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Abstract

According to space-based theory, visual attention is limited to a local region in space
called the attentional �eld. Visual information within the attentional �eld is enhanced
for further processing while information outside is suppressed. There is evidence that
enhancement and suppression are achieved with dynamic weighting of network activity.
This paper discusses a neural network that generates the appropriate weights, called the
attentional spotlight, given the size and the position of the intended attentional �eld.
The network has three layers. A shunting feedback network serves as the output layer
and performs a critical task which cannot be accomplished by feedforward networks.

1 Introduction

Selective visual attention is an important mechanism in the human visual system. With
visual attention, the system can allocate its limited resources to the processing of the most
important visual information and avoid getting overwhelmed by unimportant information.
Psychological experiments indicate that attention can be directed to di�erent parts of a
stimulus and attention shift is independent of the movement of the eyes (Treisman et al.,
1983; Duncan, 1984; Eriksen and Yeh, 1985). In other words, visual attention is a di�erent
process from visual saccade.

Selective visual attention is important in computer vision system as well. To process
large amount of visual information in a short period of time, the processes in a computer
vision system need to be parallelized (Uhr, 1980; Feldman, 1985). However, complete paral-
lelism is practically impossible because it would require an enormous amount of processors
and connections (Tsotsos, 1988). One solution is to process only a small portion of the
data in parallel (through selective attention) and sequentially shift the parallel processing
to other portions.

There are two complementary psychological models of human visual attention. Ac-
cording to object-based model (Kahneman and Henik, 1977; Merikle, 1980; Treisman et al.,

�A more concise version is published in Proceedings of the International Conference on Neural Networks
(Singapore), 1991, 436{441.
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1983; Duncan, 1984), visual attention is always focused on a single object or a coherent
group of visual information. Consequently, multiple judgements on a single object can be
made simultaneously, but multiple judgements on di�erent objects cannot. In space-based

model (LaBerge, 1983; Eriksen and Yeh, 1985; Eriksen and St. James, 1986; LaBerge and
Brown, 1986; Anderson, 1990), visual attention is focused on a region localized in space
known as the attentional �eld. Information within the attentional �eld is enhanced for
further processing, whereas information outside is largely suppressed and ignored. There is
neurophysiological evidence that selective enhancement and suppression are achieved by a
gating mechanism that dynamically weights the inputs to neurons (Crick, 1984; Moran and
Desimone, 1985; LaBerge, 1990). There is also evidence that the position and the size of
the attentional �eld may vary according to the nature of the visual stimuli and the visual
tasks, as well as with the subject's expectations (LaBerge, 1983; Eriksen and Yeh, 1985;
Eriksen and St. James, 1986).

Several computational models of visual attention have been proposed (Mozer, 1988;
Ahmad and Omohundro, 1990b; Ahmad and Omohundro, 1990a; Mozer and Behrmann,
1990; Sandon, 1990). The mechanism of Mozer and Behrmann uses an optimization pro-
cess to form a continuous region (not necessarily local) of neural activities consistent with
bottom-up inputs and top-down information. Activities outside the region are suppressed.
Since the top-down information contains the images of objects, their system is compatible
with the object-based psychological model. In Sandon's system, inputs compete locally
for attention. The system does not implement the object-based model per se, but appears
more compatible with it than with the space-based model. The attention mechanism of
Ahmad and Omohundro is consistent with the space-based psychological model. In their
system, neural units are laid out in a retinotopic map. Each unit receives the values of
the size and the coordinates of the intended attentional �eld, and computes an appropriate
weighting factor for its retinotopic position. Such explicit representation of coordinates in
the activity values has two shortcomings. First, biological visual systems do not appear to
encode coordinates explicitly. Instead, they represent positions by the locations of active
cells in retinotopic maps, i.e. by value-unit encoding (Barlow, 1972; Ballard, 1987). Second,
explicit encoding may be problematic for hardware implementation. The operational range
and precision of devices1 determine the maximum number of locations that can be encoded,
which in turn limits the size of the largest map. Judging by the number of neurons in bio-
logical maps and the amount of noise in neural activity, one may speculate that value-unit
encoding could well be nature's solution to the hardware problem. Our spotlight-generation
network encodes the position of the attentional �eld using value units and the size of the
�eld using activation value. Explicit encoding of size is acceptable because the largest pos-
sible attentional �eld depends on the largest amount of information that can be processed
in parallel, instead of the size of the input layer.

