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ABSTRACT
Standard genetic algorithms can discover good fitness re-
gions and later forget them due to their Markovian struc-
ture, resulting in suboptimal performance. Real-Space Evo-
lutionary Annealing (REA) hybridizes simulated annealing
and genetic algorithms into a provably convergent evolu-
tionary algorithm for Euclidean space that relies on non-
Markovian selection. REA selects any previously observed
solution from an approximated Boltzmann distribution us-
ing a cooling schedule. This method enables REA to es-
cape local optima while retaining information about prior
generations. In parallel work, REA has been generalized
to arbitrary measure spaces and shown to be asymptoti-
cally convergent to the global optima. This paper compares
REA experimentally to six popular optimization algorithms,
including Differential Evolution, Particle Swarm Optimiza-
tion, Correlated Matrix Adaptation Evolution Strategies,
the real-coded Bayesian Optimization Algorithm, a real-
coded genetic algorithm, and simulated annealing. REA
converges faster to the global optimum and succeeds more
often on two out of three multimodal, non-separable bench-
marks and performs strongly on all three. In particular,
REA vastly outperforms the real-coded genetic algorithm
and simulated annealing, proving that the hybridization is
better than either algorithm alone. REA is therefore an in-
teresting and effective algorithm for global optimization of
difficult fitness functions.

Categories and Subject Descriptors
I.2.6 [Learning]: Parameter learning; I.2.m [Miscellaneous]:
Genetic algorithms; F.1.2 [Modes of Computation]: Prob-
abilistic computation

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

1. INTRODUCTION
Genetic algorithms typically operate in a Markov fash-

ion, with the population for each generation constructed
stochastically from the prior population only. As a result,
genetic algorithms can discover and then forget high qual-
ity regions within the search domain. By forgetting prior
generations regardless of quality, the algorithm can fail to
exploit crucial information, resulting in suboptimal perfor-
mance. This problem can be alleviated by selecting indi-
viduals for reproduction over the entire pool of previously
observed solutions. However, a genetic algorithm with blind
non-Markovian selection can become trapped by local op-
tima early on. This issue can be mitigated by combining
genetic algorithms and simulated annealing in a novel man-
ner to produce an evoutionary algorithm that solidly out-
performs both genetic algorithms and simulated annealing.

Simulated annealing and evolutionary computation have
long been regarded as two effective methods of optimization.
A number of algorithms have been proposed that hybridize
the two methods. One approach utilizes a Metropolis-style
acceptance probability to admit inferior solutions into the
population in proportion to their quality (see e.g. Das et al.
(2007); Mahfoud et al. (1995)). Another approach uses a
Boltzmann-like version of proportional selection (Goldberg
(1995); Jeong and Lee (1996); Mühlenbein and Mahnig (2002)).
However, each of these hybridizations are best regarded as
evolutionary algorithms augmented with various aspects sim-
ulated annealing.

This paper proposes Real-Space Evolutionary Annealing
(REA), an evolutionary algorithm on real vector space that
can be alternately viewed as a genetic algorithm with non-
Markovian selection or as a method of performing simulated
annealing without the Metropolis algorithm. REA exploits
a connection between the average effect of proportional se-
lection and the annealed Boltzmann distributions used in
simulated annealing. It replaces the operation of a genetic
algorithm with a sample from a two-layer mixture model
that approximates the Boltzmann distribution. These two
layers correspond respectively to selection and variation in
a genetic algorithm. Thus REA is both a genetic algorithm
and a simulated annealing algorithm.

REA is also related to Estimation of Distribution Algo-
rithms (EDAs), since it builds a global model of the an-
nealing distributions for the fitness function (Pelikan et al.
(2002); Mühlenbein et al. (1999)). However, whereas EDAs
build models based solely on the best members of the imme-
diately prior generation, REA’s models are based on the en-
tire history of observation. Also, while EDAs train graphical



models to recognize a dependency structure within solutions,
REA’s models are simpler and more direct. As a result, REA
may be expected to perform well on fitness functions where
the problem structure does not possess obvious intervariable
dependencies.

