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ABSTRACT

Traditional evolved virtual creatures [12] are actuated using
unevolved, uniform, invisible drives at joints between rigid
segments. In contrast, this paper shows how such conven-
tional actuators can be replaced by evolvable muscle drives
that are a part of the creature’s physical structure. Such a
muscle-drive system replaces control intelligence with mean-
ingful morphological complexity. For instance, the experi-
ments in this paper show that control intelligence sufficient
for locomotion or jumping can be moved almost entirely
from the brain into the musculature of evolved virtual crea-
tures.

This design is important for two reasons: First, the con-
trol intelligence is made visible in the purposeful develop-
ment of muscle density, orientation, attachment points, and
size. Second, the complexity that needs to be evolved for the
brain to control the actuators is reduced, and in some cases
can be essentially eliminated, thus freeing brain power for
higher-level functions. Such designs may thus make it pos-
sible to create more complex behavior than would otherwise
be achievable.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning—connectionism
and neural nets; I.6.8 [Simulation and Modeling]: Types
of Simulation—animation; I.2.1 [Artificial Intelligence]:
Applications and Expert Systems—games; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—an-
imation
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Figure 1: A creature evolved for jumping (Section 4.2.5)
using the method described in this paper, demonstrating
the morphological complexity that results from replacing
implicit joint-motor drives with an evolvable musculature.
As with all other examples in this work, the physical intelli-
gence embodied by these muscle drives enables this creature
to perform a useful task essentially without control intelli-
gence (Section 3.2). Video of this and all other results can
be viewed at http://youtu.be/csZ9JZcuBfE.

1. INTRODUCTION
Morphological complexity is an important goal for evolved

virtual creatures (or EVCs; Figure 1) [2]. How can it be
increased to approach the morphological complexity of crea-
tures evolved in the real world? Traditional segmented EVCs
[12, 3, 10, 8] achieve some measure of complexity through the
placement, dimensions, and types of their rigid segments and
joints. More recently, creatures with morphology based on
implicit definitions such as CPPNs and gene regulatory net-
works [2, 6, 4] have demonstrated a different–and arguably
greater morphological complexity, albeit based on indirect
developmental mechanisms. In contrast, this paper demon-
strates that it is possible to increase the complexity of the
rigid-bodied model directly by employing a more advanced
approach to actuation.

In a conventional EVC, actuation is provided by implicit
joint motors. Such motors are completely uniform, i.e.,
present at every free axis of every joint, and fixed over time.



They are also typically unseen, perhaps because their uni-
formity would provide little reward for making them visible.

However, our recent work [9] has demonstrated that EVCs
can also be successfully actuated by a simple form of sim-
ulated muscle–a variable-strength linear spring attached to
two segments across a joint. Although, in that implemen-
tation, the muscles were controlled by a complex brain, one
particularly interesting property of such drives is that they
do not actually require this control complexity. As will be
shown in this paper, these muscles are able to embody and
replace a significant portion of the control intelligence that
would normally be provided by the creature’s brain. In fact,
creatures that are almost entirely without control intelli-
gence can still develop sufficient physical intelligence (in the
form of their evolved musculature) to perform rudimentary,
yet useful tasks, such as jumping and simple locomotion.

One particularly beneficial result of this shifting of intelli-
gence from brain to body is the fact that, where the control
intelligence was externally invisible, the physical intelligence
that replaces it is visible in the morphological complexity of
the muscles. And although the muscle-drive model described
in this work is in some ways simple, it nevertheless commu-
nicates meaningful complexity through its evolved charac-
teristics: the density or lack of muscles at a joint, their size
(with rendered thickness indicating strength), orientation
(indicating direction of force application), and their attach-
ment points.

In addition, this effective obviation of control logic could
ultimately prove useful as an evolutionary robotics applica-
tion if mechanisms similar to the simple simulated muscles
used here can be implemented in the real world, especially
where control intelligence is at a premium. Robots that
need to be particularly small, for example, might benefit
from replacing a relatively complex controller with a prop-
erly evolved actuator musculature.

Even traditional EVC applications could benefit from this
easing of the demands on brainpower. By removing the cog-
nitive load that can now be borne by the muscle drives, this
implementation frees the brain to devote equivalent compu-
tational power to achieving more complex behavioral goals.

In the balance of this paper, this new step on the biologi-
cally inspired path to meaningful morphological complexity
and reduced control loads is described, and successful results
are presented and evaluated.

