)}

=
{

(z, u)
∣∣∃v ∈ E s.t. ∀i ∈ IX vi = WTi(z,u)(z, u)

}
=

{
(z, u)

∣∣∣∃v ∈ E s.t. ∀i ∈ IX vi = W
(zTi )i∈IX
i (z, u)

}
. (18)

In this last equation, z̃ = (zTi)i∈IX represents the sequence z filtered for unique-
ness. Now z̃ is non-repeating, so path independence implies that for any non-
repeating sequence a ∈ XIX , with F- and therefore A× F-probability one,

Φ−1
V (E)

A×F−a.s
= {(z, u) | ∃v ∈ E s.t. ∀i ∈ IX vi = W a

i (u)}
= XI × {u | ∃v ∈ E s.t. ∀i ∈ IX vi = W a

i (u)} , (19)

where in the second line the z has been pulled outside the set since it does not
appear on the right. Renaming this final set as

EY = {u | ∃v ∈ E s.t. ∀i ∈ IX vi = W a
i (u)} , (20)
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Equation 5 can be applied to obtain

YAF (E) =

∫
EY

A(u)
(
XI
)
dF(u) = F(EY ), (21)

where the right-hand side is independent of A. Therefore the map A 7→ YAF is
constant, and F is of class P-NFL on I.

Theorem 4.5 (NFL Identification Theorem). A Borel (or Baire) fitness measure F is
of class P-NFL on an index set I if and only if it is path independent over I.

Proof. This result combines Lemma 4.3 and Lemma 4.4.

The NFL Identification Theorem characterizes probabilistic NFL as a state-
ment about fitness measures. Such a characterization yields a concept equiv-
alent to class P-NFL that does not depend at all on optimizers. If each path
is identified with its histogram as done by Igel and Toussaint (2004), then the
necessity of path independence is either previously proven or at least strongly
suggested for finite spaces by Igel and Toussaint (2004) and for infinite spaces
by Rowe et al. (2009). To our knowledge, this article contains the first discus-
sion of path independence as a probabilistic concept, and the first proof that
path independence is also a sufficient condition for NFL.

4.3 Construction of NFL Fitness Measures

According to the NFL Identification Theorem, every path independent fitness
measure is of class P-NFL. But it is not obvious how to construct path indepen-
dent fitness measures. In this subsection, it is demonstrated that path indepen-
dence follows whenever all coordinate projections are identically distributed
and mutually independent. This fact was initially proven by English (1996,
2000) for NFL in finite spaces, but it is extended below for arbitrary Hausdorff
spaces. Critically, it implies that NFL priors exist in general.

Consider the collection of coordinate projections {Fx | x ∈ X} such that
Fx : Y X → Y is given by Fx(u) = u(x). Each Fx is both Borel and Baire mea-
surable. Given a Borel (or Baire) fitness measure F, each Fx induces a measure
Fx such that for any Borel subset E of Y , Fx(E) = F({u | u(x) ∈ E}). Fur-
thermore, for any subset D of X , a projection FD : Y X → Y D is defined by
FD(u) = (u(x))x∈D. Then FD is always Borel measurable and is Baire measur-
able if D has at most countable cardinality. These projections also induce Borel
measures FD such that for an Borel subset E of Y D,

FD(E) = F({u | ∃v ∈ E s.t. ∀x ∈ D, v(x) = u(x)}). (22)

When D is finite, FD is called a finite-dimensional distribution of F. Next, two
useful properties of Fx and FD are introduced.
Definition 16 (Identically Distributed Coordinates). A Borel (or Baire) fitness mea-
sure F has identically distributed coordinates if for all x ∈ X the map x → Fx is
constant.
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Definition 17 (Mutually independent Coordinates). A Borel (or Baire) fitness mea-
sure F has mutually independent coordinates if for any finiteD ⊆ X and any collection
of Borel sets {Ex | x ∈ D} of Y , the measure FD factorizes as

FD

(∏
x∈D

Ex

)
=
∏
x∈D

Fx(Ex). (23)

Finite subsets are used in the definition of mutual independence to avoid
a definition of uncountable products and because these are sufficient to prove
Theorem 4.6 for Baire fitness measures and even most Borel fitness measures.