Theoretically, REA converges asymptotically to the true
global optima of the fitness function. The proof is given in
a parallel paper (Lockett and Miikkulainen (2011)). Exper-
imentally, REA converges fast on a bank of standard bench-
marks, including Ackley’s function, Whitley’s function, and
the modified version of Shekel’s Foxholes. These bench-
marks are multi-modal and non-separable and are therefore
difficult for many optimization methods. However, based
on its efficient sampling, REA performs quite well on them.
In a comparison with Differential Evolution (DE), Particle
Swarm Optimization (PSO), Correlated Matrix Adaptation
Evolution Strategies (CMA-ES), the real-coded Bayesian Op-
timization Algorithm (rBOA), a real-coded genetic algorithm
(GA), and simulated annealing (SA), REA outperforms its
competitors on two of these three problems and exhibits
strong performance on all three. In particular, REA vastly
outperforms the real-coded genetic algorithm and simulated
annealing, proving that the hybridization is better than ei-
ther algorithm alone. REA is therefore an interesting and
effective algorithm for global optimization of difficult fitness
functions.

2. BACKGROUND
Before describing REA and the experiments in detail, some

motivating background in simulated annealing and its con-
nection to proportional selection will be reviewed.

2.1 Simulated Annealing
Simulated annealing is a general optimization algorithm

that employs properties of statistical mechanics to locate
minima of a given fitness function (Kirkpatrick et al. (1983);
Bertsimas and Tsitsiklis (1993)). The usual analogy is that
of crafting a metallic artifact by repeatedly shaping it at
different temperatures. At high temperatures, the metal is
malleable and easy to shape, but does not readily remain
in detailed configurations. As the temperature is gradually
lowered, more refined and delicate shapes become possible,
but the overall shape is increasingly fixed.

At the core of the simulated annealing algorithm is the
Boltzmann distribution. At time n, simulated annealing
samples from a distribution given by

Afn (dx) =
1

Zn
exp

(
−f(x)

Tn

)
dx, (1)

where f is the fitness function, Zn is a normalizing factor
known as the partition function, and Tn is a sequence of
temperatures with Tn → 0. The sequence Tn is known as
the cooling schedule. The distribution Afn will be referred
to as an annealing distribution in this paper. Simulated an-
nealing samples from Afn repeatedly using the Metropolis
algorithm (Metropolis et al. (1953); Hastings (1970)). The
process begins with a proposed solution x. At each time
step, a proposal distribution Q is used to sample xn. The
proposed solution x is replaced with xn with probability
exp (−max {0, f(x)− f(xn)} /Tn). For each fixed tempera-
ture Tn the algorithm will converge to a sample from Afn. As
n → ∞, Afn converges in probability to a distribution that

samples directly from the optimal points of f (Kirkpatrick
et al. (1983)).

Simulated annealing can be shown to converge asymptot-
ically to the global optima of the fitness function, subject to
conditions on the cooling schedule (Hajek (1988)). For com-
binatorial problems, Hajek (1988) showed that simulated
annealing converges if the cooling schedule is set according
to Tn ∝ 1/ logn. In practice, simulated annealing has been
used effectively in several science and engineering problems.
However, its sensitivity to the proposal distribution and the
cooling schedule means that it is not a good fit for all opti-
mization problems.

Surprisingly, traditional genetic algorithms are connected
with simulated annealing through an analysis of the aver-
age performance of proportional selection. This connection
is exposed by trivial manipulations of a previous result of
Mühlenbein and Mahnig (2002); the details are discussed
next.

2.2 Expected Proportional Selection
One version of selection in genetic algorithms is propor-

tional selection, where individuals in the prior population are
selected proportionally to their observed fitness. Unexpect-
edly, there is a deep connection between simulated annealing
and proportional selection in standard genetic algorithms.
Much like simulated annealing, proportional selection sharp-
ens the fitness function implicitly with each generation, so
that on averaging over population trajectories the selection
operator asymptotically places probability one on the op-
tima of the fitness function. The following argument for dis-
crete spaces is derived from Mühlenbein and Mahnig (2002)
in the context of maximizing a fitness function; analogues
to this result hold in arbitrary measure spaces.

