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Abstract—This paper introduces and evaluates a novel training
method for neural networks: Dual Variable Learning Rates
(DVLR). Building on insights from behavioral psychology, the
dual learning rates are used to emphasize correct and incorrect
responses differently, thereby making the feedback to the network
more specific. Further, the learning rates are varied as a function
of the network’s performance, thereby making it more efficient.
DVLR was implemented on three types of networks: feedforward,
convolutional, and residual, and two domains: MNIST and
CIFAR-10. The results suggest a consistently improved accuracy,
demonstrating that DVLR is a promising, psychologically moti-
vated technique for training neural network models.

I. INTRODUCTION

Behavioral psychology focuses on how humans and ani-
mals behave and how behavior drives learning and growth.
By bringing such insights into machine learning, it may
be possible to create methods that train an artificial neural
network in a similar manner to how humans and animals
are trained, potentially resulting in better performance of the
neural network.

This paper proposes such a method: dual variable learning
rates, or DVLR. Dual learning rates provide different emphasis
for correct and incorrect responses and thus propagate more
specific feedback to the network. The learning rates are up-
dated with a variable rate of change based on the performance
of the network so that feedback can be used most efficiently
over time. This novel training technique was tested on the
MNIST and CIFAR-10 databases with three different types
of architectures: feedforward, convolutional, and residual. The
results suggest a consistently improved accuracy in both tasks
and all three networks, suggesting that it can serve as a general
technique for improving neural network learning.

The paper begins by reviewing the behavioral psychology
foundation for the DVLR method in the Background section
as well as Related Work on variable learning rates. In the
Method section, the specific differences between DVLR and
backpropagation are discussed. The Baselines and Thresholds
section presents the preliminary experiments in configuring
DVLR, and the Results section analyzes how the method
performed on the MNIST and CIFAR-10 databases. The
Discussion section evaluates the significance of results given
the computational complexity of deep learning experiments,

and the possibility of constraining the method with biological
insights.

BACKGROUND

Behavioral Psychology determines how a subject learns
by observing the subject’s behavior instead of attempting
to explain the subject’s thought process. Learning is seen
as an enduring change in the mechanisms of behavior as
distinct stimuli are paired with responses that result from prior
experience. Through experiments, behavioral psychologists
can identify what the subject is capable of learning, and the
best ways to facilitate or inhibit that learning. This focus on
behavior is key to the DVLR method. Computer scientists
do not fully understand why a neural network produces
the responses it does, especially as networks become more
complicated. It is thus difficult to determine what needs to
change in the neural network to increase accuracy. Building
on Behavioral Psychology, DVLR attempts to use a network’s
behavior to create more efficient learning and increase the
accuracy of the network.

The origins of this approach can be traced to psychologists
Edward Thorndike and B.F. Skinner. Thorndike studied animal
intelligence with the use of puzzle boxes and determined that
every response of an animal is the result of an interaction
with the environment [12]. He rejected randomness in animal
actions, and determined that they must be able to form
associations just as humans do. His Law of Effect states that
the satisfaction or dissatisfaction that the animal receives from
an action it performs determines directly if the animal will
perform that action again. If the result of an action is favorable,
the animal is more likely to perform it; if the result of an
action is unfavorable, the animal is less likely to perform it.
By providing both favorable and unfavorable feedback to an
animal subject, it is possible to teach it to perform or not
perform certain actions.

Skinner studied how subjects perform with reinforcement
over time, and how various schedules affect the subject’s
performance [11]. Through experimentation, Skinner defined
four different types of schedules: fixed ratio, variable ratio,
fixed interval, and variable interval. In the variable ratio (VR)
schedule of reinforcement, a subject is reinforced after a
variable number of responses. Skinner concluded that VR



schedules led to the subjects accurately performing tasks
faster and for a longer continuous period of time than their
counterparts on other schedules.

Similarly in neural networks, the goal is to create the most
efficient and accurate networks to solve a specific problem.
Building on Thorndike’s Law of Effect, separate feedback can
be provided for correct and incorrect responses. Building on
Skinner’s variable ratio schedule, the separate learning rates
can be updated after a variable number of responses to change
the amount of emphasis a correct or incorrect response has on
training. The resulting technique, DVLR, implements these
ideas as dual learning rates on variable schedules, as will be
discussed in the Method section.