2. BASIC EVC SYSTEM
The basic EVC system described in this paper is in large

part built on a traditional EVC framework [12, 3, 7, 10].
This section briefly sets out the components of this system,
which—while not the primary focus of this paper—are nev-
ertheless fundamental.

2.1 Evolutionary Algorithm
The specifics of the evolutionary algorithm are largely

conventional, making use of elitism, fitness-proportionate
selection, and rank selection [11]. In addition, some de-
gree of shaping [13] is employed, as described in Sections 4.2
and 4.3. Fitness is evaluated in a physically simulated vir-
tual environment implemented with NVIDIA PhysX.

New individuals are created through crossover followed
by mutation. The directed graph genotypes used (see Sec-
tion 2.2) are sufficiently tree-like that crossover can be im-
plemented by choosing a random point in each of the parent

(a) Simple topology.

(b) Multiple edges for repeated substructures.

(c) Reflexive edge for recursive structure.

(d) Two reflexive edges.

(e) Multiple and reflexive edges together.

Figure 2: Hand-designed genotype/phenotype pairs (after
those of Sims [12]) demonstrate the encoding power of EVC
systems.

graphs and swapping sub-trees at those points. This pro-
duces two child graphs, one of which is randomly discarded.
Mutation mechanisms and probabilities vary by attribute
type.

2.2 Morphology
As with most EVCs, creature morphology is described

by a graph-based genotype, with graph nodes representing
body segments, and graph edges representing joints between
segments. By starting at the root and traversing the graph’s
edges, the phenotype is expressed. Reflexive edges as well
as multiple edges between the same node pair are allowed,
making it possible to define recursive and repeated body
substructures easily, as illustrated in Figure 2. In addition,
reflection of body parts as well as body symmetry are made
readily available to evolution.

In the implementation of EVCs in this paper, all PhysX
primitives are made available for use as body segments:
boxes, spheres, and capsules. Joints between segments may
be of most of the types offered by PhysX, specifically: fixed,
revolute, spherical, prismatic, and cylindrical. (Note that,



consistent with this paper’s focus on muscle drives, the joints
themselves are omitted from all renderings.) In contrast to
the typical technique of separately evolving explicit joint
limits, most limitations on joint movement are provided im-
plicitly by creature structure through natural collisions be-
tween adjacent segments.

3. EVOLVABLE MUSCULATURE
The evolvable musculature described in this section makes

it possible to transfer control intelligence to physical intelli-
gence, which is the focus of this paper. First, the implemen-
tation of the muscle drives themselves is described, then the
extremely minimal control that it enables is specified.

Figure 3: Evolvable musculature, with example muscle
body (a) and attachment point (b) indicated. The density
of muscles at a joint, their thickness (indicating strength
and activation), orientation, and attachment points all con-
tribute meaningfully to the creature’s morphological com-
plexity.

3.1 Muscle Drives
The muscle drives are implemented as simple linear springs.

Each muscle (Figure 3(a)) is completely described by its at-
tachment points and maximum strength. An attachment
point (Figure 3(b)) may be placed anywhere on a rigid body
segment, and each pair of attachment points must exist
across a joint connecting two such segments. Muscles may
be added and removed by evolution, and their attachment
points and maximum strength are evolvable. During simula-
tion, a muscle’s activation (in [0,1]) determines what portion
of its maximum strength that muscle will apply.

The muscle is implemented using a standard PhysX joint
called a distance joint, modifying its attributes so that it
acts as a simple linear spring. A PhysX distance joint al-
lows the specification of a maximum distance between two
attachment points, and this maximum is enforced by spring-
like behavior when exceeded. By setting the distance joint’s
maximum distance to zero, only the spring-like enforcements
are applied. The spring constant is adjusted during simula-
tion to reflect the tension that results from combining the
muscle’s activation with its maximum force value. Note that

this implementation–with numerous joints of varying types
between a single pair of rigid body segments–is probably not
typical for PhysX, and initial results with normal settings
resulted in simulations that were not sufficiently stable. All
experiments presented in this paper rely on a much smaller
simulation step–1/240th of a second–as well as other config-
uration settings, all of which can significantly affect simula-
tion efficiency.

From the three evolvable properties of each muscle (two
attachment points and the maximum strength), as well as
the fact that muscles may be added or removed at any joint,
a great degree of visually obvious meaningful morphologi-
cal complexity emerges. This design also has the potential
to embody sufficient physical intelligence to perform basic
behaviors with only a trivial degree of control intelligence
required, as will be described next.