Proportional selection at the nth time step is given by
Snf (x) ∝ f(x)Nn−1

x , where Snf (x) is the probability of se-
lecting x at time n, and Nn

x is a random variable indicating
the number of copies of the solution x in the population at
time n. Taking the expected value over Nn

x ,

E
[
Snf (x)

]
∝ f(x)E

[
Nn−1
x

]
. (2)

The expected value on the left is also a probability distri-
bution over x and therefore a selection rule, here termed
expected proportional selection. It is possible to imagine an
evolutionary algorithm where each successive population is
sampled from just this rule. This algorithm is a one-stage,
selection-only genetic algorithm; because expected propor-
tional selection averages over all individuals, no variation is
required.

In such an algorithm, if the initial population is selected
uniformly at random (assuming this is possible), then E

[
N0
x

]
is a constant, so

E
[
S1
f (x)

]
∝ f(x). (3)

By definition, E[Snf (x)] = E[Nn
x ]/K where K is the popula-

tion size, since Nn
x /K is just the proportion of the popula-

tion taking the value x. Applying this fact to the recursion in
Equation 2 yields E[Snf (x)] ∝ f(x)n. Thus expected propor-
tional selection sharpens the fitness function. Introducing
g(x) ≡ − log (f(x)),

E
[
Snf (x)

]
∝ exp (−g(x))n

= exp

(
− 1

n−1
g(x)

)
(4)



Comparing Equation 1 to Equation 4, expected proportional
selection is found to have an annealing distribution on− log f
with cooling schedule Tn = n−1. Since the logarithm is
monotonic, the maxima of f are the minima of g.

Expected proportional selection is not a feasible selection
rule because it requires total knowledge of the fitness func-
tion a priori. If such knowledge were possible, there would
be no need for evolutionary computation; the optima would
already be known. Expected proportional selection could
be estimated by averaging over the trajectories of several
different runs of a genetic algorithm, but the number of tra-
jectories required for a good estimate would be intractably
large.

Instead, genetic algorithms approximate expected propor-
tional selection with proportional selection. Taken on its
own, proportional selection has quite different properties
from expected proportional selection. Proportional selec-
tion can only select the small finite set of solutions con-
tained in the prior population. Right from the beginning and
throughout, expected proportional selection can select any
point with a positive fitness value. Expected proportional
selection is not computable in general, however. There is
simply no way to get a meaningful estimate of E [Nn

x ] ex-
cept in the most trivial of problems.

REA exploits this theoretical relationship between simu-
lated annealing and genetic algorithms to create a hybridized
algorithm that merges qualities of both algorithms by select-
ing solutions according to an approximation of the anneal-
ing distributions and then mutating the selected individual
through standard evolutionary techniques.

3. REAL EVOLUTIONARY ANNEALING
REA is two-stage genetic algorithm for Euclidean space

with selection and variation phases. In REA, the selection
phase approximates a Boltzmann distribution with increas-
ing accuracy. Let f be a fitness function to be minimized,
and let Skn represent the kth selected individual at the nth

time step. The sequence of populations generated by REA
will be represented by Pn =

(
P kn
)
, so that P km is the kth

member of the population from the mth generation. Then
the selection probability for REA is given by

P
(
Skn = x

)
=

{
0 x /∈

⋃
m<n,k P

k
m

ξn
cn(x)

exp
(
− 1
Tn
f (x)

)
otherwise,

(5)
where ξn is a normalizing factor, and Tn is a cooling sched-
ule with Tn > 0 and Tn → 0. The function cn(x) ad-
justs the selection probabilities to avoid biasing the distribu-
tion towards previously sampled points as discussed below.
For the experiments below, the cooling schedule is given by
T−1
n = η logn, where η is a problem specific learning rate

and logn is a traditional cooling rate for simulated anneal-
ing [Hajek (1988)].