RELATED WORK

There is prior computational work in using different learning
rates for the different parameters of a neural network. For
example, Kim, Cho and Lee [4] assigned a distinct learning
rate to each reference vector in their vector quantization model
and updated the reference vectors with a competitive learning
method. The networks performed faster and more accurately
when using more than one learning rate for the network. The
main difference from DVLR is that their method uses one
learning rate for each reference vector, which increases the
number of parameters significantly.

On the other hand, Smith [8] used a non-stationary learning
rate that cycles between reasonable boundary values. He was
able to achieve a significant increase in accuracy for the
CIFAR-10 domain. DVLR takes this idea one step further by
introducing insights from behavioral psychology to determine
how the learning rates should change as a function of its
performance.

There is also prior computational work on networks that
are able to reorganize their structure based on performance.
For example, Rubio [5] describes an online self-organizing
fuzzy modified least-square (SOFMLS) network. The network
generates and prunes rules throughout training to determine
the best set of functions for a given problem. DVLR works
similarly by updating its learning rates throughout training to
generate more efficient feedback to the network.

METHOD

DVLR is an extension of the standard gradient descent
update method in neural networks [7]. There are two key
changes that will be discussed in detail: dual learning rates
and learning rate updates.

Dual Learning Rates

In DVLR, two learning rates are used: ηC for correct re-
sponses, where the network successfully predicted the output,
and ηI for incorrect responses, where the network unsuccess-
fully predicted the output. By splitting up the correct and
incorrect responses, it is possible to provide different feedback
to the network based on whether its responses were favorable
or unfavorable. The hypothesis is that the network will receive

Algorithm 1 DVLR Methods
Dual learning rates:
BC = correct responses in a batch
BI = incorrect responses in a batch
if BC >= BI then
η = ηC

else if BI > BC then
η = ηI

end if

Variable Threshold and Learning Rate Updates:
R = correct or incorrect responses
V T = correct or incorrect variable threshold
βL = lower bound of threshold
βU = upper bound of threshold
if RN

C >= V TN
C then

ηN+1
C = ηNC + const

RN+1
C = 0

V TN+1
C = getRandom(βCL, βCU)

end if
if RN

I >= V TN
I then

ηN+1
I = ηNI + const

RN+1
I = 0

V TN+1
I = getRandom(βIL, βIU)

end if

more specific feedback and in turn, will learn the ideal weight
values more efficiently.

To make the dual learning rate implementation practical,
batching was used, where batched responses are a mixture of
correct and incorrect responses. Theoretically, the correct or
incorrect learning rate would be determined for each response,
but this approach is computationally expensive and does not
provide a major advantage based on preliminary experiments.
Instead, if the majority of responses in a batch are correct,
ηC is used and if the majority of responses in a batch are
incorrect, ηI is used. The dual learning rate method is further
described in the first half of Algorithm 1.

Learning Rate Updates

In a network using backpropagation, the learning rate deter-
mines the amount of emphasis the error has on the network’s
weight update. For DVLR, the amount of emphasis changes
over time as the learning rate is updated. The hypothesis is
that in this manner, the network might discover nuances in the
data that were not previously apparent and thus, more accurate
networks should result. In preliminary experiments, several
types of changes in ηC and ηI were evaluated, such as changing
the learning rate by different proportions and after different
amounts of correct and incorrect responses had been observed.
These experiments concluded that the best performance was
observed with a variable threshold method. More specifically,
a variable threshold was implemented by slightly varying how
many correct and incorrect responses needed to be observed



Fig. 1. An example update schedule for the ηC learning rate over three
updates (ηI is adjusted in a similar process). The red and grey lines are the
boundaries of the threshold, and the blue line is the running count of correct
responses from the network. The learning rate changes (i.e. decreases by
0.005 in this case) each time the number of correct responses since the last
change reaches the threshold. The next threshold is chosen randomly within
the range, thus implementing the idea of variable thresholds for correct and
incorrect responses.

before the learning rate was updated with a constant rate of
change. The variable threshold update and learning rate update
methods are described in the second half of Algorithm 1.

In DVLR, once the number of correct or incorrect responses
reaches the current threshold, the learning rate is updated. This
method is similar to the variable ratio (VR) schedule in behav-
ioral psychology with one difference: In VR, reinforcement is
only given once the subject reaches the threshold, whereas in
DVLR, feedback (in the form of gradient) is provided after
every example. This difference is due to the inherent nature
of neural networks: if gradients were not provided for every
example, they would not have any influence on learning.

