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Abstract

VISOR is a neural network system for object recognition
and scene analysis that learns visual schemas from ex-
amples. Processing in VISOR is based on cooperation,
competition, and parallel bottom-up and top-down acti-
vation of schema representations. Similar principles ap-
pear to underlie much of human visual processing, and
VISOR can therefore be used to model various percep-
tual phenomena. This paper focuses on analyzing three
phenomena through simulation with VISOR: (1) prim-
ing and mental imagery, (2) perceptual reversal, and
(3) circular reaction. The results illustrate similarity
and subtle di�erences between the mechanisms medi-
ating priming and mental imagery, show how the two
opposing accounts of perceptual reversal (neural satia-
tion and cognitive factors) may both contribute to the
phenomenon, and demonstrate how intentional actions
can be gradually learned from reex actions. Successful
simulation of such e�ects suggests that similar mecha-
nisms may govern human visual perception and learning
of visual schemas.

Introduction

In trying to understand the mechanisms of higher cog-
nition there is often very little hard data available to
constrain the theories. Direct observations can only be
made on processes that are far removed from the neu-
ral mechanisms that implement them. The best clues
often come from error behavior and impairments, espe-
cially those resulting from direct damage to the neural
structures and pathways involved. Another important
set of clues comes from behavioral phenomena such as
illusions and memory e�ects. Such isolated pieces of
evidence provide nevertheless a grounding for compu-
tational modeling. The model's behavior should match
these data points, and at the same time �ll in the gaps
between them and make plausible suggestions of what
the underlying mechanisms might be.
In the visual domain, several interesting and poten-

tially revealing e�ects have been observed, ranging from
low-level illusions to higher-level perceptual phenomena.
A lot is also known about the physical structure of the
visual system: information is laid out on maps, there
is competition and cooperation among the representa-
tions and activation from both bottom-up and top-down
sources (Arbib, 1986). The highest levels of visual pro-
cesses such as those responsible for object recognition
and scene analysis are not as well understood but there

is a good chance that similar mechanisms are in use there
also.
VISOR (VIsual Schemas for Object Representation,

Leow, 1994; Leow and Miikkulainen, 1993) is a schema-
based model of object recognition and scene analysis.
A major goal in building VISOR was to show how
visual schemas (as described by Arbib, 1986; Draper
et al., 1989) could be represented in neural networks and
how they could be learned from examples. VISOR dif-
fers from non-schema based systems (e.g., Mozer and
Behrmann, 1990; Olshausen et al., 1993) in that the
recognition process is based on the cooperation, competi-
tion, and parallel bottom-up and top-down activation of
schematic representations. Similar principles appear to
underlie much of human visual processing, and VISOR
can therefore be used to test hypotheses about various
high-level perceptual phenomena. This paper focuses on
three such phenomena: (1) the e�ects of priming and
mental imagery, (2) perceptual reversal, and (3) circu-
lar reaction. By studying the processes underlying the
behavior of VISOR, it is possible to gain insight into
how such processes could take place in the human visual
system.

Schema-Based Recognition in VISOR

VISOR consists of three main modules: the Low-Level
Visual Module (LLVM), the Schema Module, and the
Response Module. The LLVM focuses attention at one
component of an input object at a time, and extracts
the shape of that component. As the output units of
the LLVM, the shape units (Fig. 1) represent rough cat-
egories of shape and size, such as a small rectangle, or a
large at triangle.
The Schema Module organizes visual schemas into two

levels (Fig. 1). The top level consists of scene schemas
that receive input from lower-level object schemas, which
in turn receive inputs from the shape units. The spa-
tial structure of a schema is represented in a 2-D ar-
ray of units called the Subschema Activity Map (SAM,
Fig. 1). Each unit in the map represents a component
at the corresponding position. The connection weights
between the lower-level schemas (or shape units) and the
SAM units encode what VISOR expects to �nd at each
position. Consider, for example, the image of an arch
(Fig. 1b), which consists of a triangle on top of two rect-
angles. The arch schema is encoded by three units in a
3�3 SAM: the top-center unit is most strongly activated
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Figure 1: The schema representation hierarchy
in VISOR. (a) Visual schemas in VISOR are orga-
nized into two levels: objects and scenes. Arrows rep-
resent one-way connections from low-level inputs, solid
lines represent both bottom-up and top-down connec-
tions (which are di�erent), and dashed lines indicate in-
hibition. The shape unit marked \T" is sensitive to at
triangles, and the one marked \R" to rectangles. (b)
The arch image encoded by the arch schema. The grid
represents units in the Subschema Activity Map (SAM).
The black dots denote those SAM units that correspond
to the components of the arch.