Fitness measures of class P-NFL can be constructed by guaranteeing tight-
ness along with mutually independent and identically distributed coordinates.
There is one limitation at present in that Borel fitness measures of class P-NFL
can only be constructed in this way when Y X is a Mařı́k space.

Theorem 4.6 (Construction of Path Independence). If a Baire fitness measure F
has identically distributed and mutually independent coordinates and all of the finite-
dimensional distributions of F are tight, then F is path independent over I and therefore
of class P-NFL on I. The same holds for a Borel fitness measure if Y X is a Mařı́k space.

Proof. Suppose F satisfies the conditions. Let D be any finite subset of X . Mu-
tually independent and identically distributed coordinates together imply that
for any collection of Borel sets {Ex | x ∈ D} of Y ,

FD

(∏
x∈D

Ei

)
=
∏
x∈D

Fx(Ex) =
∏
x∈D

Fx0(Ex), (24)

where x0 is a fixed element of X independent of D. Importantly, Equation 24
uniquely determines FD based on Carathéodory’s extension theorem. Then
{FD | D ⊆ X, D finite} is a consistent family of finite-dimensional distribu-
tions. Each FD is a coordinate restriction of a tight measure and is thus tight.
By the Kolmogorov Extension Theorem, there is a unique Baire measure FX on
Y X that extends the FD, and it must hold that FX = F since FX is unique and
its finite-dimensional distributions agree with those of F.

Now let π : X → X be any permutation ofX . For any subsetD ofX , define
π(D) = {π(x) | x ∈ D}. Define an isomorphism from ψπ : Y X → Y π(X) so that
ψπ(v) = v ◦ π, and note that the restriction ψDπ of ψπ to Y D has range Y π(D).
For arbitrary subsets E of Y D, define Dπ(E) = {ψDπ (v) | v ∈ E}. Revisiting
Equation 24, notice that for the collection {Ex | x ∈ D} above,

Dπ

(∏
x∈D

Ex

)
=
∏

x∈π(D)

Eπ−1(x) =
∏
x∈D

Ex so Fπ(D)◦Dπ

(∏
x∈D

Ex

)
=
∏
x∈D

Fx0(Ex).

(25)
Due to uniqueness, it holds in general that FD = Fπ(D) ◦Dπ.
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It remains to identify the distribution Wz
F with FI for some I ⊆ X . The set

I need not be finite; it will in fact have |I| = |IX |. All such FI are uniquely de-
fined as Kolmogorov extensions of some subset of {FD | D ⊆ X, D finite}. The
extension theorem is necessary because I may be uncountable and uncountable
projections are not Baire measurable.

Now fix any I ⊆ X such that |I| = |IX | (which may be strictly smaller than
|X|). Choose z ∈ XIX to be any non-repeating sequence such that zi ∈ I for all
i ∈ IX . It should be clear that z exhausts I , i.e., I = {zi | i ∈ IX}. For any Baire
event E of Y IX , a Baire event Iz(E) of Y I can be defined such that

Iz(E) =
{
ṽ ∈ Y I | ∃v ∈ E s.t. ∀x ∈ I ∃i ∈ IX , with zi = x and ṽ(x) = vi

}
, (26)

which pairs each element v ∈ Y IX with an element ṽ ∈ Y I that agrees with it.
Consequently, Wz

F = FI ◦ Iz since

Wz
F(E) = F ({u | ∃v ∈ E s.t. ∀i ∈ IX , vi = u(zi)})

= F ({u | ∃ṽ ∈ Iz(E) s.t. ∀x ∈ I, ṽ(x) = u(x)}) = FI(Iz(E)). (27)

Finally, for any permutation π of X , let π(z) = (π(zi))i∈IX . Observe that

Iπ(z) = Dπ ◦ Iz. (28)

By Equation 27 and the fact that FI = Fπ(I) ◦Dπ,

Wπ(z)
F = Fπ(I) ◦ Iπ(z) = Fπ(I) ◦Dπ ◦ Iz = FI ◦ Iz = Wz

F. (29)

Now for any non-repeating z̃ ∈ XIX there is some permutation π on X such
that z̃ = π(z), and thus Wz

F = Wz̃
F. That is, F is path independent over I and

therefore of class P-NFL on I. To extend this result to tight Borel fitness mea-
sures, if Y X is Mařı́k then FX extends uniquely to F. Then FI may be assumed
to be a tight Borel measure whenever F is, and the result follows.