An example of a learning rate update is shown in Figure 1
for ηC; an analogous method is used for ηI. A random number
within a range (45-55 in this example) is chosen as the
threshold. As the network works through examples from the
dataset, the number of correct responses is counted. Then, once
this number reaches the threshold, the learning rate is updated
with the constant rate of change (0.005 in this example), the
count is reset to zero, and a new threshold is randomly chosen
within the range. This update method continues for the entire
span of the experiment. In Figure 1, the learning rate was
decreased, but the update direction and magnitude varied in
the DVLR experiments, as described in the next section.

BASELINES AND THRESHOLDS

The section details the methodology used for determining
the best DVLR thresholds. Eventually it may be possible to
develop a theoretical approach; however currently the best way
to discover them is empirically with a series of experiments.
All experiments in this section included three trials to deter-
mine the average test accuracy, unless otherwise specified.

Two different baselines were utilized to evaluate the effec-
tiveness of DVLR. The Static-Simple (S-S) Baseline uses the

Fig. 2. Example of the learning rates obtained during one trial of the CIFAR-
10 CNN model experiments where η0C = 0.05, η0I = 0.01, VT175-225,
0.01% increase. For the CIFAR-10 CNN, DVLR performed the best when
ηC was static, and when ηI increased at a nearly constant rate.

Fig. 3. Example of the learning rates obtained during one trial of the CIFAR-
10 ResNet18 experiments where η0C = 0.05, VT5975-6025, 0.01% decrease,
and η0I = 0.01, VT395-405, 0.01% increase. DVLR performed best when ηC
increased, but its slope gradually decreased over time and when ηI decreased
at a nearly constant rate, demonstrating the different setup needed for the best
RNN experiment as compared to the best CNN experiment.

standard, simple learning rate, ηS, of normal gradient descent.
The Static-Dual (S-D) Baseline has two static learning rates:
the rate for correct responses, ηC, and the rate for incorrect
responses, ηI. The ideal learning rate for the S-S baseline was
determined empirically as shown in the first half of Table A.III
in the Appendix. To discover the static-dual (S-D) baseline,
two learning rates were tested around the ideal S-S rate at
various distances, as shown in the second half of Table A.III.

The following notation is used to specify each experiment:
The initial learning rate is specified as η0C = x and η0I = y. The
variable threshold is given as VT βL-βU, where βL is the lower
bound of the threshold and βU is the upper bound. Finally, the
constant rate of change (0.01% of the initial learning rate), and
the direction of change (increasing or decreasing) are specified.



TABLE I
ACCURACY OF DVLR ON FFNN AND CNN IN THE MNIST DOMAIN. THE RESULTS SUGGEST THAT DUAL LEARNING RATES IMPROVE SLIGHTLY OVER
SINGLE RATE, AND ADDING VARIABLE THRESHOLDS RESULTS IN FURTHER IMPROVEMENTS. THE DIFFERENCES ARE MORE PRONOUNCED WITH CNN,

SUGGESTING THAT DVLR SCALES WELL TO MORE COMPLEX ARCHITECTURES.

Feedforward Neural Network: Avg Train Avg Test p-value
Static-Single (S-S) Baseline, ηS = 0.05 99.726 98.127
Static-Dual (S-D) Baseline, ηC = 0.075, ηI = 0.025 99.948 98.245 0.154
DVLR Experiments:
ηC = 0.075, η0I = 0.025 VT67-72 0.01% inc 99.952 98.316 0.154
η0C = 0.075 VT4995-5005 0.01% inc, η0I = 0.025 VT195-205 0.01% dec 99.952 98.311 0.154
η0C = 0.075 VT9995-10005 0.01% inc, η0I = 0.025 VT195-205 0.01% inc 99.966 98.291 0.141

Convolutional Neural Network: Avg Train Avg Test p-value
Static-Single (S-S) Baseline, ηS = 0.01 95.000 98.320
Static-Dual (S-D) Baseline, ηC = 0.017, ηI = 0.003 95.503 98.590 0.196
DVLR Experiments:
η0C = 0.017 VT 495-505 0.01% inc, η0I = 0.003 VT 295-305 0.01% inc 95.738 98.777 0.034 *
η0C = 0.017 VT 495-505 0.01% inc, η0I = 0.003 VT 1995-2005 0.01% dec 95.732 98.744 0.032 *
η0C = 0.017 VT 495-505 0.01% inc, ηI = 0.003 95.786 98.740 0.025 *

After determining the ideal learning rates for the S-D
baseline, preliminary experiments were run where one of the
learning rates was changing and the other remained static,
as shown in Table A.IV. In this manner, it was possible to
determine what a good variable threshold is for one of the
learning rates, before complicating the process by changing
both learning rates at once. To further simplify the process, the
rate of change was always 0.01% of the original learning rate,
and thus the different variable thresholds could be compared
easily.