It is a distinguishing feature of REA that every member
of every previous population is assigned positive probability
by Equation 5. That is, selection in REA is non-Markovian;
any previously observed solution from any generation can be
selected. It is this fact that makes REA different from other
evolutionary algorithms and other hybrids of simulated an-
nealing and genetic algorithms.

Once Skn is selected, the variation phase of REA perturbs
the selected individual according to a mutation distribution.

Algorithm 1 Algorithm for Real Evolutionary Annealing

N , the number of generations
K, population size
Sample P k1 from an initial distribution
for n← 2 to N do
Tn ← 1

η logn

σn ← σ exp(−nα + sinx)
total← 0
for m← 1 to n− 1 do

for k ← 1 to K do
compute cn

(
P km
)

ykm ← cn
(
P km
)−1

exp
(
− 1
Tn
f
(
P km
))

total← total + ykm
zkm ← total

end for
end for
for k ← 1 to K do
r ← Uniform(0,1)
w, j ← min

{
m, k : zkm < r × total

}
Skn ← P jw
P kn ← N

(
Skn, σ

2
n

)
end for

end for

Gaussians are used in this paper, but in principle differ-
ent variation distributions could be used depending on the
problem and the space. With selection and variation, the
population process for REA is distributed according to

P kn ∼ N
(
Skn, σ

2
nI
)
. (6)

The variation σ2
n should begin at a high level during initial

generations in order to quickly explore the space and should
then decay in later generations in order to refine the solu-
tion. For the experiments below, static decay rates for σn
were used: σn = σ exp(−nα+sinn) with σ and α as param-
eters, discussed below. The sine term causes the variation to
oscillate between relatively high and low values within the
context of overall decay; this feature helps the algorithm
to escape local minima and plateaus by attempting several
substantially different mutations in succession.

The function cn(x) in the denominator of Equation 5 ex-
ists to prevent a particular type of premature convergence
that would otherwise occur in REA. Suppose cn(x) = 1.
Consider the situation in which REA discovers a new lo-
cal minimum as the current maximum score. Selection will
favor exploitation of this new minimum, and within a few
generations the surrounding region will be filled with a large
number of test points looking for a better solutions close to
the current local minimum. Since many of these test points
will have comparable fitness, they will further bias selection
to favor the same region. In a short period of time, the
probability of REA selecting a point outside of that region
would become small. To avoid this situation, the function
cn(x) is set to count the number of points close to x. In
this paper, cn(x) counts the number of previously observed
points inside of a hypercube of side length 2σn centered at
x, with x included in the count. The value of cn

(
P km
)

can
be efficiently computed in O (lognK) time using a database
index. A hypercube was chosen over a hypersphere because



hypersphere computations would necessarily require linear
time.

The REA algorithm is given explicitly in Algorithm 1.
The algorithm simply formalizes the process of repeatedly
sampling Skn and P kn according to the formulae above. The
complexity of the algorithm is O

(
N2K2 logNK

)
where N

is the number of generations, K is the population size, with
NK fitness evaluations. The sample points P kn can be stored
in a database index database, so that the cost of sampling a
new population is O (K log NK). The most expensive por-
tion of the computation is the recomputation of the mixing
probabilities that must be performed for each generation.
At low temperatures, as n → ∞, this computation can be
made more efficient by pruning points that are unlikely to
be selected. It is important to recognize that while REA in-
troduces substantial overhead relative to other evolutionary
methods, this overhead is mostly independent of the fitness
function. For complex problems, where fitness function eval-
uation can take minutes rather than milliseconds, the over-
head for REA is quite acceptable, adding perhaps 5–10% to
the overall running time versus simpler algorithms.

The three learning parameters for REA as described in
this paper are η, α, and σ. The learning rate η controls
the sensitivity of selection to the fitness value by scaling
the fitness prior to computing the mixture distribution. If
η is large (> 1), selection will be more sensitive to smaller
fluctuations in the fitness. If η is small (< 1), selection will
be less sensitive to large fluctuations in the fitness. A value
of η = 1 is a good default for this parameter; the optimal
value will depend on the volatility of the fitness function
around the optima.

