
Journal of Global Optimization manuscript No.
(will be inserted by the editor)

Evolutionary Annealing

Global Optimization in Measure Spaces

Alan J. Lockett · Risto Miikkulainen

Received: date / Accepted: date

Abstract Stochastic optimization methods such as evolutionary algorithms and
Markov Chain Monte Carlo methods usually involve a Markov search of the opti-
mization domain. Evolutionary annealing is an evolutionary algorithm that lever-
ages all the information gathered by previous queries to the cost function. Evo-
lutionary annealing can be viewed either as simulated annealing with improved
sampling or as a non-Markovian selection mechanism for evolutionary algorithms.
This article develops the basic algorithm and presents implementation details.
Evolutionary annealing is a martingale-driven optimizer, where evaluation yields
a source of increasingly refined information about the fitness function. A set of ex-
periments with twelve standard global optimization benchmarks is performed to
compare evolutionary annealing with six other stochastic optimization methods.
Evolutionary annealing outperforms other methods on asymmetric, multimodal,
non-separable benchmarks and exhibits strong performance on others. It is there-
fore a promising new approach to global optimization.

Keywords annealed selection · real-space evolutionary annealing · non-
Markovian selection · evolutionary computation · martingale-driven optimization

This research was supported in part by NSF under grants DBI-0939454 and IIS-0915038.

Alan J Lockett
Department of Computer Science
University of Texas at Austin
Austin, TX, 78712
USA
Tel.: +1-512-471-9571
Fax: +1-512-471-8885
E-mail: alockett@cs.utexas.edu

Risto Miikkulainen
Department of Computer Science
University of Texas at Austin
Austin, TX, 78712
USA
Tel.: +1-512-471-9571
Fax: +1-512-471-8885
E-mail: risto@cs.utexas.edu

2 Alan J. Lockett, Risto Miikkulainen

1 Introduction

Stochastic optimization algorithms typically operate in a Markov fashion, forget-
ting previously evaluated solutions. For example, in Markov Chain Monte Carlo
(MCMC) methods, a single solution candidate is generated from the prior solu-
tion candidate; in evolutionary algorithms, the population for each generation is
constructed stochastically from the prior population only. As a result, these algo-
rithms can discover and then forget high-quality regions within the search domain.
They can therefore fail to exploit crucial information, resulting in suboptimal per-
formance. As shown in this paper, this problem can be alleviated by selecting
individuals for reproduction over the entire pool of previously observed solutions.
Although a genetic algorithm with blind non-Markovian selection can in principle
become trapped by local optima, this issue can be mitigated by combining genetic
algorithms and simulated annealing. The resulting algorithm, termed evolutionary
annealing in this paper, solidly outperforms both genetic algorithms and simu-
lated annealing and compares favorably with several state-of-the-art stochastic
optimization methods.

This paper develops the evolutionary annealing approach and evaluates it ex-
perimentally. Evolutionary annealing is a global optimization algorithm for a large
class of measure spaces that can be alternately viewed as a genetic algorithm
with non-Markovian selection or as a method for simulated annealing without the
Metropolis sampler. Evolutionary annealing introduces a new annealed selection
operator, exploiting a connection between the average effect of proportional se-
lection and the annealed Boltzmann distributions used in simulated annealing.
Although many genetic algorithms have previously employed the Boltzmann dis-
tribution for selection (Goldberg, 1995; Jeong and Lee, 1996; Mühlenbein and
Mahnig, 2002), evolutionary annealing is distinct from these approaches in that
it can select any member of any prior population. Evolutionary annealing is dis-
tantly related to Estimation of Distribution Algorithms (EDAs), since it builds a
global model of the annealing distributions for the fitness function (Pelikan et al,
2002; Mühlenbein et al, 1999). However, whereas EDAs build models based solely
on the best members of the immediately prior generation, evolutionary annealing
maintains a model based on the entire history of observation. By leveraging the
information acquired from function evaluations, evolutionary annealing constructs
an increasingly refined estimate of the fitness function that allows it to locate
the global optimum. To illustrate this process, the progress of an example run of
evolutionary annealing in a two-dimensional space is shown in Figure 1.

Experimentally, evolutionary annealing converges quickly on a bank of stan-
dard benchmarks. This paper includes results for eleven global optimization prob-
lems in Section 5, including several multi-modal and non-separable problems that
are difficult for many optimization methods. Because of its efficient sampling and
non-Markovian selection, evolutionary annealing performs well in a comparison
with Simulated Annealing (SA), Differential Evolution (DE), Correlated Matrix
Adaption Evolution Strategies (ES), Particle Swarm Optimization (PSO), the real-
coded Bayesian Optimization Algorithm (rBOA), and a real-coded genetic algo-
rithm (rGA). Evolutionary annealing thus deserves consideration as a potentially
useful new approach to global optimization.

Evolutionary Annealing 3

(a) 50 points (b) 125 points (c) 250 points (d) 500 points

Fig. 1 Example run of evolutionary annealing on Shekel’s Foxholes in two dimensions (see Fig-
ure 3(e)). Images are heat maps displaying the estimated probability density of evolutionary
annealing, that is, the probability that each point will occur in the next generation of evolu-
tionary annealing. White areas are more probable, and dark areas are less probable. Successive
frames show how the probability density changes once 50, 125, 250, and 500 points have been
evaluated. The resulting distribution increasingly models the fitness function; comparison with
Figure 3(e) confirms that after 500 evaluations, evolutionary annealing has focused on the true
global optimum.

2 Background

Before introducing evolutionary annealing, some background in simulated anneal-
ing is presented, followed by a short discussion of the theory of proportional se-
lection in genetic algorithms that motivates the global selection mechanism of
evolutionary annealing.

2.1 Simulated Annealing

Simulated annealing is an MCMC optimization algorithm that employs properties
of statistical mechanics to locate minima of a given fitness function (Kirkpatrick
et al, 1983; Bertsimas and Tsitsiklis, 1993). The usual analogy is that of crafting
a metallic artifact by repeatedly shaping it at different temperatures. At high
temperatures, the metal is malleable and easy to shape, but as such the metal
does not easily remain in detailed configurations. As the temperature is gradually
lowered, the overall shape become increasingly fixed in a lower-energy crystalline
configuration.

At the core of the simulated annealing algorithm is the Boltzmann distribution.
At time n, simulated annealing samples approximately from a distribution given
by

Afn (dx) =
1

Zn
exp

(
−f(x)

Tn

)
dx, (1)

where f is the fitness function, Zn is a normalizing factor known as the partition
function, and Tn is a sequence of temperatures with Tn → 0. The sequence Tn is
known as the cooling schedule. The distribution Afn will be referred to as an anneal-
ing distribution in this paper. Simulated annealing samples from Afn repeatedly us-
ing the Metropolis algorithm (Metropolis et al, 1953; Hastings, 1970). The process
begins with a proposed solution x. At each time step, a proposal distribution Q is
used to sample xn. The proposed solution x is replaced with xn with probability
exp (−max {0, f(x)− f(xn)} /Tn). For each fixed temperature Tn the algorithm

4 Alan J. Lockett, Risto Miikkulainen

will converge to a sample from Afn. As n → ∞, Afn converges in probability to a
distribution that samples directly from the optimal points of f (Kirkpatrick et al,
1983).

Subject to conditions on the cooling schedule, simulated annealing can be
shown to converge asymptotically to the global optima of the fitness function (Ha-
jek, 1988; Yang, 2000). For combinatorial problems, Hajek showed that simulated
annealing converges if the cooling schedule is set as Tn ∝ 1/ logn (Hajek, 1988).
In practice, simulated annealing has been used effectively in several science and
engineering problems. However, its sensitivity to the proposal distribution and the
cooling schedule means that it is not a good fit for all optimization problems.

Surprisingly, traditional genetic algorithms are connected with simulated an-
nealing through an analysis of the average performance of a genetic algorithm
with proportional selection. This connection is exposed by trivial manipulations
of a previous result of Mühlenbein and Mahnig (2002); the details are discussed
next.

2.2 Expected Proportional Selection

Many genetic algorithms employ proportional selection, where individuals in the
prior population are selected proportionally to their observed fitness. Much like
simulated annealing, proportional selection sharpens the fitness function implicitly
with each generation, so that on averaging over population trajectories the selec-
tion operator asymptotically places probability one on the optima of the fitness
function. The following argument for discrete spaces is derived from Mühlenbein
and Mahnig (2002); analogues to this result hold in the class of measure spaces
considered here. For the purposes of this section, the goal is to maximize f , a
positive fitness function.

Proportional selection at the nth time step is given by Snf (x) ∝ f(x)Nn−1
x ,

where Snf (x) is the probability of selecting x at time n, and Nn
x is a random

variable indicating the number of copies of the solution x in the population at
time n. Taking the expected value over Nn

x ,

E
[
Snf (x)

]
∝ f(x)E

[
Nn−1
x

]
. (2)

The expected value on the left is also a probability distribution over x and there-
fore a selection rule, here termed expected proportional selection. It is possible to
imagine an evolutionary algorithm where each successive population is sampled
from just this rule. This algorithm is a one-stage, selection-only genetic algorithm;
because expected proportional selection averages over all individuals, no variation
is required.

In such an algorithm, if the initial population is selected uniformly at random,
then E

[
N0
x

]
is a constant, so

E
[
S1
f (x)

]
∝ f(x). (3)

By definition, E[Snf (x)] = E[Nn
x]/K where K is the population size, since Nn

x /K
is just the proportion of the population taking the value x. Applying this fact to

Evolutionary Annealing 5

the recursion in Equation 2 yields E[Snf (x)] ∝ f(x)n. Thus expected proportional
selection sharpens the fitness function. Introducing g(x) ≡ − log (f(x)),

E
[
Snf (x)

]
∝ exp (−g(x))n

= exp

(
− 1

n−1
g(x)

)
(4)

Comparing Equation 1 to Equation 4, expected proportional selection is found to
have an annealing distribution on − log f with cooling schedule Tn = n−1. Since
the logarithm is monotonic, the maxima of f are the minima of g.

Expected proportional selection is not a feasible selection rule, because it re-
quires total knowledge of the fitness function a priori. If such knowledge were
possible, there would be no need for evolutionary computation; the optima would
already be known. Expected proportional selection could be estimated by averag-
ing over the trajectories of several different runs of a genetic algorithm, but the
number of trajectories required for a good estimate would be intractably large. Ge-
netic algorithms with proportional selection can be viewed as an approximation
of this selection rule.

Evolutionary annealing exploits the theoretical relationship between simulated
annealing and genetic algorithms to create a hybridized algorithm that merges
qualities of both algorithms, as is described next.

3 Evolutionary Annealing

This section defines the evolutionary annealing algorithm. The following nota-
tion is used throughout. Let X be a topological space with a given Hausdorff
(separated) topology, and let (X,F) be a measurable space such that F is the
Borel σ-algebra for the given topology on X. The Borel σ-algebra is the smallest
σ-algebra containing the open sets of a topology, so that open sets are always
F-measurable. Let λ be a finite measure on (X,F) such that λ is positive on all
nonempty open sets. Let f : X → R be a fitness function which is to be mini-
mized, and assume that f has all necessary integrability properties required by
the formulae that follow. The notation (Pn) will represent a stochastic population
process, that is, a sequence of populations generated by a stochastic optimization
algorithm. Each population Pn contains a fixed number of individuals and is de-

noted by Pn =
(
P kn
)K
k=1

, where K is the population size. The set An represents the

set of all individuals up to time n, An =
⋃
m≤n,k

{
P km
}

. With these definitions,
the basic algorithm can be defined.

3.1 Basic Algorithm

Evolutionary annealing consists of selection and variation phases. The population
Pn+1 is sampled one individual at a time in these two stages. In the selection
phase, an element a ∈ An is selected with probability

pn (a) = ξ−1
n exp

(
−f(a)

Tn

)
λ (Ean) , (5)

6 Alan J. Lockett, Risto Miikkulainen

where Tn is a cooling schedule, ξn is a normalizing factor, and λ (Ean) is the measure
of a region surrounding the point a, discussed below. This selection mechanism
will be termed annealed proportional selection based on the relationship between
expected proportional selection and annealing described in the prior section. Its
primary distinction as a selection rule is that it can select any member of any prior
population.

For the variation phase, evolutionary annealing requires a family of probability
distributions {νxn}x∈X used to mutate selected points, so that given a selected point
x, νxn is used to vary x at time n. The choice of mutation distributions is essentially
arbitrary, although in general the variance should decrease over time to promote
convergence. In Euclidean space, Gaussians can be used, centered at x and with the
variation as a hyperparameter σn. In binary spaces, individual bits can be flipped
with a probability dependent on n. The particular mutation distributions should be
chosen based on the needs of the problem at hand; a mutation distribution whose
shape is well matched with the shape of the fitness function will converge much
faster than one that is not. Some results for a specific instantiation of evolutionary
annealing with real vectors will be discussed in Section 5.

Once an individual a ∈ An has been selected with probability pn (a), then that
individual is mutated according to νan in order to generate a new member of the
population. That is, each individual in the population at time n + 1 is sampled
according to

P kn ∼
∑
a∈An

pn(a)νan. (6)

Thus evolutionary annealing samples its populations from a sequence of mixture
distributions with one mixing point located at each individual from prior popu-
lations. In this way, the selection is non-Markovian; the selected individual could
come from any previous generation. The mixture probabilities pn(a) are chosen
according to the annealing formula in Equation 5.