Next, the best thresholds from the preliminary one-static,
one-variable experiments were combined to create the DVLR
experiments, as shown in Table A.V and Table A.VI. All
combinations were experimented with to determine which par-
ticular combination performed the best. Finally, as an optional
step, the best thresholds from the DVLR experiments were
tested with all increasing/decreasing possibilities, as shown in
Table A.VII.

After all preliminary experiments were completed, the best
baselines and the five experiments with the highest accuracy
scores from both the one-static, one-variable tests and the
DVLR tests were run over ten trials, as shown in Table A.VIII.

This process is the complete methodology used in this paper
to determine the variable thresholds for the MNIST FFNN,
MNIST CNN and CIFAR-10 CNN experiments. To save time,
once it was discovered that the CIFAR-10 RNN had the same
ideal S-S and S-D baselines as the CIFAR-10 CNN, the best
DVLR thresholds from the CIFAR-10 CNN experiments were
also used for CIFAR-10 RNN experiments.

These preliminary experiments were time consuming, but
necessary. The conclusion was that MNIST FFNN and CIFAR-
10 CNN perform better when ηC is static or changes much
slower than ηI. However, the MNIST CNN did not follow this
general rule. To further demonstrate how the different variable
thresholds affect the learning rates over time, example learning
rates from one trial of the best CIFAR-10 CNN are shown in
Figure 2 and example learning rates from one trial of the best
CIFAR-10 RNN are shown in Figure 3. There are similarities

between the two figures such as ηC starting at a greater value
than ηI and ηI increasing throughout the trial. However, no
general rule emerges that could be used to determine ideal
variable thresholds for a given network, and therefore more
research is needed to discover the best practices for DVLR.

RESULTS

The DVLR method was tested on two different databases:
MNIST [10] and CIFAR-10 [1], and three different types of
networks: a feedforward neural network (FFNN), a convolu-
tional neural network (CNN [2]), and a residual neural network
(RNN [9]). Experiments were run on networks that are best
suited for each database to get the best possible baselines
before experimenting with DVLR.

Setup

In the MNIST experiments, two architectures were tested.
The first one was an FFNN with 500 hidden nodes, RELU
activation function and batch size of 100. The second was a
CNN with two convolutional layers, two fully connected linear
layers, RELU activation function with dropout and a batch
size of 128. In the CIFAR-10 experiment, two architectures
were tested as well. The first one was a CNN with two
convolutional layers, pooling layer, three fully connected linear
layers, RELU activation function, and a batch size of 10. The
second was a ResNet18 network that contains 16 convolutional
layers, two pooling layers and utilizes a stride size of two,
RELU activation function and batch size of 128. The MNIST
FFNN, MNIST CNN and CIFAR-10 CNN experiments used
the Adagrad optimizer while the CIFAR-10 RNN used the
SGD optimizer. All networks were trained with cross-entropy
loss.

The goal of the experiments was not necessarily to improve
state-of-the-art, but to evaluate DVLR broadly. These archi-
tectures were thus chosen as fundamental versions of standard
neural network architectures. Also, relatively small versions
of them were used to reduce computing time. It was therefore
possible to run ten trials for every experiment and determine



TABLE II
ACCURACY OF DVLR ON CNN AND RNN IN THE CIFAR-10 DOMAIN. THE RESULTS AGAIN SUGGEST THAT DUAL LEARNING RATES IMPROVE

SLIGHTLY OVER SINGLE RATE, AND ADDING VARIABLE THRESHOLDS RESULTS IN FURTHER IMPROVEMENTS. THE DIFFERENCES ARE LESS PRONOUNCED
ON RNN, PRESUMABLY BECAUSE THE RATIOS FROM CNN WERE USED FOR IT INSTEAD OF CUSTOMIZING THEM TO THE ARCHITECTURE. HOWEVER,

ALTHOUGH THE DIFFERENCES ARE SMALL, THEY ARE REMARKABLY CONSISTENT ACROSS ALL COMPARISONS, SUGGESTING THAT DVLR IS A
PROMISING TECHNIQUE FOR IMPROVING NEURAL NETWORK TRAINING.