The parameters α and σ control the variation. A large
value for σ will cause exploration to essentially ignore se-
lection in early generations, promoting exploration at the
expense of refinement. A smaller value for σ will tend to
limit the results to the quality of the initial population. The
value for σ should be chosen to balance these effects on the
particular problem and domain. The value for α controls
the rate of decay in the variance. A small value for α favors
prolonged exploration but inhibits refinement. A high value
for α will cause the algorithm to quickly focus on a small re-
gion around the selected points. Based on the experiments,
a good rule of thumb is to set the standard deviation σ to
be equal to about half the width of the space and to set α
between 1/4 and 1/3.

Provided that σn → 0, the sample distribution for P kn
converges to the global optima of f in probability as n→∞.
In brief, as the space is completely explored by REA, the
population process eventually places a point on each of the
rationals, and the integrability of f then implies convergence
with Afn for each fixed n as the variance decays. Since Afn
converges to the optima of f in probability, so does REA.
The actual proof of convergence can be found in parallel
work [Lockett and Miikkulainen (2011)].

In general, the population process for REA has a mixture
distribution at each generation. Letting Pn ≡

⋃
m<n,k P

k
m

be the set of previously observed individuals and pn (x) ≡
P
(
Skn = x

)
, the distribution for the individual P kn is given

by

Pn (dx) =
∑
a∈Pn

pn (a) νan (dx) , (7)

where νan is the variation distribution, shifted so that it is
centered at a. In this paper, νan = N

(
a, σ2

nI
)
. A more

general implementation would allow arbitrary distributions
to be used for different problems. For example, recombi-
nation could also be built into the variation distribution if
the optimization problem exhibits symmetries that would be
exploited by recombination. Note that alternative versions
are not limited to Euclidean space. REA can be applied
to any measure space admitting a finite measure, including
arbitrary length bit strings, neural networks, and Bayesian
networks. An arbitrary implementation in this fashion is dis-
cussed in parallel work (Lockett and Miikkulainen (2011)).

A sequence of mixture distributions that adds a mixing
point for each new sample is known as a mixture sieve. The
convergence properties of mixture sieves have been stud-
ied for approximation of smooth densities by Genovese and
Wasserman (2000) and by Ghosal and van der Vaart (2001).
When the mixture sieve is determined by a maximum like-
lihood estimate, an upper bound on the convergence rate to

the target distribution is given by C
(
logn
n

) 1
4 . This result

does not imply anything definite about the convergence rate
of REA, but it does provide reason to expect that REA may
converge quickly.

Because REA does not assume that the problem is highly
structured, it is expected that it will perform well on fit-
ness functions that possess little global structure or sym-
metry. For this purpose, REA was tested on three chaotic,
multimodal, non-separable fitness function common in the
literature and compared to other evolutionary algorithms.
The benchmarks and comparisons are presented in the next
section.

4. EXPERIMENTAL SETUP
REA was tested on three standard benchmarks: Ack-

ley’s function, Whitley’s function, and a modified version
of Shekel’s Foxholes (see e.g. Ali et al. (2005)).

Ackley’s:

d−1∑
i=1

e−0.2
√
x2i + x2i+1 + 3 cos (2xi) + 3 sin (2xi+1) (8)

Domain: xi ∈ (−5.12, 5.12)
Minimum: −13.37957500565419

Whitley’s:

d∑
i=1

d∑
j=1

w (xi, xj)
2

4000
− cos (w (xi, xj)) + 1, (9)

with w(y, z) = 100
(
y2 − z

)2
+ (1− z)2

Domain: xi ∈ (−30, 30)
Minimum: 0

Modified Shekel’s Foxholes:

30∑
i=1

1∑d
j=1 (xj − aij)2 − ci

(10)

Domain: xi ∈ (−15, 15)
Minimum: −10.40561723899245
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Figure 1: Heat maps for the three benchmark functions in two dimensions (d = 2). Each heat map is scaled
to show the critical region. Lighter colors indicate lower and therefore more optimal values. Whitley’s is
scaled to show the critical region; the function rises sharply outside of this region. These three functions are
multimodal and non-separable and are quite difficult for most optimization methods.

