
Representing Visual Schemas in Neural Networks

for Scene Analysis

Wee Kheng Leow and Risto Miikkulainen

Department of Computer Sciences, University of Texas at Austin,

Austin, Texas 78712, USA

leow@cs.utexas.edu, risto@cs.utexas.edu

Abstract| Using object recognition in simple
scenes as the task, this research focuses on two fun-
damental problems in neural network systems: (1)
processing large amounts of input with limited re-
sources, and (2) the representation and use of struc-
tured knowledge. The �rst problem arises because no
practical neural network can process all the visual in-
put simultaneously and e�ciently. The solution is to
process a small amount of the input in parallel, and
successively focus on other parts of the input. This
strategy requires that the system maintains structured
knowledge for describing and interpreting successively
gathered information.

The proposed system, VISOR, consists of two main

modules. The Low-Level Visual Module (simulated

using procedural programs) extracts featural and posi-

tional information from the visual input. The Schema

Module (implemented with neural networks) encodes

structured knowledge about possible objects, and pro-

vides top-down information for the Low-Level Visual

Module to focus attention at di�erent parts of the

scene. Working cooperatively with the Low-Level Vi-

sual Module, it builds a globally consistent interpre-

tation of successively gathered visual information.

I. Introduction

Consider the task of recognizing objects in simple scenes.
A scene analysis system has to identify the objects in the
scene (e.g., an arch and two trees, Fig. 1a) and determine
what the scene depicts (e.g., a park). In designing a neural
network system that performs this task, we encounter two
fundamental problems:

1. How can a �xed, �nite neural network process in-
de�nitely large amounts of information?

2. How can a neural network represent and use struc-
tured knowledge?

In fact, these problems are also encountered in many other
neural network application areas, such as speech under-
standing and natural language processing. The goal of
this research is to develop general solutions to these prob-
lems, using scene analysis as a concrete task.

Consider the �rst problem: limited processing re-
sources. In practice, it is only possible to construct a
neural network with a �xed number of input units and
internal processing units. The weights and activities have
�nite precision and are bounded within certain ranges of
values. The number of input units may be smaller than
the size of the scene (in pixels). Even if the network can
capture a large part of the scene at once, it may not be
able to process all the information in parallel unless it has
an exponential amount of units and connections [1]. The
only viable option is to process a small amount of visual
input in parallel, and successively focus on di�erent parts
of the scene. This strategy also seems to be in use in
biological vision systems [2].

Since the network is �xed and �nite, it may not have
enough storage space for the inde�nitely large amounts of
input information. It will have to build and maintain a
partial interpretation of the information gathered so far.
Based on gathered information, it estimates the likelihood
that the input features belong to some known objects. As
more information is received, it strengthens or weakens the
tentative estimates. It continues processing other parts of
the scene until it has gathered su�cient information to
build a consistent interpretation. Each partial interpre-
tation corresponds to an intermediate stable state of the
network, and the globally consistent interpretation corre-
sponds to the �nal stable state.

A system that adopts this strategy requires an inter-
nal model, generally known as schema in psychological
research, for making the interpretations [2]. Thus, the so-
lution to the �rst problem requires that neural networks
encode schemas, or in general, structured knowledge; that
is, it requires addressing the second problem. One ap-
proach is to represent such knowledge symbolically in neu-
ral networks [3, 4, 5]. The approach works in simple cases
but does not generalize well to more complex tasks. Neu-
ral networks are not very good at manipulating symbols
explicitly. However, they are good at feature extraction,
association, constraint satisfaction, pattern classi�cation,
and making other fuzzy decisions. These tasks are per-
formed through \neural" processes such as cooperation
and competition among units and networks.
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The VISOR system (VIsual Schemas for Object Rep-
resentation) is designed to address the two fundamental
problems in the domain of object recognition and scene
analysis. Simpli�cations have been made to help focus the
research e�ort on the main issues|the representation and
learning of schemas. The scenes considered in this project
consist of objects made up of straight lines and simple
shapes such as rectangles and triangles. The knowledge
that describes objects and scenes involves four positional
relationships (left, right, above and below) and one hier-
archical relationship (is-part-of). Such knowledge can be
conveniently encoded in terms of maps and connections
among units. Despite the simpli�ed task, this research
aims at deriving general solutions that are applicable to
more complex scenes and other tasks.