Intuitively, if the temperature is fixed at a constant, as the number of mix-
ing points increases and the variance of the mutation distribution decreases, the
mixture distribution in Equation 6 approximates the annealing distribution Afn
in Equation 1. It is commonly known that mixtures of Gaussians can model any
sufficiently smooth distribution arbitrarily well if enough mixing points are used.
It is also true that mixture distributions in general can model any probability
measure arbitrarily well subject to certain conditions. The population Pn is suc-
cessively sampled from better and better approximations to Afn, and as n → ∞,
the population sequence Pn will increasingly focus on the optima of f .

A high-level algorithm for evolutionary annealing over N generations is shown
in Algorithm 1. The algorithm depends on two subroutines, prepare and sample.
The subroutine prepare builds data structures to support efficient sampling of
the quantity pn from Equation 5. The subroutine sample samples from pn using
the prepared data structures. Through the use of highly precise approximations
as described in Section 3.3, both prepare and sample can be implemented to run
in time logarithmic in the population size and the number of generations. The
specific implementations of prepare and sample used in the experiments utilize
the methods of Section 3.3. The prepare routine adds nodes to the trees described
in that section and propagates the components of Equations 7 and 14 up the tree.
The sample routine employs Equations 7 and 14 to traverse the tree down from

Evolutionary Annealing 7

Algorithm 1 Evolutionary Annealing Algorithm
N , the number of generations
K, sample points (population size) per generation(
Pk1
)K
k=1

, the initial random population

A0 ← ∅, all points from all generations
for n← 1 to N do
An ←

⋃
k P

k
n ∪An−1

pn ← prepare (An)
for k ← 1 to K do
y ← sample (pn)
Pkn+1 ← a sample from νyn

end for
end for

the root in order to select a previously evaluated point. Assuming that sampling
νan and computing λ (Ean) do not add to the complexity, the overall algorithm has
performance O (NK logNK).

In order to make evolutionary annealing concrete, the cooling schedule must
be determined. In light of Hajek (1988), a default choice for the cooling sched-
ule is given by T−1

n = η logn. Here η is a learning rate that scales the fitness
function and thereby controls the aggressiveness of selection. A high learning rate
focuses selection on the few best individuals and may restrict exploration of the
space. A low learning rate allows promiscuous selection, slowing down refinement
of previously discovered solutions but increasing the probability of escaping a local
minimum. Again following Hajek (1988), a possible value for η is 1/d where d is
the largest depth of a local minima relative to its surroundings in the fitness land-
scape. In more complex spaces, different cooling schedules could be considered.
There may also be a benefit to linking the variance of the mutation distribution
to the cooling schedule, so that as the probability of selecting the current best
individual decreases, the variance also decreases to enable refined exploration of
the immediate region around the current best.

The region weight λ (Ean) is present in Equation 5 to avoid a particular sce-
nario of premature convergence. Once a good solution is discovered, evolutionary
annealing will devote increasing resources to exploring the neighborhood of that
point. If these points are also good, then the probability of selecting more points
in the same region will increase in a feedback loop. Within a few generations, al-
most all points selected will come from the immediate environment of these good
points. If there is a local minimum in the vicinity, evolutionary annealing would
likely become entrapped in that region. The region weight is intended to serve as
a measure of how many individuals have been previously sampled in the region
surrounding the point a. The sets Ean partition X around points in An, the to-
tal population so far. Such a partition can be computed in logarithmic time in
many spaces. These partitions may also be thought of as a source of increasingly
refined information about the fitness function, evoking the concept of martingales
as studied in stochastic process theory.

8 Alan J. Lockett, Risto Miikkulainen

Algorithm 2 Algorithm to Generate a Partition Based On Grid Points

{xm}Mm=1 ⊆ X, the mixing points
T ← {X}, the partition tree
k(i)← ∅ for all i = 1, . . . ,M , node assignment function
for m← 1 to M do
N ← the leaf node in T such that xm ∈ N
if ∃j 6= m s.t. k(j) = N then
N0, N1 ← separate (xj , xm, N)
T ← T ∪ {N0, N1}
k(j)← N0, k(m)← N1

else
k(m)← N

end if
end for

3.2 Partitioning the Space

Each of the mixing points a ∈ An will be considered representative of a particular
region of the search space X. Each successive set An will be associated with a
partition {Ean}a∈An

of disjoint sets such that X =
⋃
a∈An

Ean and a ∈ Ean for all
n. The σ-algebra F is assumed to be rich enough to support such partitions based
on any finite collection of points in X. The partitioning set Ean is the same as the
one that appears in Equation 5.

Provided that there exists a computable algorithm to split any set containing
two distinct points into two disjoint sets each of which contains exactly one of
the points, then the partitions can be stored in a binary tree, and if the splitting
algorithm does not depend on the population size of the number of generations,
the computational complexity of maintaining a partitioning tree is logarithmic on
average.

Algorithm 2 partitions any Borel measure space over a Hausdorff topology
given a function for dividing a partition region between two separate points in the
region. A partition is represented as a binary tree, with the root representing the
entire space X and each branch partitioning X into two sets. The algorithm is
initialized with a sequence of points {xm}Mm=0 ⊆ X to be partitioned (the mixing
points), a tree T with X as the root node, and an assignment function k such that
k(m) is the leaf node of the tree assigned to the point xm, or ∅ if no assignment
has been made. The algorithm then loops through the mixing points, splitting the
space where necessary to ensure that each leaf node contains exactly one mixing
point. The algorithm relies on a domain-specific subroutine to split an existing
set, separate. At the end of each iteration of the algorithm’s main loop, each leaf
node is assigned to exactly one mixing point. When a new mixing point is added,
separate partitions the leaf node to which it belongs into two new leaf nodes, each
containing only one mixing point. The process of adding a single new mixing point
to the tree requires only a tree traversal, so that at each generation, updating the
partition requires O (K logNK) time, where NK is the number of points at the
N th generation.

In a vector space, such as Rd, the function separate can in many cases be given
explicitly. Suppose that X is bounded above by {ui} and below by {`i} so that X
has a rectangular shape. Each node in the partition tree will restrict the coefficient
for exactly one of the basis vectors, say j. To maintain computability, it is necessary

Evolutionary Annealing 9

(a) 10 points (b) 25 points (c) 100 points (d) 250 points

Fig. 2 Progression of partition regions {Ean} on Shekel’s Foxholes during the run of evolu-
tionary annealing in Figure 1 in two dimensions. Images are heat maps displaying the selection
probability of each region; light regions have a higher selection probability. Successive frames
show how the partition regions gradually model the shape of the fitness function after 10, 25,
100, and 250 points have been evaluated.

to require that j < D < ∞ for some D. That is, each set Ean in the partition is
defined as a hyperrectangle on finitely many coordinates, with each step in the
traversal of the partitioning tree adding a new coordinate value for some side of
the hyperrectangle. So Ean can be represented as two vectors, ua for the upper
bounds, and `a for the lower bounds. Given the point a ∈ X and a second point
x ∈ X, Ean can be separated as follows. Let k = argmaxi≤D |ai − xi|; k is the index
at which the rectangle Ean will be split. Suppose ak > xk for the sake of simplicity;
the opposite situation is handled analogously. Initialize ux ← ua and `x ← `a.
Then set `ak ← 1

2 (ak + xk) and uxk ← 1
2 (ak + xk). The regions Ean+1 and Exn+1

defined by these boundary vectors are then disjoint if the upper boundary is strict.
The result of this partitioning method in R2 is shown in Figure 2. This version of
separate cannot separate two vectors that are the same in the first D coefficients.
In an infinite-dimensional vector space, it is possible for two distinct vectors to
have arbitrarily many identical coefficients, and no computable algorithm and
locate the coefficients in which they differ. This situation is of theoretical more
than practical concern, however, and can be ignored in most cases. The separation
algorithm above can be efficiently implemented in many spaces of interest. The
next section discusses how these partition mechanisms can be used to implement
the subroutines prepare and sample from Algorithm 1.

3.3 Sampling Algorithms for Annealed Selection

The computational efficiency of evolutionary annealing is primarily determined by
the cost of preparing and sampling annealed proportional selection. A näıve ap-
proach to computing Equation 5 would make the cost of preparing and sampling
pn be linear, since the normalizing factor ξn must be computed one element at a
time and because sampling from a probability vector typically requires iterating
through the vector. In fact, annealed proportional selection can be approximately
computed in logarithmic time in the average case by leveraging the partition tree,
with most operations occurring in subroutines that guarantee worst-case logarith-
mic time, to be described in Section 3.4. The approximation can be made accurate
at close to machine-level precision, so that it is sufficiently precise for all practical
purposes.

10 Alan J. Lockett, Risto Miikkulainen

In order to reduce the sampling complexity for evolutionary annealing from
linear to logarithmic time, a tree-sampling method is needed for sampling pn. The
partition tree provides a tree such that the leaves are associated exactly with the
components of pn. The goal, then, is to create a sequence of decisions made along
a path through the partition tree such that the decision process assigns probability
mass to each complete path in equality with the probability of the leaf at the end
of the path under pn.

Let ν be an internal node of the partition tree. Let N ⊆ An be the set of
previously observed individuals residing within leaves of the partition tree that
are descended from ν. Let µ be one of the two child nodes of ν, and let M ⊆ N
contain the leaf descendants of µ. To extend a probabilistic path that has reached
ν, a choice must be made at node ν whether to add node µ or its sibling to the
path. Suppose the choice is made according to

P (µ | ν) =

∑
x∈N α(x)lognλ (Exn)∑
y∈M α(y)lognλ (Eyn)

, (7)

where α(x) ≡ exp (−ηf(x)), mirroring Equation 5 with cooling schedule T−1
n =

η logn. Now let πx be a path from the root to the leaf containing the point x, and
observe that a sequence of decisions made according to Equation 7 yields

P (πx) =
∏
ν

P (child (ν, πx) | ν) = ξ−1
n α(x)lognλ (Exn) = pn (x) , (8)

with child (ν, πx) being the child node of ν on the path πx. The next to last equality
in Equation 8 holds because each successive denominator cancels the numerator
of the previous one, leaving only the denominator from the root node, which is
equal to ξn, and the numerator from the leaf node, which is α(x)lognλ (Exn) =
exp (−f(x)/Tn)λ (Exn). Therefore, sampling a path through the tree starting from
the root samples from pn provided that the decision at each node is made according
to Equation 7.

The difficulty of this method is that the sum in the numerator of Equation 7
must be computed for each node. If the temperature were fixed, then the value of
the sum could be stored on each node. The sum only changes when new leaves are
inserted, and then only the nodes that are direct ancestors of the inserted node
need to adjust their sums, resulting in logarithmic updates to the tree. As long as
the temperature does not change, then, the tree-sampling method is logarithmic
both to prepare the data structures and to sample them.

It remains to account for changes in temperature without recomputing the nu-
merator of Equation 7 at each time step. Introducing h(T) =

∑
x∈N α(x)Tλ (Exn)

to capture the fact that the sum varies with the generation, the problem is that the
exponent cannot be pulled out of the sum, meaning that the sum must be recom-
puted with every change in temperature. However, h(T) is infinitely differentiable
in T , with mth derivative

h(m)(T) =
∑
x∈N

α(x)T (logα(x))m λ (Exn) . (9)

Thus a Taylor approximation is possible, since

h(T) =
∞∑
m=1

(∑
x∈N

(logα(x))m

m!
α(x)T0λ (Exn)

)
(T − T0)m . (10)

Evolutionary Annealing 11

The Taylor approximation can be computed by storing a vector of coefficients
t = (t1 . . . tm) with tj ≡

∑
x∈N (logα(x))jα(x)T0λ (Exn) for all j ∈ 1 . . .m, with a

fixed value T0. These vector sums can then be propagated up the tree in logarithmic
time, and the sampling method can approximate h (logn) as needed at each node.

To complete the description of the sampling method, T0 and m must be spec-
ified. As a general feature of h(T), the approximation is substantially correct for
T > T0 over a larger interval than for T < T0. With m = 10, the approximation
is highly accurate for T ∈ [T0, T0 + 1/2] but degrades outside that interval. Thus
the Taylor coefficients must be recomputed for the entire tree on every interval
of T of size 1/2. For practical purposes, the value of T0 is set to 1 for the first
few generations, and then is reset when T = log n = 3/2, 2, 5/2, This resetting
feature is actually not as burdensome as it may sound, and it only needs to be
performed logarithmically often, so that the entire procedure of maintaining and
sampling the tree still has logarithmic complexity overall. Some example statistics
for computation time are shown in Table 1. The next section discusses an alter-
nate annealed selection rule, analogous to tournament selection, and introduces
data structures that make it possible to sample annealed selection in average case
logarithmic time.