Before describing the network architecture and the simulation results, we will analyze
the space-based model of visual attention from the computational point of view.

1All analog devices have a �nite range over which they can operate properly. In order to encode discrete
locations, the analog signal must be discretized, and the accuracy of this operation depends on the amount
of noise in the signal. For digital devices, the operational range and precision are determined by the number
of bits used for encoding.
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2 Computational Model of Space-Based Visual Attention

Two fundamental processes are involved in the space-based model: the selection of the
size and the position of the attentional �eld, and the generation of the appropriate weight-
ing factors. The selection process depends on both bottom-up information and top-down
knowledge. Psychological research suggests that many factors, such as the nature of the
visual stimuli and the visual tasks, as well as the subject's expectations, a�ect the size
and the position of the attentional �eld (LaBerge, 1983; Eriksen and Yeh, 1985; Eriksen
and St. James, 1986). After deciding on where to focus attention, the selection mechanism
passes the information to the generation mechanism. The generation mechanism produces
the appropriate weighting factors which �lter the information 
owing between the mod-
ules. Information within the attentional �eld is strongly weighted while other information
is suppressed.

This paper concentrates on the design of the generation mechanism. The computational
task can be formulated as follows:

Given the size and the position of the desired attentional �eld, compute the
weighting factors for space-based visual attention.

We shall call the weighting factors the attentional spotlight.2 A typical implementation of
the visual system consists of modules organized in maps. The output units of a module
connect to the input units at the corresponding positions in another module. The output
units of the generation mechanism connect to the pathways between modules, weighting
the signal 
ow. Consequently, the generation mechanism is most naturally organized in
maps as well. This architecture is consistent with neurophysiological mechanisms of visual
attention (Crick, 1984; Moran and Desimone, 1985; LaBerge, 1990) and is also used in most
of the arti�cial mechanisms discussed in Section 1.

Our generation mechanism is based on the following design considerations:

1. The position of the spotlight is indicated by a positive input value at the desired
location and zero values elsewhere.

2. The size of the spotlight increases monotonically with the input value.

3. The strength of the spotlight should be roughly uniform in the central region (infor-
mation in this region is roughly equally important), and should decrease gradually
with distance from the center of the spotlight (Eriksen and St. James, 1986; Ander-
son, 1990). In other words, a cross-section of the spotlight should have approximately
a bell-shaped or inverted-U-shaped pro�le (Fig. 1). The position and the size of the
spotlight are de�ned as the coordinates of its center and the radius of its base.

Our network is used as a component in a vision system for image understanding. The
system extracts features such as strength and orientation of intensity contrasts and encodes
them in maps. Based on bottom-up features and top-down information, the system focuses
its attention on di�erent portions of the maps, performs feature integration, and recognizes
objects. Only the generation mechanism is discussed in this paper. The selection mechanism
and the overall design of the system will be described in later reports.

2The word spotlight usually refers to the spotlight model (Duncan, 1984; Eriksen and St. James, 1986) of
visual attention. We extend its meaning to refer to the weighting factors.

3



positionÒ i

spotlight 
strength 

radiusÒ r

0

Figure 1: Bell-shaped pro�le of the attentional spotlight.
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Figure 2: The spotlight generation network. Connections from input unit k distribute the input
value I to threshold units i according to the weight distribution Wik. Threshold units make one-
to-one connections with units in the shunting feedback layer. Each shunting feedback unit receives
feedback from every unit in the layer (not all connections are shown).

3 The Spotlight-Generation Network

In the following discussion, the generation network is assumed to be one-dimensional for
simplicity and clarity. Extension of the discussion to two-dimensional network is straight-
forward.