II. Related Work

Rumelhart et al. [6] suggested a general method for
encoding conceptual schemas in a PDP model. Individual
components of schemas, such as sofa, bed, bathtub, and
toilet are represented as units in a network. The weight
of the connection between two units represents how likely
the two components are to be present in a schema, and
the activity pattern of the network encodes a schema in-
stantiation. The network does not encode hierarchical re-
lationships among the schemas.
Hinton [7] described three methods for representing hi-

erarchical knowledge. The second method is similar to the
one used in VISOR. The units in the network are orga-
nized into di�erent levels. The higher the level, the more
complex is the object that the unit represents. Lower-level
units representing components of objects are connected
to one or more higher-level units representing the objects
themselves.
The cognitive model of Norman and Shallice focuses on

the activation and control of schemas [8, 9]. In this model,
domain-speci�c action schemas and thought schemas can
be activated independently of each other. A small subset
of schemas to be \run" are selected by two distinct pro-
cesses known as Contention Scheduling and Supervisory
Attentional System. Contention Scheduling is a domain-
speci�c process analogous to conict resolution in tradi-
tional AI systems. It selects schemas according to sim-
ple criteria that are domain-speci�c. Supervisory Atten-
tional System is a general planning system that operates
on schemas in every domain. It controls the activation of
schemas by biasing the operations of Contention Schedul-
ing. The activation and control of schemas in VISOR are
analogous to the Contention Scheduling process.

III. The Architecture of VISOR

VISOR is based on the separation of the \what" and
\where" pathways in low-level vision ([10]; Fig. 1). It
consists of the Low-Level Visual Module (simulated us-
ing procedural programs) and the Schema Module (im-
plemented with neural networks). The Low-Level Visual
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Figure 1: VISOR consists of the Low-Level Visual Module (LLVM,
b) and the SchemaModule (c). LLVM extracts \what" and \where"
information from the scene (a). Figures (d) and (e) indicate the
activities of �ne-scaled and coarse-scaled Relative Position Maps
(RPMs) when attention is focused at the position marked with \+".

Module (LLVM, Fig. 1b) focuses its attention at one posi-
tion in the scene at a time, and extracts the feature (line,
rectangle or triangle) at that location. As its output, the
Feature Cells indicate how strongly the LLVM believes a
particular feature is present (Fig. 2). The Relative Po-
sition Maps (RPMs) encode the relative positions of the
features at several scales. For example, suppose that part
of the scene contains an arch and two trees (Fig. 1a). Also
suppose that attention is currently focused on the trian-
gular roof of the arch. At a �ne scale, the RPM identi�es
the triangle as located above the two rectangles, and gives
a peak response at the top part of the map (Fig. 1d). At
a coarser scale, the RPM identi�es the blob of features
constituting the arch as located in the middle of the blobs
corresponding to the two trees, and forms a peak response
at the center of the map (Fig. 1e). At scales that are larger
than that of the retina, the positions of the eyes are taken
into account.

The Schema Module (Fig. 1a) maintains the hierarchy
of schemas, integrates successive input information, and
determines the next position of attention. It consists of
two main neural networks: the Schema Hierarchy Net
(SHN) and the Shift Selection Net (SSN). The SHN is
a multi-layer network of schema representation nets, or
schema-nets for short (Fig. 2). A schema-net consists of
four main components: the output unit, the Sub-schema
Activity Map (SAM), the Current Position Map (CPM),
and the Potential Position Map (PPM). Before describing
these components in detail, let us �rst look at how the
schema hierarchy is represented in the SHN.