3.4 Annealed Tournament Selection

Annealed proportional selection as given in Equation 5 is a proportional selection
rule; individuals are selected according to their proportion of the overall fitness.
Proportional selection has a well-known drawback that also applies to annealed
proportional selection. For example, suppose that the fitness function f has a
minimal value of 0, and consider the selection probabilities for the points x, y with
f(x) = 0.01 and f(y) = 0.001 at temperature Tn = 5. Assume λ (Exn) = λ (Eyn) =
1. Then pn(y)/pn(x) = 1.0018. That is, x is almost equally as likely to be selected
as y, even though y is a whole order of magnitude closer to the optimum. Thus
the more precise solution is no more likely to be selected than rougher solutions
close to the optimum, which makes refinement of solutions near a local or global
optimum sluggish. These intuitions are confirmed by the experimental results in
Table 4; annealed proportional selection converges within 0.1 of the optimal fitness
without difficulty, but then fails to attain accuracy within 0.001 in most cases.

To address this weakness of proportional selection in genetic algorithms, tour-
nament and ranking selection were introduced (cf. Syswerda (1989)). These meth-
ods select among individuals according to their fitness rank in the population
rather than according to their raw fitness. For tournament selection, the best in-
dividual is selected with some probability q, termed the selection pressure. If the
best individual is not selected, then the second best individual is chosen with
probability q. Thus the probability of selecting the nth-ranked individual of the
population is proportional to q(1− q)n−1.

A similar concept can be used to define annealed tournament selection, a non-
Markovian version of tournament selection. Annealed tournament selection re-
places Equation 5 by

pn (a) = ξ−1
n q1/Tn

(
1− q1/Tn

)r(a)
λ (Ean) , (11)

12 Alan J. Lockett, Risto Miikkulainen

where q is the selection pressure, and r(a) is the fitness rank of a in An starting
with 0. Annealed tournament selection uses a cooling schedule Tn so that the rank
becomes increasingly significant with each generation, with the ultimate result
that the top-ranked individual is selected at zero temperature. The main difference
from standard tournament selection is that each individual must be ranked against
all other individuals from all prior generations. As a consequence, the selection
pressure must be much lower. For this paper, the value of q was fixed at 0.025.
Rather than varying q, the learning rate η in the cooling schedule can be varied
to achieve the same effect.

As with annealed proportional selection, it is not computationally efficient to
sample Equation 11 directly. In addition, annealed tournament selection intro-
duces the need to sort all previously proposed solutions by fitness. In order to
accommodate these issues, a balanced binary tree can be used, called the score
tree. Like the partition tree, the score tree contains one leaf node per proposed
solution; the internal nodes represent the set of nodes in their span. The score
tree reorganizes the partition tree so that points with higher fitness are always to
the left and points with lower fitness are always to the right. Using standard tree
algorithms, the score tree can be balanced in logarithmic time after each insertion.

Annealed ranking selection can be sampled by walking the score tree, making a
decision at each node whether to follow the lower- or the higher-ranked branch. The
probability at each node will depend on the area represented by the node and the
height of the subtree underneath the node. The area of a leaf node can be copied
from the partition tree. Both the area and the height can then be propagated up
the score tree in logarithmic time after each insertion. In this way, the score tree
is also a partition tree. However, the internal nodes of the score tree correspond
approximately to the level sets of the fitness function, and thus the regions that
they represent can be arbitrarily complex to describe. Therefore, although the
score tree defines a partition over the search space, the score tree cannot replace
the partition tree, because there is no efficient way to determine whether a point
resides in the region represented by an internal node of the score tree. However,
the score tree is kept balanced, providing worst-case logarithmic performance.

When sampling annealed tournament selection using the score tree, the decision
must be made at each internal node ν whether to follow the higher- or lower-ranked
branch. Let h+ 1 be the height of the subtree under node ν, and assume the tree
is perfectly balanced. Then ν has 2h+1 leaf nodes in its span. Let µ be the higher-
ranked child node of ν. Suppose further that the nodes spanned by ν range in
rank from R to R+ 2h+1 − 1, so that the nodes spanned by µ range in rank from
R to R + 2h − 1. Ignoring the region weight temporarily, a direct application of
standard tournament selection yields

QT (µ | ν) =

∑2h−1
m=0 q

1/T
(

1− q1/T
)R+m

∑2h+1−1
j=0 q1/T

(
1− q1/T

)R+j
. (12)

Let κ be the lower ranked sibling of µ, spanning ranks R + 2h to R + 2h+1 − 1.
Then the ratio for selecting µ over κ is given by

QT (µ | ν)

QT (κ | ν)
=

∑2h−1
m=0 q

1/T
(

1− q1/T
)R+m

∑2h−1
m=0 q

1/T
(
1− q1/T

)R+2h+m
=

1(
1− q1/T

)2h ≡ q̃ (h, T) . (13)

Evolutionary Annealing 13

The function q̃(h, T) gives the selection preference of the higher branch over the
lower branch. Finally, incorporating the region weights, let

PT (µ | ν) =
q̃ (h, T)λ (µ)

q̃ (h, T)λ (µ) + (1− q̃ (h, T))λ (κ)
, (14)

where λ (µ) and λ (κ) are the cumulative weights of the partition regions of the
points in the span of µ and κ, respectively. Equation 14 is normalized and implies
PT (κ | ν) = 1− PT (µ | ν).

To show that this process does in fact implement annealed tournament selec-
tion, notice that

PT (µ | ν) ∝ q̃ (h, T)
λ (µ)

λ (ν)
, PT (κ | ν) ∝ λ (µ)

λ (ν)
, (15)

introducing the λ(ν) factor as a proportional constant. Thus for a general path
πx, recalling that q̃(h, T) ∝ QT (µ | ν) by definition,

PT (child (ν, πx) | ν) ∝ QT (child (ν, πx) | ν)
λ (µ)

λ (ν)
(16)

and therefore

PTn
(πx) =

∏
ν∈πx

PTn
(child (ν, πx) | ν)

∝
∏
ν∈πx

QTn
(child (ν, πx) | ν)

λ (child (ν, πx))

λ (ν)

= QTn
(πx)

λ (Exn)

λ (X)

∝ pn (x) . (17)

The last equality holds because the area ratios successively cancel each other, and
the last proportionality follows from the fact that QTn

was defined to implement
tournament selection with selection pressure q1/Tn . The ultimate conclusion is
that a tree-sampling algorithm with node selection probabilities as given in Equa-
tion 14 can be used to sample from annealed tournament selection in worst-case
logarithmic time.

As a final note on efficiency, notice that sampling in the score tree has worst-
case logarithmic time, whereas sampling on the partition tree has average case log-
arithmic time. Therefore it makes sense to sample annealed proportional selection
from the score tree rather than the partition tree. The only additional requirement
is that the Taylor coefficients for annealed proportional selection should be prop-
agated up the score tree rather than the partition tree. In this way, regardless of
whether tournament or proportional selection is used, the sampling operations of
evolutionary annealing require logarithmic time in the worst case.

14 Alan J. Lockett, Risto Miikkulainen

Table 1 Performance statistics for Evolutionary Annealing on a 2GHz Intel Core 2 Duo
processor using the open-source implementation. For each number of observed points, the
table gives the time in milliseconds for sampling one point, for inserting one point into the
partition tree, for inserting one point into the ranked score tree, and for the total processing
overhead per function evaluation. Complexity grows logarithmically in the number of points.

points sample partition rank total
1,000 8.6 18.2 20.6 59.2
5,000 10.5 22.1 24.7 64.5

10,000 11.2 24.1 26.4 68.1
25,000 11.8 27.6 28.2 76.8
50,000 12.4 34.0 30.4 99.2

100,000 12.9 47.3 32.8 113.6

3.5 Implementation

Because evolutionary annealing relies on several data structure, it can be complex
to implement. In order to further clarify implementation details and to permit the
reproducibility of the experimental results that follow, an open-source implementa-
tion has been released under the name pyec (http://pypi.python.org/pypi/PyEC).
This package implements both annealed proportional and tournament selection
along with many other popular evolutionary computation methods, including the
exact code used to run the experiments described in Section 5. This package is
intended to encourage further experimentation and evaluation of the evolutionary
annealing method beyond the results reported in this paper.

Performance statistics for evolutionary annealing were gathered using this im-
plementation in order to demonstrate the actual computational costs of running
the algorithm in Table 1. These statistics were compiled by averaging results from
four runs each of the algorithm using tournament selection on the benchmarks
shekel and rastrigin. Tournament and proportional selection both traverse the
score tree when sampling, so the numbers are representative for both selection
rules. The columns of Table 1 show the average time required for sampling the
score tree, for inserting a point into the partition tree, for inserting a point into
the ranked score tree, and for the total processing overhead per individual. Each
entry shows the average time in milliseconds to process a single individual given
a certain number of stored points in the database. The averages are cumulative,
so for example the fact that sampling requires 12.9 ms with 100, 000 points in the
database means that the average sample time over all 100, 000 individuals was 12.9
ms. As an exception, the total processing time per individual shows the cost per
individual averaged over 100 samples. Logarithmic growth in complexity is clear
from the table.

3.6 Martingale-Driven Optimization

From an intuitive perspective, evolutionary annealing performs successfully be-
cause it builds an increasingly accurate model of the fitness function. In this
sense, evolutionary annealing shares certain general concepts in common with
metamodelling techniques (El-Beltagy et al, 1999), such as those using Kriging
methods (Jeong et al, 2005). For evolutionary annealing, progressive partitions of

Evolutionary Annealing 15

the search domain serve as a source of increasing information. In the language of
martingale theory, the sequence of partitions generates a filtration. If the tempera-
ture and the mutation distributions are held constant, it is conjectured that under
certain smoothness assumptions, the random sequence of fitness values generated
by evolutionary annealing is an approximate martingale. It may also be possible to
extend such martingale-like properties to non-constant cooling schedules in order
to prove asymptotic global convergence in some cases. For these reasons, evolution-
ary annealing may be described as a martingale-driven optimizer. This martingale
characterization also motivated the development of the partitioning approach used
by evolutionary annealing. The approach therefore offers an opportunity to develop
an interesting new optimization theory in the future.

Now that the algorithm has been fully described, its experimental performance
will be explored next.

4 Experimental Setup

Evolutionary annealing can be used to search for bit strings, real vectors, neural
networks, Bayesian network structures, game strategies, programs, state machines,
and any other structure that can be embedded within a suitable measure space.
To verify the algorithm, experiments were performed in real-vector space on a
set of twelve standard benchmarks. The instantiation of evolutionary annealing in
Euclidean space is termed Real-Space Evolutionary Annealing (REA). REA was
tested with both annealed proportional selection and annealed tournament selec-
tion; these two variants are termed REA-P and REA-T, respectively. To clarify, the
experiments were performed in a hypercube Q ⊆ Rd, with a normalized Lebesgue
measure on the Borel σ-algebra restricted to Q, i.e. λ(B) =

∫
B
dx/

∫
Q
dx.

The version of REA implemented for this article uses Gaussian mutation dis-
tributions with νan = N

(
a, σn (a)2

)
. The standard deviation σn(a) is scaled to the

area of the partition region with σn(a) = 1
2wλ (Ean)1/d, where d is the dimension

of the problem and w is the width of the space (i.e. 1
2w is the side length of Q).

This choice of variance seeks to align the shape of νan and λ (Ean). Specifically, if
Ean were a hypercube, then the first standard deviation of νan would be contained
within Ean.

In high dimensions, the variance of the mutation distributions needs to be
forcibly decayed. Otherwise, the algorithm will not focus for an exponentially
long time. In the experiments that follow, no decay factor was applied for d = 5
and d = 10. It was not necessary to do so, since the samples in the experiments
converged towards a fixed distribution without a decay factor. In 25 dimensions,

however, a decay factor of n−
1
2 (i.e. σn(a) = 1

2wn
− 1

2λ (Ean)1/d) was applied in
order to achieve faster convergence.

