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Using scene analysis as the task, this research focuses on three fundamental problems in
neural network systems: (1) limited processing resources, (2) representing schemas, and (3)
learning schemas. The �rst problem arises because no practical neural network can process
all the visual input simultaneously and e�ciently. The solution is to process a small amount
of the input in parallel, and successively focus on the other parts of the input. This strategy
requires that the system maintains structured knowledge for describing and interpreting the
gathered information. The system should also learn to represent structured knowledge from
examples of objects and scenes. VISOR, the system described in this paper, consists of three
main components. The Low-Level Visual Module (simulated using procedural programs)
extracts featural and positional information from the visual input. The Schema Module
encodes structured knowledge about possible objects, and provides top-down information
for the Low-Level Visual Module to focus attention at di�erent parts of the scene. The
Response Module learns to associate the schema activation patterns with external responses.
It enables the external environment to provide reinforcement feedback for the learning of
schematic structures.

1 Introduction

Consider the task of understanding simple scenes. A scene analysis system has to identify
the objects in the scene (e.g., an arch and two trees, Fig. 1a) and determine what the scene
depicts (e.g., a park). In designing a neural network system that performs this task, three
fundamental problems are encountered:

1. How can a �xed-size neural network process inde�nitely large amounts of information?

2. How can a neural network represent and use structured knowledge?

3. How can a network learn to represent structured knowledge?
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In fact, these problems are also encountered in many other neural network application areas,
such as speech understanding and natural language processing. The goal of this research is
to develop general solutions to these problems, using scene analysis as a concrete task.

Consider the �rst problem: limited processing resources. In practice, it is only possible
to construct a neural network with a �xed number of input units and internal processing
units. The weights and activities have �nite precision and are bounded within certain ranges
of values. Even if such a network can capture a large part of the scene at once, it may not be
able to process all the information in parallel unless it has an exponential number of units
and connections [7; 17]. The only viable option is to process a small amount of visual input
in parallel, and successively focus on di�erent parts of the scene. This strategy also seems
to be in use in biological visual systems [12].

Since the network is �xed and �nite, it may not have enough storage space for the input
information. It will have to build and maintain a partial interpretation of the input gathered
so far. It estimates the likelihoods that the input features form known objects, and as more
information is received, it strengthens or weakens these estimates. It continues processing
other parts of the scene until it has gathered su�cient information to build a consistent,
complete interpretation.

A system that adopts this strategy requires an internal model, generally known as a
schema in psychological research, for making the interpretations [1; 3; 8; 12]. Thus, the
solution to the �rst problem requires addressing the second problem: the network needs to
be able to represent structures in the input, including the spatial layout of the objects and
the entire scene.

Although visual schemas have been extensively studied in the symbolic framework [5;
10], there has been very little work in neural networks in this area (see [2; 6; 16] for re-
lated approaches). Neural networks are not very good at manipulating symbolic structures
explicitly. Instead, they are good at feature extraction, association, constraint satisfaction,
pattern classi�cation, and making other fuzzy decisions, based on cooperation and compe-
tition among units and networks. A successful schema implementation would have to be
based on such subsymbolic, \neural" processes.

The third problem concerns the learning of structured knowledge. In practice, a lot of
knowledge is required to describe the objects in the application domain. It is very di�cult
and tedious, if not impossible, to handcode all the knowledge required. Learning simpli�es
the process. The same system can be used in di�erent applications after the domain-speci�c
knowledge has been acquired. Such a system can also adapt to environmental changes.

The VISOR system (VIsual Schemas for Object Representation; [13; 14]) is designed to
address the three fundamental problems in the domain of scene analysis. In this paper, we
will describe the core parts of VISOR and illustrate its operation on \blocks world" scenes.

2 The VISOR architecture

The overall architecture of VISOR is based on the separation of the \what" and \where"
pathways in low-level vision ([18]; Fig. 1). Its representation of hierarchical knowledge is
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Figure 1: VISOR consists of the Low-Level Visual Module (LLVM, b), the Schema Module
(c), and the Response Module (d). LLVM extracts \what" and \where" information from the
scene (a). The Schema Module performs scene analysis and the Response Module produces
responses expected by the environment. Figures (e) and (f) indicate the activities of �ne-
scaled and coarse-scaled Relative Position Maps (RPMs) when attention is focused at the
position marked with \+".

similar to that of Hinton's part-whole hierarchies [11]. VISOR consists of three main com-
ponents: the Low-Level Visual Module (simulated using procedural programs), the Schema
Module, and the Response Module. The architecture and operation of the �rst two mod-
ules will be described below. The Response Module will be discussed with schema learning
(Section 4).