Since mutually independent and identically distributed coordinates to-
gether imply path independence, one wonders whether these properties are
also necessary. In fact, identically distributed coordinates are a necessary con-
sequence of path independence, proven in Theorem 4.7, but mutual indepen-
dence is not, proven in Theorem 4.11 below.
Theorem 4.7. Every path independent Borel (or Baire) fitness measure has identically
distributed coordinates.

Proof. Suppose that F is path independent without identically distributed coor-
dinates. Then there exist x, y ∈ X and a Borel subset E of Y such that Fx(E) 6=
Fy(E). Let zx, zy ∈ XIX be non-repeating such that zx1 = x and zy1 = y. But then
consider G = {v ∈ Y IX | v1 ∈ E}, for which Φ−1

W zx (G) = {u | u(x) ∈ E}, and

Wzx

F (G) = Fx(E) 6= Fy(E) = Wzy

F (G), (30)

which achieves the desired contradiction.
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4.4 Existence of P-NFL Fitness Measures

Theorem 4.6 provides a simple way to construct Baire fitness measures of class
P-NFL for any Hausdorff search space X and fitness space Y so long as there
exists at least one tight Borel measure on Y . If in addition Y X is Mařı́k, then a
Borel fitness measure can also be constructed.

Theorem 4.8 (Existence of P-NFL). Let I be an arbitrary index set. Suppose that
there exists at least one tight Borel measure Q on the fitness space Y . Then there exists
a Baire fitness measure of class P-NFL on I for any search domain X . If Y X is Mařı́k
(Remark 1), there exists a Borel fitness measure of class P-NFL on I.

Proof. Assume Q is a tight Borel measure on Y . For each x ∈ X , define Fx = Q.
For any finite subset D of X , define FD to be the unique measure such that for
any collection {Ex | x ∈ D} of Borel subsets of Y ,

FD

(∏
x∈D

Ex

)
=
∏
x∈D

Fx(Ex) =
∏
x∈D

Q(Ex). (31)

Each FD is tight since it is a product of tight measures. Thus the collection
given by {FD | D ⊆ X, D finite} is a consistent family of finite-dimensional
distributions for which each member is tight. By the Kolmogorov Extension
Theorem, there is a unique Baire fitness measure F that extends this collection.

F has mutually independent and identically distributed coordinates. There-
fore F is path independent over I and of class P-NFL on I by Theorem 4.6.

If Y X is Mařı́k, then F may be extended to a unique regular Borel fitness
measure F̂. The measure F̂ still has mutually independent and identically dis-
tributed coordinates since it agrees with F on all finite projections. Therefore F̂
is path independent over I and of class P-NFL on I, again by Theorem 4.6.

According to Theorem 4.8, P-NFL fitness measures exist for a broad class
of search domains and fitness spaces. Some of these are listed as examples
below. Although the index set I is arbitrary in Theorem 4.8, the class P-NFL
is only defined with respect to Borel settings (where I must be first-countable,
e.g. R) and Baire settings (where I must be countable). For larger settings the
unique stopping times Ti cannot be proven measurable for larger index sets. If
the definition of P-NFL were expanded to other settings, Theorem 4.8 should
still be valid, since it does not rely on the unique stopping times directly. An
example of such a P-NFL fitness measure was given in Section 2.2.