3.1 Network Architecture

What is required in a network to produce the bell-shaped pro�le? The task can be divided
into three subtasks. Recall that only one of the input units has a positive value while all
others have zero values (Design Consideration 1). The �rst task is to distribute the non-
zero input activity over a group of units in the next layer (Fig. 2). The distribution weights
Wik should decrease with distance from the center of the group. One possible form is the
triangular distribution (Fig. 3):

Wik =
1

R
(R� ji� kj); 0 � ji� kj � R; (1)
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Figure 3: Weight distribution function Wik centered at position k. R is a positive constant.

where R is a positive constant parameter. In this case, 0 � Wik � 1.
The second task is to enforce the monotonic relationship between the radius r of the

spotlight and the strength of the input I (Design Consideration 2). This task is performed
by thresholding the distributed activity:

bi =

"X
k

Wik ak � �r

#+
; (2)

where bi and ak are activities of threshold unit i and input unit k, respectively; �r is a global
positive constant threshold, and [x]+ = max (x; 0). Suppose that input unit c is non-zero,
i.e. ac = I . Then, the activities of the threshold units are

bi = [WicI � �r]
+ : (3)

In e�ect, the threshold �r cuts the triangular input pattern to produce an output pattern
of smaller radius r (Fig. 4b) which is also the radius of the �nal spotlight. From the �gure,
we can see that the base of the triangle increases monotonically with I . The equation of r
in terms of I is derived in Appendix B.

The third task is to 
atten the central region of the activity pattern (Design Consider-
ation 3). To do this properly, a feedback network is required. If a feedforward network is
used, it must consist of units whose activities saturate at large input values. For example,
the threshold units can be connected to sigmoid units of the form

ei =
1

1 + e�
bi
; (4)

where ei is the activity of the sigmoid unit and 
 is a positive constant which determines
the slope of the sigmoid. For su�ciently large bi, the sigmoid units saturate and 
atten the
central region (Fig. 4c). However, saturation will not occur for small bi which result from
small input strength I . Consequently, the spotlight will have a peak at the center (Fig. 4c).
Increasing the slope parameter 
 to force more rapid saturation will not eliminate the
peaking e�ect although it will reduce the range of I where the peaks occur. Increasing 

also steepens the boundaries of the spotlight, con
icting the requirement that they should
decrease gradually (Design Consideration 3). The peaking problem is solved by a shunting

feedback network.
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Figure 4: (a), (b) Response of the �rst two layers of the spotlight generation network. (a) Weighted
input pattern WikI received by threshold units. (b) Activity bi obtained by thresholding the weighted
input pattern against �r. Radius r of non-zero activity increases monotonically with respect to input
strength I. (c) Response of a feedforward network with sigmoidal output units. The sigmoid units
saturate when bi is su�ciently large, and a spotlight with a 
at central region is produced. With
su�ciently small I, however, none of the bi's reaches saturation level, and a peak is produced.
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3.2 The Shunting Feedback Network

A shunting feedback network (Grossberg, 1973; Grossberg, 1988) consists of units whose
outputs feed back to themselves (Fig. 2). The feedback is weighted by the activities of the
receiving units (hence the term shunting). An example of the dynamics of the network is
given by:

_ei �
dei
dt

= �Aei + (B � ei)f(ei)� (C + ei)
X
k 6=i

f(ek) + Ji (5)

where ei is the activity of unit i; A, B and C are positive constant parameters, Ji � 0 is the
input to unit i, and f(ei) is an arbitrary output function. The term �Aei represents decay
with rate A. (B� ei)f(ei) is the excitatory self-feedback term, and �(C + ei)

P
k 6=i f(ek) is

the total inhibitory feedback term. Both the self-feedback signal f(ei) and the inhibitory
feedback signal f(ek) are shunted, i.e. weighted by ei. The inputs Ji's are only switched on
very brie
y to set the initial values of ei. After the Ji's have been switched o� (i.e. Ji = 0),
the network gradually converges to an equilibrium state.