Each layer of schema-nets corresponds to a level in the
schema hierarchy. A schema-net can simultaneously be
a sub-schema of higher-level schemas and a super-schema
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Figure 2: (a) The Schema Hierarchy Net encodes part-whole re-
lationships among the schemas. Arrows represent one-way connec-
tions, and solid lines represent both the bottom-up and top-down
connections (which are di�erent). For simplicity, the schema-net
components are shown only for the tree schema. The Feature Cell
marked \T" is sensitive to triangles, and the one marked \R" to
rectangles. (b) The arch image encoded by the arch schema. The
grid represents the SAM and the black dots denote the positions of
the components in the SAM.

of lower-level schemas. The sub-schemas of the �rst-level
schemas consists of the Feature Cells. The connectivity
of the SHN encodes the part-whole relationships among
the schemas. Consider, for example, the representation
of an arch. Fig. 2(b) shows an arch that is made up of
three components: a triangular roof and two rectangular
pillars. The grid superimposed on the arch represents a
map called the Sub-schema Activity Map (SAM) in the
arch schema-net. The black dots indicate the positions of
the components in the map. For example, the triangle is
located at the top-center of the arch map. Corresponding
to each black dot, there is a connection from a Feature
Cell to a SAM unit. The connection indicates that the
feature is a component of the arch schema at the position
of the SAM unit.

The SAM units' activities indicate how strongly the
sub-schemas are believed to be present in the scene. These
activities may change as more information is extracted
from the scene. In e�ect, SAM encodes a summary of
current evidence for a schema.

In addition to the dynamic information encoded in
SAM, it is necessary to keep information about the static
structure of the schema, so that the system can decide
where to focus its attention next. Such information is
stored in the Potential Position Map (PPM). A high activ-
ity in a PPM unit indicates that a sub-schema is expected
at the corresponding position.

The current position of attention is stored in the Cur-
rent Position Map (CPM), coded by the location of a sin-

gle active unit in the map. Each CPM unit connects multi-
plicatively to the SAM unit at the corresponding location.
If a CPM unit is on, the corresponding SAM unit's activ-
ity can be updated. Otherwise, the SAM unit's activity
remains unchanged. In other words, only the activities
of the sub-schemas that match the current position are
propagated upwards.
The certainty, or con�dence, that a schema matches

the input is summarized in the activity of the schema's
output unit (or schema's activity for short). In addi-
tion to bottom-up connections from the schema's own
SAM units, the output unit receives top-down connections
from the super-schemas' SAM units (Fig. 2). If a higher-
level schema matches an input object with high con�-
dence, then its sub-schemas are expected to match the
object's components as well; hence the top-down feedback.
There are also mutually inhibitory connections among the
schemas' output units to allow the schemas to compete in
interpreting the input. (The detailed schema activation
equations are given in the appendix.)
After processing the information at a particular posi-

tion in the scene, VISOR will shift its attention to a new
position. The Shift Selection Net (SSN) determines this
position (Fig. 1c). As will be described in more detail in
Section IV, it makes its decision based on the schemas'
activities and their desired shift vectors.

IV. VISOR Operation

At the beginning of the scene analysis process, all the
schemas are reset to their initial states. That is, none
of their CPM units is on (no current position of atten-
tion), and the activities of their SAM units are 0 (nothing
has been found).1 After each focusing of attention, the
Schema Module processes the featural and positional in-
formation received from the LLVM in four main stages:
(1) setting current positions of attention within schemas,
(2) updating schemas' activities, (3) selecting schemas' de-
sired next position of attention, and (4) selecting one of
the next positions for actual attention shift. Let us briey
go through the events of one processing cycle:

1. Setting Current Positions. After the LLVM has
shifted its attention to the selected location in the scene,
the schemas update their current positions of attention.
If a schema is not attending to anything, that is, none of
its CPM units is on, its current position is set at the peak
position in the RPM (Fig. 2). If one of the CPM units is
on, the current position is shifted in the direction and by
the amount encoded in the shift vector received from the
SSN. If the amount of shift goes beyond the spatial extent
of the CPM, then the schema is �rst reset to its initial

1The initial activities could be set to any values between 0 and
1. In e�ect, schemas with higher initial activities would then be
expected to match the objects and the scene better than those with
lower initial activities; in other words, expectation and bias could
be modeled.
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state, and then its current position is set at the peak po-
sition in the RPM.