4.5 NFL and Vector Subpaces of Fitness Measures

From Theorem 4.8, P-NFL fitness measures exist. But there is more to conclude
from it than mere existence. A Borel (or Baire) fitness measure is defined as a
Borel (or Baire) probability measure on the space of fitness functions. Given
two real numbers α, β ∈ [0,∞) and two probability measures P and Q on the
same σ-algebra Σ, the set function µ = αP − βQ is a finite signed measure on
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Σ. The space of all (countably additive) finite signed measures is a well-known
Banach space, denoted ca(Σ). Within this space, the set of probability measures
P(Σ) is a closed, convex set. In this subsection, the consequences of embedding
fitness measures in ca(BY X ) (generalized Borel fitness measures) or ca(BaY X )
(generalized Baire fitness measures) are considered.

The definitions of path independence, identically distributed coordinates,
and mutually independent coordinates extend naturally to finite signed mea-
sures using the same definitions. One could also extend class P-NFL in the
same way, but doing so requires a generalization of optimizers to finite signed
measures. In this paper, path independence is used as a proxy for P-NFL (their
equivalence remains valid in the generalized spaces). The following holds.

Theorem 4.9. For any index set I, the path independent generalized Borel (or Baire)
fitness measures form a closed vector subspace of the generalized Borel (or Baire) fit-
ness measures with identically distributed coordinates, which is in turn a closed vector
subspace of all generalized Borel (or Baire) fitness measures, ca(BY X ) (or ca(BaY X )).

Proof. Identically distributed coordinates. Suppose µ and ν are generalized
Borel (or Baire) fitness functions with identically distributed coordinates. For
α ∈ R, αµ has identically distributed coordinates. For x, y ∈ X , it holds that
(µ+ ν)x = µx + νx = µy + νy = (µ+ ν)y. If µn → µ in the total variation norm
and (µn)x = (µn)y for all n, then µx = µy. So generalized Borel (or Baire) fitness
measures with identically distributed coordinates form a closed subspace.

Path independence. Suppose µ and ν are path independent generalized
Borel (or Baire) fitness measures. It is obvious that for α ∈ R, αµ is path inde-
pendent. Also, µ+ν is path independent since for any non-repeating z, z̃ ∈ XIX ,

Wz
µ+ν = Wz

µ + Wz
ν = Wz̃

µ + Wz̃
ν = Wz̃

µ+ν . (32)

Now suppose µn → µ in the total variation norm. In this case for all non-
repeating z ∈ XIX , Wz

µn → Wz
µ, and since the sequence on the left is identical

for each z, the limit is likewise identical. That is, the path independent gen-
eralized fitness measures form a closed vector subspace of the set of all gen-
eralized fitness measures. Since every path independent fitness measure has
identically distributed coordinates (the proof of Theorem 4.7 does not require
F to be a probability measure), the subspace of path independent generalized
fitness measures is a closed subspace of such measures.

Denote the closed vector subspace of ca(BY X ) consisting of generalized
Borel fitness measures that have identically distributed coordinates by IDBX,Y ,
and let IDBaX,Y be defined analogously for generalized Baire fitness measures.
Let PII,BX,Y be the closed vector subspace of IDBX,Y consisting of generalized
Borel fitness measures that are path independent over I, and similarly define
PIBa,IX,Y . It is of interest to know whether the subspaces are proper. Although
it is obvious that ca(BY X ) 6= IDBX,Y whenever X and Y each have at least two
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elements, it needs to be shown that IDBX,Y 6= PI
B,I
X,Y . The inequality will be

proven for many but not all cases below, using the following definition.

Definition 18 (Equipartitionable). A tuple (X,Y ) is equipartitionable if X and Y
can be partitioned into X1, X2 ⊆ X and Y1, Y2 ⊆ Y with the following properties:

1. X1, X2, Y1, Y2 are all nonempty Borel sets in their respective topologies.

2. There exist bijections φ from X1 to X2 and ψ from Y1 to Y2.

3. There exists a tight measure Q on Y .

4. For G Borel in Y1, the measure Q has Q(ψ(G)) = Q(G).

5. For G Borel in Y2, the measure Q has Q(ψ−1(G)) = Q(G).

If (X,Y ) is equipartitionable, the measure Q has Q(Y1) = Q(Y2) because
ψ(Y1) = Y2. As usual, ψ(G) = {y2 ∈ Y2 | ∃y1 ∈ Y1 s.t. ψ(y1) = y2}. In particular,
([0, 1],R), (N,R), and ({0, 1}n,R) are all equipartitionable. Search spaces with
an odd finite size, however, are not equipartionable. This wrinkle can probably
be removed with a revised proof. When (X,Y ) are equipartitionable, then path
independent fitness measures are properly contained.