The Low-Level Visual Module (LLVM, Fig. 1b) focuses its attention at one position in
the scene at a time, and extracts the feature (e.g. line, rectangle, triangle) at that location.
As its output, the Feature Cells indicate how strongly the LLVM believes a particular feature
is present (\what" information; Fig. 2a). The Relative Position Maps (RPMs) encode the
relative positions of the features at several scales (i.e. \where"). For example, suppose that
part of the scene contains an arch and two trees (Fig. 1a), and attention is currently focused
on the triangular roof of the arch. At a �ne scale, the RPM locates the triangle above the
two rectangles, and gives a peak response at the top part of the map (Fig. 1e). At a coarser
scale, the RPM locates the blob of features constituting the arch in the middle of the blobs
corresponding to the two trees, and forms a peak response at the center of the map (Fig. 1f).

The Schema Module (Fig. 1c) maintains the hierarchy of schemas, integrates successive
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Figure 2: (a) The Schema Hierarchy Net encodes part-whole relationships among the
schemas. Arrows represent one-way connections, solid lines represent both the bottom-up
and top-down connections (which are di�erent), and dashed lines indicate inhibition. The
Feature Cell marked \S" is sensitive to squares, the one marked \T" to triangles, and \R"
to rectangles. For simplicity, only the components of the tree schema-net are shown, where a
square is expected at the bottom-center position, and the center position is a potential next
position of attention. (b) The arch image encoded by the arch schema. The grid represents
the SAM and the black dots denote the positions of the components in the SAM.

input information, and determines the next position of attention. It consists of two main
neural networks: the Schema Hierarchy Net (SHN) and the Shift Selection Net (SSN). The
SHN is a multi-layer network of schema representation nets, or schema-nets for short (Fig. 2).
A schema-net consists of four main components: the output unit, the Subschema Activity
Map (SAM), the Current Position Map (CPM), and the Potential Position Map (PPM).
Before describing these components in detail, let us �rst look at how the schema hierarchy
is represented in the SHN.

Each layer of schema-nets corresponds to a level in the schema hierarchy. The higher the
level, the larger the scale of the schema-net. High-level nets represent scenes while low-level
nets encode objects. A schema-net can simultaneously be a subschema of a higher-level
schema-net and a super-schema of a lower-level schema-net. The �rst-level schemas take the
Feature Cells' activities as inputs. The connectivity of the SHN encodes the part-whole rela-
tionships among the schemas. Consider, for example, the representation of an arch (Fig. 2b).
The arch consists of three components: a triangular roof and two rectangular pillars. The
grid superimposed on the arch represents a map called the Subschema Activity Map (SAM)
in the arch schema-net. The black dots indicate the positions of the components in the map.
For example, the triangle is located at the top-center of the arch map. Corresponding to



each black dot, there is a connection from a Feature Cell to a SAM unit. The connection
indicates that the feature is a component of the arch schema at the position of the SAM
unit.

The SAM units' activities indicate how strongly the subschemas are believed to be present
in the scene. These activities may change as more information is extracted from the scene.
In e�ect, SAM encodes a summary of current evidence for a schema. The evidence is added
up in the activity of the schema-net's output unit (or schema-net's activity for short), which
represents the certainty, or con�dence, that the entire schema matches the input. In addition
to bottom-up connections from the schema-net's own SAM units, the output unit receives
top-down connections from the super-schemas' SAM units (Fig. 2). If a higher-level schema
matches an input object with high con�dence, then its subschemas are expected to match the
object's components as well. The top-down feedback encodes such expectations and gives
an activation advantage to subschemas that match the currently active high-level schemas.
There are also mutually inhibitory connections among the schema-nets' output units to allow
the schemas to compete in interpreting the input.

In addition to the dynamic information encoded in SAM, it is necessary to maintain
information about the static structure of the schema, so that the system can decide where to
focus its attention next. Such information is stored in the Potential Position Map (PPM).
A high activity in a PPM unit indicates that a subschema is expected at the corresponding
position.

The current position of attention is stored in the Current Position Map (CPM), coded by
the location of a single active unit in the map. Each CPM unit connects multiplicatively to
the SAM unit at the corresponding location (Fig. 2). If a CPM unit is on, the corresponding
SAM unit's activity can be updated. Otherwise, the SAM unit's activity remains unchanged.
In other words, only the activities of the subschemas that match the current position are
propagated upwards.