(a) Jump activation (single square pulse).

(b) Locomotion activation (repeating square wave).

Figure 4: With the muscle drives’ capacity for physical in-
telligence, simple but useful behaviors can be performed ef-
fectively without control intelligence. Here, the fixed global
muscle activations that replace the typical EVC’s relatively
complex brain for all experiments in this work are illus-
trated.

3.2 Minimal Control
As a demonstration of approximately how much physi-

cal intelligence the evolvable musculature can embody, the
examples in this paper all function almost entirely without
control intelligence (Figure 4).



Figure 5: For comparison, this figure illustrates a body and
brain from one of Sims’ conventional EVCs–this one evolved
for locomotion [12]. Note the different balance of control and
physical intelligence, with greater complexity hidden in the
brain, while the morphology is less elaborate.

In a conventional evolved virtual creature, control intel-
ligence is implemented as a neural network [10] or a di-
rected graph of simple computing nodes [12], as shown in
Figure 5. In the creatures in this paper, far less is required.
For these new creatures, the typical brain is replaced by
a single activation function, which is applied to all muscles
simultaneously. This activation function was arbitrarily cho-
sen and fixed before each experiment began, being neither
evolved nor hand-tuned for suitability. These functions (a
half-second unit-amplitude square pulse for jumping, and a
1-Hz unit-amplitude square wave for locomotion) are illus-
trated in Figure 4.

4. EXPERIMENTS
In this section, the results of two experiments are pre-

sented, in which creatures evolve body and musculature for
the tasks of jumping and locomotion. In each case, the
potential for physical intelligence in the muscle drives ef-
fectively obviates control intelligence and also demonstrates
the muscle drives’ potential to exhibit meaningful morpho-
logical complexity. All of the results described here can be
seen in motion in the accompanying video1.

4.1 Experimental Setup
For all of the results in this paper (Sections 4.2 and 4.3),

a typical population size was on the order of 100. Between
221 and 500 generations were used to obtain all of the jump
results shown, and between 1000 and 2000 generations were
used for the locomotion results. In both the locomotion
and jumping tasks, 10 copies of the experiment would be
executed in parallel, each with its own random seed. The
champions of these 10 runs typically form a diverse collec-
tion of successful results, although certain variations of mor-

1http://youtu.be/csZ9JZcuBfE

phological themes tend to recur. Illustrative examples are
presented in the subsections below.

The variety demonstrated in these results suggests fertile
ground for the future development of new, more challenging
tasks, as discussed in Section 5.

4.2 Jump Results
The following five subsections illustrate the various so-

lutions found for a simple jumping task. For this skill,
fitness is defined using a number of intermediate shaping
steps, resulting in a sequence of fitness goals like the one be-
low. Each stage is complete when a sufficient fraction of the
population–on the order of 5%–has achieved full fitness. At
that point, that percentage having full fitness is replicated
to fill a new population, and evolution continues in the next
stage.

A useful concept in defining these goals is the axis-aligned
bounding box (AABB)–particularly its top and bottom, which
describe the creature’s highest and lowest extents. Both
static (i.e., at rest) and highest (as measured throughout a
single fitness evaluation) AABB measures are employed.

1. static AABB top
(to encourage a static size requiring multiple segments)

2. static AABB top + highest AABB top
(to encourage muscles and upward action, while main-
taining static size)

3. highest AABB top + highest AABB bottom
(to encourage ground clearance, while maintaining up-
ward action)

For all jump evolution experiments, control consists solely
of the single fixed global activation signal depicted in Fig-
ure 4(a), with all other required intelligence residing entirely
within the body, including the evolvable musculature.

In each result illustration (Figures 6-10), the left and right
sides show the creature before and during its jump, respec-
tively.

4.2.1 Jump Result 1

Figure 6: Two-armed swing (repeatable).

The creature in Figure 6 adapts its morphology to the
given minimal control signal by developing heavy arms that
are swung up by appropriately placed muscles. The upward
momentum of these limbs is then sufficient to make the crea-
ture airborne.

Foreshadowing a common technique observed in the lo-
comotion results, this creature happens to end its jump in
the same configuration from which it began, demonstrating
a potential for repeated action.



4.2.2 Jump Result 2

Figure 7: Two-armed swing (non-repeatable).