Theorem 4.10. If the search space contains at least three elements and is equipartition-
able together with the fitness space, and if the index set contains at least two elements,
then PIBa,IX,Y is a proper subspace of IDBaX,Y . If in addition Y X is Mařı́k (Remark 1),
then PIB,IX,Y is also a proper subspace of IDBX,Y . That is, there exists at least one path
dependent fitness measure with identically distributed coordinates.

Proof. Given the equipartition from Definition 18, construct path independent
Baire fitness measures F1 on Y X1

1 and F2 on Y X2
2 using the restrictions

Q|Y1 (G) =
Q(G ∩ Y1)

Q(Y1)
and Q|Y2 (G) =

Q(G ∩ Y2)

Q(Y2)
(33)

for Theorem 4.8. The fitness measures F1 and F2 will now be combined in a
way that destroys path independence while retaining identically distributed
coordinates by placing probability one on functions that either 1) take fitness
values in Y1 on X1 and in Y2 on X2 or 2) take fitness values in Y2 on X1 and
in Y1 on Y2. If fitness values in Y1 are observed for search points in X1, then
points in X2 will yield fitness values in Y2 with probability one. By strategically
crossing X1 and X2, a path can obtain different fitness sequences.

Let j, k range over {1, 2}. To permit generalizations, let ψ11 = ψ22 and
φ11 = φ22 be the identity functions. Let ψ12 = ψ, ψ21 = ψ−1, φ12 = φ, and
φ21 = φ−1 using φ and ψ from Definition 18. For any Baire event E of Y X ,

Ejk =
{
u ∈ Y Xj

j

∣∣∣∃v ∈ E s.t. ∀x ∈ Xj , ψjk ◦ u ◦ φkj(x) = v(x)
}

(34)
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defines four images of the set E under different conditions. The composition
ψjk ◦ u ◦ φkj moves search points from Xj to Xk, takes a fitness value in Yk, and
transfers the fitness to Yj . If j = k, these operations do nothing. Define F by

F(E) =

(
F1(E11) F2(E22)

)
Q(Y1) +

(
F1(E12) F2(E21)

)
Q(Y2). (35)

The first term of F says that with probability Q(Y1) fitness functions take values
in Y1 on X1 and in Y2 on X2. The second term says that with probability Q(Y2)
fitness functions take values in Y2 on X1 and in Y1 on X2.

It needs to be shown that F has identically distributed coordinates but is
path dependent. For any Borel event G in Y and any x ∈ X ,

{
u ∈ Y X

∣∣u(x) ∈ G
}
jk

=

{ {
u ∈ Y Xj

j

∣∣∣ψjk ◦ u ◦ φkj(x) ∈ G ∩ Yj
}

if x ∈ Xk

Y
Xj

j otherwise.

(36)
Thus if x ∈ X1, , the coordinate projection has

Fx(G) = F1

({
u ∈ Y X1

1

∣∣∣u(x) ∈ G ∩ Y1

})
Q(Y1)

+ F2

({
u ∈ Y X2

2

∣∣∣ψ−1 ◦ u ◦ φ(x) ∈ G ∩ Y2

})
Q(Y2)

= Q(G ∩ Y1) + Q(ψ(G ∩ Y2)) = Q(G), (37)

using the fact that ψ preserves Q-measure and that each Fj has coordinates
identically distributed according to Q|Yj . Similarly, if x ∈ X2, then Fx(G) =

Q(ψ−1(G ∩ Y1)) +Q(G ∩ Y2) = Q(G). F has identically distributed coordinates.
Now choose x1