3 VISOR operation

At the beginning of the scene analysis process, all the schema-nets are reset to their initial
states: none of their CPM units are on (no current position of attention), and the activities
of their SAM units are 0 (nothing has been found). At each focusing of attention, the Schema
Module processes the featural and positional information received from the LLVM in four
main stages:

1. Setting Current Positions. After the LLVM has shifted its attention to the selected
location in the scene, the schema-nets update their current positions of attention. If a
schema-net is not attending to anything, that is, none of its CPM units are on, its current
position is set at the peak position in the RPM (Fig. 2). If one of the CPM units is on, the
current position is shifted according to the shift vector received from the SSN (Fig 1c).

2. Schema Activation. At this stage, one of the CPM units is active indicating the current
position of attention. The activity of the SAM unit at the corresponding map position is
updated (e.g. bottom-center in the tree schema of Fig. 2). Other SAM units' activities



remain unchanged. The activity of the schema's output unit is also updated according to
how well the schema matches the input. If it matches well, its activity increases as a result
of increased SAM activity; otherwise, its activity decreases as a result of mutual inhibition
among the schemas. The activity of a schema in turn feeds back to its subschemas and
boosts their activities. The activities are updated asynchronously for several cycles until
they stabilize.

3. Selection of Desired Next Positions. After the activities have stabilized, each schema
chooses a position at which it would like the system to focus its attention. These are the
positions where a schema expects to discover features that will contribute to increasing its
activity, that is, where there are high PPM activities (e.g the center of the tree schema in
Fig 2). The selected position is encoded as a shift vector (x-shift, y-shift, x-scale, y-scale)
and is sent to the SSN.

4. Selection of The Actual Next Position. The SSN receives the desired shift vectors
from all schema-nets as its input, and selects one of them to be adopted. It prefers a small
shift desired by a highly active schema-net. This criterion favors the interpretation of the
visual input in terms of the best-matched schema while minimizing the amount of attention
shift. If VISOR has not �nished processing the object that it is currently focused on, the
SSN will favor shift vectors with the scales comparable to the object schemas, which allows
VISOR to focus attention at other parts of the object. Otherwise, it will select a shift vector
with scale comparable to the scene schemas. The selected shift vector is propagated to the
LLVM and to all schema-nets.

The example in Fig. 3 illustrates the operation of VISOR. All schemas are handcoded in
the SHN. The �rst level of the SHN consists of the arch, the house, and the tree schemas. Of
these, the arch and the house schemas are very similar. Both have at triangular roofs, and
the rectangular pillars of the arch may be confused with the square windows of the house.
The second-level schemas are forest, park, suburb and city. These schemas are very similar
as well. For example, if the scene is either a forest, park or suburb, and VISOR scans from
right to left, it will be unable to disambiguate until the object on the far left is identi�ed.1

In this example, VISOR received a suburb image as the input, and was set to initially
attend to the triangle of the rightmost tree. Note that this state is ambiguous because
the forest, park and suburb schemas all have a tree as the rightmost component. At step
2, the rightmost tree was identi�ed. At step 4, the middle tree was identi�ed. At this
time, detailed information of the middle tree was stored in the SAM of the tree schema,
but detailed information of the rightmost tree was lost. The previous activity of the tree
schema (corresponding to the rightmost tree) was stored only in the SAMs of the second-
level schemas. Throughout the �rst 4 time steps, VISOR was unable to determine whether
the input scene was a suburb, a park or a forest. At step 5, VISOR focused attention at the
triangular roof of the house. It thought that the object on the far left was most likely an
arch, and that the whole image was most likely a park. Final disambiguation occurred at
step 10. After this time, the house schema became most active at the �rst level indicating
that the last attended object was a house. Consequently, the suburb schema became the

1Note that these second-level schemas are not intended to be general representations of these scenes.
They are conjured up to test the performance of VISOR in highly ambiguous situations.
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Figure 3: Processing a suburb image. The schemas were hand-coded as shown at left. The
�rst-level schemas consisted of 5 � 5 units, and the second level schemas 3 � 3 units; \A"
stands for arch, \H" for house, and \T" for tree. The time course of schema activation is
shown at right. The �rst-level schemas are plotted in the bottom graph, the second-level
schemas on the top graph.

most active second-level schema. After processing all the objects in the scene, the schemas'
activities stabilized and the process terminated.