The creature in Figure 7 applies the same basic limb-
swinging strategy to a different morphology, resulting in a
strong jump that does not happen to end in the same pose
from which it began.

4.2.3 Jump Result 3

Figure 8: One-armed swing.

The strategy in Figure 8 is similar to that of the previ-
ous two, but it works here with a single limb instead of a
symmetrical pair of limbs. As with Jump Result 1, this
creature’s consistent begin and end poses foreshadow the
successful technique seen in the locomotion results–in this
case matching almost exactly the morphology and behavior
of Locomotion Result 2.

4.2.4 Jump Result 4

Figure 9: Four-legged push.

The creature in Figure 9 employs the far less common
(for this experiment) technique of pushing off the ground
rather than swinging limbs up. This bias may result from
the particular method of fitness shaping used for this skill,
in which an initial upward extension of the creature’s axis-
aligned bounding box is rewarded as an intermediate goal
on the way to a true jumping behavior.

4.2.5 Jump Result 5

Figure 10: Complex-arm swing.

In Figure 10–the most morphologically elaborate of the
jump results–a particularly complex collection of segments,
joints, and muscles is applied to the work of swinging heavy
arms up to induce a successful leap. (See Figure 1 for a more
detailed illustration.)

4.3 Locomotion Results
In this section, results from a locomotion experiment are

presented, in which the single fixed square-pulse control sig-
nal of Figure 4(a) was replaced with the repeating fixed
square-wave signal of Figure 4(b), and the ultimate fitness
function was changed from jump height to distance trav-
eled in a given amount of time. A sequence of fitness goals
like the one below–with the first three the same as in the
jump results–is used for shaping. Note that in the fourth
step, only a modest amount of horizontal travel is required
for success. Once that initial degree of locomotion has been
established, and the final stage begins, the previous require-
ment for jumping fitness is removed, and evolution is allowed
to focus solely on optimizing horizontal travel towards an ef-
fectively unlimited distance goal.

1. static AABB top

2. static AABB top + highest AABB top

3. highest AABB top + highest AABB bottom

4. highest AABB bottom + (modest) horizontal
distance traveled
(to encourage locomotion while ground clearance (jump-
ing) is maintained)

5. horizontal distance traveled (unlimited)
(to optimize locomotion alone once it has begun to
develop.)

In each of the following eight examples, the left image is a
closeup of the creature with muscles relaxed (as during the
trough of the activation square wave), and the right image
depicts the creature with muscles activated, during locomo-
tion, with approximate direction of movement indicated by
the arrow.



4.3.1 Locomotion Result 1

Figure 11: Double front-armed swing hop.

In Figure 11, the square-wave activation of muscles is used
to swing the front limbs up, accumulating momentum which
produces forward translation during repeated jumps.

4.3.2 Locomotion Result 2

Figure 12: Single front-armed swing hop.

With morphology and action very similar to that of Jump
Result 3, the creature in Figure 12 also employs a repeat-
ing forward-translating jump for simple but highly effective
locomotion.

4.3.3 Locomotion Result 3

Figure 13: Front-armed swing step.

The mode of locomotion of the creature in Figure 13 is
surprisingly complex and subtle, given the abrupt simplicity
of the global activation signal. In a two-stage sequence of
actions, this creature swings front legs up, which causes the
middle box segments first to tip forward, then step ahead,
pulling the back limbs along with them.

4.3.4 Locomotion Result 4

Figure 14: Delta wheelbarrow.

The creature in Figure 14 employs a dense concentration
of muscles at its central joints to produce upward and for-
ward momentum, which results in a wheelbarrowing forward
slide.

4.3.5 Locomotion Result 5

Figure 15: Front-hinged swing drag.

In Figure 15, muscles sharply raise forward segments that
are hinged so as to provide a lifting and forward-moving im-
pulse, which drags the stabilizing rear legs along the ground.

4.3.6 Locomotion Result 6

Figure 16: Square wheelbarrow.

In Figure 16, a different morphology employs the same
basic technique as Locomotion Result 4 to again produce a
sliding wheelbarrow-like forward movement.



4.3.7 Locomotion Result 7

Figure 17: Complex swing step.

In Figure 17, the most morphologically complex of the
locomotion results, one cluster of segments forms a stable
base, while another such cluster is swung up to produce an
elegant raise-tip-and-step sequence of actions, resulting in
forward motion.