1, x
2
1 ∈ X1 and x2 ∈ X2 and let z1, z2 ∈ XIX be non-repeating

so that z1
1 = x1

1, z1
2 = x2, z2

1 = x1
1 and z2

2 = x2
1. In this way, z1 first checks the

fitness domain for X1, followed by X2. The sequence z2 starts in X1 and then
checks another point in X1. It is possible to choose such points because X has
at least three elements. Now

F
({
u
∣∣∣W z1

1 (u) ∈ Y1, W
z1

2 (u) ∈ Y2

})
= F

({
u
∣∣u(x1

1) ∈ Y1, u(x2) ∈ Y2

})
. (38)

To expand this equation, set x2
2 = x2 and define Yjk by

Yjk =
{
u
∣∣u(x1

1) ∈ Y1, u(x2) ∈ Y2

}
jk

=
{
u ∈ Y Xj

j

∣∣∣ψjk ◦ u ◦ φkj(xjj) ∈ Yk} .
(39)

Observe that on the one hand, Yjk is empty if j 6= k so that

F1(Y12) =
Q (ψ(Y1 ∩ Y2))

Q(Y1)
= 0 and F2(Y21) =

Q
(
ψ−1(Y2 ∩ Y1)

)
Q(Y2)

= 0, (40)

and on the other hand,

F1(Y11) =
Q (Y1 ∩ Y1)

Q(Y1)
= 1 and F2(Y22) =

Q (Y2 ∩ Y2)

Q(Y2)
= 1. (41)
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Consequently,

F
({
u
∣∣∣W z1

1 (u) ∈ Y1, W
z1

2 (u) ∈ Y2

})
=Q(Y1) =

1

2
. (42)

By contrast, functions that take values in Y1 on x1
1 ∈ X1 take values in Y1 on

x2
1 ∈ X1. Thus, with probability one, W z2

2 (u) = u(x2
1) /∈ Y2, and so

F
({
u
∣∣∣W z2

1 (u) ∈ Y1, W
z2

2 (u) ∈ Y2

})
= 0. (43)

That is, F is path dependent, and the path independent Borel fitness measures
are properly contained. By construction, F is a Baire fitness measure. If Y X is
Mařı́k, it can be uniquely extended to a Borel fitness measure.

So in important cases, not all fitness measures with identically distributed
coordinates are path independent. There also exist Baire fitness measures of
class P-NFL that do not have mutually independent coordinates.
Theorem 4.11. If the search domain has at least two elements, the set of generalized
Baire fitness measures with mutually independent coordinates is not closed under vector
operations. Furthermore, there exists a Baire fitness measure that is path independent
(and hence of class P-NFL) but does not have mutually independent coordinates. If Y X

is Mařı́k, both statements are true of Borel fitness measures as well.

Proof. Let E be any Borel event on Y with E 6= Y . Choose α, β ∈ (0, 1) such that

2αβ 6= α2 + β2. (44)

Let Q1 and Q2 be any tight measures with Q1(E) = α, and Q2(E) = β.
Pick x, y ∈ X , and construct F1 and F2 by Theorem 4.6 to be path indepen-

dent Baire fitness measures with mutually independent coordinates distributed
identically according to Q1 and Q2, respectively. Then F = 1

2F
1 + 1

2F
2 is a Baire

fitness measure. Set D = {x, y}. Then

FD (E × E) =
1

2
F1
x (E)F1

y(E) +
1

2
F2
x (E)F2

y(E) =
1

2

(
α2 + β2

)
(45)

using the notation FD and Fx from Definition 17. To have mutual independence,

FD (E × E) =

[
1

2
(α+ β)

]2

=
1

4

(
α2 + 2αβ + β2

)
, (46)

which together with Equation 45 violates Equation 44. That is, F does not have
mutually independent coordinates, and so mutual independence is not closed
under vector operations. However, path independence is closed under vector
operations by Theorem 4.9, so F is path independent. Thus F is path indepen-
dent without mutually independent coordinates. By Theorem 4.5, it is also of
class P-NFL. If Y X is Mařı́k, then F1 and F2 can be extended to Borel measures
without losing path independence, and so in a Mařı́k space all of the above
statements apply to Borel fitness measures as well.