Convolutional Neural Network: Avg Train Avg Test p-value
Static-Single (S-S) Baseline, ηS = 0.03 66.326 61.139
Static-Dual (S-D) Baseline, ηC = 0.05, ηI = 0.01 68.062 62.434 0.361
DVLR Experiments:
ηC = 0.05, η0I = 0.01 VT175-225, 0.01% inc 70.292 63.285 0.126
η0C = 0.05 VT6975-7025 0.01% inc, η0I = 0.01 VT395-405 0.01% inc 69.706 63.214 0.171
η0C = 0.05 VT5975-6025 0.01% dec, η0I = 0.01 VT395-405 0.01% inc 69.552 63.158 0.163

Residual Neural Network: Avg Train Avg Test p-value
Static-Single (S-S) Baseline, ηS = 0.03 91.416 72.727
Static-Dual (S-D) Baseline, ηC = 0.05, ηI = 0.01 92.066 74.353 0.391
DVLR Experiments:
η0C = 0.05 VT5975-6025 0.01% dec, η0I = 0.01 VT395-405 0.01% inc 96.085 74.957 0.334
η0C = 0.05 VT6975-7025 0.01% inc, η0I = 0.01 VT395-405 0.01% inc 90.319 74.637 0.402
ηC = 0.05, η0I = 0.01 VT195-205, 0.01% inc 92.173 74.387 0.371

statistical significance against the S-S baseline. All code and
original data can be found at https://github.com/e-liner/DVLR.

MNIST FFNN Results

The average training values, testing values and t-test p-
values of various DVLR experiments compared with the S-S
baseline can be found in the first half of Table I. The differ-
ences were small, and p-values are in the 0.15 range, so the
results are suggestive only. However, many different variable
thresholds were discovered that suggest improved accuracy
over the baselines. The best performance was achieved when
ηC was either static or slightly increasing, and when ηI was
increasing or decreasing at a much higher rate.

It is important to note that the S-D baseline and the top three
DVLR experiments performed better than the S-S baseline.
This result demonstrates that the dual learning rate method
can potentially increase the accuracy of a simple feedforward
network. Additionally, all three DVLR experiments performed
better than both the S-S and S-D baselines, which demon-
strates the potential value of the variable threshold update
method.

MNIST CNN Results

The average training values, testing values and t-test p-
values of various DVLR experiments compared with the S-
S baseline can be found in the second half of Table I. The
p- value for the S-D baseline is 0.196, however all DVLR
experiments were found to be statistically significantly better
than the baseline. One particularly powerful variable threshold
was discovered for ηC that improved significantly over the
baseline. The thresholds for ηI vary widely, and utilize variable
thresholds that are static, slightly changing, and changing at a
much higher rate.

These results suggest that the dual learning rate method
provides an advantage compared to a standard single learning
rate, but that both the dual learning rate method and vari-
able threshold update method had to be utilized to obtain a

significant increase. The improvements of the MNIST CNN
results are more pronounced than the MNIST FFNN results,
suggesting that DVLR should scale up well to more complex
architectures.

The average training values, testing values, and t-test p-
values of various DVLR experiments compared with the S-S
baseline can be found in the first half of Table II. The S-D
baseline was not found to be significantly different from S-
S, however the top three DVLR experiments were close to
significant in the p = 0.12 to 0.17 range. Many different
variable thresholds were found that resulted in potentially
improved accuracy from the baselines. The ηC performed best
when it was either static or slightly changing, and ηI performed
best when it was increasing at a much higher rate, similar to
the MNIST FFNN results.

In CIFAR-10, the CNN accuracy increases more than in
MNIST, suggesting that the method scales well to larger
datasets. DVLR also improves upon the S-D baseline, sug-
gesting that the dual learning rate method is stronger when
used with the variable threshold update method.

CIFAR-10 RNN Results

The average training values, testing values, and t-test p-
values of various DVLR versions compared with the S-S
baseline can be found in the second half of Table II. With
this architecture, neither the S-D baseline, nor the DVLR
experiments were found to be significantly different from S-
S. This result may be due to the lack of empirical testing
to determine the best variable thresholds for this particular
network. More specifically, in the interest of time, once it was
discovered that the CIFAR-10 RNN had the same ideal S-
S and S-D baselines as the CIFAR-10 CNN, the best variable
ratios from the CIFAR-10 CNN experiments were also used on
the CIFAR-10 RNN. Using the the full methodology to obtain
new variable ratios may be necessary to obtain significantly
better results.