This implementation of REA differs from that of Lockett and Miikkulainen
(2011b) in that it uses actual rather than approximated values for the area. It dif-

16 Alan J. Lockett, Risto Miikkulainen
T
a
b
le

2
B

en
ch

m
a
rk

s
fo

r
E

x
p

er
im

en
ta

l
V

a
li
d

a
ti

o
n

,
w

it
h
d

=
5

N
a
m

e
D

efi
n

it
io

n
M

in
im

u
m

D
o
m

a
in

sp
h

er
e

∑ d i=
1
x
2 i

0
.0

0
0
0

(-
5
.1

2
,

5
.1

2
)

a
ck

le
y

−
2
0

ex
p

(−
.0
2
d
||x
||2

)
−

ex
p

(
1 d

∑ d i=
1

co
s(

2
π
x
i
))

+
2
0

+
e

0
.0

0
0
0

(-
3
0

,
3
0
)

lo
g
-a

ck
le

y
∑ d−

1
i=

1
e−

0
.2
√ x

2 i
+
x
2 i+

1
+

3
co

s
(2
x
i
)

+
3

si
n

(2
x
i+

1
)

-1
3
.3

7
9
6

(-
3
0

,
3
0
)

w
h

it
le

y
∑ d i=

1

∑ d j=
1

w
(x

i
,x

j
)2

4
0
0
0
−

co
s

(w
(x
i
,x
j
))

+
1
,

w
it

h
w

(y
,z

)
=

1
0
0
(y2 −

z
) 2 +

(1
−
z
)2

0
.0

0
0
0

(-
3
0

,
3
0
)

sh
ek

el
∑ 30 i=

1
1

∑ d j
=

1
(x

j
−
a
i
j
)2
−
c
i

-1
0
.4

0
5
6

(-
5

,
1
5
)

ro
se

n
b

ro
ck

∑ d−
1

i=
1

1
0
0
(x

2 i
−
x
i+

1
)2

+
(1
−
x
i
)2

0
.0

0
0
0

(-
5
.1

2
,

5
.1

2
)

ra
st

ri
g
in

1
0
d

+
∑ d i=

1
x
2 i
−

1
0

co
s(

2
π
x
i
)

0
.0

0
0
0

(-
5
.1

2
,

5
.1

2
)

sa
lo

m
o
n

−
co

s(
2
π
|x
|)

+
0
.1
|x
|+

1
,
|x
|≡

(∑ i
x
2 i

) 1/2
0
.0

0
0
0

(-
3
0

,
3
0
)

la
n

g
er

m
a
n

−
∑ 5 i=

1
c i

ex
p

(−
y
i
/
π

)
co

s(
π
y
i
),
y
i

=
∑ d j=

1
(x
j
−
a
ij

)2
-0

.9
6
5
0

(-
5

,
1
5
)

sc
h
w

ef
el

d
−
1
∑ d i=

0
−
x
i
si

n
√ |x

i
|

-4
1
8
.9

8
2
9

(-
5
1
2

,
5
1
2
)

g
ri

ew
a
n

k
1

+
∑ d i=

1
x
2 i

4
0
0
0
−
∏ i

co
s(
x
i
/
√
i)

0
.0

0
0
0

(-
6
0
0

,
6
0
0
)

w
ei

er
st

ra
ss

∑ d i=
1

∑ 20 j=
1

0
.5
j

co
s
(2
·3
j
π

(x
i

+
0
.5

)) +
d
∑ 20 j=

1
0
.5
j

co
s
(3
j
π
)

0
.0

0
0
0

(-
0
.5

,
0
.5

)

Evolutionary Annealing 17

fers from that of Lockett and Miikkulainen (2011a) in that the variance is scaled to
the area rather being controlled by a decay schedule. These improvements account
for the superior results shown below.

The twelve benchmarks are defined in Table 2. These benchmarks are com-
monly used and cover a broad cross-section of possible fitness functions; their
definitions and descriptions can be found in the literature (e.g. de Jong (1975); Ali
et al (2005); Mühlenbein et al (1991); Whitley et al (2003); Bersini et al (1996);
Ackley (1987)). Notably, two versions of Ackley’s function exist; both are included
in the comparisons. The less common one is termed log-ackley and is due to Ackley
(1987). The more common version of the benchmark is exponentiated and centered
and is simply termed ackley. Each benchmark was tested in five, ten, and 25 di-
mensions (d = 5, 10, 25), except that shekel and langerman were tested in five and
ten dimensions only, since they are not defined in 25 dimensions. The domain for
each benchmark was a bounded hypercube with the range for each component
shown in the table. The minima for these functions are known, as shown for five
dimensions with precision up to 10−4. The actual values are known up to machine-
level precision (10−16), and these more accurate values were used for testing the
accuracy of the experiments. Heat maps of the eleven benchmarks with d = 2 are
shown in Figure 3.

In order to establish the performance of REA relative to other optimization al-
gorithms, experiments were run with six other algorithms: (1) simulated annealing
(SA), (2) a real-coded genetic algorithm (rGA), (3) an evolution strategy (CMA-
ES), (4) differential evolution (DE), (5) particle swarm optimization (PSO), and
(6) the real-coded Bayesian Optimization Algorithm (rBOA). These algorithms
cover a broad spectrum of stochastic optimization algorithms and represent a gen-
eral sampling of the current state of the art. They are known to be effective on a
wide array of fitness functions and most of them perform reasonably well on the
selected benchmarks. For all of the algorithms, parameters were set according to
the literature where available and hand-tuned otherwise to optimize performance.

CMA-ES is the Correlated Matrix Adaption algorithm of Hansen and Oster-
meier (2001) and was tested with four different population sizes: 100, 750, 1250,
and 2500. At each generation, 50% of the population was used to build an updated
normal distribution. Because CMA-ES converges quickly, CMA-ES was restarted
whenever the covariance matrix collapsed to an average variance of 1e − 25 (see
e.g. Auger and Hansen (2005)).

DE was trained with four different parameter settings, one each with crossover
rates 0.2 and 0.9 and learning rates .2 and .9 (Storn and Price (1995)). PSO were
trained with both the global and local adaptation rates set to 2.0 (Eberhart and
Kennedy (1995)). The velocity decay was tested with two different values −0.5 and
1.0 following results by Pedersen (2010) on optimal parameter settings for PSO.
In particular, rBOA is an Estimation of Distribution Algorithm (EDA), and was
included to compare REA’s performance with other sampling-based optimizers. It
was implemented as described in Ahn et al (2006).

Simulated annealing was run as a single chain with a logarithmic cooling sched-
ule. It was restarted randomly with probability 0.001 after each point. The rGA
method was a standard real-coded genetic algorithm using linear ranking selection
with pressure 1.8, uniform crossover, and Gaussian mutation. The mutation vari-
ance for rGA was set to 0.05 for all problems except schwefel and griewank, where
it was set to 10.

18 Alan J. Lockett, Risto Miikkulainen

The parameters for REA-P and REA-T are the learning rate η and the popula-
tion size K. Several values for η were tested, shown in Table 5 for each benchmark.
Preliminary experiments showed that the learning rate influences the performance
of REA more than the population size; thus experiments varying the population
size were left for future work. REA-P was not tested in 25 dimensions to conserve
computational resources; preliminary experiments showed that REA-T substan-
tially outperformed REA-P in 25 dimensions, as it does in five and ten dimensions.

All algorithms were run on all benchmarks 200 times for each tested parameter
setting. These 200 runs are sufficient to guarantee statistical significance on the
estimated success rates for each algorithm at the 95% level within +/– 0.5% (Vasile
et al (2011)). When a single number is shown as the result of an experiment,
that number represents the best value achieved on any parameter setting for that
algorithm, unless otherwise stated.

5 Experimental Results

The complete experimental results are given in Tables 4 to 9. Tables 4, 5, and 6
show the success rates in 5, 10, and 25 dimensions, respectively, over all trials for
each algorithm and benchmark at three different error levels: 0.1, 0.01, and 0.001
in five and ten dimensions, and 10, 1, and 0.1 for 25 dimensions. The success rate
for an error level ε is calculated as the percentage of trials in which the algorithm
achieved an error less than ε from the global optimum. Tables 7, 8, and 9 give
the average error across all trials (successful and unsuccessful) in 5, 10, and 25
dimensions after 10, 000, 100, 000, and 250, 000 evaluations.

In short, REA-T, DE, and CMA-ES are the most effective algorithms on this
set of benchmarks. REA-T is more effective on problems that are asymmetric, non-
separable, and multimodal such as shekel, langerman, and whitley. DE outperforms
REA-T on some but not all radially symmetric problems such as rastrigin, salomon,
and griewank. CMA-ES performs well, particularly on rastrigin and griewank, but
the effectiveness of CMA-ES is likely due to the restart mechanism, which could
also be used to boost the performance of REA or DE. Comparing the two versions
of REA, REA-P performs well, but fails to refine solutions near global and local
optima. In contrast, REA-T attains precisely refined solutions, most often at the
global optimum, and is therefore the stronger method on these benchmarks.

More specifically, in five dimensions, the results show clearly that REA-P and
REA-T are effective at locating the global optima of complex fitness functions.
REA-P is successful on most problems at the 0.1 success level, with notable ex-
ceptions for rastrigin and schwefel. For schwefel, REA-P actually located the region
of the true global optimum on most trials, but was unable to refine these solutions
further. For comparison, the failures of CMA-ES and PSO on this benchmark
were over an order of magnitude worse and were not in the correct region of the
search space. On rastrigin, it was not possible to configure REA-P to succeed pre-
dictably. It is possible that the algorithm would succeed at a lower learning rate
(e.g. η = 0.001) with more function evaluations, but an even lower learning rate
would further slow down the refinement of the solution.

Evolutionary Annealing 19

(a) sphere (b) ackley (c) log-ackley

(d) whitley (e) shekel (f) rosenbrock

(g) rastrigin (h) salomon (i) langerman

(j) schwefel (k) griewank (l) weierstrass

Fig. 3 Heat maps for the eleven benchmark functions in two dimensions (d = 2). Experiments
were performed in five dimensions (d = 5). The benchmarks whitley and griewank are scaled to
show the critical region. Lighter colors indicate lower and therefore more optimal values. These
three functions are multimodal and non-separable and are quite difficult for most optimization
methods. This set of benchmarks contains a variety of difficult problems that should reveal
distinctions among optimization algorithms.

20 Alan J. Lockett, Risto Miikkulainen
T
a
b
le

3
L

ea
rn

in
g

ra
te

s
η

fo
r

R
E

A
-P

a
n

d
R

E
A

-T
te

st
ed

in
th

e
ex

p
er

im
en

ts
.

R
E

A
-P

R
E

A
-T

B
en

ch
m

a
rk

d
=

5
d

=
1
0

d
=

5
d

=
1
0

d
=

2
5

sp
h

er
e

1
0

1
,

1
0

1
0

1
,

1
0

1
0

a
ck

le
y

0
.2

5
0
.2

5
,

1
0
.0

5
,

0
.2

5
0
.2

5
,

1
0
.5

lo
g
-a

ck
le

y
0
.2

5
0
.2

5
,

1
0
.2

5
0
.2

5
,

1
0
.5

w
h

it
le

y
0
.1

0
.2

5
,

1
0
.0

5
,

0
.2

5
0
.2

5
,

1
2
5

sh
ek

el
0
.1

,
0
.2

5
0
.1

,
1

0
.1

,
0
.5

,
1
.0

,
5
.0

0
.1

,
1

–

ro
se

n
b

ro
ck

1
1
,

5
5

1
,

5
1
0

ra
st

ri
g
in

0
.0

1
,

0
.1

0
.0

3
5
,

1
0
.0

1
,

0
.0

3
5
,

0
.0

5
0
,

0
.0

7
5

0
.0

3
5
,

1
1

sa
lo

m
o
n

2
1
,

2
2

1
,

2
5

la
n

g
er

m
a
n

0
.1

,
0
.5

0
.2

5
,

1
0
.1

,
0
.5

,
1
.0

,
5
.0

0
.2

5
,

1
–

sc
h
w

ef
el

0
.0

1
5

0
.0

1
,

0
.0

0
1

0
.0

0
1

0
.0

1
,

0
.0

0
1

0
.0

0
5

g
ri

ew
a
n

k
1
,

1
0

0
.1

,
1

0
.0

2
5
,

0
.1

,
0
.2

5
,

0
.5

0
.1

,
1

1

w
ei

er
st

ra
ss

5
1
,

5
5

1
,

5
1
0

Evolutionary Annealing 21

(a) shekel (b) langerman (c) griewank

Fig. 4 Success probabilities for REA-T on selected benchmarks in five dimensions for four
different learning rates. Decreasing the learning rate improves the success probability overall
but requires more fitness evaluations.

By contrast, REA-T is very effective at refining points around the optima. In
most cases where REA-T came within 0.1 of the optima, it also managed to attain
machine-level precision. The exceptions to this statement primarily involved local
optima with fitness values close to those of the true optimum (i.e. salomon, langer-
man and griewank). In the case of rastrigin, tournament selection even helped
REA-T escape local optima in several cases, so that it attained the true global
optimum more often than REA-P.

In higher dimensions, all of the algorithms had trouble attaining the global
optimum. However, a review of the errors in Table 8 shows that REA-T was
competitive with the others. In preliminary trials, REA-P failed on whitley and
rosenbrock is a consequence of numeric issues. In both of these problems, the
region of the search space containing reasonable fitness values (e.g. f(x) < 100)
is small relative to the overall area, and in higher dimensions this region becomes
exponentially smaller. Annealed proportional selection overflows on large fitness
values (Equation 5) and must therefore be capped, so the probability that REA-
P selects any particular point is effectively constant. This can be overcome by
using a very small learning rate, but then REA-P would not be able to converge
once the feasible region is attained. Because annealed tournament selection is only
sensitive to the fitness rank of points, REA-T does not suffer from numeric issues
and continues to perform relatively well on whitley and rosenbrock even in higher
dimensions. It is possible that with lower learning rates, REA-T could perform
even better in 25 dimensions.

Figure 4 shows the progression of the success probability and Figure 5 the
magnitude of the error as a function of the number of evaluations for REA-T with
different learning rates on selected benchmarks. As the learning rate is decreased,
REA-T converges slower and succeeds more often. Thus there is a trade-off between
the number of evaluations and solution quality. A higher learning rate can be used
to reduce the number of evaluations, but at the cost of reducing the probability
of success. In Figure 4, notice that the shape of the graph remains remarkably
constant while the learning rate changes, suggesting that the success probability
changes smoothly and predictably as a function of the learning rate and the number
of evaluations.

22 Alan J. Lockett, Risto Miikkulainen

(a) shekel (b) langerman (c) griewank

Fig. 5 Average error rates for REA-T on selected benchmarks in five dimensions for four
different learning rates. The black solid line is the average error for the largest learning rate
in Table 5. The grey solid line is the second largest learning rate. The black dotted line is the
third largest, and the grey dotted line is the smallest learning rate. Decreasing the learning
rate reduces error overall at the cost of increased error in early generations.