4.3.8 Locomotion Result 8

Figure 18: High hop.

In one of the simplest yet most effective locomotion results
(Figure 18), the creature uses clusters of strong muscles to
swing up heavy limbs, lifting its comparatively small root
segment in a high-jumping locomotive technique.

5. DISCUSSION AND FUTUREWORK
It is important to note that the claimed benefits of the

evolved muscle drives–removing a measure of the burden
from control intelligence and embodying that intelligence as
functional morphological complexity–are not expected to be
limited to this particular form of adaptable drive. Any suffi-
ciently inhomogeneous evolvable drive system should be able
to accomplish the same goal. For example, if traditional
EVC joint-motor drives had evolvable strengths, a similar
transfer of intelligence from brain to body should be possi-
ble. The increase in morphological complexity in that case
might be smaller (perhaps variable motor sizes displayed at
a joint, rather than the varied number, orientation and at-
tachment points exhibited by muscle drives), but still useful.

Another important point is that the work presented here
is intended to establish that this evolvable musculature can
embody some useful degree of control complexity, but does
not yet include a quantification of that amount. This topic
is worthy of a more systematic examination in the future.

Although the main goal of this work is to trade control in-
telligence for physical intelligence, the evolved muscle drives
also make it possible to meaningfully increase morphologi-
cal complexity. This goal can be advanced in several ways
in the future.

One obvious next step would be to replace the current sys-
tem’s simulated linear springs with a more complex model

employing simulated soft bodies or pressurized cloth for the
bulk of the muscles. Previous work with simulated mus-
cles [5] already demonstrated that such an approach is fea-
sible, and has done so specifically within PhysX. Allowing
muscles to help define the distribution of the body’s mass,
as they do in real creatures, would significantly advance the
process of biologically inspired purposeful complexification
of morphology. Also, the meaningful change of such mus-
cles’ shape during simulation–indicating the degree of their
extension and activation–would add an additional layer of
realistic detail.

Another biologically inspired refinement of the rigid-
segment EVC model would be to simulate skin, as antici-
pated by Sims 20 years ago [12]. With powerful cloth sim-
ulation widely available (including in PhysX), this exten-
sion has become a conceivable next step on the path of life-
like morphological complexification. In particular, combin-
ing simulated-cloth skin with massed muscles (as described
above) might produce a particularly rich simulation, with a
skin stretching and sliding over muscles as they extend and
contract.

Looking even further into the future, if evolved creatures
can embody the right kinds of morphological complexity,
perhaps externally imposed joint mechanisms could be re-
placed by more realistic and more expressive joints whose
properties arise directly from their morphology. By allow-
ing the shape of the rigid-body segments to evolve [1], and
permitting the inclusion of other necessary anatomical ele-
ments such as tendons and ligaments, it may be possible for
rich and useful joint properties to emerge naturally, adding
yet another layer of purpose-driven morphological complex-
ity to evolved virtual creatures.

Similarly, although on a somewhat different path, the
ability to evolve sufficiently detailed exoskeleton segments,
along with the necessary muscles and connecting elements,
could permit the development of exoskeleton-based virtual
creatures. In this style of morphology–where again, body
function follows from its form–meaningful complexity should
emerge.

Moving forward into more demanding tasks in the future,
the diversity of results displayed in Sections 4.2 and 4.3 is
encouraging. The variety of available solutions for these
simple behaviors promises greater opportunity for continued
success as new constraints are applied.

6. CONCLUSION
This paper has described a version of evolved virtual crea-

tures in which traditional joint-motor drives are replaced by
a simple yet powerful evolvable musculature. The results
presented here have demonstrated that this new substrate
can support a significant degree of physical intelligence, suf-
ficient to almost entirely replace the control intelligence that
would normally be used for basic but useful tasks such as
jumping and locomotion. The process of shifting this intel-
ligence into a new complexity in the body makes it visible,
enabling progress toward the goal of meaningful morpholog-
ical complexity. And the fact that this can make (for these
basic tasks) the typical EVC brain essentially superfluous,
gives some indication of how much of a control burden these
muscle drives can embody, and the degree to which they can
liberate the brain’s computational resources for other, more
complex work. In addition, it demonstrates that, in some
real-world applications, where these simple tasks are useful,



but brains are difficult to support, a sufficiently evolvable
drive system like this one may enable an entirely new class
of solutions to emerge.
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