DISCUSSION AND FUTURE WORK

Statistical difference is rarely estimated with modern deep
learning architectures due to the excessive computational cost:
Training of a full-scale model on a large dataset can have a
carbon footprint of several cars [6]. The approach taken in
this paper was to scale down the models and the datasets
to the level where such repetitions could be done, in order
to evaluate the DVLR technique more comprehensively. Al-
though the improvements are small and not always statistically
significant, they are remarkably consistent: across all four
comparisons, S-D is always better than S-S, and across all
twelve comparisons, DVLR is always better than S-D. The
experiments thus provide substantial evidence that the DVLR
technique is effective. Because the comparisons span multiple
architectures and multiple domains, they suggest that DVLR
can be used widely with neural networks that use gradient
descent as their update method. Also, as the networks and
domains increase in size and complexity, DVLR is likely to
have a more pronounced effect. It may therefore constitute a
robust and general technique for the modern machine learning
toolbox.

A significant aspect of DVLR is its Behavioral Psychology
motivation, and there are intriguing connections to neuro-
science as well. In the brain, amygdala and ventral stria-
tum work together to facilitate reinforcement learning [3].
Amygdala has a faster learning rate than the ventral striatum;
having multiple neural systems learn at different rates may thus
facilitate more effective learning in dynamic environments. It
may be possible to analyze the biological data on learning rates
in more depth, and refine the variable learning rate methods
of DVLR further.

The experiments in this paper suggest that DVLR may be
used to improve performance of a broad range of architectures.
In further research this conclusion can be extended in several
ways. First, instead of using the variable thresholds from the
CIFAR-10 CNN in CIFAR-10 RNN, it could be worthwhile
to discover the ideal variable thresholds for the RNN version
directly, and thus determine how much performance can be
improved with such a customization. Second, DVLR could be
applied to more complex architectures to determine whether it
can improve the state-of-the-art. Third, the discovery of ideal
variable thresholds could be automated by creating a script
that encapsulates the proposed methodology, thus defining best
practices. Fourth, these practices could possibly be formalized
in a theoretical approach that can determine ideal variable
thresholds for a given base network.

CONCLUSION

DVLR is a new training technique for neural networks that
is motivated by behavioral psychology. DVLR is a combi-
nation of two contributions. First, it takes advantage of dual
learning rates, ηC and ηI, that correspond to the network’s
correct and incorrect responses. Second, it demonstrates that
their impact is increased with variable threshold update sched-
ules. DVLR was tested on feedforward networks and convolu-
tional networks with the MNIST dataset and on convolutional

networks and residual networks with the CIFAR-10 dataset.
The experiments suggest a consistent improved accuracy on
all three network types over both domains. Moreover, it was
found to be more powerful in larger architectures and datasets,
making it a promising technique for the general machine
learning toolbox.

REFERENCES

[1] A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images.
University of Toronto, 2012.

[2] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan
and S. Chintala, ”PyTorch: An Imperative Style, High-Performance
Deep Learning Library,” In Advances in Neural Information Processing
Systems 32, 2019, pp. 8024–8035. Curran Associates, Inc.

[3] B. Averbeck, ”Amygdala and ventral striatum population codes imple-
ment multiple learning rates for reinforcement learning”, 2017 IEEE
Symposium Series on Computational Intelligence (SSCI), Honolulu, HI,
2017, pp. 1-5, doi: 10.1109/SSCI.2017.8285354.

[4] C. Kim, S. Cho, and C. Lee, ”Fast competitive learning with classified
learning rates for vector quantization”, Signal Processing: Image Com-
munication, Volume 6, Issue 6, 1995, pp. 499-505, ISSN 0923-5965.

[5] J. de Jesus Rubio, ”SOFMLS: Online Self-Organizing Fuzzy
Modified Least-Squares Network,” in IEEE Transactions on
Fuzzy Systems, vol. 17, no. 6, pp. 1296-1309, Dec. 2009, doi:
10.1109/TFUZZ.2009.2029569.

[6] E. Strubell, A. Ganesh, and A. Mccallum. ”Energy and Policy Consider-
ations for Deep Learning in NLP”. 2019, 3645-3650. 10.18653/v1/P19-
1355.