2. Schema Activation. At this stage, one of the CPM
units is active, and its position indicates the current posi-
tion of attention. The activity of the SAM unit at the cor-
responding map position is updated (Appendix). Other
SAM units' activities remain unchanged. The activity of
the schema's output unit is also updated according to how
well the schema matches the input (See the appendix for
details). If it matches well, its activity increases as a result
of increased SAM activity; otherwise, its activity decreases
as a result of mutual inhibition among the schemas. The
activity of a schema in turn feeds back to its sub-schemas
and boosts their activities. This feedback signal corre-
sponds to top-down expectation: if a schema matches an
object well, then its sub-schemas are expected to match
the object's components. The activities are updated asyn-
chronously for several cycles until they stabilize.

3. Selection of Desired Next Positions. After the
activities have stabilized, each schema chooses a position
at which it would like the system to focus its attention.
These are the positions where a schema expects to discover
features that will contribute to increasing its activity. The
schema's selection is based on the following criteria:

1. Select a position where a sub-schema is expected,
that is, a position where there is high activity in the
PPM unit.

2. Prefer a position that has low SAM activity. For
practical (and biological) networks, the activities
of the units are �nite and bounded within certain
ranges of values. Focusing attention at positions
with already high SAM activities is not e�ective in
increasing the activity of the schema.

3. Prefer a position close to the current position so that
attention shift is minimized.

The selected position is encoded as a shift vector (x-shift,
y-shift) and is sent to the SSN.

4. Selection of The Actual Next Position. The
SSN receives the desired shift vectors from all schema-
nets as its input, and selects one of them to be adopted.
It prefers a small shift desired by a highly active schema.
This criteria favors the interpretation of the visual input
in terms of the best-matched schema while minimizing the
amount of attention shift. Finally, the selected shift vector
is propagated to all the schemas and to the LLVM.

V. Experimental Results With VISOR

Three experiments on object recognition and scene anal-
ysis were performed. The �rst experiment illustrates the
recognition of a perfect instance of an object, the second
that of distorted instances, and the third that of a com-
plete scene. All the schemas were handcoded in the SHN.

(a) arch (b) house (c) tree

A T TTTT H T T HH H

(d) forest (e) park (f) suburb (g) city

Figure 3: Handcoded schemas used in the experiments. Figures (a)-
(c) depict �rst-level schemas (map size = 5�5), (d)-(g) second-level
schemas (map size = 3�3). A = arch, H = house, T = tree.
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Figure 4: Experimental results of processing a house image. (a)
Activities of �rst-level schemas. (b) The sequence of positions of
attention.

The �rst level of the SHN consisted of the arch, the house,
and the tree schemas (Fig. 3a-c). Of these, the arch and
the house schemas are very similar. Both have at trian-
gular roofs, and the rectangular pillars of the arch may
be confused with the square windows of the house. The
second-level schemas (used in the third experiment) were
forest, park, suburb and city (Fig. 3d-g). These schemas
are very similar as well. For example, if the scene is ei-
ther a forest, park or suburb, and VISOR scans from right
to left, it will be unable to disambiguate until the object
on the far left is identi�ed. Note that these second-level
schemas are not intended to be general representations of
these scenes. They were conjured up to test the perfor-
mance of VISOR in highly ambiguous situations.

In the �rst experiment, a house image was input to VI-
SOR. Fig. 4(a) is a plot of the activities of the �rst-level
schemas as VISOR processes the scene. The positions
of attention at each time step are shown in Fig. 4(b).
The system was purposedly set to start in an ambigu-
ous state|it focused on the triangular roof of the house.
Initially, VISOR thought that the object was most likely
an arch. After the �fth step, the activity of the house
schema increased and surpassed that of the arch schema.
After the eighth step, VISOR reached the �nal stable state
and concluded that the image was (most likely) a house.
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Figure 5: Activity patterns of schemas with two di�erent house
images.