6 Discussion and Future Work

The experimental results in Section 5 are favorable for evolutionary annealing,
especially with annealed tournament selection. There are some generalizations
that may be drawn from the results. First, REA-T is generally better than REA-
P for optimization and is thus the preferred implementation for Euclidean space.
Second, REA is most successful relative to other algorithms on problems that
do not possess an easily identifiable structure, such as langerman and especially
shekel. The reason is that REA does not assume a particular problem structure in
its definition. In structured domains, such as sphere, REA may use more function
evaluations than would otherwise be necessary to eliminate the possibility that the
current best solution is a local optimum. However, in unstructured environments,
these extra function evaluations help REA avoid becoming trapped in local optima.

Another interesting result is the good performance of DE. DE is an elegant and
simple algorithm and is consequently more computationally efficient than REA-T,
performing up to two orders of magnitude faster in terms of per-generation over-
head. However, in real-world problems, the computation of fitness values typically
far outweighs the cost of algorithmic overhead. The overhead of REA is generally
unrelated to the fitness function being optimized, so in domains where the fitness
takes a long time to compute, the use of REA will not add substantially to the
overall computation time.

Also, the results on the benchmarks suggest that DE and REA-T are com-
plementary, with REA-T being preferable on highly unstructured problems, and
DE performing better on problems with some degree of symmetry around the op-
timum. In practice, there are many real-world problems both with and without
symmetry. If the degree of structure is not known, and fitness can be calculated
quickly, a reasonable approach is to test DE first and use REA-T if DE fails.

CMA-ES also performed well, mostly due to the restarts. Without restarts, it
is not comparable to either DE or REA-T. Restarting after convergence is a form
of boot-strapping that can augment the probability of success. For example, if an
algorithm has a 5% chance of success but converges after 1, 000 evaluations, then

Evolutionary Annealing 23
T
a
b
le

4
P

er
ce

n
ta

g
e

o
f

su
cc

es
sf

u
l

tr
ia

ls
a
t

v
a
ri

o
u

s
er

ro
r

le
v
el

s
fo

r
R

E
A

a
n

d
si

x
o
th

er
a
lg

o
ri

th
m

s
o
n

th
e

b
en

ch
m

a
rk

se
t

in
fi

v
e

d
im

en
si

o
n

s.

er
ro

r
<

sp
h

er
e

a
ck

le
y

lo
g
-a

ck
le

y
w

h
it

le
y

sh
ek

el
ro

se
n
b

ro
ck

ra
st

ri
g
in

sa
lo

m
o
n

la
n

g
er

m
a
n

sc
h
w

ef
el

g
ri

ew
a
n

k
w

ei
er

st
ra

ss

R
E

A
-P

0
.1

0
0

1
.0

0
0
.9

8
1
.0

0
1
.0

0
0
.0

0
0
.9

9
0
.2

9
1
.0

0
0
.0

1
0
.2

6
0
.6

9
0
.9

0
0
.0

1
0

1
.0

0
0
.0

5
0
.5

7
1
.0

0
0
.0

0
0
.9

9
0
.0

1
0
.0

0
0
.0

0
0
.0

0
0
.0

2
0
.0

0
0
.0

0
1

1
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.0

0
0
.1

4
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
R

E
A

-T
0
.1

0
0

1
.0

0
0
.2

9
0
.9

9
1
.0

0
0
.7

3
1
.0

0
0
.3

9
1
.0

0
1
.0

0
1
.0

0
1
.0

0
0
.9

6
0
.0

1
0

1
.0

0
0
.2

9
0
.9

9
1
.0

0
0
.7

3
1
.0

0
0
.3

9
0
.0

0
0
.8

9
1
.0

0
0
.3

3
0
.8

9
0
.0

0
1

1
.0

0
0
.2

9
0
.9

9
1
.0

0
0
.7

3
1
.0

0
0
.3

9
0
.0

0
0
.8

9
1
.0

0
0
.0

5
0
.8

5
D

E
0
.1

0
0

1
.0

0
1
.0

0
0
.9

3
0
.1

8
0
.1

1
0
.4

2
0
.9

2
1
.0

0
0
.3

1
0
.7

9
1
.0

0
0
.4

9
0
.0

1
0

1
.0

0
0
.7

7
0
.9

3
0
.1

6
0
.0

5
0
.1

2
0
.7

8
0
.0

0
0
.1

3
0
.7

4
0
.1

8
0
.2

5
0
.0

0
1

1
.0

0
0
.0

1
0
.9

3
0
.1

5
0
.0

4
0
.0

1
0
.6

5
0
.0

0
0
.0

1
0
.7

1
0
.0

1
0
.1

9
C

M
A

-E
S

0
.1

0
0

1
.0

0
1
.0

0
1
.0

0
0
.6

1
0
.0

0
0
.1

3
1
.0

0
1
.0

0
1
.0

0
0
.3

9
1
.0

0
1
.0

0
0
.0

1
0

1
.0

0
1
.0

0
1
.0

0
0
.3

9
0
.0

0
0
.0

2
1
.0

0
0
.0

0
1
.0

0
0
.3

8
1
.0

0
1
.0

0
0
.0

0
1

1
.0

0
1
.0

0
1
.0

0
0
.1

5
0
.0

0
0
.0

1
1
.0

0
0
.0

0
1
.0

0
0
.3

7
1
.0

0
0
.0

0
P

S
O 0

.1
0
0

0
.8

2
0
.0

0
0
.0

0
0
.0

6
0
.0

0
0
.0

0
0
.0

1
0
.0

7
0
.0

0
0
.1

1
0
.0

0
1
.0

0
0
.0

1
0

0
.1

6
0
.0

0
0
.0

0
0
.0

5
0
.0

0
0
.0

0
0
.0

0
0
.0

1
0
.0

0
0
.1

1
0
.0

0
1
.0

0
0
.0

0
1

0
.0

2
0
.0

0
0
.0

0
0
.0

4
0
.0

0
0
.0

0
0
.0

0
0
.0

1
0
.0

0
0
.1

1
0
.0

0
1
.0

0
rG

A
0
.1

0
0

1
.0

0
0
.0

0
0
.0

2
0
.6

9
0
.0

2
0
.0

7
0
.0

1
1
.0

0
0
.5

0
0
.5

2
0
.0

7
0
.0

0
0
.0

1
0

1
.0

0
0
.0

0
0
.0

2
0
.2

6
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.2

5
0
.0

1
0
.0

0
0
.0

0
0
.0

0
1

1
.0

0
0
.0

0
0
.0

1
0
.0

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.2

4
0
.0

0
0
.0

0
0
.0

0
rB

O
A 0
.1

0
0

1
.0

0
1
.0

0
0
.9

7
0
.0

0
0
.0

0
0
.0

0
1
.0

0
1
.0

0
0
.1

0
0
.0

0
1
.0

0
0
.0

0
0
.0

1
0

1
.0

0
1
.0

0
0
.0

1
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.8

6
0
.0

0
0
.0

0
1
.0

0
0
.0

0
0
.0

0
1

1
.0

0
1
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.8

5
0
.0

0
0
.0

0
1
.0

0
0
.0

0
S

A
0
.1

0
0

1
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.1

2
0
.1

9
0
.1

3
0
.0

0
0
.0

0
0
.0

0
0
.0

1
0

1
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.1

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1

0
.1

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0

24 Alan J. Lockett, Risto Miikkulainen
T
a
b
le

5
P

er
ce

n
ta

g
e

o
f

su
cc

es
sf

u
l

tr
ia

ls
a
t

v
a
ri

o
u

s
er

ro
r

le
v
el

s
fo

r
R

E
A

a
n

d
si

x
o
th

er
a
lg

o
ri

th
m

s
o
n

th
e

b
en

ch
m

a
rk

se
t

in
in

te
n

d
im

en
si

o
n

s.

er
ro

r
<

sp
h

er
e

a
ck

le
y

lo
g
-a

ck
le

y
w

h
it

le
y

sh
ek

el
ro

se
n
b

ro
ck

ra
st

ri
g
in

sa
lo

m
o
n

la
n

g
er

m
a
n

sc
h
w

ef
el

g
ri

ew
a
n

k
w

ei
er

st
ra

ss

R
E

A
-P

0
.1

0
0

1
.0

0
0
.0

0
0
.0

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

1
0

0
.9

8
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
R

E
A

-T
0
.1

0
0

1
.0

0
0
.0

0
0
.1

7
0
.1

2
0
.1

3
0
.0

0
0
.0

0
1
.0

0
0
.6

4
0
.0

0
0
.3

0
1
.0

0
0
.0

1
0

1
.0

0
0
.0

0
0
.1

7
0
.1

0
0
.1

3
0
.0

0
0
.0

0
0
.0

0
0
.3

5
0
.0

0
0
.0

0
1
.0

0
0
.0

0
1

1
.0

0
0
.0

0
0
.1

7
0
.0

7
0
.1

3
0
.0

0
0
.0

0
0
.0

0
0
.2

4
0
.0

0
0
.0

0
1
.0

0
D

E
0
.1

0
0

1
.0

0
0
.5

8
0
.4

4
0
.0

6
0
.0

3
0
.0

2
0
.1

3
0
.1

7
0
.0

0
0
.2

4
0
.9

5
0
.2

9
0
.0

1
0

1
.0

0
0
.0

0
0
.4

4
0
.0

4
0
.0

3
0
.0

1
0
.1

1
0
.0

0
0
.0

0
0
.2

2
0
.0

1
0
.0

7
0
.0

0
1

1
.0

0
0
.0

0
0
.4

4
0
.0

4
0
.0

3
0
.0

0
0
.0

7
0
.0

0
0
.0

0
0
.2

1
0
.0

0
0
.0

1
C

M
A

-E
S

0
.1

0
0

1
.0

0
1
.0

0
1
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
1
.0

0
0
.6

0
0
.0

0
1
.0

0
0
.2

7
0
.0

1
0

1
.0

0
1
.0

0
1
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.0

0
0
.4

3
0
.0

0
1
.0

0
0
.0

0
0
.0

0
1

1
.0

0
1
.0

0
1
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.0

0
0
.2

3
0
.0

0
1
.0

0
0
.0

0
P

S
O 0

.1
0
0

0
.4

6
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.0

1
0

0
.0

4
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.0

0
1

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1
.0

0
rG

A
0
.1

0
0

1
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

1
0

1
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
rB

O
A 0
.1

0
0

1
.0

0
1
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.9

8
1
.0

0
0
.0

0
0
.0

0
1
.0

0
0
.0

0
0
.0

1
0

1
.0

0
1
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.9

6
0
.0

1
0
.0

0
0
.0

0
1
.0

0
0
.0

0
0
.0

0
1

1
.0

0
0
.9

5
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.9

3
0
.0

1
0
.0

0
0
.0

0
1
.0

0
0
.0

0
S

A
0
.1

0
0

1
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

1
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

1
0

0
.0

2
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
1

0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0
0
.0

0

Evolutionary Annealing 25
T
a
b
le

6
P

er
ce

n
ta

g
e

o
f

su
cc

es
sf

u
l
tr

ia
ls

a
t

v
a
ri

o
u

s
er

ro
r

le
v
el

s
fo

r
R

E
A

-T
a
n

d
si

x
o
th

er
a
lg

o
ri

th
m

s
o
n

th
e

b
en

ch
m

a
rk

se
t

in
in

2
5

d
im

en
si

o
n

s.
E

x
p

er
im

en
ts

w
er

e
n

o
t

p
er

fo
rm

ed
o
n

R
E

A
-P

.
R

es
u

lt
s

m
a
rk

ed
w

it
h

“
–
”

a
re

n
o
t

a
v
a
il
a
b

le
.