For Shekel’s foxholes, the matrices A = {aij} and the vec-
tor c = {ci} can be found in Ali et al. (2005). Figure 1 shows
heat maps for each function in two dimensions to graphically
display the properties of the benchmark; lighter colors indi-
cate lower and therefore more optimal values. For Whitley’s,
the heat map was scaled to show detail in the critical region.
The experiments were performed in five dimensions (d = 5)
on a search space whose domain was the hypercube with
components as given above.

In order to establish the performance of REA relative to
other evolutionary algorithms, experiments were run with
six other algorithms: (1) simulated annealing (SA), (2) a ge-
netic algorithm (GA), (3) an evolution strategy (CMA-ES),
(4) differential evolution (DE), (5) particle swarm optimiza-
tion (PSO), and (6) the real-coded Bayesian Optimization
Algorithm (rBOA). The algorithms selected for comparison
cover a broad spectrum of evolutionary algorithms and rep-
resent a general sampling of the current state of the art.
These algorithms are known to be effective on a wide array
of fitness functions and most of them perform reasonably
well on the selected benchmarks.

Simulated annealing was performed on a single chain for
25, 000 function evaluations, randomly restarting with prob-
ability 0.001 at each step. The cooling schedule was linear.
All algorithms except simulated annealing used a popula-
tion size of 100 and were trained for 250 generations. The
GA used linear ranking selection with selection pressure at
1.8. Crossover was uniform, and mutation was a Gaussian
with variance 0.05 (Wright (1991); Baker (1985); Syswerda
(1989)). The ES was a (10 + 90)-ES using Correlated Ma-
trix Adaptation (CMA) to evolve the mutation parameters
(Hansen and Ostermeier (1996)). DE was trained with a
crossover probability of 0.9 for Whitley’s and 0.2 for Ack-
ley’s and Shekel’s and with a learning rate of 0.5 for Ackley’s
and 0.9 for Whitley’s and Shekel’s (Storn and Price (1995)).
PSO was trained with both the global and local adaptation
rates set to 0.25 (Eberhart and Kennedy (1995)). rBOA was
implemented as described in Ahn et al. (2006). The param-
eters for REA were set with η = 1 for Ackley’s and Shekel’s
Foxholes, and η = 0.1 for Whitley’s. The initial standard
variance σ was set to 32 for Ackley’s, 8 for Whitley’s, and

16 for Shekel’s Foxholes. The variance decay was set at
α = 1/3 for all problems. For all of the algorithms, parame-
ters were set according to the literature where available and
hand-tuned otherwise to optimize performance.

For REA, the variance was set quite high at the outset,
with a standard deviation nearly as large as the space. This
large variance promotes extensive exploration of the space
in early generations. The value α = 1

3
causes the variance to

decay quickly. The leaning rate η performed well generally
with η = 1, but for Whitley’s function, REA required a
lower learning rate so that probability mass was equitably
distributed between competing local minima at a critical
stage. All algorithms were run on all benchmarks 25 times.

5. EXPERIMENTAL RESULTS
REA did indeed perform very well on these benchmarks.

The left-hand column of Figure 2 displays average learning
curves for each algorithm on a semilog scale. These graphs
thus display both the degree and the rate of convergence
to the optimum. On Whitley’s function and Shekel’s Fox-
holes, REA outperforms all competitors both in terms of
the quality of optima and speed of convergence. On Ack-
ley’s function, REA still displays faster convergence in the
first 50 generations, but is outperformed by DE and later
by CMA-ES as well. The reasons for this will be explored
below.

The right-hand column of Figure 2 shows the percentage
of trials in which each algorithm reached various levels of
accuracy within 250 generations, shown in log scale with
higher accuracy on the right side of the x-axis. On Whit-
ley’s function, REA achieves high accuracy consistently on
all trials. On Shekel’s Foxholes, REA is able to locate the
true optimum with higher probability than any of the other
algorithms. On suboptimal runs, its performance is com-
parable to DE and CMA-ES. For Ackley’s function, REA
performs well in general, but becomes trapped in a strong
local optimum about 50% of the time.