4 Schema learning

The Response Module serves as an interface between the Schema Module and the external
environment (Fig. 1). It learns to associate the schema-net activations with the target
responses (scene and object labels) that the environment expects as a result. At the same
time, the Schema Module develops a hierarchy of visual schemas based on the environment's
feedback. Therefore, learning is multi-modular,2 consisting of interacting components that
simultaneously learn di�erent parts of the overall task.

Let us �rst consider how a single schema can be learned in the Schema Module. Initially
the connection weights in the Schema Module have small positive random values. Given
an input object and the target response, VISOR performs low-level visual processing and
schema recognition as described in Section 3, and as a result, one of the schema-nets becomes
most strongly activated. Its connection weights are then modi�ed to encode part of the
input object. As attention shifts to other parts of the object, the same schema-net remains
most active and its weights are further modi�ed to encode other parts of the object. After
presentations of several di�erent instances, the weights of the schema-net will gradually

2Multi-modular learning schemes have also been proposed by Grossberg and Kuperstein [9], and Miikku-
lainen [15].



converge to stable values that encode the essential structure of the object, and allow it to
recognize further instances with minor variation. At the same time, the Response Module
learns to associate the target response with the activation of this particular schema-net.

In order to learn to represent several schemas in the Schema Module, a reinforcement
signal is required to distinguish among them. Suppose that VISOR has already learnt about
the arch schema, and the environment is teaching it a house. A house image is fed to
the Low-Level Visual Module and a house response to the Response Module. If the Schema
Module �nds the house to be signi�cantly di�erent from the arch, then a schema-net di�erent
from the arch schema-net will become most active. The Response Module will produce no
response since nothing has yet been associated with this schema-net. The environment will
deliver reward signals to both the Schema Module and the Response Module, and learning
will proceed as in the single-schema case. On the other hand, if the Schema Module �nds
the house to be very similar to the arch, the arch schema-net will be most active and the
Response Module will produce the arch response. In this case, the environment must deliver
a punishment signal to the Schema Module and the Response Module. After receiving the
punishment signal, the Schema Module suppresses the activity of the arch schema-net so
that a di�erent schema-net can become most active and correct learning can proceed as in
the single-schema case. The punishment signal is very similar to the mismatch-reset signal
in the ART network [4]. It tells the Schema Module to �nd a di�erent schema-net to encode
the house without specifying which one.

Learning begins with a number of schema-nets connected in a hierarchy, each with small
random weights, and therefore encoding no spatial structure. The object schemas are learned
�rst, and after that, the scene schemas begin to organize. Fig. 4 illustrates an example of
learning to encode a suburb after mastering the arch, house, tree, forest and park schemas.
At the �rst presentation of the suburb scene, the park schema-net was most active. The
Response Module produced the park response which was found incorrect. The environment
delivered a punishment signal, suppressing the activity of the park schema-net. At the
second presentation, the forest schema-net became most active, and forest was produced as
the response. This was again incorrect; a second punishment signal was delivered and it
suppressed the forest schema-net's activity. At the third presentation, an unused schema-
net (marked as \suburb" in Fig. 4) became most active. No response was produced since
none was associated with it. The environment delivered a reward signal, allowing the most
active schema-net to learn, and the Response Module to form the correct association. At
subsequent presentations, the same schema-net remained most active, and its activity grew
as its weights adapted to better encode the suburb scene.

5 Conclusions

The main goal of this research is to develop representation and learning methods for visual
schemas in neural networks. The representation scheme supports integration of successive
information so that scene analysis can be accomplished with limited processing resources.
The multi-modular learning method allows the Schema Module to self-organize yet allows
external intervention to correct recognition error. Learning new schemas does not erase
previously established schemas, while relearning old schemas corrects representation errors.
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Figure 4: The process of learning to encode a suburb after learning forest and park scenes.
At the �rst two presentations of the suburb scene, the park and the forest schema-nets
were most active, and their activities were subsequently suppressed. Starting from the third
presentation, the most active unused schema-net (marked as \suburb") began to encode the
suburb schema.

We are currently extending VISOR to process more realistic scenes. Compared to the
\blocks world" scenes in the above examples, real world scenes contain more variability: (1)
In many cases, the relative positions of the components are not important in determining
the scene. For example, a house can be anywhere among the trees in a suburb scene. (2)
The components do not always have recognizable shapes. For example, the trees are usually
merged into regions with irregular shapes and approximately uniform texture. Similarly,
roads and rivers and patches of grass are just regions with uniform texture. Our �rst re-
sults are promising: by learning to encode knowledge about scene components and textural
features, VISOR has successfully analyze certain classes of real world scenes as well.
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