er
ro

r
<

sp
h

er
e

a
ck

le
y

lo
g
-a

ck
le

y
w

h
it

le
y

sh
ek

el
ro

se
n
b

ro
ck

ra
st

ri
g
in

sa
lo

m
o
n

la
n

g
er

m
a
n

sc
h
w

ef
el

g
ri

ew
a
n

k
w

ei
er

st
ra

ss

R
E

A
-T

1
0
.0

0
0

1
.0

0
1
.0

0
0
.2

6
0
.0

0
–

0
.0

0
0
.0

0
1
.0

0
–

0
.0

0
1
.0

0
0
.5

5
1
.0

0
0

1
.0

0
1
.0

0
0
.0

0
0
.0

0
–

0
.0

0
0
.0

0
1
.0

0
–

0
.0

0
1
.0

0
0
.0

0
0
.1

0
0

1
.0

0
0
.0

0
0
.0

0
0
.0

0
–

0
.0

0
0
.0

0
0
.0

0
–

0
.0

0
1
.0

0
0
.0

0
D

E 1
0
.0

0
0

1
.0

0
1
.0

0
0
.7

1
0
.0

1
–

0
.0

1
0
.0

3
1
.0

0
–

0
.0

0
1
.0

0
0
.0

0
1
.0

0
0

1
.0

0
1
.0

0
0
.0

1
0
.0

0
–

0
.0

0
0
.0

0
0
.9

8
–

0
.0

0
0
.9

7
0
.0

0
0
.1

0
0

1
.0

0
0
.0

0
0
.0

1
0
.0

0
–

0
.0

0
0
.0

0
0
.0

0
–

0
.0

0
0
.1

8
0
.0

0
C

M
A

-E
S

1
0
.0

0
0

1
.0

0
1
.0

0
1
.0

0
0
.0

0
–

0
.0

0
1
.0

0
1
.0

0
–

0
.0

0
1
.0

0
0
.0

8
1
.0

0
0

1
.0

0
1
.0

0
0
.7

6
0
.0

0
–

0
.0

0
0
.9

8
1
.0

0
–

0
.0

0
1
.0

0
0
.0

0
0
.1

0
0

1
.0

0
1
.0

0
0
.0

4
0
.0

0
–

0
.0

0
0
.3

4
0
.0

2
–

0
.0

0
1
.0

0
0
.0

0
P

S
O 1
0
.0

0
0

1
.0

0
1
.0

0
0
.0

0
0
.0

0
–

0
.0

0
0
.0

6
1
.0

0
–

0
.0

0
1
.0

0
1
.0

0
1
.0

0
0

0
.8

7
0
.0

0
0
.0

0
0
.0

0
–

0
.0

0
0
.0

0
0
.7

6
–

0
.0

0
0
.0

0
1
.0

0
0
.1

0
0

0
.1

1
0
.0

0
0
.0

0
0
.0

0
–

0
.0

0
0
.0

0
0
.0

0
–

0
.0

0
0
.0

0
1
.0

0
rG

A 1
0
.0

0
0

1
.0

0
1
.0

0
0
.0

0
0
.0

0
–

0
.0

0
0
.0

0
1
.0

0
–

0
.0

0
1
.0

0
0
.0

0
1
.0

0
0

1
.0

0
0
.0

0
0
.0

0
0
.0

0
–

0
.0

0
0
.0

0
1
.0

0
–

0
.0

0
0
.0

0
0
.0

0
0
.1

0
0

0
.0

1
0
.0

0
0
.0

0
0
.0

0
–

0
.0

0
0
.0

0
0
.0

0
–

0
.0

0
0
.0

0
0
.0

0
rB

O
A

1
0
.0

0
0

1
.0

0
1
.0

0
0
.0

0
0
.0

0
–

0
.0

0
0
.0

0
1
.0

0
–

0
.0

0
–

–
1
.0

0
0

1
.0

0
0
.1

4
0
.0

0
0
.0

0
–

0
.0

0
0
.0

0
1
.0

0
–

0
.0

0
–

–
0
.1

0
0

1
.0

0
0
.0

0
0
.0

0
0
.0

0
–

0
.0

0
0
.0

0
0
.0

5
–

0
.0

0
–

–
S

A
1
0
.0

0
0

1
.0

0
1
.0

0
0
.0

0
0
.0

0
–

0
.0

4
0
.0

0
1
.0

0
–

0
.0

0
1
.0

0
0
.0

0
1
.0

0
0

1
.0

0
0
.0

0
0
.0

0
0
.0

0
–

0
.0

0
0
.0

0
0
.1

2
–

0
.0

0
0
.0

0
0
.0

0
0
.1

0
0

0
.0

1
0
.0

0
0
.0

0
0
.0

0
–

0
.0

0
0
.0

0
0
.0

0
–

0
.0

0
0
.0

0
0
.0

0

26 Alan J. Lockett, Risto Miikkulainen
T
a
b
le

7
A

v
er

a
g
e

er
ro

r
fr

o
m

th
e

g
lo

b
a
l

o
p

ti
m

u
m

fo
r

R
E

A
a
n

d
si

x
o
th

er
a
lg

o
ri

th
m

s
o
n

th
e

b
en

ch
m

a
rk

se
t

in
fi

v
e

d
im

en
si

o
n

s.

#
ev

a
ls

sp
h

er
e

a
ck

le
y

lo
g
-a

ck
le

y
w

h
it

le
y

sh
ek

el
ro

se
n
b

ro
ck

ra
st

ri
g
in

sa
lo

m
o
n

la
n

g
er

m
a
n

sc
h
w

ef
el

g
ri

ew
a
n

k
w

ei
er

st
ra

ss

R
E

A
-P 1
0
K

0
.0

0
1
4

0
.6

6
4
5

0
.2

8
6
0

4
.1

4
5
5

9
.1

9
7
2

0
.3

8
4
0

2
.9

2
0
8

0
.1

4
1
1

0
.7

2
3
8

1
5
.3

9
9
9

0
.0

9
4
8

0
.2

5
4
4

1
0
0
K

0
.0

0
0
3

0
.1

9
0
4

0
.0

1
8
7

0
.0

0
0
9

8
.6

8
2
5

0
.1

6
3
5

0
.9

4
0
6

0
.0

9
9
9

0
.5

2
1
6

8
.1

4
1
7

0
.0

8
5
4

0
.1

7
5
1

2
5
0
K

0
.0

0
0
2

0
.0

2
9
7

0
.0

0
9
3

0
.0

0
0
2

8
.1

3
8
2

0
.0

4
1
6

0
.8

2
7
0

0
.0

9
9
9

0
.4

6
2
9

7
.2

5
9
5

0
.0

8
5
2

0
.1

6
3
4

R
E

A
-T 1
0
K

0
.0

0
0
0

0
.3

6
5
8

0
.1

5
8
5

0
.5

1
5
4

4
.7

9
3
8

0
.1

0
8
0

1
.9

7
5
0

0
.1

0
0
4

0
.0

0
6
1

9
4
.6

3
1
0

0
.1

0
9
0

0
.0

3
3
2

1
0
0
K

0
.0

0
0
0

0
.1

5
7
1

0
.0

1
4
8

0
.0

0
0
0

1
.8

6
7
9

0
.0

0
0
8

0
.6

4
0
0

0
.1

0
0
4

0
.0

0
4
4

0
.8

9
3
4

0
.0

1
6
7

0
.0

3
3
2

2
5
0
K

0
.0

0
0
0

0
.1

5
7
1

0
.0

1
4
8

0
.0

0
0
0

1
.8

6
7
9

0
.0

0
0
0

0
.6

4
0
0

0
.1

0
0
4

0
.0

0
4
4

0
.1

1
4
8

0
.0

1
6
7

0
.0

3
3
2

D
E

1
0
K

0
.0

3
2
7

0
.2

3
0
1

3
.9

9
2
2

1
4
.0

2
6
6

8
.2

8
1
4

7
.2

0
6
9

5
.5

3
1
7

0
.3

4
5
8

0
.5

4
1
3

5
1
.1

6
4
8

0
.8

9
7
0

2
.3

1
0
8

1
0
0
K

0
.0

0
0
0

0
.0

2
7
3

0
.0

7
4
8

0
.8

0
0
1

6
.3

6
8
5

0
.4

9
9
0

0
.3

0
5
7

0
.1

0
1
0

0
.3

3
1
2

3
.7

4
3
4

0
.0

3
6
2

0
.4

4
2
8

2
5
0
K

0
.0

0
0
0

0
.0

0
8
1

0
.0

5
0
4

0
.4

9
5
8

5
.3

8
3
4

0
.2

0
8
2

0
.0

9
0
4

0
.0

9
9
9

0
.1

9
3
4

0
.5

7
1
2

0
.0

1
9
2

0
.1

3
0
4

C
M

A
-E

S
1
0
K

0
.0

0
0
0

0
.0

0
5
7

0
.0

7
4
6

2
.5

0
2
8

7
.7

2
1
6

1
.5

9
0
0

0
.1

2
7
4

0
.0

9
9
9

0
.1

1
2
0

7
9
.7

1
6
1

0
.0

0
3
9

0
.0

7
5
2

1
0
0
K

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.6

3
2
8

7
.7

0
1
0

0
.6

6
0
3

0
.0

0
0
0

0
.0

9
7
9

0
.0

0
0
8

1
5
.5

2
9
3

0
.0

0
0
0

0
.0

0
6
9

2
5
0
K

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
0
0

0
.3

6
5
0

7
.6

6
9
6

0
.3

8
1
3

0
.0

0
0
0

0
.0

9
6
7

0
.0

0
0
1

3
.4

6
9
5

0
.0

0
0
0

0
.0

0
5
3

P
S

O
1
0
K

0
.3

7
2
1

0
.8

2
5
4

1
5
.9

9
4
6

2
3
.9

8
6
4

9
.3

5
3
9

5
2
.0

5
1
6

2
2
.0

8
2
3

0
.7

5
6
2

0
.8

8
1
2

5
4
.4

2
1
9

2
.3

8
9
8

0
.0

0
0
0

1
0
0
K

0
.1

1
3
4

0
.8

2
5
4

1
1
.7

6
6
6

1
7
.2

8
4
0

9
.3

0
1
4

1
2
.9

1
4
5

1
3
.2

2
4
9

0
.3

7
4
0

0
.8

0
7
4

3
1
.7

3
5
1

1
.3

7
0
1

0
.0

0
0
0

2
5
0
K

0
.0

5
6
0

0
.8

2
5
4

9
.4

6
4
7

1
4
.5

6
9
6

9
.2

4
7
5

8
.0

8
7
2

7
.8

8
1
7

0
.2

4
8
8

0
.7

4
6
4

2
8
.3

7
4
6

1
.1

3
1
9

0
.0

0
0
0

rG
A

1
0
K

0
.0

0
0
8

1
.0

6
6
1

6
.6

2
6
7

4
.9

4
2
5

7
.9

2
5
4

3
.2

1
5
7

3
.6

5
9
2

0
.1

1
5
6

0
.8

2
6
1

1
3
.6

2
1
0

0
.2

9
9
6

1
.9

3
1
8

1
0
0
K

0
.0

0
0
3

1
.0

6
0
0

6
.6

2
1
7

1
.5

0
8
9

7
.9

2
2
1

0
.5

3
6
5

3
.5

5
3
0

0
.0

9
9
9

0
.4

3
4
3

1
3
.4

6
8
9

0
.1

7
1
5

1
.4

9
6
2

2
5
0
K

0
.0

0
0
2

1
.0

5
9
1

6
.6

2
1
0

0
.6

6
1
1

7
.9

2
1
6

0
.3

5
4
8

3
.5

3
6
6

0
.0

9
9
9

0
.2

9
0
7

1
3
.4

4
2
1

0
.1

4
5
6

1
.3

2
3
9

rB
O

A 1
0
K

0
.0

0
0
0

0
.0

0
3
9

0
.3

5
7
3

9
.2

0
6
4

8
.6

6
7
9

2
.7

9
6
2

0
.0

3
2
5

0
.0

8
6
1

0
.5

3
2
5

2
0
2
.7

8
8
6

0
.0

0
1
9

4
.1

1
6
7

1
0
0
K

0
.0

0
0
0

0
.0

0
0
0

0
.0

8
3
8

7
.7

3
8
6

8
.2

7
7
1

1
.9

1
5
3

0
.0

0
0
0

0
.0

2
9
6

0
.3

3
8
9

2
0
2
.7

8
8
6

0
.0

0
0
0

3
.0

4
7
0

2
5
0
K

0
.0

0
0
0

0
.0

0
0
0

0
.0

5
5
3

7
.2

2
3
2

8
.1

5
1
5

1
.7

3
6
3

0
.0

0
0
0

0
.0

1
1
8

0
.2

3
4
6

2
0
2
.7

8
8
6

0
.0

0
0
0

2
.7

2
9
5

S
A

1
0
K

0
.0

1
2
9

2
.2

3
9
8

1
2
.4

1
8
1

1
5
.8

6
6
7

9
.2

1
8
7

0
.7

0
3
2

3
.7

3
1
4

0
.4

8
3
5

0
.5

9
2
1

8
8
.1

2
2
0

0
.6

5
1
0

2
.5

1
4
2

1
0
0
K

0
.0

0
3
6

1
.6

8
8
3

7
.6

4
6
8

1
2
.1

2
2
1

8
.6

7
2
3

0
.0

4
1
3

0
.9

6
2
3

0
.1

5
7
1

0
.3

5
6
7

3
8
.7

9
2
3

0
.4

0
0
7

1
.6

2
6
0

2
5
0
K

0
.0

0
2
4

1
.4

7
9
6

6
.0

1
4
6

1
0
.7

7
4
1

8
.3

9
9
8

0
.0

2
1
3

0
.4

4
0
7

0
.1

1
6
5

0
.2

5
3
4

2
6
.5

2
7
2

0
.3

3
6
2

1
.3

9
8
7

Evolutionary Annealing 27
T
a
b
le

8
A

v
er

a
g
e

er
ro

r
fr

o
m

th
e

g
lo

b
a
l

o
p

ti
m

u
m

fo
r

R
E

A
a
n

d
si

x
o
th

er
a
lg

o
ri

th
m

s
o
n

th
e

b
en

ch
m

a
rk

se
t

in
te

n
d

im
en

si
o
n

s.