A numerical summary of the results is shown in Table 1.
This table shows the number of the 25 trials in which each
algorithm reached an accuracy threshold of ε < 0.02.
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Figure 2: Error rates for REA and five other algorithms on Ackley’s function, Whitley’s function, and Shekel’s
Foxholes. The left panel shows the average learning curve for each algorithm on the benchmarks, with the
number of generations on the x-axis and the average distance to the global optimum at each generation on
the y-axis in log scale. These graphs were generated by averaging the global best of each of the 25 trials
after each generation; lower values are better. The right panel shows the percentage of trials coming within
various distances from the optimum. The x-axis shows various error rates in a sign-reversed log scale, so
that the values to the right indicate exponentially smaller error. The y-axis shows the percentage of trials
achieving each level of accuracy. For the right panel, higher values are better. REA has the best performance
on Whitley’s and Shekel’s Foxholes and performs strongly on Ackley’s as well. REA is characterized by faster
convergence than the competing algorithms in general.



Table 1: Number of Successful Trials (ε < 0.02)
Ackley’s Whitley’s Shekel’s

REA 9 25 7
DE 25 2 0
CMA-ES 18 6 4
PSO 0 0 0
GA 3 2 0
rBOA 0 0 0
SA 0 0 0

Of the three benchmarks used in this research, Ackley’s
function possesses the most regular structure. As evident
from Figure 1(a), Ackley’s is generally spherical and has lo-
cal optima evenly spaced along axis-parallel lines. There are
two reasons why DE performs extremely well in this environ-
ment. First, DE proposes changes to its current population
that move along axis-parallel lines. Second, because the lo-
cal optima for Ackley’s are spread evenly around the global
optima, chances are high that change proposed by DE will
point from a local optima towards the global optimum. Thus
Ackley’s is shaped in a manner that favors DE, accounting
for the strong performance of DE on this benchmark.

REA locates good local optima very quickly, initially at
a rate even faster than DE. But as the variance narrows,
it becomes more difficult for REA to skip past the final lo-
cal optima to reach the global optimum, and it becomes
entrapped on approximately half of the trials. CMA-ES, by
contrast, can expand its variance to escape local optima and
is therefore able to catch up to and ultimately surpass REA.

In contrast, REA performed most strongly on Whitley’s
function. The surface of this function is quite irregular, but
the variation among these irregularities is small in magni-
tude relative to the search domain; outside of the region
shown in Figure 1(b), Whitley’s function increases exponen-
tially. This surface structure was well-suited to the cooling
schedule used in REA. Because of the magnitude of func-
tion values, it was possible to set the learning rate η to 0.1,
smoothing the function at the origin. On some other prob-
lems (such as Shekel’s), lowering the learning rate causes
REA to stagnate because it is unlikely to select the current
best solutions. But on Whitley’s, the disparity of function
values resulted in REA selecting the best members early
on, so that the critical region of the fitness function was
quickly discovered. Then, the lower learning rate forced
more thorough exploration of the local optima, so that REA
was invariably able to locate the true optima within accu-
racy ε < 0.005.

Shekel’s Foxholes is the most difficult of the three bench-
marks used in this paper. As the heat map in Figure 1(c)
shows, the local optima are quite sparse and somewhat dis-
tant from each other. There is effectively no systematic
means to approach the global optimum; it must be discov-
ered by chance. Yet the region in which the global optimum
is located is narrow and difficult to find with few function
evaluations. None of the algorithms tested were successful
even half of the time with the alotted 25, 000 function evalu-
ations. On this benchmark, REA performed the best, locat-
ing the global optimum within accuracy ε < 0.02 in about a
third of the trials, making it twice as likely to find the global
optimum as CMA-ES, the next best performer, which came

within ε < 0.02 in four of the 25 trials. None of the other
algorithms reached this level of accuracy, though PSO and
DE each came within ε < 1 in four and three trials, respec-
tively. Since Shekel’s Foxholes contains the least identifiable
problem structure of the three benchmarks tested, REA’s
performance on this benchmark validates the use of REA
for difficult problem domains.