by the triangle-sensitive shape unit, and the two units
on either side are strongly connected to the rectangle-
sensitive shape unit.
When VISOR is trying to activate the arch schema,

it focuses its attention at one SAM position at a time,
concentrating on positions where the arch components
are expected. For example, it may begin by focusing at
the top-center position. There is a triangle at that loca-
tion in the image, and the shape units are activated as
in Fig. 1. As a result, the top-center unit receives strong
activation, indicating that the arch schema matches the
input image at that location. As VISOR looks at other
positions in the image, the corresponding SAM units
are updated. The schema's output unit sums up the
component activities and indicates how well the entire
schema matches the input. In other words, the com-
ponents cooperate in supporting the schema activation.
The output unit then sends activation to the SAM units
of higher-level schemas, indicating for example that �nd-
ing an arch in the middle of the scene suggests that the
entire scene might depict a park. At the same time,
the park schema propagates its activity back to the arch
schema indicating that the arch is indeed expected in the
scene.
Di�erent schemas may share identical or similar parts.

For instance, the roof of an arch may look like that of
a house. In this case, the triangle-sensitive shape unit
has a strong connection to SAM units in both the arch
and the house schemas (Fig. 1). If the triangle appears
in the same relative position, as is the case with the
arch and the house, then the activation of the triangle-

sensitive unit propagates to both arch and house SAMs.
This way, whenever VISOR focuses at a new location,
all schemas that match the input at that location are
simultaneously activated. VISOR keeps shifting atten-
tion to other positions and accumulating activation in
its schema hierarchy until it has seen all the important
inputs in the scene. For example in Fig. 1, in the end
the arch schema has a larger output activity because it
matches the input object better than the house schema.
It also tries to suppress the house schema through in-
hibitory connections between their output units. Thus,
the di�erent schemas compete to determine which one
best matches the input scene.
The environment does not have to peek into the

Schema Module to determine the recognition results. In-
stead, it receives the output response (a label) generated
by the Response Module based on the current schema ac-
tivations. The Response Module plays an important role
in learning new schemas. For example, let us consider
how VISOR learns to encode the arch. The environment
presents the image of an arch to the LLVM and the arch

label to the Response Module as the target. As a re-
sult of the interactions among the schema-nets, one of
them becomes most strongly activated. There are three
di�erent learning situations:

1. If the most active schema-net has not yet encoded a
schema, the Response Module will produce no output
response, and the environment will deliver a reward
signal to VISOR. The schema-net weights adapt to
encode the spatial structure of the arch, and the Re-
sponse Module learns to associate the activation of the
newly formed arch schema with the target label arch.

2. If the most active schema-net happens to be the newly
formed arch schema, then the Response Module will
produce the correct arch label as the response. The
environment will deliver a reward signal to VISOR
and weight adaptation takes place as in the �rst case.

3. If another schema, such as the house, becomes most
active, the Response Module will produce the house

label which is incorrect. In this case, the environment
will deliver a punishment signal to VISOR, suppress-
ing the house schema-net's activation so that a di�er-
ent schema-net can become most active. The punish-
ment signal is analogous to the mismatch-reset signal
in the ART network (Carpenter and Grossberg, 1987).
It tells the Schema Module to �nd a di�erent schema-
net for the spoon without specifying which one.

VISOR's process of matching inputs through coop-
eration, competition, and parallel bottom-up and top-
down activation of schemas also seem to underlie var-
ious perceptual phenomena. The rest of this paper il-
lustrates how phenomena such as priming, perceptual
reversal, and circular reaction can be modeled in the VI-
SOR framework.

E�ects of Priming and Mental Imagery
A person's recognition of objects can be facilitated, re-
ducing his response time, by priming, that is, by giving
him advance information about the object to be rec-
ognized (Carr et al., 1982; Rabbitt and Vyas, 1979).
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Figure 2: Priming by incomplete activation of
schemas. The graphs marked \+ve prime" (positive
prime), \-ve prime" (negative prime) and \no prime"
correspond to the cases where the priming input is iden-
tical to the target, di�erent from the target, and nonex-
istent. Positive priming reduces VISOR's response time,
and negative priming increases it slightly.