#
ev

a
ls

sp
h

er
e

a
ck

le
y

lo
g
-a

ck
le

y
w

h
it

le
y

sh
ek

el
ro

se
n
b

ro
ck

ra
st

ri
g
in

sa
lo

m
o
n

la
n

g
er

m
a
n

sc
h
w

ef
el

g
ri

ew
a
n

k
w

ei
er

st
ra

ss

R
E

A
-P 1
0
K

1
.2

8
1
6

2
.9

3
3
2

3
9
.2

2
2
4

1
0
2
9
0
.6

0
4
2

9
.9

2
1
2

2
0
2
6
.8

1
2
5

5
3
.3

0
7
8

1
.1

9
7
1

0
.9

6
4
7

1
8
2
.6

2
3
2

8
.0

6
4
0

3
.8

4
3
9

1
0
0
K

0
.0

1
2
7

1
.7

8
2
3

4
.3

2
3
6

1
0
2
7
8
.3

4
8
4

9
.8

9
0
4

2
0
2
3
.3

6
0
8

3
0
.7

5
8
4

0
.3

7
4
3

0
.9

6
2
5

1
0
1
.6

6
5
7

1
.0

6
6
0

1
.0

0
7
9

2
5
0
K

0
.0

0
6
6

1
.4

8
1
5

2
.7

8
0
9

1
0
2
7
4
.3

8
5
0

9
.8

7
9
2

2
0
2
3
.2

7
4
1

1
6
.4

9
5
8

0
.2

6
5
5

0
.9

5
9
9

5
1
.7

4
0
9

0
.9

1
8
6

0
.7

8
0
5

R
E

A
-T 1
0
K

1
.1

7
4
7

2
.6

4
5
9

4
8
.4

1
1
3

2
1
7
.8

2
5
9

9
.8

4
8
0

2
0
9
.7

7
7
5

5
0
.9

2
9
5

1
.1

8
2
4

0
.9

3
9
1

1
9
1
.4

3
3
5

9
.1

1
2
3

0
.3

8
3
3

1
0
0
K

0
.0

0
0
0

1
.1

1
2
1

1
0
.9

3
1
7

5
9
.4

4
8
6

7
.6

2
8
2

4
.8

3
4
3

2
8
.7

8
8
9

0
.0

9
9
9

0
.3

3
3
2

1
2
8
.9

0
6
1

0
.6

6
2
8

0
.0

0
0
0

2
5
0
K

0
.0

0
0
0

0
.5

1
6
3

1
.4

4
8
3

3
7
.5

0
5
3

7
.5

4
6
6

1
.4

3
0
8

5
.7

2
9
1

0
.0

9
9
9

0
.1

5
7
8

6
1
.0

8
9
3

0
.1

9
4
4

0
.0

0
0
0

D
E

1
0
K

0
.9

6
8
3

0
.5

5
9
7

3
0
.5

9
4
5

1
2
0
.2

4
7
3

9
.7

9
1
6

1
4
1
.6

4
3
7

3
1
.8

1
1
5

1
.0

2
1
5

0
.9

5
7
1

1
2
4
.8

0
4
0

4
.2

5
8
3

7
.9

9
2
4

1
0
0
K

0
.0

0
0
0

0
.2

4
4
2

0
.8

5
3
6

1
9
.5

4
6
9

8
.4

1
5
2

6
.3

4
4
9

5
.0

5
4
0

0
.2

7
6
9

0
.7

9
5
2

2
9
.0

5
4
2

0
.1

5
3
3

2
.3

1
2
2

2
5
0
K

0
.0

0
0
0

0
.1

0
9
0

0
.8

2
8
7

9
.8

5
9
7

8
.2

9
4
5

4
.4

0
6
8

1
.4

7
8
4

0
.1

8
4
4

0
.6

8
9
2

8
.9

3
1
5

0
.0

5
5
0

0
.4

8
6
1

C
M

A
-E

S
1
0
K

0
.0

0
0
0

0
.0

8
1
4

0
.8

0
0
8

4
3
.7

2
5
8

8
.7

2
9
1

4
.5

3
2
2

1
.2

3
8
8

0
.1

7
4
6

0
.5

3
3
1

1
4
9
.1

1
2
4

0
.0

0
0
0

1
.1

7
1
8

1
0
0
K

0
.0

0
0
0

0
.0

0
0
0

0
.0

1
4
4

2
9
.3

3
7
8

8
.7

2
9
0

2
.9

4
5
1

0
.0

9
2
3

0
.0

9
9
9

0
.2

0
3
6

6
7
.8

2
0
6

0
.0

0
0
0

0
.1

9
4
9

2
5
0
K

0
.0

0
0
0

0
.0

0
0
0

0
.0

0
4
8

2
1
.7

6
5
2

8
.7

2
9
0

2
.5

9
0
6

0
.0

0
5
0

0
.0

9
9
9

0
.0

8
4
8

4
4
.7

8
1
9

0
.0

0
0
0

0
.1

3
5
9

P
S

O
1
0
K

3
.1

5
6
3

1
.3

0
1
5

5
6
.1

7
8
4

8
2
9
.7

2
8
6

9
.8

7
1
5

5
8
0
.9

5
2
1

6
8
.5

7
6
3

1
.6

2
6
9

0
.9

6
4
9

1
0
2
.9

7
6
8

1
1
.0

3
6
9

0
.0

0
0
0

1
0
0
K

0
.4

3
4
2

1
.3

0
1
5

3
2
.0

1
2
5

9
6
.1

4
0
9

9
.8

4
4
7

4
8
.8

3
4
9

2
8
.8

3
6
1

0
.7

7
3
2

0
.9

6
4
2

6
8
.2

2
5
7

2
.4

7
1
4

0
.0

0
0
0

2
5
0
K

0
.1

7
6
2

1
.3

0
1
5

2
4
.0

5
0
7

8
2
.0

3
0
1

9
.8

4
1
0

2
4
.7

5
4
4

1
6
.6

0
1
8

0
.5

2
3
2

0
.9

6
3
3

5
7
.0

1
6
7

1
.5

4
0
4

0
.0

0
0
0

rG
A

1
0
K

0
.0

1
8
9

1
.6

7
7
8

2
4
.0

5
3
2

6
4
.2

0
3
5

9
.4

9
4
8

4
2
.6

3
9
5

1
4
.4

4
4
9

0
.4

2
5
2

0
.9

6
5
0

3
5
.6

4
0
9

1
.1

2
6
9

7
.0

5
4
1

1
0
0
K

0
.0

0
8
1

1
.6

3
6
6

2
3
.9

7
0
7

1
8
.4

3
4
5

8
.6

2
9
6

6
.8

3
3
0

1
3
.0

3
9
0

0
.2

3
0
0

0
.9

5
6
8

3
4
.6

1
8
4

0
.9

4
8
0

6
.2

1
0
2

2
5
0
K

0
.0

0
6
7

1
.6

2
9
0

2
3
.9

5
9
7

1
2
.6

4
5
8

8
.6

2
6
2

6
.3

8
0
2

1
2
.7

1
8
8

0
.2

0
3
5

0
.9

4
9
5

3
4
.4

0
2
3

0
.8

8
5
3

5
.9

2
5
9

rB
O

A 1
0
K

0
.0

0
0
0

0
.5

3
6
6

7
.2

1
7
4

4
5
.1

8
4
6

9
.8

5
3
9

8
.3

4
0
4

1
4
.8

9
5
4

0
.1

0
6
4

0
.9

5
8
6

2
6
3
.3

0
0
0

0
.0

9
3
4

1
2
.9

6
2
1

1
0
0
K

0
.0

0
0
0

0
.0

0
4
4

1
.9

3
1
3

3
9
.7

1
0
7

9
.7

9
4
3

7
.1

1
3
7

0
.1

6
6
0

0
.0

9
9
1

0
.8

8
4
9

2
6
3
.3

0
0
0

0
.0

0
0
0

1
1
.4

8
1
5

2
5
0
K

0
.0

0
0
0

0
.0

0
0
3

1
.4

4
8
4

3
8
.2

6
9
6

9
.7

5
6
7

6
.7

2
3
8

0
.0

0
9
1

0
.0

9
8
9

0
.8

3
3
8

2
6
3
.3

0
0
0

0
.0

0
0
0

1
0
.9

3
4
2

S
A

1
0
K

0
.1

0
5
3

3
.6

1
0
5

4
9
.2

2
2
2

9
0
.7

4
0
8

9
.9

2
2
8

7
.2

1
5
2

2
5
.7

6
6
7

1
.6

1
5
0

0
.9

6
2
3

1
8
1
.8

5
3
2

1
.4

5
2
0

7
.8

5
8
2

1
0
0
K

0
.0

2
9
0

2
.7

7
3
7

3
4
.6

7
3
0

8
1
.3

8
2
2

9
.8

8
8
4

1
.1

7
8
6

1
1
.0

0
3
9

0
.4

5
0
1

0
.8

6
3
6

1
3
9
.4

9
0
7

1
.2

5
2
8

5
.6

1
5
3

2
5
0
K

0
.0

2
0
4

2
.5

1
5
7

3
0
.7

1
3
9

7
8
.0

0
9
1

9
.8

7
9
0

0
.9

9
5
4

8
.7

5
7
5

0
.3

2
1
8

0
.7

4
8
3

1
2
2
.4

5
3
3

1
.1

9
6
3

4
.9

1
7
3

28 Alan J. Lockett, Risto Miikkulainen
T
a
b
le

9
A

v
er

a
g
e

er
ro

r
fr

o
m

th
e

g
lo

b
a
l

o
p

ti
m

u
m

fo
r

R
E

A
-T

a
n

d
si

x
o
th

er
a
lg

o
ri

th
m

s
o
n

th
e

b
en

ch
m

a
rk

se
t

in
2
5

d
im

en
si

o
n

s.
E

x
p

er
im

en
ts

w
er

e
n

o
t

p
er

fo
rm

ed
o
n

R
E

A
-P

.
R

es
u

lt
s

m
a
rk

ed
w

it
h

“
–
”

a
re

n
o
t

a
v
a
il
a
b

le
.