[7] H. J. Kelley, ”Gradient theory of optimal flight paths”, Ars Journal,
30(10), 1960, pp. 947–954.

[8] L. N. Smith, ”Cyclical Learning Rates for Training Neural Net-
works,” 2017 IEEE Winter Conference on Applications of Com-
puter Vision (WACV), Santa Rosa, CA, 2017, pp. 464-472, doi:
10.1109/WACV.2017.58.

[9] K. He, X. Zhang, S. Ren and J. Sun, ”Deep Residual Learning for
Image Recognition,” 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-778, doi:
10.1109/CVPR.2016.90.

[10] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010.
[11] C. Sherrick, C. Ferster and B. Skinner, Schedules of reinforcement.

Appleton-Century-Crofts, 1957. https://doi.org/10.1037/10627-000
[12] E. Thorndike, Animal Intelligence: Experimental Studies, 1911.

APPENDIX

The tables below give details on preliminary experiments
for configuring the learning rates and threshold ranges for the
CIFAR-10 CNN experiments. The MNIST FFNN and MNIST
CNN experiments were also determined in this manner.



TABLE III
CIFAR-10 CNN BASELINE

Static-Single (S-S) Baselines: Test Avg.
ηS = 0.0001 27.800
ηS = 0.0005 36.873
ηS = 0.001 42.820
ηS = 0.005 52.967
ηS = 0.01 59.493
ηS = 0.02 60.617
ηS = 0.03 62.207
ηS = 0.04 61.907
ηS = 0.05 59.947
ηS = 0.06 58.950

Static-Dual (S-D) Baselines: Test Avg.
ηC = 0.035, ηI = 0.025 61.897
ηC = 0.04, ηI = 0.02 61.270
ηC = 0.05, ηI = 0.01 63.560
ηC = 0.025, ηI = 0.035 61.030
ηC = 0.02, ηI = 0.04 60.527
ηC = 0.01, ηI = 0.05 56.047
ηC = 0.05, ηI = 0.03 60.667
ηC = 0.03, ηI = 0.01 62.330
ηC = 0.05, ηI = 0.02 61.010
ηC = 0.04, ηI = 0.03 61.630

TABLE IV
CIFAR-10 CNN ONE STATIC, ONE VARIABLE TESTS

Method: Test Avg.
ηC = 0.05, η0I = 0.01 VT95-105, 0.01% inc 60.243
ηC = 0.05, η0I = 0.01 VT195-205, 0.01% inc 63.377
ηC = 0.05, η0I = 0.01 VT150-250, 0.01% inc 62.567
ηC = 0.05, η0I = 0.01 VT175-225, 0.01% inc 64.120
ηC = 0.05, η0I = 0.01 VT295-305, 0.01% inc 62.287
ηC = 0.05, η0I = 0.01 VT495-505, 0.01% inc 62.837
ηC = 0.05, η0I = 0.01 VT995-1005, 0.01% inc 63.097
ηC = 0.05, η0I = 0.01 VT1150-1350, 0.01% inc 62.503
ηC = 0.05, η0I = 0.01 VT95-105, 0.01% dec 61.853
ηC = 0.05, η0I = 0.01 VT195-205, 0.01% dec 61.023
ηC = 0.05, η0I = 0.01 VT295-305, 0.01% dec 63.247
ηC = 0.05, η0I = 0.01 VT495-505, 0.01% dec 62.257
ηC = 0.05, η0I = 0.01 VT2475-2525, 0.01% dec 63.170
η0C = 0.05 VT95-105 0.01% dec, ηI = 0.01 53.063
η0C = 0.05 VT195-205 0.01% dec, ηI = 0.01 53.343
η0C = 0.05 VT295-305 0.01% dec, ηI = 0.01 54.357
η0C = 0.05 VT495-505 0.01% dec, ηI = 0.01 54.480
η0C = 0.05 VT1475-2525 0.01% dec, ηI = 0.01 60.777
η0C = 0.05 VT3975-4075 0.01% dec, ηI = 0.01 63.270
η0C = 0.05 VT5975-6025 0.01% dec, ηI = 0.01 63.157
η0C = 0.05 VT6975-7025 0.01% dec, ηI = 0.01 62.907
η0C = 0.05 VT95-105 0.01% inc, ηI = 0.01 49.017
η0C = 0.05 VT195-205 0.01% inc, ηI = 0.01 55.717
η0C = 0.05 VT295-305 0.01% inc, ηI = 0.01 58.117
η0C = 0.05 VT495-505 0.01% inc, ηI = 0.01 60.107