The e�ects of priming may be mediated by many di�er-
ent processes. Most likely, priming involves transferring
the object's representation from the long-term memory
(LTM) to the short-term memory (STM) where recog-
nition is carried out (Beller, 1971). If the priming ex-
posure is very brief, such transfers may be incomplete.
On the other hand, after priming, the activities of the
STM may begin to decay towards an unprimed state. If
the target is presented shortly after priming, then de-
cay may be only partial and the residual activities in the
STM would inuence the recognition process (Rabbitt
and Vyas, 1979).
Studying priming e�ects in VISOR may lead to a

better understanding of the underlying neural mecha-
nisms. In VISOR, the connections within and among
the schemas correspond to the LTM, and the activations
of the schemas correspond to the STM. In the case of in-
complete transfer, some SAM units of the target schema
are fully activated while others are not activated at all,
whereas with residual activation, all the SAM units that
encode object parts are only partially activated. The
following experiments illustrate how the two main prim-
ing mechanisms arise naturally frommap representation,
cooperation, and competition in VISOR.
First, consider priming by incomplete schema activa-

tion. A priming object (a hammer or pliers) was pre-
sented briey to VISOR. VISOR had enough time to
focus at only two components of the object, and only
two of the object schema's SAM units were activated.
At this time, the target object (a hammer) was pre-
sented to VISOR, and its recognition time was measured
(Fig. 2).1 When the priming input was identical to the
target object (marked as \+ve prime," shorthand for
positive priming), the hammer schema had a head start
when VISOR began recognizing the target object (step
1), and its activity reached the critical value 0.8 earlier.
When the prime di�ered from the target (marked as \-
ve prime" for negative priming), the hammer schema
started with a slightly smaller activity level than in the
unprimed case, and reached the critical value later.

1Recognition time refers to the time taken for the hammer
schema's activity to reach 0.8, which means that VISOR is
quite con�dent that the input object is a hammer.
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Figure 3: Priming by residual activation. As be-
fore, positive priming (+ve prime) reduced VISOR's re-
sponse time, and negative priming (-ve prime) increased
it slightly, but the slope of the positive priming curve is
less steep.

Now consider priming by residual activity. As in the
previous experiment, a priming object (a hammer or pli-
ers) was presented to VISOR (Fig. 3). After recognizing
the object, the activities of the schemas' output units
and the SAM units began to decay. Before they reached
zero, the target object (hammer) was presented to VI-
SOR. As before, positive priming reduced VISOR's re-
sponse time and negative priming increased it slightly.
However, the slope of the linear portion of the positive
priming curve was less steep than with priming by in-
complete activation. This di�erence is signi�cant and is
due to the di�erences between the priming mechanisms.
In the case of incomplete activation, two of the hammer
schema's SAM units have already been fully activated
during priming. In subsequent recognition of the target,
only the remaining SAM units need to be activated. The
e�ect is to shift the \no prime" curve towards the left,
and the slopes of the curves stay identical. In the case of
residual activation, all the hammer schema's SAM units
are only partially activated, and need to be fully reac-
tivated during the recognition process. As a result, the
positive priming curve stabilizes at the same time step
as the no priming curve, but has a more gentle slope
because it starts with a larger value. This result leads
to an interesting prediction: psychological experiments
designed to reveal such subtle di�erences in priming ef-
fects could also uncover the type of neural mechanism
underlying priming.
Besides perceiving visual stimuli, humans can form

mental images that resemble the perceived appearance
of physical objects (Finke, 1989). Like priming, mental
imagery also inuences human visual perception (Farah,
1985; Finke, 1989). If the mental image matches the
target stimulus, the subject's response time is reduced;
otherwise, it is increased.
Mental imagery can be modeled in VISOR by feeding a

top-down input directly to the output unit of the schema
that encodes the object. Such input corresponds to the
cognitive decision to generate a mental image. The top-
down input increases the schema's output activity which
in turn feeds back to the SAM units. This feedback
has to be quite weak (0.4) to avoid overwhelming the
bottom-up inputs during the recognition process. Con-
sequently, the SAM units are only partially activated.
In an experiment simulating the e�ects of mental im-

3



1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

no imagery

+ve imagery

-ve imagery
step

activity

Figure 4: E�ects of mental imagery on object
recognition. There is a large facilitation (+ve imagery)
and a small interference e�ect (-ve imagery) matching
the results of Farah's second experiment (Farah, 1985).

Figure 5: An ambiguous �gure that can be perceived
either as a duck or a rabbit.

agery, VISOR was �rst instructed to \imagine" either a
hammer or pliers. After the activation settled, a ham-
mer was presented to VISOR for recognition. Fig. 4
shows that there is a large facilitation and a very small
interference e�ect matching the results of Farah's (1985)
experiment. As in the case of residual activation, the
slope of the linear portion of the positive imagery curve
is less steep than that of the \no imagery" curve. This is
because both the e�ects of mental imagery and priming
by residual activity are mediated by partial activations of
all SAM units. This result supports the conjecture that
visual perception and mental imagery share the same
neural substrates (Farah, 1985; Finke, 1989).