The second experiment illustrates the processing of dis-
torted images. Two variations of the house image were
shown to VISOR. The �rst had a at roof, and the second
had no roof. In both cases, VISOR started by attending
to the left window. Fig. 5 illustrates the schemas' activi-
ties for the two cases. The e�ect of featural distortion is
most apparent at the second time step when VISOR was
attending to the roof. The more the image di�ers from
that represented in the schema, the lower the activities of
the arch and the house schemas. That is, VISOR is less
certain about the identity of the object. However, in both
cases, VISOR was �nally able to conclude that the input
object was most likely a house.

In the third experiment, VISOR received a suburb im-
age that exactly matched the suburb schema. VISOR was
set to initially attend to the triangle of the rightmost tree
(Fig. 3). Note that this state is ambiguous because the
forest, park and suburb schemas all have a tree as the
rightmost component. At step 2, the rightmost tree was
identi�ed (Fig. 6). At step 5, the middle tree was identi-
�ed. At this time, detailed information of the middle tree
was stored in the SAM of the tree schema, but detailed
information of the rightmost tree was lost. The previous
activity of the tree schema (corresponding to the right-
most tree) was stored only in the SAMs of the second-
level schemas. Throughout the �rst 6 time steps, VISOR
was unable to determine whether the input scene was a
suburb, a park or a forest. At step 7, VISOR focused
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Figure 6: Experimental results of processing a suburb image. The
bottom graph shows the activities of the �rst-level schemas, the top
graph those of the second-level schemas.

attention at the triangular roof of the house. It thought
that the object on the far left was most likely an arch,
and that the whole image was most likely a park. Final
disambiguation occurred at step 13 after attending to the
left wall of the house. After this time, the house schema
became most active at the �rst level indicating that the
last attended object was a house. Consequently, the sub-
urb schema became the most active second-level schema.
Once the activities have stabilized, there is no need to fo-
cus attention at other parts of the scene, and the process
terminates.

VI. Conclusions

The goal of this research is to develop representation
and learning schemes for visual schemas in neural net-
works. The representation scheme supports integration
of successive information so that scene analysis can be ac-
complished with limited processing resources. The system
is implemented simply in terms of maps and cooperative
and competitive networks. We are currently working on a
method for VISOR to learn schema representations from
examples of visual scenes. In a real environment, there can
be more than two trees in a park scene, and the arch can
be anywhere among the trees. Methods for representing
such variations are also currently being investigated.
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Appendix: Schema Activation Equations

Below, the equations governing the activation of units
in a schema's Sub-schema Activity Map (SAM), and the
activation of the schema's output unit are presented (see
also Fig. 2). The following notation is used:

Ui: output unit of schema i
Ai: activity of Ui

uix: SAM unit of schema i at position x
aix: activity of uix
cix: activity of CPM unit of schema i at position x

Wixj: bottom-up connection weight from Uj to uix
Mixj: top-down connection weight from uix to Uj

wix: feedforward connection weight from uix to Ui

mix: feedback connection weight from Ui to uix
eij: inhibitory connection weight from Ui to Uj

�; �; ; �: parameters, 0 < �; �; ; � < 1

When cix = 1, the SAM units' activities are updated ac-
cording to

aix =
X
j

WixjAj + �mixAi (1)

When cix = 0, aix remains unchanged. The �rst termP
j WixjAj sums over all the sub-schemas j of schema i

and represents the total bottom-up contribution from the
sub-schemas. The second termmixAi is the feedback from
schema i's output unit to its SAM unit.
The schemas' output activities are updated according

to

Ai = f(�
X
x

wixaix + 
X
j;y

Mjyiajy � �
X
j

ejiAj) (2)

The activation function f(z) is a sigmoidal function of the
form

f(z) =

8<
:

0 if z < 0
z if 0 <= z <= 0:9
1=(1� e�s(z�b)) if z > 0:9

(3)

where s = �5:493 and b = 0:500. The �rst termP
xwixaix sums over all the SAM units uix of schema i. It

is the total feedforward contribution from the SAM. The
second term

P
j;yMjyiajy sums over all the SAM units

ujy of all the super-schemas j of schema i. It gives the
total top-down contribution from all the super-schemas.
The last term

P
j ejiAj sums over all the schemas j at

the same level as schema i giving the total inhibition from
those schemas.
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