6. DISCUSSION AND FUTURE WORK
This paper has shown that REA is an effective approach

to difficult benchmarks. It compares favorably with other
evolutionary algorithms, converging quickly and reliably on
challenging problems. Notably, REA drastically outper-
forms a genetic algorithm and simulated annealing, the two
algorithms that inspired it.

Because REA is a new method, experiments still need to
be performed to test the effect of varying certain features
of the basic algorithm. For instance, REA uses an oscil-
lating variance decay. The oscillation appears to promote
better exploration of the search space. However, this con-
jecture needs to be verified experimentally. Also, parallel
work suggests that the counting approach for setting cn(a)
might improved upon by using a series of successive parti-
tions of the search space to set the value of cn(a) to the
area of the region containing the point a (Lockett and Mi-
ikkulainen (2011)). While training on Ackley’s, REA has a
blind spot on the region around the global optimum; REA
is unaware that this region has not been well explored. Par-
titions could also be used to dynamically scale the variance
at each selected point based on the degree to which the sur-
rounding region has been explored, potentially allowing for
the discovery of the true optimum.

Partitioning is also more computationally efficient than
the counting approach; where as the counting approach re-
quiresO

(
N2 logN

)
time, partitioning requires at mostO

(
N2
)

time. Also, partitioning builds a binary tree over the space,
and it may be possible to sample on this structure, further
reducing the time requirement to O (N logN), assuming the
tree can be balanced.

Finally, REA may perform better with Cauchy rather
than Gaussian variance, since the fatter tails of the Cauchy
distribution may allow it to avoid local optima. All of these
features need to be tested and compared with each other to
determine how they affect the basic algorithm.

The annealing selection mechanism in REA was based on
an analysis of expected proportional selection. Proportional
selection was developed earlier in the history of genetic al-
gorithms. It has since been superseded by other selection
mechanisms such as tournament selection and ranking se-
lection. When a population is close to a local optimum,
the ratio of fitnesses among the population becomes close to
one. Because of this, proportional selection often fails to se-
lect the best known solution, and thus has difficulty refining
the fitness value near local optima. Tournament and rank-
ing selection overcome this difficulty by selecting solutions
according to their rank in the population rather than their
raw fitness. Being based on proportional selection, REA suf-
fers from the same difficulty when refining the final solution.
REA could be adapted to use an annealed version of tourna-
ment selection by storing the candidate values in a sorted,
balanced binary tree. It may then be possible to derive a
tree-sampling algorithm that samples tournament selection



with a selection pressure that grows as the temperature de-
creases.

Further, REA can be generalized to arbitrary measure
spaces. Since the Boltzmann-style selection employed by
REA depends solely on the fitness values, only the vari-
ation mechanism needs to be changed. A REA-like algo-
rithm could be developed for training neural networks or
game strategies. These generalizations would enable REA
to be applied to more complex problem domains.

On the theoretical side, while it has been proven that REA
converges asymptotically, there is still a need to understand
the convergence rate better. It is clear from Figure 2 that
convergence rates in REA are comparable to or better than
other popular evolutionary methods on certain problems.
These results need to be accounted for theoretically. Such
an account may make it possible to identify the problem
domains in which REA can be expected to perform best.

7. CONCLUSION
This paper proposes REA as a provably convergent evo-

lutionary algorithm that can be viewed as a method of per-
forming simulated annealing or as a genetic algorithm with
non-Markovian selection. In experiments with three stan-
dard optimization benchmarks, REA compares favorably
with existing evolutionary methods. Additionally, REA out-
performs both genetic algorithms and simulated annealing
on the benchmarks by a wide margin. REA therefore presents
a promising new approach to evolutionary computation on
difficult and unstructured domains.
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