TABLE V
CIFAR-10 CNN BEST FROM ONE STATIC, ONE VARIABLE TESTS

Best ηI changes: Test Avg.
ηC = 0.05, η0I = 0.01 VT175-225, 0.01% inc 64.120
ηC = 0.05, η0I = 0.01 VT195-205, 0.01% inc 63.377
ηC = 0.05, η0I = 0.01 VT295-305, 0.01% dec 63.247
ηC = 0.05, η0I = 0.01 VT2475-2525, 0.01% dec 63.170
ηC = 0.05, η0I = 0.01 VT995-1005, 0.01% inc 63.097
ηC = 0.05, η0I = 0.01 VT495-505, 0.01% inc 62.837
ηC = 0.05, η0I = 0.01 VT150-250, 0.01% inc 62.567
ηC = 0.05, η0I = 0.01 VT1150-1350, 0.01% inc 62.503

Best ηC changes: Test Avg.
η0C = 0.05 VT3975-4075 0.01% dec, ηI = 0.01 63.270
η0C = 0.05 VT5975-6025 0.01% dec, ηI = 0.01 63.157
η0C = 0.05 VT6975-7025 0.01% dec, ηI = 0.01 62.907

TABLE VI
CIFAR-10 CNN DVLR TESTS

Method: Test Avg.
η0C = 0.05 VT3975-4075 dec, η0I = 0.01 VT175-225 inc 60.597
η0C = 0.05 VT3975-4075 dec, η0I = 0.01 VT195-205 inc 61.703
η0C = 0.05 VT3975-4075 dec, η0I = 0.01 VT295-305 dec 62.650
η0C = 0.05 VT3975-4075 dec, η0I = 0.01 VT395-405 inc 62.653
η0C = 0.05 VT5975-6025 dec, η0I = 0.01 VT175-225 inc 62.790
η0C = 0.05 VT5975-6025 dec, η0I = 0.01 VT195-205 inc 63.157
η0C = 0.05 VT5975-6025 dec, η0I = 0.01 VT295-305 dec 61.850
η0C = 0.05 VT5975-6025 dec, η0I = 0.01 VT395-405 inc 63.943
η0C = 0.05 VT6975-7025 dec, η0I = 0.01 VT175-225 inc 62.087
η0C = 0.05 VT6975-7025 dec, η0I = 0.01 VT195-205 inc 63.237
η0C = 0.05 VT6975-7025 dec, η0I = 0.01 VT295-305 dec 61.283
η0C = 0.05 VT6975-7025 dec, η0I = 0.01 VT395-405 inc 63.187

TABLE VII
CIFAR-10 CNN DVLR TESTS, ALL DIRECTIONS

Method: Test Avg.
η0C = 0.05 VT5975-6025 dec, η0I = 0.01 VT395-405 inc 63.158
η0C = 0.05 VT5975-6025 dec, η0I = 0.01 VT395-405 dec 61.724
η0C = 0.05 VT5975-6025 inc, η0I = 0.01 VT395-405 inc 62.324
η0C = 0.05 VT5975-6025 inc, η0I = 0.01 VT395-405 dec 62.517
η0C = 0.05 VT6975-7025 dec, η0I = 0.01 VT395-405 inc 63.092
η0C = 0.05 VT6975-7025 dec, η0I = 0.01 VT395-405 dec 62.402
η0C = 0.05 VT6975-7025 inc, η0I = 0.01 VT395-405 inc 63.214
η0C = 0.05 VT6975-7025 inc, η0I = 0.01 VT395-405 dec 62.053

TABLE VIII
CIFAR-10 CNN BASELINES AND EXPERIMENTS, 10-SET TRIALS

Method Test Avg.
Static-Singular S-S Baseline ηS = 0.03 61.139
Static-Dual (S-D) Baseline ηC = 0.05, ηI = 0.01 62.434
ηC = 0.05, η0I = 0.01 VT175-225 inc 63.285
η0C = 0.05 VT6975-7025 inc, η0I = 0.01 VT395-405 inc 63.214
η0C = 0.05 VT5975-6025 dec, η0I = 0.01 VT395-405 inc 63.158
ηC = 0.05, η0I = 0.01 VT195-205, inc 63.151
η0C = 0.05 VT6975-7025 dec, η0I = 0.01 VT395-405 inc 63.092