Perceptual Reversal
Perceptual reversal is another intriguing psychological
phenomenon that can be naturally replicated in VISOR.
An ambiguous �gure such as Fig. 5 can be perceived ei-
ther as a rabbit facing right or as a duck facing left, and
continuous viewing results in spontaneous switching of
perception from one to the other. Satiation theory is cur-
rently the most widely accepted account of perceptual
reversal (Attneave, 1971; Babich and Standing, 1981).
This theory holds that the two percepts of an ambiguous
�gure are each elicited by a di�erent group of neurons.
The two groups constantly compete to establish one of
the percepts. After the �gure has been viewed contin-
uously for some time, the currently dominant group of
neurons becomes fatigued, or satiated. The other group
wins the competition causing the reversal of perception.
A major weakness of the satiation theory is that satia-
tion does not seem to play an important role in any other
perceptual phenomena, which makes it a rather unlikely
explanation. Therefore, some psychologists have seeked
to explain perceptual reversal in terms of cognitive fac-
tors, such as attention and expectation, that subserve
normal visual perception (Bugelski and Alampay, 1961;
Tsal and Kolbet, 1985)
In VISOR, perceptual reversal can be mediated both
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Figure 6: Perceptual reversal mediated by top-
down input. A top-down activation was fed alterna-
tively into either the duck or rabbit schema's output
unit, but not both. Consequently, VISOR's perception
of Fig. 5 switched back and forth between duck and rab-
bit.

by neural satiation and by cognitive factors. VISOR
was trained to recognize Fig. 5 as a duck in some learn-
ing trials, and a rabbit in the others. After training,
VISOR viewed the input �gure continuously, focusing
attention at di�erent parts. In the absence of both cog-
nitive factors and neural satiation, VISOR was unable
to determine whether the �gure was a rabbit or a duck.
The activities of both the duck and the rabbit schemas
were approximately equal, and there was no reversal of
perception.
To model cognitive factors such as attention and ex-

pectation, a small top-down input (of value 0.1) was fed
alternatively into either the duck or the rabbit schema's
output unit, but not both (Fig. 6). When the duck
schema received the top-down input, it had a slight ac-
tivation advantage, allowing it to turn down the com-
peting rabbit schema and attain a high activation level.
When the input was switched to the rabbit, so did the
perception. Consequently, VISOR's perception of Fig. 5
switched back and forth between rabbit and duck.
Neural satiation and recovery from fatigue were mod-

eled in VISOR with probabilistic activation process.
Normally, a unit can �re at any activity level. If it be-
comes satiated, its probability of �ring at a high activ-
ity level is reduced; the more satiation, the smaller the
probability. A satiated unit can still �re at a low ac-
tivity level, and slowly recovers from fatigue. VISOR
again viewed Fig. 5 continuously, repeatedly focusing at
di�erent parts of the input. At the beginning (steps 1{
10, Fig. 7), both the duck and the rabbit schemas had
low activation. The rabbit schema satiated more than
the duck schema at step 10, and the duck schema at-
tained a high activity level of about 0.8 (the �rst peak
between steps 10 and 20). The duck schema then sa-
tiated rapidly, and VISOR's percept switched to rabbit
(second peak between steps 10 and 20). VISOR's per-
ception subsequently switched back and forth between
rabbit and duck, but both were never simultaneously
active. The probabilities of perceiving a rabbit and a
duck were about equal.
Fig. 8 demonstrates the combined e�ect of neural sa-

tiation and cognitive bias. This experiment was per-
formed in the same manner as the previous ones, except
that a top-down input of 0.05 was fed only to the rabbit
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Figure 7: Perceptual reversal mediated by neural
satiation. VISOR's percept switched between duck and
rabbit with approximately equal probability for each.
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Figure 8: Perceptual reversal mediated both by
neural satiation and top-down input. An input of
0.05 was fed into the rabbit schema's output unit. As a
result, VISOR was biased to perceiving the ambiguous
�gure as a rabbit more often.

schema's output unit. VISOR's perception still switched
between a duck and a rabbit, however, VISOR was bi-
ased into perceiving a rabbit more often. This result
seems to match human experience quite well. People are
able to bias the perception of an ambiguous �gure to-
wards one or the other, but cannot totally control which
percept to elicit or prevent reversals entirely.
These results support the suggestion by Long et

al.(1992) that human perceptual reversal may be medi-
ated by both neural satiation and cognitive factors. Sa-
tiation seems indispensable since we cannot totally con-
trol which percept to elicit, and cognitive factors such as
attention and expectation are necessary to explain per-
ceptual bias. Experiments with VISOR illustrate how
both processes can coexist and interact to determine the
percept.