The remaining sections discuss these results.
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5 Discussion

Many of the conclusions of this paper have been previously known in either
qualitative or quantitive terms. The new features of this paper include the fol-
lowing: 1) a proof that probabilistic NFL does exist in continuous domains; 2)
a probabilistic construction of NFL in arbitrary Hausdorff search domains and
fitness domains, including potentially uncountable index sets; and 3) the intro-
duction of path independence as a concept equivalent to probabilistic NFL. The
relationship to prior NFL results was discussed in Section 2. This section offers
comments about the significance of the NFL results of this paper.

NFL is the answer to the question of whether a search problem can be struc-
tured to make search progress impossible. With NFL, the past is irrelevant to the
future, and there is no means of predicting the outcome of any action (Bousquet
et al., 2004). Yet NFL-like properties rarely show up in optimization problems
drawn from real-world tasks.

This concept was studied by Igel and Toussaint (2004), who concluded that
in the set-theoretic case, the absolute number of permutation-invariant sets van-
ishes doubly exponentially fast as the size of the search and the fitness domain
grows. Not only that, but in problems drawn from real-world tasks, there are
often locality constraints (i.e. neighboring points have similar fitness) that can
never be permutation invariant. If locality constraints hold, they often hold in
most places, so the addition of “Almost NFL”, where most search paths produce
the same or similar fitness trajectories, does not change the situation (Droste
et al., 1997). Because physical regularities generally exist, the prior govern-
ing real-world problems is likely not of class P-NFL. Consequently, there exist
general-purpose optimizers that outperform others on all tasks averaged ac-
cording to their real-world likelihood.

A fitness measure that is not of class P-NFL need not be particularly spe-
cialized. Jiang and Chen (2011) previously showed that a discrete Lipschitz
class does not exhibit the NFL property. In general metric spaces, Lipschitz or
Hölder growth properties are essentially locality constraints that prevent NFL.
Gaussian processes form another example of general non-NFL fitness measures,
which are also subject to locality constraints.

If there is a fitness measure F that is not of class P-NFL, then one can ex-
amine the set of optimal optimization methods for a given performance met-
ric. This question was studied by Auger and Teytaud (2010) for continuous
domains and later in Lockett (2014) for arbitrary Hausdorff spaces by solving
Bellman-type equations. As it turns out, the optimal method can be expressed
mathematically, but this expression contains a nested optimization. This re-
cursion suggests that optimization is computationally hard in the general case,
with or without NFL results. In some cases the inner optimization is analyti-
cally solvable, though some tractable cases were studied by Powell and Ryzhov
(2012). In any case, there is a tradeoff in the time spent to generate search points
versus the quality of the search points generated, all independent of NFL.
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NFL provides a first step towards a categorization of the space of possible
optimization problems. It is difficult to see how a purely set-theoretic approach
to NFL can be expanded to study optimal behavior of optimizers on non-NFL
classes of fitness functions. Thus if one goal for studying NFL is to develop ana-
lytic tools that make it possible to study general classes of optimization methods
and problems, then it seems difficult to avoid probabilistic language.

6 Conclusion

This article has provided a renovated version of probabilistic NFL to correct
misconceptions in the literature, particularly the claim that probabilistic ap-
proaches cannot provide an account of NFL in continuous domains. The meth-
ods and techniques in this paper require substantial technical development, yet
the tools that result are not limited to the study of NFL. It is hoped that these
techniques will be used in the future to obtain a variety of additional results
about the nature and performance of optimization methods.

Acknowledgements

This work was supported in part by US NSF grant OISE-1159008.

References
Aliprantis, C. C. and Border, K. D. (2006). Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd

Edition. Springer, New York, New York.

Auger, A. and Teytaud, O. (2007). Continuous lunches are free! In Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation (GECCO-2007), pages 916–922, New York.
ACM Press.

Auger, A. and Teytaud, O. (2010). Continuous lunches are free plus the design of optimal opti-
mization algorithms. Algorithmica, 57(1):121–146.

Billingsley, P. (1986). Probability and Measure. John Wiley.

Bousquet, O., Boucheron, S., and Lugosi, G. (2004). Introduction to statistical learning theory. In
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