The network given by Eq. 5 exhibits many interesting properties (Grossberg, 1973). For
example, the activity ei is always bounded between �C and B regardless of the size of the
input Ji. The derivative _ei changes sign when ei reaches the bounds which prevents ei from
getting beyond the bounds. It has also been shown that under certain mild conditions, the
activities can reverberate (i.e. be sustained) inde�nitely even after the inputs are switched
o�. When the network reaches an equilibrium state, its total activity is automatically
normalized to a value that depends on the network parameters and the relative strength of
the inputs (i.e. Ji=

P
i Ji).

The type of the output function f(ei) is critical to the performance of the network
(Grossberg, 1973). If f(ei) is linear, the equilibrium relative activities (i.e. ei=

P
i ei) will

be identical to the relative inputs. If f(ei) is slower than linear, the di�erences between the
inputs will dissipate and the equilibrium activities will be uniform. If f(ei) is faster than
linear, the di�erences between the inputs will be enhanced and only the largest activity
will survive. If f(ei) is a combination of linear, slower-than-linear and faster-than-linear
functions, then the equilibrium activities will be determined by the complex interactions
between the di�erent types of functions. For example, suppose that f(ei) is sigmoidal,
i.e. faster than linear for small ei, approximately linear for ei in the middle range, and
slower than linear for large ei. Then, a quenching threshold (determined by network param-
eters) exists such that relative activities below the threshold are quenched (become � 0),
and relative activities above the threshold are contrast-enhanced and sustained (Grossberg,
1973).

In our network, C = 0 and Ji = bi, and equation (5) becomes:

_ei = �Aei + (B � ei)f(ei)� ei
X
k 6=i

f(ek) + bi: (6)

In this case, ei is bounded between 0 and B. The output function f(ei) has the following
form (Fig. 5):

f(ei) = ei g(ei) (7)

g(ei) =

(
D if 0 � ei < �e

D0 +
D �D0

�e � B
(ei � B) if �e � ei � B

(8)
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Figure 5: Output function f(ei) = ei g(ei). f(ei) is linear between 0 and �e, and slower-than-linear
between �e and B.

whereD and D0 are positive constants with D > D0, and �e is a positive constant parameter
which in
uences the shape of the spotlight (see Appendix C). f(ei) is linear for 0 � ei < �e
and slower than linear for �e � ei � B. With this type of f(ei), two critical values of
relative activity determine the equilibrium state of the shunting feedback layer (Grossberg,
1973). One of them is the fair distribution limit : if all relative activities are below this
limit, then they will remain unchanged at equilibrium (e�ect of the linear portion of f(ei)).
The other critical value is the uniformization threshold : if all relative activities of the
units are above this threshold, then the equilibrium activities will be uniform (e�ect of
the slower-than-linear portion of f(ei)). In general, not all relative activities are below the
fair distribution limit, and not all of them are above the uniformization threshold. In this
case, our simulation results suggest that a partial uniformization threshold exists somewhere
between the critical values. Relative activities above this threshold (the central region of
the spotlight) become uniform, whereas the sub-threshold relative activities (the boundary
region) retain their original patterns. Since the fair distribution limit can be computed
easily (Grossberg, 1973), we use that as the lower bound for the partial uniformization
threshold. In the simulations, this threshold is then adjusted upwards to obtain the desired
shape for the spotlight.

The response of the shunting feedback layer is determined by the relative values (i.e. the
shape) of its initial activity rather than the absolute values. Since its input comes from the
threshold layer, whose output shape is independent of the input strength I , the shape of its
response is the same for all values of I . Hence, the peaking e�ect observed in feedforward
networks is avoided. A more detailed mathematical treatment of the network dynamics is
given in the appendices.