Circular Reaction
Circular reaction is a concept developed by Piaget (1952)
to describe intellectual development in infants. When an
infant's behavior by chance produces interesting results,
she will repeat the behavior inde�nitely. For instance,
an infant moves her arm and by chance causes a toy
attached to her cradle to rattle. The rattling interests
her, and she desires to continue with it. Over a period
of time, she learns the correct arm movement and can
now rattle the toy whenever she likes.
This example illustrates an important characteristic

of circular reaction: the repeated practice of actions dis-
covered by chance induces learning of intentional actions.
This characteristic is a very powerful learning principle
and has been incorporated in neural network modeling

as well (see e.g. Grossberg and Kuperstein, 1989). It is
also central in VISOR's learning of new schemas. When
VISOR �rst encounters a new object, it focuses atten-
tion only at positions where there are inputs in the scene.
After VISOR has formed a schema for the object, it will
shift attention to places where the object parts are ex-
pected. In other words, the shifting of attention evolves
from a purely bottom-up, reactive process to top-down,
intentional behavior.
VISOR's attention shift is driven by two processes: (1)

the Low-Level Visual Module (LLVM) always suggests a
next position where there are inputs in the scene, and
(2) the active schemas suggest positions where inputs
are expected. VISOR prefers small shifts suggested by
highly active schemas. Consider the example of learn-
ing to encode a hammer (Fig. 9). From the �rst pre-
sentation of the hammer, an initially random schema
started to encode its spatial structure. Its shift sug-
gestions were random because no information had been
encoded (Fig. 9b). The schema was also very weakly
activated because it did not match the input well. Con-
sequently, the LLVM's suggestions were always chosen
by VISOR. At this stage, VISOR was only reacting to
positions that happened to have inputs.
The weight changes made during learning are small,

and it takes several presentations for the schema to learn
an accurate representation of the object's spatial struc-
ture. Halfway through the process, the next positions
suggested by the hammer schema consisted of a mixture
of correct positions and random suggestions (Fig. 9c).
After su�cient training, the schema network learned
the structure of the hammer, and its activity was large
enough so that its suggestions were always adopted by
VISOR. VISOR was no longer just reacting to the inputs
in the scene; instead, it decided where to focus attention
according to where inputs were expected|an act of in-
tention.
To demonstrate that VISOR was indeed shifting by

intention, a hammer without the claw (component c)
was presented to VISOR for recognition. As shown in
Fig. 9d, VISOR still focused attention at position c even
though no input was present, because it was a position
where a part was expected.
This experiment shows that VISOR learns intentional

actions gradually. Initially, VISOR shifts positions of
attention only according to actual presence of inputs.
As the schema gradually learns to represent the object's
structure, a mixture of reex action and intentional ac-
tion is observed. After su�cient learning, VISOR shifts
positions according to what it expects in the input. Cir-
cular reaction has been established as an important prin-
ciple in infants' learning of motor actions. This exper-
iment with VISOR shows that the same principle may
be involved in learning of visual schemas as well.

Conclusion

Cooperation, competition, and parallel bottom-up and
top-down processing appear to underlie many human
perceptual phenomena. These principles are also incor-
porated in VISOR, and consequently, VISOR exhibits
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Figure 9: Learning to recognize a hammer. (a) The outline of the hammer input. Positions a{e denote the
locations of object parts, and positions x, y, and z are other possible positions in the visual �eld. (b) At the beginning,
VISOR focused attention at positions suggested by the LLVM, i.e., where there were inputs (curr: current position,
schema: schema's suggestion, LLVM: LLVM's suggestion). (c) As the hammer schema gradually learned to represent
the structure of the hammer, it began suggesting locations where inputs were expected. However, since the schema
was not yet fully developed, it still suggested a mislocated position (x). (d) After su�cient learning, a hammer
without the claw (component c) was presented to VISOR. The hammer schema always suggested positions where
inputs were expected, including c, and its suggestions were always adopted by VISOR.

behavior that corresponds closely to human visual per-
ception and learning. By studying the mechanisms re-
sponsible for VISOR's behavior, it is possible to gain
insight into how similar processes might take place in
the human visual system. Experiments with VISOR
illustrate the similarity and subtle di�erences between
the mechanisms mediating priming and mental imagery.
They show how the two opposing accounts of perceptual
reversal, namely neural satiation and cognitive factors,
may both contribute to the phenomenon. Learning ex-
periments demonstrate how intentional actions can be
learned gradually from reex action|a characteristic of
circular reaction believed to underlie intellectual devel-
opment in human infants.
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