#
ev

a
ls

sp
h

er
e

a
ck

le
y

lo
g
-a

ck
le

y
w

h
it

le
y

sh
ek

el
ro

se
n
b

ro
ck

ra
st

ri
g
in

sa
lo

m
o
n

la
n

g
er

m
a
n

sc
h
w

ef
el

g
ri

ew
a
n

k
w

ei
er

st
ra

ss

R
E

A
-T 1
0
K

0
.6

8
3
0

2
.2

3
5
6

9
9
.9

2
5
9

5
7
2
.5

7
0
8

–
1
2
1
.9

2
6
5

1
4
8
.3

2
6
0

0
.8

9
2
8

–
2
4
9
.6

6
1
9

5
.9

1
8
4

1
1
.6

5
6
5

1
0
0
K

0
.0

0
0
0

0
.7

5
3
6

1
3
.8

6
6
0

3
0
8
.3

1
3
6

–
2
1
.4

4
2
1

3
3
.8

2
8
4

0
.3

3
3
4

–
1
2
0
.2

6
0
0

0
.1

1
5
6

9
.6

9
9
8

2
5
0
K

0
.0

0
0
0

0
.4

5
6
2

1
3
.5

2
6
0

3
0
7
.0

0
7
1

–
1
8
.8

8
7
9

3
3
.7

9
8
7

0
.3

3
3
4

–
1
1
4
.7

7
9
5

0
.0

1
5
5

9
.6

9
9
7

D
E

1
0
K

1
3
.1

5
6
8

1
.0

7
0
5

1
7
3
.4

0
3
7

>
1
,0

0
0

–
>

1
,0

0
0

1
6
7
.4

9
4
5

2
.8

9
4
6

–
2
1
5
.4

5
2
5

1
6
3
.9

7
5
4

3
4
.0

1
3
6

1
0
0
K

0
.0

2
3
3

0
.6

9
0
2

1
2
.7

1
2
1

3
9
4
.1

9
4
6

–
6
2
.8

8
7
4

5
8
.1

9
3
0

1
.1

4
3
2

–
1
1
9
.5

0
5
2

9
.6

7
5
9

2
4
.8

8
7
6

2
5
0
K

0
.0

0
0
0

0
.5

6
2
3

8
.0

5
4
9

2
0
0
.9

1
6
7

–
2
8
.3

8
3
7

2
2
.5

7
5
8

0
.6

9
3
9

–
5
2
.4

5
8
3

0
.3

7
5
7

2
1
.2

9
5
0

C
M

A
-E

S
1
0
K

0
.0

0
0
0

0
.1

7
6
5

5
.5

2
5
6

3
0
7
.0

4
2
6

–
2
1
.6

3
8
7

7
.8

0
5
5

0
.2

2
9
0

–
2
1
3
.3

9
9
7

0
.0

0
0
0

–
1
0
0
K

0
.0

0
0
0

0
.0

1
8
3

0
.9

9
6
7

2
7
4
.7

6
2
9

–
1
9
.9

6
2
3

0
.4

0
9
4

0
.1

9
3
7

–
1
4
8
.1

3
3
9

0
.0

0
0
0

–
2
5
0
K

0
.0

0
0
0

0
.0

1
5
1

0
.4

4
8
6

2
6
9
.2

7
3
5

–
1
9
.6

7
1
7

0
.1

4
4
4

0
.1

8
3
2

–
1
2
7
.6

9
4
7

0
.0

0
0
0

–
P

S
O

1
0
K

1
6
.1

6
4
3

1
.6

4
1
1

1
8
2
.6

6
1
0

>
1
,0

0
0

–
>

1
,0

0
0

2
1
5
.7

5
1
1

2
.8

9
9
4

–
1
1
4
.2

5
5
2

5
2
.5

7
4
0

0
.0

0
0
0

1
0
0
K

1
.5

6
0
5

1
.6

4
1
1

9
1
.1

9
5
8

6
4
8
.0

3
3
8

–
1
6
9
.9

2
3
9

7
0
.1

4
0
7

1
.1

5
9
8

–
1
1
1
.5

8
8
6

5
.9

2
4
4

0
.0

0
0
0

2
5
0
K

0
.5

5
3
1

1
.6

4
1
1

6
9
.5

3
7
6

5
8
3
.0

6
5
1

–
7
8
.1

2
4
1

4
0
.1

8
5
7

0
.7

6
4
1

–
1
1
1
.3

8
5
8

2
.8

5
1
4

0
.0

0
0
0

rG
A

1
0
K

2
.7

3
3
8

2
.7

4
9
1

1
1
1
.8

6
0
3

>
1
,0

0
0

–
8
3
1
.5

9
3
1

9
1
.2

2
5
7

1
.9

4
7
7

–
8
6
.4

4
2
2

5
.0

4
7
0

2
7
.2

7
7
6

1
0
0
K

0
.1

6
1
8

2
.6

2
5
4

1
0
6
.6

5
2
4

4
4
0
.9

7
4
6

–
4
3
.4

1
3
4

7
7
.0

7
7
1

0
.8

0
4
0

–
8
1
.2

1
3
6

2
.5

9
6
7

2
5
.7

6
5
0

2
5
0
K

0
.1

4
8
5

2
.5

6
9
1

1
0
6
.5

3
9
7

3
9
6
.8

2
3
5

–
3
7
.0

9
7
2

6
8
.2

5
6
2

0
.7

6
8
5

–
8
0
.1

7
6
1

2
.4

7
6
8

2
5
.2

1
7
9

rB
O

A 1
0
K

8
.8

7
8
5

1
.7

4
5
1

7
1
.3

6
4
7

>
1
,0

0
0

–
>

1
,0

0
0

1
9
2
.3

5
3
4

0
.7

4
2
1

–
3
1
8
.6

9
7
3

–
–

1
0
0
K

0
.0

3
0
2

1
.3

0
4
3

4
5
.5

7
0
8

4
2
7
.2

4
1
5

–
2
5
.8

2
2
9

1
1
7
.9

3
2
2

0
.2

3
5
3

–
3
1
8
.6

9
7
3

–
–

2
5
0
K

0
.0

0
0
5

1
.1

4
7
9

3
7
.8

7
2
6

3
5
9
.7

2
9
3

–
2
3
.1

9
6
4

9
7
.8

8
5
4

0
.1

5
7
5

–
3
1
8
.6

9
7
3

–
–

S
A

1
0
K

0
.8

5
7
9

5
.1

0
1
5

2
0
3
.8

5
2
0

6
9
1
.8

4
0
8

–
3
2
.6

4
8
4

1
5
8
.3

8
8
2

4
.6

4
3
1

–
2
6
9
.7

3
1
8

3
.7

4
7
9

2
9
.0

0
0
8

1
0
0
K

0
.2

3
1
4

4
.2

8
6
8

1
5
2
.1

2
7
0

6
1
9
.7

8
0
7

–
2
1
.7

8
0
1

9
0
.0

1
4
4

1
.8

4
3
2

–
2
4
3
.7

3
3
9

2
.7

3
1
2

2
1
.4

5
4
9

2
5
0
K

0
.1

7
0
0

3
.9

0
8
1

1
3
8
.1

0
7
8

6
0
7
.2

9
9
6

–
1
6
.4

1
6
0

7
8
.0

1
1
3

1
.1

7
2
4

–
2
3
1
.8

3
6
3

2
.4

6
1
2

1
8
.8

1
5
8

Evolutionary Annealing 29

by running the algorithm 100 times, that 5% success rate can be boosted to 99.4%.
CMA-ES converges quickly, and thus benefits from numerous restarts. If the learn-
ing rate for η is set at a high level (e.g. > 1), then REA-T will converge quickly as
well. If this convergence can be measured, then REA-T could be restarted to boost
its success rate. Such an extension is an interesting direction for future work.

In contrast to DE and CMA-ES, evolutionary annealing is well-defined in any
suitable measure space, and its convergence results apply to integrable fitness
functions (rather than just real functions, as for DE). Thus evolutionary annealing
can be used to search for neural networks, game strategies, Bayesian network
structure and many other problem domains where it is unclear how DE might be
applied. In fact, preliminary experiments have been performed in all these problem
domains with promising results (Lockett and Miikkulainen, 2011b; Lockett, 2012).

The benchmark set also shows that REA performs well on problems to which
it should not be particularly well-suited, at least while using Gaussian variation.
For instance, separable problems such as schwefel and weierstrass can be more
efficiently solved by searching in only one dimension. For instance, rGA succeeds
on schwefel by using recombination to cross-pollinate correct components, and DE
by sharing component-level information among the different members of its popu-
lation through its unique crossover mechanism. In contrast, REA must learn each
component separately. While this aspect of REA could be improved for schwefel
by implementing a mutation distribution that employs crossover, it is nonethe-
less promising that REA is able to learn the correct value for all components
independently without using excessively more function evaluations than the other
algorithms.

Given that REA-T is designed to search a space exhaustively for the global
optimum, it might be expected to perform worse than more greedy algorithms
in high-dimensional spaces. The results show that the opposite is true: REA-T is
still one of the best algorithms in 25 dimensions. One reason is the addition of

the decay factor n−
1
2 ; without this decay factor, REA-T failed to find good solu-

tions in 25 dimensions. To see why, consider that in d dimensions, 2d evaluations
must be performed in order to cut the average side length of a partition region
Ean in half. Thus the variance σn(a) reduces exponentially slowly in high dimen-
sions. The decay factor forces evolutionary annealing to focus only on the most
promising solutions. In this way, evolutionary annealing can obtain good solutions
in reasonable time in high dimensions at the cost of global optimality.

Future experimentation on evolutionary annealing will focus on training com-
plex structures such as neural networks and game strategies. The purpose of defin-
ing evolutionary annealing at such a high level of abstraction in this paper is to
provide a means for developing new algorithms to search in high-level spaces with-
out having to reinvent the underlying evolutionary apparatus from whole cloth.
The description in this article provides heuristics for setting learning parameters
for a wide variety of search domains.

On the theoretical side, as was briefly suggested in Section 3.6, it might be
possible to use martingale arguments to prove that evolutionary annealing con-
verges asymptotically to the global optimum in some cases. It is not clear at this
time what restrictions on the algorithm or the fitness function would be required
to prove such convergence. Based on preliminary efforts, such a result must care-
fully coordinate both the rate of cooling and the mutation variance in conjunction
with the local fluctuations of the fitness function. These efforts will hopefully yield

30 Alan J. Lockett, Risto Miikkulainen

convergence theorems for specific classes of fitness functions, which in turn will
help clarify the best candidates for optimization by evolutionary annealing.

More work also remains to be done to establish the rate of convergence for
evolutionary annealing. For example, maximum likelihood estimates of mixture
distributions with increasing mixing points are known to approximate continuous

distributions at a relatively fast rate of C
(

logn
n

)0.25
(Genovese and Wasserman,

2000). The distributions employed in evolutionary annealing are not the same, but
similar performance may be possible on continuous fitness functions.

Ultimately, the success of evolutionary annealing will be measured in terms of
real-world applications. It is difficult to predict in advance whether evolutionary
annealing will be successful in this effort, and which applications are the best.
However, the results on the benchmarks in this paper make it clear that evolu-
tionary annealing is worthy of consideration as a method for global optimization
in general-purpose domains.

7 Conclusion

Evolutionary annealing leverages shared aspects of simulated annealing and ge-
netic algorithms resulting in a new algorithm that is experimentally reliable and
also amenable to mathematical analysis. Evolutionary annealing was implemented
for real vectors and shown to compare favorably with several standard methods in
several benchmark problems. Evolutionary annealing is therefore a promising new
direction for experimental and theoretical research in global optimization.

Acknowledgements The authors would like to thank the anonymous reviewers for their
helpful comments and advice. This research was supported in part by the NSF under grants
DBI-0939454 and IIS-0915038.

References

Ackley DH (1987) A connectionist machine for genetic hillclimbing. Kluwer Aca-
demic Publishers, Norwell, MA, USA

Ahn C, Ramakrishna R, Goldberg D (2006) Real-coded bayesian optimization
algorithm. In: Lozano J, Larrañaga P, Inza I, Bengoetxea E (eds) Towards a
New Evolutionary Computation, Studies in Fuzziness and Soft Computing, vol
192, Springer Berlin / Heidelberg, pp 51–73

Ali MM, Khompatraporn C, Zabinsky ZB (2005) A numerical evalua-
tion of several stochastic algorithms on selected continuous global opti-
mization test problems. Journal of Global Optimization 31:635–672, URL
http://dx.doi.org/10.1007/s10898-004-9972-2, 10.1007/s10898-004-9972-2

Auger A, Hansen N (2005) A restart cma evolution strategy with increasing pop-
ulation size. In: Evolutionary Computation, 2005. The 2005 IEEE Congress on,
pp 1769–1776

Bersini H, Dorigo M, Langerman S, Seront G, Gambardella LM (1996) Results
of the first international contest on evolutionary optimisation (1st iceo). In:
Proceedings of IEEE International Conference on Evolutionary Computation,
pp 611–615

Evolutionary Annealing 31

Bertsimas D, Tsitsiklis J (1993) Simulated annealing. Statistical Science 8(1):10–
15

Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory.
In: Proceedings of the Sixth International Symposium on Micromachine and
Human Science, Nagoya, Japan, pp 39–43

El-Beltagy M, Nair PB, Keane AJ (1999) Metamodeling techniques for evolution-
ary optimization of computationally expensive problems: Promises and limita-
tions. In: GECCO’99, pp 196–203

Genovese C, Wasserman L (2000) Rates of convergence for the gaussian mixture
sieve. Annals of Statistics 28(4):1105–1127

Goldberg DE (1995) A note on boltzmann tournament selection for genetic algo-
rithms and population-oriented simulated annealing. Complex Systems 4:445–
460

Hajek B (1988) Cooling schedules for optimal annealing. Mathematics of Operation
Research 13(4):311–329

Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evo-
lution strategies. Evolutionary Computation 9(2):159–195

Hastings W (1970) Monte carlo sampling methods using markov chains and their
applications. Biometrika 57(1):97–109

Jeong I, Lee J (1996) Adaptive simulated annealing genetic algorithm for system
identification. Engineering Applications of Artificial Intelligence 9(5):523 – 532

Jeong S, Murayama M, Yamamoto K (2005) Efficient optimization design method
using kriging model. Journal of Aircraft 42(2):413–420

de Jong KA (1975) An analysis of the behavior of a class of genetic adaptive
systems. PhD thesis, University of Michigan

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing.
Science 220(4598):671–680

Lockett A, Miikkulainen R (2011a) Measure-theoretic evolutionary annealing. In:
Proceedings of the 2011 IEEE Congress on Evolutionary Computation (CEC-
2011)

Lockett A, Miikkulainen R (2011b) Real-space evolutionary annealing. In: Pro-
ceedings of the 2011 Genetic and Evolutionary Computation Conference
(GECCO-2011)

Lockett AJ (2012) General-purpose optimization through information maximiza-
tion. PhD thesis, University of Texas at Austin

Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953) Equations
of state calculations by fast computing machines. Journal of Chemical Physics
21(6):1087–1092

Mühlenbein H, Mahnig T (2002) Mathematical analysis of evolutionary
algorithms. In: Essays and Surveys in Metaheuristics, Operations Re-
search/Computer Science Interface Series, Kluwer Academic Publisher, pp 525–
556

Mühlenbein H, Schomisch M, Born J (1991) The parallel genetic algorithm as
function optimizer. Parallel Computing 17:619–632

Mühlenbein H, Mahnig T, Rodriguez AO (1999) Schemata, distributions, and
graphical models in evolutionary optimization. Journal of Heuristics 5:215–247

Pedersen M (2010) Tuning & simplifying heuristical optimization. PhD thesis,
University of Southampton

32 Alan J. Lockett, Risto Miikkulainen

Pelikan M, Goldberg D, Lobo F (2002) A survey of optimization by building and
using probabilistic models. Computational Optimization and Applications 21:5–
20

Storn R, Price K (1995) Differential evolution - a simple and efficient adaptive
scheme for global optimization over continuous spaces

Syswerda G (1989) Uniform crossover in genetic algorithms. In: Proceedings of the
Third International Conference on Genetic Algorithms

Vasile M, Minisci E, Locatelli M (2011) An inflationary differential evolution al-
gorithm for space trajectory optimization. IEEE Transactions on Evolutionary
Computation 15(2):267–281

Whitley LD, Garrett D, Watson JP (2003) Quad search and hybrid genetic algo-
rithms. In: Proceedings of the Genetics and Evolutionary Computation Confer-
ence (GECCO-2003), Springer, Chicago, IL, USA, vol 2724, pp 1468–1480

Yang RL (2000) Convergence of the simulated annealing algorithm for contin-
uous global optimization. Journal of Optimization Theory and Applications
104(3):691–716