4 Simulations

The spotlight generation network was simulated numerically using forward Euler method
(Wilson and Bowser, 1989) with �t = 0:02. The threshold parameter �r (of the threshold
units, Eq. 2) was set at 0.5. Thus, the smallest spotlight is produced with I just above 0.5
(see Eqs. 1 and 3). When I � 0:5, no spotlight is generated since there is no activity in the
threshold and shunting feedback layers. I = 1:0 produces the largest spotlight. In general,
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Figure 6: Radius r of the spotlight as a function of input strength I. r increases monotonically with
I.

the radius r of the spotlight is given by

r = R(1�
�r
I
); (9)

i.e. r increases monotonically with I , as illustrated in Fig. 6. In the simulations, R = 40
and r ranged between 0 and 20 units. The derivation of Eq. 4 and the values of the other
network parameters are given in the appendices.

Simulation results for di�erent values of I are shown in Figs. 7, 8 and 9. Figure 7
illustrates the transformation of the activity of the shunting feedback layer through time.
The input strength I in this case was 1.0, and consequently, the radius r of the spotlight
was 20. Over time, the central region of the spotlight became roughly uniform while the
boundary regions retained their gradual decrease in activity.

Figures 7, 8 and 9 show how the radius of the spotlight can be controlled through the
input strength. For stronger input, the network generates a larger spotlight. Note that
even when the input is as small as 0.55, the central region of the spotlight is still uniform.

Figures 7, 8 and 9 indicate that narrower spotlights are taller. This phenomenon is due to
the normalization of total activity (Section 3.2), i.e., the area under the curve is the same for
di�erent radii. Consequently, the relative strength of the spotlight, instead of its absolute
strength, should be used in weighting the information 
owing between visual modules.
On the other hand, if the input layer of the receiving module is another shunting network
(feedforward or feedback), then it automatically uses the relative input, and renormalization
is not required.

There are two qualitatively di�erent equilibrium states. If the parameter �e is large
enough (about 0.5 in our simulation), the spotlight at equilibrium has a 
at central region
with gradually sloping boundaries (trapezoidal shape). This observation indicates that the
partial uniformization threshold indeed exists. The weight distribution function Wik deter-
mines the shape of the boundary regions since those shapes are retained in the spotlight.
On the other hand, if �e is small, then the (total) uniformization threshold tends to be
lower than the relative activities and the equilibrium spotlight becomes uniform with sharp
boundaries (rectangular shape).

In both cases, as the shunting feedback network relaxes, the intermediate shape of the
spotlight has a curved central region (Fig. 7). An additional gating layer could be added to
the network to control the gating time at which the output of the shunting feedback layer
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Figure 7: Response of the shunting feedback network with �t = 0:02 and I = 1:0. (a){(d) show the
transformation of activity pattern over time.
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is released. In other words, the network can output spotlights of di�erent shapes depending
on whether the output is taken from the equilibrium state or an intermediate state. The
appropriate gating time can be easily determined experimentally.

5 Conclusions

The architecture and dynamics of a neural network that generates an attentional spotlight
have been discussed. In the input to the network, the position of the attentional �eld
is encoded using value units and the size of the �eld using activation value. We have
demonstrated that feedforward networks cannot generate inverted-U-shaped spotlights with
small radii: when the input is small, a sharp peak is produced at the center. This peaking
e�ect is eliminated with shunting feedback. The simulation results show that a partial
uniformization threshold exists. This threshold can be adjusted to produce trapezoidal or
rectangular spotlights at equilibrium. In addition, spotlights with curved central regions
and gradually sloping boundaries can be produced as intermediate states of the network.
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Appendix A: Network De�nitions

The network for generating the attentional spotlight has three layers (Fig. 2). The dynamics
of these layers are described by the following equations:

Input layer :
ai = Ii; (10)

where ai is the activity of unit i, and Ii is the intensity of the input to unit i. Only one of
the inputs is non-zero (between 0 and 1); all others are zero.

Threshold layer :

bi =

"X
k

Wikak � �r

#+
; (11)

where bi and ak are the activities of threshold unit i and input unit k, respectively; Wik is
the weight on the connection from input unit k to threshold unit i, �r is a global positive
constant threshold that in
uences the radius r of the spotlight, and [x]+ = x if x > 0, and
0 otherwise. In the simulation, a triangular distribution function is used for the weights
(Fig. 3):

Wik =
1

R
(R� ji� kj); 0 � ji� kj � R; (12)

where R is a positive constant and 0 � Wik � 1.

Shunting feedback layer :

_ei = �Aei + (B � ei)f(ei)� ei
X
k 6=i

f(ek) + bi; (13)

where ei is the activity of unit i, A and B are positive constant parameters, and f(ei) is
the output function. The activity ei is bounded between 0 and B. The function f(ei) has
the following form (Fig. 5):

f(ei) = ei g(ei) (14)

g(ei) =

(
D if 0 � ei < �e

D0 +
D �D0

�e �B
(ei �B) if �e � ei � B;

(15)

where D and D0 are positive constants such that D > D0, and �e is a positive constant
parameter which in
uences the shape of the spotlight. The value of D0 (Eq. 15) is not
critical as it a�ects mainly the rate of convergence. It can be as small as 0.1 or as large as
5.0.

Appendix B: Operation of the Network

Let ac be set to I , 0 < I � 1, very brie
y just before time t = 0. At this brief instance,
input I is passed to the shunting feedback layer:

ei(0) � ei(t = 0) = bi = [WicI � �r ]
+ ; (16)
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At time t = 0, the input is switched o�. The shunting feedback layer gradually approaches
the equilibrium state. For notational simplicity, let j = ji� cj. Then,

Wj � Wj0 =
1

R
(R� j); 0 � j � R; and (17)

ej(0) =

�
I

R
(R� j)� �r

�+
: (18)

The radius of the spotlight, r, is determined by setting �r = WrI (Fig. 4b), giving

r = R(1�
�r
I
): (19)

This equation shows that r increases monotonically with respect to I (Fig. 6). The maximum
radius rm is obtained when I = 1, i.e.,

rm = R(1� �r): (20)

Appendix C: Setting the Partial Uniformization Threshold

The fair distribution limit Lf is given by (Grossberg, 1973)

Lf =
�e

max(B �A=D;E(0))
(21)

where E(0) is the total activity of the network at time t = 0. If we ensure that B � A=D
is always greater than E(0) regardless of I , then Lf is given by

Lf =
�e

B �A=D
: (22)

To do so, we have to �rst obtain the maximum of E(0). E(0) is the sum of activities ej(0),
i.e., from Eq. 18 and 19,

E(0) = 2
rX

j=0

ej(0)� e0(0) =
I

R
r2 (23)

Since both E(0) and r are maximum when I = 1, the maximum of E(0) is r2m=R. Therefore,
the network parameters must be chosen such that B �A=D > r2m=R. The relative activity
of each unit at time t = 0 with I = 1 is

Ej(0) =
ej(0)

E(0)
=

8<
:

rm � j
r2m

if 0 � j � rm

0 otherwise
(24)

In the simulation, we set �r = 0:5 and R = 40, giving rm = 20 and r2m=R = 10.
Taking B = 12 and A = D = 10 ensures that B � A=D = 11 > r2m=R and satis�es the
condition for applying Eq. 22. Let � denote the maximum radius of the central region.
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Lf

0
rm

j
r

relativeÒ activityÒEj(0)

Figure 10: Relationship between the fair distribution limit Lf and the maximum radius � of the
central region.

To produce an approximate bell-shaped pro�le, set Lf (the lower bound of the partial
uniformization threshold) such that the relative activities Ej(0) beyond the range of � are
below Lf (Fig. 10). Let � = 0:4R. Then, with Eqs. 22 and 24, we obtain the value for �e
as follows:

Lf =
�e
11

= E�(0) =
4

400
; and thus, (25)

�e = 0:11 (26)

Simulation results indicate that when �e >= 0.5, the equilibrium state of the shunting feed-
back layer has a 
at central region with boundary regions decreasing gradually in strength
(trapezoidal shape). With smaller �e, the equilibrium distribution tends to be uniform
(rectangular shape). In all cases, the intermediate states have curved central regions.
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